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Abstract

It is well known that the two-dimensional boundary layer on a concave wall

is centrifugally unstable with respect to vortices aligned with the basic flow

for sufficiently high values of the Gortler number. However, in most

situations of practical interest the basic flow is three-dimensional and

previous theoretical investigations do not apply. In this paper the linear

stability of the flow over an infinitely long swept wall of variable curvature

is considered. If there is no pressure gradient in the boundary layer it is

shown that the instability problem can always be related to an equivalent two-

dimensional calculation. However, in general, this is not the case and even

for small values of the crossflow velocity field dramatic differences between

the two and three-dimensional problems emerge. In particular, it is shown

that when the relative size of the crossflow and chordwise flow is O(R-I/2),

where R is the Reynolds number of the flow, the most unstable mode is time-

dependent. When the size of the crossflow is further increased, the vortices

in the neutral location have their axes locally perpendicular to the vortex

lines of the basic flow. In this regime the eigenfunct!ons associated with

the instability become essentially "centre modes" of the Orr-Sommerfeld

equation destabilized by centrifugal effects. The critical Gortler number for

such modes can be predicted by a large wavenumber asymptotic analysis; the

results suggest that for order unity values of the ratio of the crossflow and

chordwise velocity fields, the Gortler instability mechanism is almost

certainly not operational.
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residence at ICASE, NASA Langley Research Center, Hampton, VA 23665.
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I. INTRODUCTION

In recent years there has been much interest in the effect of boundary

layer growth on the instability mechanisms to which boundary layers are

susceptible. Our concern here is with the G_rtler vortex instability

mechanism which is known to occur in two-dimensional boundary layer flows over

concave walls. The latter problem has been discussed by Gortler (1940),

Hammerlin (1955, 1956), Smith (1955), Floryan and Saric (1979) and Hall

(1982a,b, 1983). In the latter three papers it was shown that the parallel

flow approximation used previously to reduce the linear stability equations to

ordinary differential equations is justifiable only for vortices of small

wavelength. In this case the effect of boundary layer growth can be taken

care of in a self-consistent manner and an asymptotic form for the right-hand

branch of the neutral curve can be derived. At order one values of the vortex

wavelength the parallel flow approximation is not valid and the full

linearized partial differential equations must be solved numerically. The

reader is referred to the paper by Hall (1983) for a discussion of the results

and implications of such a calculation, it suffices here to say that the

physically unacceptable results of previous calculations in this wavenumber

regime are shown to be a direct consequence of the parallel flow

approximation.

There are many practical situations where Gortler vortices are thought to

occur but in most of these the basic boundary layer flow is three-

dimensional. If, for example, we are concerned with the flow on the concave

region of a swept laminar flow wing or that over a turbine blade, then the

three-dimensional nature of the basic flow is important and cannot be

neglected; thus previous theoretical stability calculations do not apply. In



order to determine the effect of three-dimensionality on Gortler vortices for

such flows we shall in this paper investigate the instability of the boundary

layer on the concave part of an infinitely long swept cylinder.

The basic boundary layer flow associated with this flow is easily

calculated using the method of Sears (1948). The parameters which

characterize the flow are _, the angle of yaw, R the Reynolds number and

the curvature parameter. If e = O, we know that steady Gortler vortices

occur for 0(i) values of R I/2_ and are aligned with the streamlines of the

basic flow. The aim of this paper is to determine how the structure of the

instability changes when e is increased from zero. The present analysis is

restricted to small values of the vortex wavelength, but our experience with

the two-dimensional problem would suggest that the results which we obtain are

useful at 0(I) values of the wavelength. However, the differences between

small wavelength Gortler vortices in two- and three-dimensional boundary

layers are so fundamental that we expect that vortices with 0(I) wavelength

cannot even occur in a three-dimensional boundary.

The relative size of the crossflow and chordwise flow is the crucial

factor in determining the structure of Gortler vortices in three-dimensional

boundary layers. Suppose that % is a typical value for the ratio of the

latter velocities in the boundary layer. We show that, when % is increased

from zero, the first crucial change in the structure of the instability occurs

when _ ~ R-I_ . In this regime the vortices become time-dependent and

meander as they develop in the chordwise direction. Surprisingly, the

orientation of the most dangerous mode is always determined by the vortex

lines of the basic flow. We show that at the neutral location the vortex

boundaries align themselves so as to be locally perpendicular to the vortex



lines of the basic flow. Thus, in general, unlike the two-dimensional case,

the vortices are not locally parallel to the flow direction. At larger values

of % further dramatic changes in the vortex structure emerge, until finally

the eigenfunctions develop into Scentre modes _ of the Orr-Sommerfeld equation

made unstable by centrifugal effects. We are able to find the development of

the vortices up to the regime % ~ R -1/8 and it appears that for % >> R-1/8

the Gortler vortex instability mechanism is either not present or cannot be

described by asymptotic means. Thus, we are able to describe the evolution

of Gortler vortices for 0 < % < 0(R-I/8) but it turns out that by writing

=_R -I/2 all the regimes of interest can be obtained by first letting

R . _, with _ fixed and then taking further limits on _. This is the

procedure which we will adopt in this paper.

We find that the above results do not apply when the basic three-

dimensional boundary layer has zero pressure gradient. In this case, the

stability equations can be solved for 0(I) values of c and, in fact, can

be reduced to an equivalent two-dlmenslonal problem. The vortices are then

aligned with the streamlines of the basic flow again and the most dangerous

modes are steady.

The procedure adopted in the rest of this paper is as follows. In Section

2 we formulate the stability equations for the flow over a slightly yawed

infinite cylinder and solve these equations asymptotically for small vortex

wavelengths. In Section 3 we discuss the special case of flows with zero

pressure gradient and in Section 4 we discuss our results and their practical

implications.



