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SYNOPSIS

This study analyzes the interaction between shock wave
and laminar boundary layer on a flat plate numerically, mainly
emphasizing the influence of suction on the separated regilon.

The complete compressible Navier-Stokes equations are
applied to the problem in two parallel finite difference formu-
lations, by Brallovskaya and MacCormack.

In the present scheme the outer edge of the computational
region is placed Just outside the viscous layer; assuming a
simple wave type of the flow there, the outer boundary condlition
is computed by extension of the flow field characteristics.

This allows the reduction of the computational region, saving
computer time and storage.

To shorten computation time even more, an approximate
shape of the boundary layer form along the wall, having a
small separation bubble below the shock, 1s Included in the
initlal conditions.

The computational field is 150 &  long and 3 &, wide (60 -

boundary layer thickness at the entry) consisting of 76x25 mesh
nodes. The computer time required for obtalning a converged
accurate solution (reached within about 200 time steps) is of
the order or 4 CPU minutes on the IBM 370/168 computer. Good
agreement with known results is achieved.

This relatively rapid solution, differing only slightly
from the original MacCormack results that converge more slowly,
as in other previous studies, allows the practical application
of this scheme to many cases of different flow condltlons
within reasonable computation time.

In developing the computational scheme, several auxili-
ary methods were tested (though not included in the final
scheme), as follows: artificial viscosity, non-uniform grid
meshes, fourth order differences, exclusion of the shock wave
from the computational fileld, and varilation of initial and
boundary conditions.

The present Braillovskaya scheme has been used for param-
etrical study of the interaction flow field for the followlng
range of parameters: entry Mach number 2 < M_ < L.5; downstream
to upstream pressure ratio 1.2 2 Pe/Pqy L 3.27 and impingement
Reynolds number 10" < Rey, < 10°. The influence of thermal

conductivity (cooling and warming) and mass transfer (suction
and injection) along the wall has been tested as well.

viiil



The results analyzed primarily were the size of the
separated reglon, wall pressure distrlibutlon and boundary layer
profilles.

The applicable interpretation of the separated region is
very important since it greatly affects the performance
efficiency of aircraft components, such as engine inlets and
control surfaces, where such an interaction takes place.

Wall suction has been found to be a useful means for
reducing separation until it disappears completely. A compre-~
hensive analysis was made for evaluation of the amount of
suctlon: needed: to prevent boundary layer separation. Given
the flow condltilons previously mentioned, the required suction
lies in the range between 0 > Vi > -0.04 (i.e. up to 4% of
the free stream velocity).
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NUMERICAL SOLUTION FOR THE INTERACTION OF SHOCK WAVE
WITH LAMINAR BOUNDARY LAYER IN TWO-DIMENSIONAL FLOW
ON A FLAT PLATE

Uriel Landau

1. Introduction

1.1. General

This research attempts to analyze the phenomenon of inter-
action between a shock wave entering the laminar boundary layer
of a flat plate, as well as some of the accompanying practical
projections, through the employment of the advanced methods of
computation available today in the field of numerical calcula-
tion of flows.

From a practical point of view this interaction phenomenon
(in which shock waves, expansion and compression fans, the
boundary layer and the flow separation zone are involved) occurs
at the inputs of Jet engines and at the control surfaces of
supersonic aircraft (when there is tupbulent flow, as is true
in some cases). This interaction has considerable influence
on the flight performance and therefore must be considered in
the design of components that are directly or indirectly in-
volved with it so as to improve that performance during all
flight conditions as much as posslble. Investigations of the
influence of interaction have, until recently, been carried out
only experimentally (in a flight tunnel or in actual flight)
because of the absence of any reliable and accurate analytical
methods, which were, moreover, considered too expenslve and
too drawn out.

Recently, with the rapid development of computers, it has
become posslible gradually to provlde numerlcal solutlons to
more and more problems involving voluminous computatlion. The
time has thus arrived to develop a method of efflicient and
relatively inexpenslive solutions for problems of thils nature.
The numerical solutions that have appeared in recent years
on this subject constitute an important step forward and
while much remalns to be done to improve and expand theilr
practical application, they represent a good basis from which
to continue the task.