2. GORTLERVORTICESIN A SLIGHTLYTHREE-DIMENSIONALBOUNDARYLAYER

We consider the stability of the boundary layer flow over the cylinder

y = 0, -_ < z < _. The z axis is taken to be a generator of the cylinder

and y measures distance normal to the surface. The x coordinate measures

distance along the curved surface which is taken to have variable curvature

!
< (_) where a and £ are length scales. The Reynolds number R, thea

curvature parameter 6 and the Gortler number G are defined by

Uo£
R - _ , (2.la)

£
=- , (2 Ib)a

G = 2_/2 6, (2.1c)

where U0 is a typical velocity in the x direction. We assume that the

Reynolds number is large, whilst _ is taken to be small. More precisely, we

consider the limit _ . O, with G held fixed. The basic three-dimensional

boundary layer flow is assumed to be of the form

u = U0(_(X,Y),R-I/2 "v(X,Y), %_(X,Y))(I + 0(R-I/2),

where

I/2x = Z
£' Y= £ R ,

and % is to be specified shortly. Following the procedure of Sears (1948)

u and v are found by integrating numerically the two-dimensional boundary



layer equations, kw is then calculated from the z momentum equation. At

this stage we need only insist that the basic flow be independent of the

spanwise coordinate, later we shall indicate the relevance of our calculation

to some particular boundary layer profiles of practical importance.

The appropriate scaling for k, which, fixes the angle of yaw of the

cylinder, can be found by taking _ R"Y~ , y > 0 and varying y until

the Gortler instability mechanism driven by _ is modified by the crossflow

at zeroth-order. It is known from the two-dimensional problem that the

characteristic wavelength of the vortices is of the same order of magnitude as

--
the boundary layer thickness, so that the convective terms U0 u _-_ and

R-I/2.
U0 %_-i-_ will be of comparable order when R . _ if _ ~ We write

o_

I = k--R-I/2

to effectively restrict our attention to flows over cylinders yawed at an

angle a ~ 0(R -I/2) to the oncoming flow. At a later stage we can consider

the limits _ . 0, _ . _ in order to recover some information about the

regimes I << R-I/2 and I >> R-I/2 respectively. We define the variable Z

by

Z = RI/2 z/£

and perturb the basic flow by writing

_= U0(_ + U(t,X,Y)E, _R -I/2 + V(t,X,Y)R -I/2 E, _R -I/2

+ W(t,X,Y)R -I/2 E)(I + 0(R-I/2)), (2.1c)
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where t is a time variable scaled on £/U0 whilst

E = exp(iaZ).

We then substitute the above expression for u into the Navier-Stokes

equations and linearize to obtain

......

Ut + uUX + Uux + VUy + Vuy + % wiaU = Uyy - a U, (2.2a)

Vt + u--Vx + Uv--X + _Vy +Vvy + % wiaV + G_(X)_U = -Py + Vyy - a2 V, (2.2b)

Wt + u--WX + _ Uwx + v--Wy+ _ VWy + _-_iaW = -iaP + Wyy -a2 W, (2.2c)

UX + Vy + iaW = 0. (2.2d)

Here P is the nondimensional pressure perturbation corresponding to the

disturbed velocity field and we have neglected terms of relative order R-I/2. •

The equations (2.2) reduce to the corresponding two-dimensional equations when

=0. We shall see later that if u = w we can solve the three-dimensional

stability problem even for _ = 0(I). In fact, in this case the three-

dimensional problem can always be reduced to an equivalent two-dimensional

problem so that the results of Hall (1982a, 1983), hereafter referred to as I,

II, can be used. For the remainder of this section we assume that u # w and

determine how the crossflow modifies the instability.

It is clear that if the wavenumber a is 0(I) then (2.2) must be solved

numerically in the manner described in II, but we must allow for a possible
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time dependence of the instability. Our experience in I, II showed that it is

only in the limit a . = that the usual results of stability theory apply

and, in fact, for a ~ 0(I) there is no such thing as a unique neutral

curve. However, we found that the asymptotic results for a >> 1 gave useful

information about the instability for a ~ 0(I), so we shall concentrate here

on the further limit a . =.

It was shown in I that for a >> 1, the vortices concentrate themselves in

an internal viscous layer of thickness a-I/2. In the neutral location this

layer is in the position where _(X,Y) most violates Rayleigh's criterion.

If the vortices are not locally neutrally stable, this is not the case and we

shall show that for sufficiently large crossflow velocities the position of

the viscous layer where the vortices are concentrated is never fixed by

Rayleigh's criterion.

We are now in a position to determine the asymptotic solution of (2.2) for

large values of the nondimensional wavenumber a. Before doing so, we must

specify the relative size of %, which determines the magnitude of the

crossflow velocity field. The aim of our calculation is to determine the

effect of increasing % on the Gortler vortex instability mechanism, so it is

convenient for us to take the limit a . _, _~ aJ for J _ 0. Afterwards

we shall indicate for what regimes of the curvature and flow velocities these

further limits apply. It turns out that there are three major regimes for

J which enable us to describe how a Gortler vortex eigenfunction evolves into

essentially an Orr-Sommerfeld eigenfunction when the crossflow is increased.

These three regimes correspond to (a) a ~ _2, (b) a ~ _3/5, and (c)

_1/3,~ respectively. We shall see that for _ >> 1, the first significant

difference between the two- and three-dimensional problem emerges when a ~ _2.



If a is decreased to 0(_ 3/5) the mechanism which enables the vortices to

be concentrated in an internal viscous layer changes. Thus for the two-

dimensional problem the decay of the vortices is due to the fact that the

local Gortler number has a maximum at the centre of the layer whereas for the

three-dimensional problem with a ~ _3/5, the decay of the vortices is

facilitated by convective effects. A further decrease in a to 0(_ I/3)

shows that the Gortler vortices at this stage are essentially 0rr-Sommerfeld

eigenfunctlons destabilized by centrifugal effect. Moreover, for a a ~ %1/3

a neutral curve with both left and right hand branches and a minimum Gortler

number is obtained, this suggests that for a a << _i/3, instability is almost

certainly impossible at finite values of G. We now describe the three

regimes described above:

a. The limit a . = with [~ 0(a#/2 , G ~ 0(a4).

It is known from the two-dimensional problem that for a >> 1 the flow is

neutrally stable for G -- a4. We anticipate that this will also be the ease

for _ ~ aI/2 and therefore write

4 3 (2.3)
G --g0 a + gl a + ''',

whilst Y _ _ aI/2
and _-_ are replaced by and io with

a = a3/2 _0 + aol + "''" (2.4)

The aim of our calculation is to determine the frequency _ and Gortler

number G such that the flow is locally neutrally stable at X. However, in



order to show how non-neutral disturbances evolve with X, we allow for

growth or decay in X by writing

X a-I/2 (X) + ..dX} (2.5)U = _ an/2 U (X,q)exp{iot + a2 f 80(X ) + 81 ,.0 n

together with similar expansions for V/a 2, W/a 3/2, P/a5/2. The variable

is defined by

q = {Y - Y(X)}a I/2, (2.6)

m

where Y = Y(X) is the location of the viscous layer where the vortices are

concentrated. The thickness of this layer was shown in I to be 0(a -I/2)

and it corresponds to a second-order turning point of a WKB solution of

(2.2). The growth rate functions 8i(X) , i=0,..., appearing in (2.5) are in

general, complex quantities and for given G and o will clearly vary with

X. The velocity components of the basic flow expand locally around Y = _(X)

as

-- -1 2

u = u0(X) + a-I/2 Ul(X)_ + a u2(X)_ +,..-,

together with similar expansions for _ and _. It is a routine matter to

substitute the above expansion into (2.2) and by successively equating like

powers of a-I/2 we generate a sequence of equations to determine

(Un,Vn,Wn,Pn) for n = 0,i,.-.. The system corresponding to n = 0 is

(u 0 8 0 + 1)U 0 = -V 0 u 1, (2.7a)

(u0 80 + I)V0 = -g0<u0U0, (2.7b)



I0

W0 = iV0n , (2.7c)

P0 = [I + u0 B0]iW 0. (2.7d)

At this order the crossflow has no effect on the expansion procedure and

(2.Ta,b) have a solution if

(u0 80 + 1)2 = go u0 Ul _' (2.8)

so that instability occurs if go u0 Ul K > 1 and the growth rate 80 is

real. The functions V0, W0 and P0 can then be expressed in terms of U0

using (2.7a,b,c). At next order the system of equations which determines

(UI, Vl, WI, pl ) is found to be

[u0 80 + I]Ul + uI VI = - _[uI B0 U0 + 2u2 V0]

^

- ilw0 U0 - io0 U0 - u0 81 UO,

[u0 B0 + l]Vl + go <u0 U1 = - n[Ul 80 V0 + go KUl U0]

A

- ilw 0 V0 - io0 V0 - u0 8 1 VO,

W1 - i Vln = iB0 UO,

^

P1 - iWl[l + Uo 80] = iWo Ul 80 _ - lWo WO - °O WO + iUo 81 UO"

The above system has a consistent solution if



II

ia0 + u0 81 + i_w0 = O, (2.8a)

and

280 Ul[l + 80 u0] = go <[2u0 u2 + u_]. (2.8b)

The first of these equations shows that 81 is purely imaginary and for a

given value of a0 is determined by

- _w0 - a0

81 i = u0 , (2.8c)

so that the orientation of the vortices varies with X. The second of the

above constraints fixes Y = _(x) as the location of the layer. In fact if

go is given we see from (2.7), (2.8b) that at any value of X the growth rate

and Y are determined by solving

F(X,Y) = 0, Fy(X,Y) = 0, Y = _(X),

where

F = (_80 + I)2 - go _ U--yK.

Thus, at any value of X the position of the viscous layer adjusts to produce

a local maximum (in Y) for 80 . In the neutral case, 80 = 0 and the

(_ -- 0, which is ofposition of the viscous layer corresponds to _-_ Uy) =

course, where Raylelgh's criterion is most violated. We note that at this

order [U0, V0, W0, P0 ] and [UI, VI, WI, P1 ] remain undetermined, so that

it is necessary to proceed further. In fact the next order system of

equations can be solved if a consistency condition is satisfied, and this
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leads to the required differential equation for U0. We thus obtain

_2 U0 2q{B 1 Ul + Wl _i}U 0

_)n2 {3 + u0 8O}

+ {g2 Uo Ul{l_+-u 02(180}{3+uO+BO)(ioluO BO} + u0 B2)}U 0 - hn2 U0 = O, (2.9)

where

Fyy(X,_)
h =

2{I + u0 80}{3 + u0 B0}

We are interested in the solutions of (2.9) which decay when n . _ and

after some manipulation we find that the most rapidly growing solution (in

the X direction) can be written

i[81iuI+wI 2
U = exp - hI/2 {n + h[3 + u0 B0] } " (2.10)

Here we have used the fact that 61r is zero and the eigenrelation

corresponding to this eigensolution is

{g2 u0 Ul K - 2[I + u0 B0]u 0 B2r } [81i Ul + Wl _]2
,

{I + u0 60}{3 + u0 80 } h[3 + u0 80 ]2
(2.11)

o I + u0 B2i = O.