This study recommends a method of computation that is
based on the expanslion and utilization of several presently
known methods and which 1s basically a numerical solution of
the complete (Navier-Stokes equations) equations for the
field of flow close to the wall, lncluding all its zones,
as a single unit. By accepting an accuracy that falls only
a little short of what 1s presently avallable, a convergence
can be achleved after a relatively short period of computation

¥Numbers in the margin indicate paginatlon in the foreign text.
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(a few minutes on the CPU) and a practical method 1s realized
through which the computation method can be applied to a
large scope of different flow conditions (which have never
before been examined through any similar type of computation)
with two primary aims:

(A) Examination of the influence of various parameters
on the nature of interaction;

(B) Investigation of practical ways (especially suction)
to prevent separation of the boundary layer during the inter-
action. The results of the calculations show that there is
room for the continuation of the development of methods of
this kind and for thelr expansion to additional cases (such as
flows around corners and steps and the entry of a turbulence
model into the calculations).

l.2. Qualltative Description of the Phenomenon /11

——e.

The phenomenon of interaction, which 1ls shown schematically
in Fig. 1, occurs as the outcome of a shock wave impinging at

a slant angle on the laminar boundary layer?® of a flat plate.¥¥
The shock wave intersects the boundary layer while going

through a process of thickening and bending and reaches the
line where the flow 1s sonic. The pressure increase that
follows the shock wave is transferred backward, upstream (up-
stream influence) through the subsonic portion of the boundary
layer. Thils increase in pressure causes a gradual lncrease in
the thickness of the layer Just before the point of entrance
of the shock wave. Where the shock wave is strong enough this
may lead to separation of the boundary layer at the point where
the internal frictionat the plate becomes zero. At the polnt
of separation the separation zone starts, which is detached
from the boundary layer by the flow line and in which a
recirculating flow 1ls maintained.

Circulation of the flow 1n the area before the entrance
of the shock wave creates a spread of the compression waves
(because of the change in boundary layer thickness) which
unlte into a shock wave of separatlion at considerable dilstance
from the plate.

The separation zone causes the return of the wave spread-
ing since this area cannot sustaln a sudden pressure Iincrease.
Most of the pressure rise generated by the impinging shock wave

¥A similar phenomenon 1s accepted in the turbulent boundary
layer but the changes in this fileld of flow are smaller.

¥¥The above-mentioned interaction occurs at sufficient distance
from the leading edge of the plate to permit the disregard of
the influence of interaction between the boundary layer and the
shock wave that emanates from the leading edge.



1s attenuated by the fanning out of the expansion waves. The
incident wave and the spreading of the expansion waves return
the directlon of the external flow toward the plate. The

turn of the flow from this condition until 1t again becomes
parallel to the plate, at the downward slope of the flow,
causes the fanning out of the compression waves, which unite
far from the flat plate into the reattachment shock wave.

Two shock waves generated by the compression fans unite further
still into one wave, the reflected shock wave.

The turn of the flow toward the plate reduces the thickness /12
of the separation zone gradually up to the point where the
boundary layer 1s agaln attached to the plate, while its thick-
nes contlinues to decrease to 1ts minimum in the zone where the
external flow is parallel to the flat plate. During the down-
ward slope of the flow from this zone the boundary layer increases
again.

All the above-mentioned phenomena depend primarily on the
strength of the incident shock wave with regard to the Mach and
Reynolds numbers of the flow in the interactlion zone and to the
laminar or turbulent nature of the boundary layer.

The order of magnitude of the interaction zone in which
the majority of the above-mentioned changes take place is a
length of 100 6o and a width of 3 6§, (8§, being the width of the
boundary layer at the input cross section) Outside thils area
the influence of the interaction on the external field of flow
and on the boundary layer 1s negligible.

From the point of view of the mathematical nature of the
flow equations, there are three regions in the interaction zone:

~- the parabolic region: the boundary layer (without
separation zone and shock wave vicinity):

—-—- the hyperbolic reglon: the external flow outside the
boundary layer;

—-— the elliptical region: the separation zone and the
vicinity of the shock wave (along its incidence to the
boundary layer).

The last two regions do not conform to the boundary layer,
mainly because they contaln strong gradients of the same
order of magnitude both in the directlion of the flow and at
right angles to it.

To avoid the use of three sets of separate equations for
each reglon and the stitching together of thelr solutions for
the lines of contact between them, the complete Navler-Stokes



equations are employed which are applicable to all regions.