These equations determine 82r , 82i as functions of X as the disturbance

develops in the X direction. If we are interested in the neutral case, we

can set B0 = B2r = 0 in (2.7), (2.11) to obtain the following two-term

asymptotic expansion of the Gortler number_
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{Bli uI + wI i}2

G - < u01Ul {a4 + 3a3[h_0 + 9h0 ] + ... }, (2.12a)

where h0 represents h evaluatedwith 80 = 0 whilst 81i is determined

by (2.8c). The three-dimensionalityof the basic flow affectsthe Gortler

number through the squared term in the curly brackets and therefore has a

stabilizinginfluenceon the basic flow with _ = 0.

However, if the frequency o0 is chosen such that

uI 81i + wI _ = O, (2.12b)

the Gortler number, correct to 0(a3), reduces to its value for the flow with

= 0. Thus, even at this early stage, the importance of the modes which

satisfy (2.12b) when they are locally neutrally stable is apparent. The

constraint (2.12b) requires that the boundaries between neutral Gortler

vortices be locally orthogonal to the vortex lines of the basic flow.

We further note that steady Gortler vortices (o0 = 0, 81i # 0) and

Gortler vortices propagating in the spanwise direction (o0 # 0, 81i = 0) are

also possible. The former modes are locally parallel to the streamlines of

the basic flow and are more stable than the oblique modes satisfying (2.12b).

We shall see in the remainder of this section that it is the modes

corresponding to (2.12b) which are important for _ >> a I_ , indeed, for

sufficiently large, the first-order term in (2.12a) can even be modified by

three-dimensional effects.
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b. The limit a . _ with _~ 0(a5/3), G N 0(a 4)

We have seen above that for _ ~ 0(a I/2) the decay of the vortices away

from the centre of the viscous layer is facilitated by the local maximum of

the effective Gortler number at that level. We shall now show how this decay

is facilitated by convective effects when _ is increased further. In order

to simplify the details of our expansion procedure we shall concentrate our

attention on determining the neutral locations of the most dangerous Gortler

vortex modes. We have seen above that even for _ ~ aI/2 the most dangerous

modes are locally perpendicular to the vortex lines of the basic flow, and it

is the development of these modes which we consider below.

Suppose then that we concern ourselves with the mode which is locally

neutrally stable at X = Xn with a viscous layer located at Y = _(Xn). The

crucial property of the most dangerous three-dimensional modes discussed in

-- _ -- _
(a) is that at the viscous layer they cause the operator _--_+ u _ + % aiw

to expand locally as s_i(Y - _)2 where s is a constant. If _ is taken to

2
be 0(a), this causes a term proportional to in to appear in the equation

corresponding to (2.9). This term, which is of course due to convective

effects, enhances the decay of the vortex away from the viscous layer. In

fact, if _ = _a 5/3, the decay of the vortex away from the viscous layer is

entirely due to convective effects. However, at this stage the expansion

procedure of (a) must be significantly altered because the thickness of the

viscous layer now decreases to 0(_2/3). We therefore define the variable

q by

= {Y - y_a 2/3,

and in order to obtain some information about non-neutral disturbances, it is



15

convenient to work in a a-2/3 neighbourhood of Xn. It is of course

possible to describe non-neutral modes for IX - Xnl >> a-2/3 but it turns

out that the Y variation of the disturbance is then on more than one scale

so that the appropriate expansion procedure becomes much more tedious, for

that reason we shall here restrict our attention only to IX - X ] ~ a-2/3.n

Thus, we define

IxX)a2/3

so that near (Xn, Yn ) we can write

/
K(X)

-4/3
<0 + Z_<la-23 + <2 a + ...

u00 + _a-2/3 -2/3 _2a-4/3u20 _a-4/3 2a_4/3= Ul0 + na u01 + + Ul I + _ u02 + ...

together with a similar expansion for _. The time scale for the instability

now becomes 0(a-8/3), so o is expanded as

a8/3 2 4/3
o = o 0 + oI a + 0 2 a + ..-

whilst the Gortler number G now expands as

4 1013
G = g0 a + gl a + ....

Finally, we expand the X velocity component U as



16

U = [U0(X,n) + a-213 Ul(X_n) + "'" }

exp{iot + am J B0(X ) + a-2/3 B I(X) + .-. dX}

together with similar expansions for V/a 2, W/a 5/3, P/a 8/3.

It now remains for us to substitute the above equations in the disturbance

equations (2.2) and to equate llke powers of the small parameter a-2/3.

However, before doing so, it is convenient to note that the operator

3/3t + _(_/3X) + i_ a8/3 _ expands as

-- _ _ a8/3 = a4/3{+ u + i_ i_ 2 + Uo0 B2_--_ _ + Bl(Ulo X + uOl n)

2 _)
+ B0(u20 _2 + u02 _ + Ull

+ i_(w20 _2 + w02 2 + Wll _)} + ...

4/3
= a M + --.. (2.13)

Here we have ass_ned that B0, B 1 are purely imaginary and satisfy

A

io0 + B0 Uo0 + i_Wo0 --O, (2.14a)

ioI + B1Uo0 + _wlO X + B0 ulO X = O, (2.14b)

B0 u01 + i_w01 = 0. (2.14c)
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The equations (2.14a,c) determine 80 and o0, whilst (2.14b) determines 81.

The second-order term in the expansion of o, namely oi, remains undetermined

at this order; this is also the case at next order. Thus, oi, o 2 can

apparently be chosen so that there is a continuum of three-dimenslonal modes

having the asymptotic structure described above.

It is now a routine matter to substitute the above expansions in (2.2) and

equate like powers of a-2/3. The zeroth-order system gives

V0 = go _0 u00 U0'

together with the elgenrelation

go <0 u00 uOl = I.

At next order we obtain a pair of linear equations for (U1, Vl) which have a

consistent solution if

_2 U0

+ [_0+ ]u0+ + ]xu0+ + ]nu0_n2 mYo [c_1 IY 1 [c(2 iY2

+ _Y3 _2 U0 + i_Y4 _ U0 + i_Y5 2 U0 = 0, (2.15e)

where the real constants aO' _I' etc. are defined by

u00 gl _0 2

a0 - 3 3 u00 B2r' (2.16a)

Y0 = - _°2 + u00 82i] (2.16b)
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1 1 (2 16c)
al : _ go K0[UI0 u01 + Ull U00] + _ go <I u00'

2 Cl Ul0
- , (2.16d)

Y1 3 u00

1 2
e2 = _ go K0[Ul0 + 2u02 u00]' (2.16e)

2 u01

Y2 = _ °l -- " (2.16f)
Uo0

w01)_ w011,
2 [ - ulO (Wl0 -- u20 U--_lj (2.16g)Y3 = - _ w20 u00 u01

Ull u01 (Wl0 Ul0 w01)] (2.16h)
y4 = - _Wll - u0-_ w01 - u00 - u01 '

2 - u02 w01]. (2.16i)
Y5 = - -3 [w02 u01

Thus the vertical structure of the disturbance is determined by (2.15) and the

most dangerous eigensolution is

^

• Y4 Xi_ 2
_-iXY5 {q _2 + iy2 + }U0 = exp 2

2(i_Y 5) 2(iXY 5)

whilst the corresponding elgenrelation becomes

{aO + iYo} + {_I + i¥1}X + iY3 _2 {e2 + iY2 + iXY4 _}2~ - - J-_Iy5 = O.
4i_y 5

We have assumed that the disturbances are neutral at X = 0 so that by taking

B2r = x = 0 the neutral value of gl is determined as
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u00 K0 gl f IY51 a2zAY2 .
3 - 2 + ^'_Y5

Note that we have not needed to use the condition that _ has a

maximum at Y = Y in the above calculation. However, since we are interested

in the most dangerous modes we now impose this condition in order to produce a

minimum value for go" In this case a2 = 0 and the above expression for

gl simplifies to

gl = 2 u00 0

in which case the flow is locally neutrally stable at Xn if G expands as

G = 1 {a4 + 3ai0/3 _IY51
K(Xn)U00 u01 2 u01 + ""'}" (2.17)

Thus, the first correction term from the two-dimensional result is now

0(a I0/3) and always has a stabilizing effect. If we replace k by _ in
a

(2.17), we obtain an asymptotic expansion of G in terms of k and a which

remains valid until the two terms shown in (2.17) are comparable. This occurs

when _ is formally 0(a3) and this is the regime we now consider. We shall

show that at this stage the neutral value of the Gortler number can be shifted

by an 0(I) amount from its two-dimensional value. Moreover, we shall see

that at this stage the eigenfunctions essentially reduce to Orr-Sommerfeld

"centre modes" destabilized by centrifugal effects.
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c. The limit a + = with _~ O(a3), G ~ O(a4).

We first note that if we wish to retain the critical layer structure of

(b), with _ now replaced by X a3, we must formally take _/_X ~ 0(a 4) in

(2.2). It then follows from the continuity and momentum equations that this

is possible only if W ~ a3 2 3, V ~ a , P ~ a , with U again taken to be

0(I). Let us again assume that the location of the critical layer at the

neutral value of X = XN is Y = _ and define stretched variables n

and X by

n = {Y - Y-]a, X = {X - X_a,

so that the vortices have their depth and wavelength comparable. The

disturbance then expands as

U = {Uo(n,X) + a-1 UI(_,X ) + ...} exp{iot + a3 _ 80(X) + a-I 81(X) + ... dX}

together with similar expansions for V/a 2, W/a 3, and P/a 3. We retain the

expansions of K, _, _ given in (b) but with a-2/3 replaced by a-I.

Finally, the frequency and Gortler number expand as

4 3
o = a o0 + a Ol + --. ,

4 3
G = a g0 + a gl +'''"

The eigenrelations (2.14a,b,c) are again taken to be satisfied so that

A

_/_t + u(it/_X) + Xia 4 w expands as a2M with M defined by (2.13).
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We first consider the equation of continuity, which at order a4, a3

yields

B0 U0 + iW0 = O,

_v0
B0 Ul + lWl = -BI Uo - 8-_--"

The second of these equations can be written in the form

_V0
iW1 = -BI U0 - _ , (2.18a)

if we first define W1 = iBo U1 + WI" The three momentum equations then

yield

LU 0 = uOl VO, (2.18b)

8P0

LVo - 8n + go NO Uo0 UO' (2.18c)

LW 1 = iP0 + _V0 {2Y 6 n + Y7 _}' (2.18d)

Ull and L E 22
u02 wOl} Y7 = Wll -_ wOl' 8n 1 - M with

where Y6 = 2{w02 - uOl ' uOl

M defined by (2.13). The system (2.18), together with the conditions UO,

VO' W1 . 0 when Inl . _, specifies an eigenvalue problem for B2r + iB2i

if _, c2, and X are given. For simplicity, we consider only the neutral

= B2rcase _2r 0 so that we can set X = = 0 in (2.18). Furthermore, we

will discuss the solution of (2.18) only for cI = o 2 = O, we do not prove

that this will lead to the most dangerous modes for all _, but it is

certainly the case for _ << I. The system (2.18) can then be simplified to
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_2 21r_2 2iXY6 0 Uo0
{B--_- I - u00 B2 - iXy 6 n Jl--_- I1 V0 + V0 = - go K U0, (2.19a)

22

{B--_- 1 - u00 B2 - iXy6 _2}U0 = u01 V0. (2.19b)