This set of equations in its non-continuous form 1s parabolic
and becomes elliptical in its continuous form (the asymptotic
solution is found from the continuous form). This arrangement
requires initial conditions for each field and boundary condi-
tions for all boundaries of the field of flow (since the problem
being solved 1s an Initial Value - Boundary Value problem).

Each field of interaction constitutes thus a single unit with
all its regions, at least for the purpose of computation.

~
—

I.3. General Background of the Research#

The subJect of interaction between the shock wave and the
laminar boundary layer at a flat plate for two-dimenslonal flow
was first investigated experimentally (starting at the end of
the 1940's) and afterwards through various analytical methods
which gradually improved.

The first analytical solutions, which used the method of
integrating the momentum along the width of the boundary layer,
produced results (applicable only to special cases where experi-
mental results already existed) that depended largely on the
choice of empirical coefficients and on various mathematical
assumptions.

Much progress was made by means of a solution of the boundary
layer equation through finite differences, which represented a
more general solution, included fewer assumptions, and provided
results that were better but that still depended on the close
formulation of the interaction mechanism; there also still
remained the requirement to adapt the solutions to the various
zones of flow.

A new direction for the improvement of the computation was
taken 1in recent years with the expanding use of computers, which
led to the founding of the new field of Computational Fluld
Dynamics. Within the realm of this field many flow problems
are belng solved by means of numerical solution of sets of
equations and boundary conditions that represent the physical
phenomena far more accurately. Thus the approach developed,
which is based on the solution of the entire field of flow
(1.e. boundary layer, external flow, the vicinity of the inci-
dent shock wave and the separation zone) through finite
differences Integration of the complete equations (continuity
equations, the momentum in the x and y directions and the
energy) with suitable boundary conditions. This system 1s
solved through an iterative process (by integration of the
equations vs. time to obtain an asymptotic solution).

A few of those studles that used this method achieved
results that were better than previous ones, the computation

¥The subject 1s treated at length and with references in Part 2.
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became more general and easier to perform. Even though there
is room for improvement and perfection of the computation
method, there 1s no doubt that this approach provides far more
trustworthy solutions for physical phenomena like the above-
mentioned interaction.

The main subjects still open for additional improvement
(some of which was partly accomplished as one of the goals of
this research) are:

a) Perfection of the method of computation to increase the
accuracy of results and reduce the field of computation to the /14
immediate vicinity of the interaction zone, as well as to
speed up the rate of convergences (reduction of computing time).

b) Expansion of the range of computation to stronger inter-
actions than had been computed in the past and setting up of
parametric research on the influence of various factors on the
Interaction.

c¢) More accurate representation of the shock wave (in the
present methods 1its width 1is several times that of 1its physical
width, which leads to some distortion of results).

d) Examination of actual projections of the phenomenon,
the chief one of which 1s to find a way for reducing the separa-
tion zone (especially through suction), which is responsible for
the inefficlent performance of the parts of an aircraft on
which this interaction takes place.

These subjects, whose investigation represents the aims of
this and other research studies presently carried on in this
fleld, have been dealt with in three principal stages:

a) A definition of the differences integration, of the
computation method for the equations and of the boundary condi-
tions, that provides a resounding solution to the problem;
various approaches and techniques, from which optimum comblna-
tlons are formed for the computation method. Among the
approaches that have been examined were: "continuous" and '"non-
continuous" treatment of the shock wave (in the "non-continuous"
treatment the shock wave is removed from the field of computa-
tion), employment of artificial viscosity, computation of
differences of the second order and of the fourth order, a
uniform computation grid and a non-uniform one, varying
boundary conditions and initial conditions. By means of these
approaches two final schemes of computation were prepared,
which are based on the methods of Brailovskaya and MacCormack.

b) Application of the method of computation to a series
of varlable flow conditions, for the investigation of the



characteristics of interaction and the factors that influence
it, when .the principal results in question are the magnitude
of the separated flow zone, the shape of division of pressures
and the friction along the length of the plate, as well as

the boundary layer profiles.

c) Detalled examinatlion of the influences of suction on
the separation zone under various flow conditions, with the aim
of finding the required condition for diminutlon or total
elimination of the separation zone.

A detalled summary of the changes and innovations made
during this study, with reference to existing studles, is pre-
sented 1n Section 2.3 (after a survey of the references).

~

2. Background and Reference Survey

The subject of interaction between shock waves and boundary
layers and the methods for its solution is a voluminous one
and branches off into many directions. From the wealth of
references on the various aspects of the subject only a few
of the principal ones were chosen, which are connected with
the computation methods used and the results achleved in this
research study.

Later on two central subjJects will be dealt with separately
(each of them is subdivided into many secondary subjects):

a) The subject of interaction between the shock wave and
the laminar boundary layer of the flat plate, as lnvestigated
up to the present both experimentally and analytically.

b) Various numerical methods for the solution of Navier-
Stokes equations in compressive and viscous flow, which serve
as the principal tool for numerical sclution of problems of
fluld dynamics.

2.1, Interaction Between Shock Wave and Laminar Boundary Layer

2.1.1. Background References

The references described below are mostly survey papers
that deal with the subject from various points of view and
in its various stages of research development.

The phenomenon of interaction, against the broad background
of various flow phenomena, has been treated in a number of
basic texts; Shapiro [93] deals with the subject in a broad
analytical discussion of compressive flow with shock waves.
Schlichting [92] (1968), [text illegible] and Stewartson [95]



(1964) treat the interaction phenomenon in a discussion of the
characteristics of the boundary layer durlng compressive flow.

Dorrance [23] (1972) deals with viscous hypersonic flow
and ascribes the various projections of the phenomenon to
chemical reactions of the fluid and/or the surface area. In
all of these references a general and qualltative description
of the phenomenon 1s given.

) A broad survey, accompanied by quantitative results from
practical problems that involve interactions between shock waves
and the boundary layer on alrcraft, l1ls presented in the collec-
tion of papers edited by Lachman [55] (1961) and in the study
by Korkegil [53] (1971), in which the decreased efficiency of
control surfaces and engine inlets on jet engines 1s described
as due to the flow separation caused by interaction and which
suggests ways for improvement of thelr performance.

2.1.2. Experimental Studies /16

The early work dealing with interaction was experimental.
This was so primarily because the physical mechanism of the
phenomenon was not well enough understood at first and the
analytical and computational tools were lacking for accurate
treatment of the subject.

One of the earliest studies was conducted by Liepman et al.
[61] (1949) and offers a qualitative analysis of the phenomenon
(based on Schlieren photographs) as well as a model of the flow
in the interaction zone, by means of which the magnitude of
the zone that is subjJect to back pressure influence was set
(about 50 85). Two additional investigations were by Barry
et al. [4] ?1950) and Gadd et al. [28] (1954), which also
describe qualitative results and analyze the interaction mechanism
for the first time.

The following investigations already describe quantitative
results for the pressure divisions, internal friction and thermal
conductivity along the plate, for various Mach and Reynolds
numbers and shock wave forces. Care is taken to malntalin the
two-dimensional and laminar characteristics of the flow under
experimental condltions.

Chapman et al. [14] (1958) and Hakkinen et al [41] (1959)
provide results for average Mach numbers and shock wave forces
(1.2 < My < 2.5; 1.2 < pe/py < 2.4) for interactions that
occur when a shock wave 1s incident on the boundary layer of
a flat plate. Needham, Stolery [75] (1966) and Lewis et al.
[60] (1968) expanded the range of flow conditions (to My = 10
and pe/pg = 1)y when the interaction occurs around a compression



corner and part of the flow (only for the strongest interactions)
is turbulent. Those results are also of significance for this
research since such an interaction 1s similar in its appearance
and in its qualitative (as well as to some extent in its quanti-
tative) results to the one caused by a shock wave impinging on
the boundary layer of a flat plate.

2.1.3. Analytical Studiles

2.1.3.1. General Approach

The first attempts at solution of the interaction were based
on varilous approximations of the boundary layer in the vicinity
of the zone where a weak shock wave is inclident. In those
first investigations by Lighthill [62] (1950), Lighthill [63]
(1953) and Stewartson [95] (1955), the first analysis of the
interaction mechanism :and of the back pressure influence 1s made,

through experiments with the building of an-analytical model to /17

explain the phenomenon and by using omlissions and approximations.
The results obtalned were not accurate and depended too much on
the approximatlions, whlile the method of computation could not

be extended to more general cases.