Here B2r = 0 and fl2i' go must be chosen such that (2.19a,b) are satisfied,

and with U0, V0 + 0, n . _. It is clear from (2.19) that g0(-X) = g0(X),

B2(-X) = B2(X) so without any loss of generality we shall from now on assume

that XY6 > 0. It is convenient at this stage to note that the eigenrelation

for go can be written

go K0 u00 u01 = _$/(Y6 _)' (2.19c)

where -/_(Y6 _) must be calculated numerically. However, if we let _ . 0

in (2.19), we obtain

_(Y6 _) + 1 + 0(X) 2/3,

which is consistent with the results of (b). Thus for a >> 0(_1/3)

go K0 u00 u01 ~ i,

A

which is, of course, the two-dimensional result. When Y6 X . _, it can be

shown that the functions U0 and V0 have a double boundary layer structure

corresponding to n = 0(i) and n = 0(XY6)-i/4 . In this limit we write

)3/2
_4F'=c(_,y6 + ...

u00 B2 = id(XY6 )I/2 + ...
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)+ 1/4
and define _ = (_Y6 q. In the inner region where _ = 0(I), we write

GO = _O(_) + 0(_Y6)-I/2 '

_0- (_T6)I/2 _0(_) + 0(I),u01

and then U0' _0 satisfy

_2 2} _2 ~0
{--_- id- i_ _ 2 ~0Vo+ 2i_0 =-c UO,

(2.20)

22 _ 2 ~0 ~0

{--_ id- i_ }U0 = WO.

In the outer region, where _ ~ 0(i), the first approximation to (2.19)

reduces to a second-order differential equation for V0 independent of U0

and a linear equation which involves U0 and V0. The solution of these

equations in terms of Bessel functions shows that the condition UO, V0 . 0

when q . = leads to the following matching conditions on (2.20):

0 1 ~0 i

V0 ~ _ , U0 ~ _ , _ . _. (2.21)

The most dangerous modes of (2.20) are even in _ so we solve (2.20) subject

to (2.21) and

0

The eigenvalues c,d associated with (2.20), (2.21), and (2.22) were found by

a shooting procedure using (2.21) and the two other independent but
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exponentially decaying solutions of (2.20) which can be found for I_I >> i.

The three independent solutions were integrated from a suitably large value of

to _ = 0 where they were combined to satisfy (2.22). The least stable

mode corresponds to

c = 4.71, d = -2.89.

For intermediate values of Y6 _' J_ and B2i were calculated numerically by

solving (2.19) using a shooting procedure with the three independent exponen-

tially decaying solutions of these equations. Figures 1 and 2 illustrates the

results of such a calculation for the least stable mode which is an even func-

tion of n. In these figures we have also shown the one-term asymptotic

>> i. The monotonic
approximations to the neutral curves valid for Y6

increase of the function _.4/ has a profound and unexpected influence on the

nature of the neutral curve. We shall now show that for % >> 1 a neutral

curve with a minimum value for the Gortler number is predicted by our

calculations.

In order to see why this is the case we first note that (2.19c) written in

terms of G and % gives

m

G_0 u00 u01 = a _ , (2.23)
a

and the previously described asymptotic structure for _ implies that

4 _I/3 << a,G_0 Uo0 uOl ~ a ,

4"71(_Y6 )3/2 _I/3 >> a.
I_0 Uo0 Uo1 ~ 1/2 '

a



25

Thus if _ is held fixed, the Gortler number decreases or increases with the

wavenumber, depending on the size of a/[ I/3. Hence, there will be a minimum

value of G at some 0(i) value of a/_ I/3. In fact, it is easily shown

from (2.23) that this occurs when

^

,4v...(y6 _,) _ 4 ,,-//(Y6 _')'

3Y6 _,

and our calculations show that this occurs where Y6 _ = 3.18 and the

minimum value of G is given by

= 7413G N0 u00 u01 3.88(y6 ,

and then

a = .68(y6 _--)I/3.

In Figure 3 we have shown the dependence of G N0 u00 u01 on a implied

by (2.23) for several values of l--Y6" We note that for a particular three-

dimensional boundary layer the quantities K0, u00 , u01,Y 6 must be calculated

for a particular choice of (Xn,_) and then (2.23) and Figure 1 can be used

to generate the neutral curve for the required values of _. The crucial

result shown in Figure 3 is that for l_l >> 1 a minimum Gortler number

exists for a disturbance concentrated at a fixed height above the wall. The

eigenfunctions associated with some of the results of Figures 1 and 2 are

shown in Figures 4 and 5. We note that the vortices spread further away from

_Y6 increases. Suppose then that we have a three-dimensional
the wall when

boundary layer flow with _ >> 1 but fixed. For any given height _ of the
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critical layer we have shown that neutral disturbances occur for G > 0(_-'4/3)

with a ~ _i/3. This means that the Gortler mechanism in a three-dimensional

boundary layer with _ >> 1 is not operational at 0(I) values of the

Gortler number. Since the crossflow on a laminar flow wing is certainly large

compared to R-I/2, with R scaled on the chordwise velocity, we have

effectively shown that the Gortler mechanism is almost certainly unimportant

in such a flow. Thus, it appears likely that crossflow instabilities

associated with inflection points in the basic flow velocity component in

particular directions will be most important in determining the state of the

boundary layer.

It is interesting to note that if U0 is set equal to zero in (2.19),

then the equation for V0 reduces to the rescaled 0rr-Sommerfeld equation for

a two-dimensional Tollmien-Schlichting wave, having its critical layer located

where the velocity field has a local maximum. Such "centre modes" are, of

course, stable and have a wave-packet structure in the Y direction similar

to that discussed by Tatsumi and Gotoh (1969). Thus, we interpret the neutral

modes found above as Tollmien-Schlichting waves destabilized by centrifugal

effects.