At a later date the approach (which remained up to date
until the end of the 1960's) to the solution of interactions
through boundary layer equatlons, with the addition of an
expression that tied the external flow to the boundary layer,
was developed. Those solutlons were mostly obtained through
the integral moment method, though some employed the method of
finlte differences of the boundary layer equations.

Solutions obtained through the integral moment method
improved wilith time thanks to the perfection of computation tech-
niques (such as different solutions for different zones and
their integration, the use of semi-empirical coefficients, etc.),
but their accuracy remained limited to low Mach numbers and weak
shock waves; the solutions were also too dependent on the assump-
tions of the method of computation and on the chosen coefficients.

The method of finite differences for the solution of boundary
layer equations perfected the computation and made it more general.
Results improved and the range of solutions was broadened. But
here, too, the disadvantage of using basic assumptions about
the boundary layer in zones where they did not apply (the sepa-
ration zone and the vicinity of the shock wave 1inside the
boundary layer) was conspicuous.

Lately, with the great development in computers and the
investigation of numerical methods, a new approach has taken
shape (which is also typical for other solutions in compressible
flow) in which complete Navier-Stokes equations are solved by



finite differences, for the entire fleld of flow and its
various zones. The solution becomes a more general one and is
only influenced by the choice of flow parameters and by the
boundary conditions of the problem. This approach, which was
started under the auspices of a new field called Computational
Fluid Dynamics, has already yielded excellent solutions for
the interaction in a number of special cases.

2.1.3.2. Solution of the Fileld of Flow Using Boundary
Layer Equations

The different methods available for thls approach will be
described briefly further on. A thorough survey of the main
methods applicable for the solution of interaction through use
of the boundary layer equations provides the following refer-
ences: Holden [45] (1965); Morduchov [73] (1955); Holder,

Gadd [U46] (1955); Murphy [74] (1969); Georgeff [32] (1972);
Charwat [15] (1970); Panov, Schvets [79] (1967). The references
apply mainly to the integral moment method, and only Murphy [T4]
contains finlte difference methods as well. The four last-
named papers describe (through analysis of the results and

their comparison with experimental results) the inaccuracy of
the approach, which is due mainly to omission of the gradients
in the y direction (according to the boundary layer equations)
in flow zones where it is not applicable (such as in the separa-
tion zone and the zone where the shock wave 1s incident on

the boundary layer).

What the studies that share this approach have in common
is their reliance on the concept of free interaction by Chap-
man. According to it, the increase in pressure via the separa-
tion zone up to the plateau of steady pressure does not depend
on a mechanism that generates the interruption (like an
entering shock wave, a forward step, a compression corner, etc.).
Now we will take up the methods mentioned above, each one
separately:

2.1.3.2.1. The Integral Moment Method

This approach is based on an assumption of the existence
of boundary layer equations in which functions or tables for
the dependence of unknowns in the y direction are posited,
by means of a dependent parameter x; all of this based on
experimental results or theoretical assumptions. (It becomes
clear then that the accuracy of those functions or tables
determines the accuracy of the computation results.) The
resulting equations are multiplied by weighting functions of
one of the variables (veloclty for the Moment Equation and
temperature for the Energy Equation) and are integrated in
the y direction (along the width of the boundary layer). The
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result of this integration is a set of differential equations
of the first order for the variables in the boundary layer
that are functions of x. To this set is added an equation of
the form

tlfgﬁc(‘lﬁ\ oo AB=F(E) e

which expresses the interaction between the pressure change due
to the impingement of the shock wave and the change in the
shape of the boundary layer.

The resulting equations are integrated in the x direction
as far as the decline of the flow where the adaptive equations
become valid

d*P =
de - G =° (2-2)

The investigations by Glick [35] (1960) and Bray et al.
[10] (1961) are based on the Integral Moment Scheme of Crocco,
Lees [19] (1952), which deals with the interaction between
dissipative flow and nearly isentropic flow. In those studies
the continuous equations for the momentum and of the moment
of the momentum, for the flow at an adiabatic wall, were con-
sidered and separate velocity profiles were used in them,
both for an attached and a separated boundary layer. The start
of interaction was generated by disturbance through pressure.
The influences of various parameters (like suction and cooling
of the wall) on the solution, which is expressed by the pres-
sure division, the friction and the form of the boundary
layer's development, were discussed.