3. THE DEGENERATE CASE OF FLOWS WITH ZERO PRESSURE GRADIENT

The analysis of Section 2 does not apply if _ and _ are linearly

related as is the case when the pressure gradient in the boundary layer

vanishes. Suppose that this is the case and the basic flow is written in the

form
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u = (_(X,Y),R -I12 -_(X,Y),c_(X,Y))(1 + 0(R-l_n R)),

D

where c is a constant and X,Y are as defined in Section 2, whilst u and

are determined in terms of the Blasius function F( Y--_. We perturb the
CX

above flow such that the disturbance velocity field is periodic in the X

and Z directions, but with the wavefronts parallel to the basic flow. Thus

we write the perturbation velocity field u" as

u" -1/2 -i/2 c2 i/2 0(R-I/2
U0 (um, R VE, cUE + R WE(I + ) )(i + ))

where E = exp i[aZ - cRI/2 Xa]. The 0(I) contribution to the Z component

of the disturbance velocity field has been inserted in order that the

component of the disturbance velocity field in a direction perpendicular to

the basic flow direction is 0(R-I/2). We also assume that the perturbation

is independent of time and the pressure perturbation P(X,Y) corresponding to

the disturbed flow is scaled on R-I 2 In order to determine theP U0.

equations satisfied by U, V, W and P, it is convenient to use the X,Y

momentum equations and the Z momentum equation subtracted from the X

momentt_n equation multiplied by c. The particular X-dependence of the

perturbation we have chosen means that _/_X in these equations and the

continuity equation should be replaced by -cR I/2 ia +_-_ . After some

manipulation it can be shown that the equations satisfied by U, V, W and P

are

gx + Vy + iaW_l + c2 = 0

U_X + u--UX + V--Vy+ VU--y= Uyy - a2U[l + c2]
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-- 2
uVx + UvX +VVy + VVy + G<(X)_U = -Py + Vyy - a V[l + c2]

-_ -_ c2] _yy 2 c2]uWx + VWy = -laP[l + 1/2 + - a W[I + .

The above equations are in fact identical to those appropriate to the two-

dimensional boundary layer flow (_, R -1/2 -- 2v, 0) if we identify _I + c a

as the "total" wavenumber of the perturbation. Hence, the two-dimensional

results of I, II are applicable and no further calculation is necessary. We

note, however, that in this case, the vortices are aligned with the basic flow

and that the effective Gortler number is determined by the component of the

basic flow normal to the leading edge.

4. CONCLUSION

Let us first consider the implications of the results of the last section

which are appropriate to boundary layers with zero pressure gradient. Suppose

then that we have a Blaslus boundary layer over a wall of variable curvature

with the leading edge perpendicular to the flow direction at infinity.

The Gortler vortex instability mechanism described in I, II is operational in

such a flow and the manner in which the instability develops in the streamwlse

direction depends on the Gortler number G and the wavenumber a. If the

wavenumber a is not large, this development also has a strong dependence on

the form of the initial disturbance and the concept of a unique neutral curve

is not tenable. Suppose next that the leading edge is inclined at an angle

to the oncoming flow. The basic flow again consists of a Blasius boundary

layer with the velocity field in the plane of the wall parallel to the flow
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direction at infinity. We choose to look for a Gortler vortex instability

with the vortices parallel to the flow at infinity and define the Gortler

number with respect to the component of the flow velocity at infinity

perpendicular to the leading edge. The disturbance equations which we found

in Section 3 are identical to those appropriate to the two-dlmensional flow

obtained by neglecting the crossflow. Thus, when the leading edge is turned

through an angle a, the vortices remain parallel to their original direction.

However, their development in the streamwise direction will vary with a,

since the instability is governed by the Gortler number scaled on the velocity

component perpendicular to the leading edge.

Let us now turn to the results of Section 3 which correspond to the flow

over a wall swept at angle _ ~ 0(R -I/2) to the oncoming flow. The results

we have found are quite general and it was not necessary for us to be specific

about the form of the basic boundary layer flow. The results apply to, for

example, the situation where the zero sweep solution is given by the Falkner-

Skan solutions or to the case when the basic three-dimensional flow is given

by the Sowerby-Loos solution (see Rosehead (1963)) which is, of course,

relevant to the flow over a rotating blade.

The results of Section 2 were obtained by formally taking the crossflow

velocity field to be 0(R-'I/2) and then considering various asymptotic limits

involving a, G and _. We have concentrated our attention on the limit

. =, since we are interested in finding the structure of the instability for

crossflow velocity field large compared to R-1/2. We have shown that for a

three-dimensional boundary layer, the most dangerous modes are time-dependent

and the orientation of the vortices in the neutral location is fixed by the

vortex lines of the basic flow and not by the streamlines, as we would expect
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based on the results for the two-dimensionalproblem. The most surprising

result we have found is that for the three-dimensionalproblemwith _ >> I,

the large wavenumber asymptoticsdevelopedin I produces a neutral curve with

distinctleft- and right-handbranchesand a minimum Gortlernumber.Each such

neutral curve correspondsto a disturbancewith its criticallayer fixed at a

given height above the wall.

In essence we have shown that, since the minimum value of the Gortler

number on any such curve is 0(1-'4/3),the Gortlervortex instabilitymechanism

is almost certainlyunimportantin the concave region of laminar flow swept

wings where the angle of sweep is large compared to R-I/2. Therefore it

would appear that crossflowor Tollmien-Schlichtingwave instabilities(which

occur for Reynolds number typicallyof order 100) are more likely to lead to

the breakdownof laminarflow.

We can, in fact, be more preciseabout the angle of sweep at which the

Gortlervortex mechanism ceases to be important. This can be done by noting

that the G_rtler number was initially defined in terms of the two independent

parameters 6, and R, so that G >> 1 impliesthat

>> R-I12.

Thus, the analysis of Section 2c can be repeated by writing the disturbance

equations in terms of R, _ and [ but with

6 R-p~ _ p>0

Y~R +q , q>0.
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The whole expansion procedure can then be reformulated in terms of R as the

large parameter, and we can determine for what range of values of p and q

the exact structure of Section 2c is recovered. Such a calculation shows that

the results of Section 2c remain valid for

q < 3/8,

so that the critical Gortler number is asymptotically large whenever the

crossflow is 0(R-I/8). There seems little doubt, therefore, that for 0(1)

angles of sweep, the Gortler vortex mechanism is not significant in the

Reynolds number regimes where crossflow and Tollmien-Schlichting instabilities

occur,

Acknowledgment

The author acknowledges the assistance of J. L. Sutherland for help in
editing the manuscript.



32

Re ferences

[1] Floryan, J. Mo and Saric, W. S., 1979, AIAA Paper No. 79-1497.

[2] Gortler, H. 1940, NACA Technical Memorandum No. 1375.

[3] Hall, P., 1982a, J. Fluid Mech., 124, p. 475.

[4] Hall, P., 1982b, J.I.M°A., 29.__,p. 173.

[5] Hall, P., 1983, J. Fluid Mech., 130, p. 41.

[6] Hammerlin, G., 1955, J. Rat. Mech. Anal., 4._,p. 279.

[7] Hammerlln, G., 1956, ZAMP, l.jp. 156.

[8] Sears, W. R., 1948 J. Aeronaut. Scl., 15, p. 49.

[9] Smith, A. M. 0., 1955, Q. Appl. Mat., 13.__,p. 233.

[I0] Tatsu_i, T. and Gotoh, K., 1969, Instability of Continuous Systems,
Sprlnger-Verlag, p. 368.



33

12

10

8 _SYMPTOTI C RESULT

_nN 6

4

2

I I I I I_
0 40 80 120 160 200 240

#w

X_'6

Figure I. The dependence of _4/ on _Y6' the dotted curve corresponds to the

one-term asymptotic expansion of -/Y valid for lY6 >> I.



34

50-

40-

30

- 2i

20 - zz _/
I I I I I I ,

0 40 80 120 160 200 240

Figure 2. The dependence of B2i on _Y6' the dotted curve corresponds to

the one-term asymptotic expansion of B21 valid for _Y6 >> i.



12-

Y6= 280X

I0- _ ___Y6 =- 160
8 - _ _"----X 76-- 40

IoglGK0u00u01) RESULT
6-

4-

2-

V I I I I I I I I I,
0 I 2 3 4 5 6 7 8 9 I0

a

Figure 3. The neutral curves for T~ aI/3 for different values of _.



36

-.2 2_y6 = 96

_'6= 5

-.4 _,_'6=.2

^

Figure 4. The eigenfunctions V0 for different values of %Y6' the functions

are scaled such that V0(O) = 1.



37

0 I I I
1 3 4 5 6

Figure 5. The eigenfunctions U0 for diffferent values of _Y6"



1. ReportNo. NASA CR-172370 2. GovernmentAccessionNo. 3. Recipient'sCatalogNo.

ICASE Report No. 84-17

4. Title and Subtitle 5. Report Date
June 1984

The Gortler Vortex Instability Mechanism 6. PerformingOrganizationCode
in Three-Dimensional Boundary Layers

7. Author(s) 8. Performing Organization Report No.

Philip Hall 84-17
10. Work Unit No.

9. Performing Organization Name and Address

Institute for Computer Applications in Science 11.ContractorGrantNo

and Engineering NASI-17070

NASA Langley Research Center, Hampton, VA 23665 13.TypeofReportandPeriodCovered
12. Sponsoring Agency Name and Address

Contractor Report

National Aeronautics and Space Administration 14 SponsoringAgencyCode

Washington, D.C. 20546 505-31-83-01

5. Supplementary Notes

Langley Technical Monitor: Robert H. Tolson

Final Report

16. Abstract

It is well known that the two-dimensional boundary layer on a concave wall is

centrifugally unstable with respect to vortices aligned with the basic flow for

sufficiently high values of the Gortler number. However, in most situations of

practical interest the basic flow is three-dimensional and previous theoretical

investigations do not apply. In this paper the linear stability of the flow over an

infinitely long swept wall of variable curvature is considered. If there is no

pressure gradient in the boundary layer it is shown that the instability problem can

always be related to an equivalent two-dimenslonal calculation. However, in

general, this is not the case and even for small values of the crossflow velocity
field dramatic differences between the two and three-dimensional problems emerge.

In particular, it is shown that when the relative size of the crossflow and
chordwise flow is 0(R-I/2), where R is the Reynolds number of the flow, the most

unstable mode is time-dependent. When the size of the crossflow is further

increased, the vortices in the neutral location have their axes locally

perpendicular to the vortex lines of the basic flow. In this regime the

eigenfunctions associated with the instability become essentially "centre modes" of
the Orr-Sommerfeld equation destabilized by centrifugal effects. The critical
Gortler number for such modes can be predicted by a large wavenumber asymptotic

analysis; the results suggest that for order unity values of the ratio of the
crossflow and chordwise velocity fields, the Gortler instability mechanism is almost

certainly not operational.

17. Key Words (Sugg_ted by Author(s)) 18. Distribution Statement

boundary layer stability 02 Aerodynamics
34 Fluid Mechanics and Heat Transfer

Unclassified - Unlimited

19. S_urity Oassif.(of this report] 20. S_urity Classif.(of this _ge) 21. No. of Pages 22. Dice
Unclassified Unclassified 39 A03

ForsalebytheNationalTechnicalInformationService,Sprin£field,VirEinia22161 NASA-Langley,1984