This line of thought was extended to the non-adiabatiec /19
flow (by inserting the enthalpy profile into the energy equation)
by Klineberg, Lees [52] (1969); Holden [45] (1965); Lees,
Reeves [59] (1964); Georgeff [32] (1974) and also by Horton
[47] (1971) who discussed the aximetric problem.

The investigations by Nielsen et al. [76] (1965); Goodwin
et al. [38] (1967); Makofski [70] (1963) also deal with non-
adiabatic flow, but they offer separate solutions for the
separated zone and the boundary layer on both sides of the
line of flow that separates them. In the third study the
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velocity profile is defined as a function of the friction and
of the pressure gradient along the plate. In Blankenship's
[6] (1967) paper the solution is obtained with the aid of
small disturbances to generate interaction in tubes.

The solutions demonstrated in the above studies are partly
dedicated to problems of the external shock wave, which
impinges on the boundary layer, and partly to problems of the
pressure corner, two problems that are similar in their nature
and in the results from their solutions.

2.1.3.2.2. The Finite Differences Method (Boundary
Layer Equations)

This approach was developed later, thanks to developments
in the use of computers. In the computation the boundary
layer equations, together with the equation of interaction
(2-1), constitute a series of parabolic equations that are
solved numerically by an implicit method of finite differences.
Similarly, the appropriate boundary conditions are formulated
for upstream flow (the profile of initial flow) and for the
length of the plate and the external flow as well. A solution
through this method was offered by Reyhner, Flige-Lotz [84]
(1968). For the sake of including the separated (aliphatic)
region in the range of computation of the (parabolic) equations,
several omissions were made that do not influence the result
much but which prevent unsteadiness in the process of numeri-
cal computation. Except for that, no further empirical
assumptions are made and the results are much better than those
from the Integral Moment Method (when compared to experimental
results).

A solution through finite differences, by Baum [5] (1968),
must be mentioned, which relates to interaction by means of
a rounded corner and in which the boundary layer equations
contain a parameter for the surface curvature.

2.1.3.2.3. Other Methods of Solution

In addition to the methods referred to in the two previous
paragraphs, various partial solutions were obtained (by means
of approximations of equations), using other methods than
those already mentioned:

2.1.3.2.3.1. Division of the Boundary Layer into
Subregions

Based on Lighthill's [63] (1950) approach, the method of
solution through division of the boundary layer into two
sublayers and an approximation for the solution between them

11



was developed. Goodman [36] (1954) suggested such a solution
path in which interaction is expressed by the insertion of a
semi-empirical function for the pressure division around the
region where the shock wave impinges. Ray [83] (1962) devel-
oped semi-empirical formulas for the description of various
results like pressure division, boundary layer thickness,
etc., in this way.

Rose [88] (1969) and Miller [72] (1973) perfected the
method and solved the inner (viscous) part of the boundary
layer through boundary layer equations and the outer .(inviscid
and rotational) part through a method of characteristics, with
the two solutions matched to each other at the line of contact
(which is the sonic line on which the shock wave impinges).
For Rose's [88] solution an empirical value is needed for the
length of the region that is influenced by back pressure.

Brilliant, Adamson [11] (1974) solved interaction in
transonic flow through division of the field into several
regions: the inner boundary layer through boundary layer equa-
tions, the outer boundary layer and also the external flow
through equations of the small separate disturbances. The
three regions were matched up at their lines of contact.

2.1.3.2.3.2. Various Semi-Empirical Methods

In those methods various semi-empirical functions are
employed and coefficients are computed by approximation methods
to get specific results that characterize the interaction.

That is how Erdos, Pallone [25] (1962); Popinski [82]
(1965) and Gai [29] (1970), as well as Byrkin [12], did their
work. Byrkin [12] obtained analytical approximate solutions
for a number of special cases. Gai [29], who relied on compu-
tation of the sublayer of the subsonic boundary, was mostly
concerned with computing the distance over which the influence
of interaction was felt upstream of it, for various Reynolds
numbers.

Still to be noted is Ackroyd's [1] (1969) work, which
discussed analysis of the influence of various parameters on
the mechanism of interaction.

2.1.3.3. Solution of the Whole Flow Field Using /21
Complete Navier Stokes Equations

Thanks to the development of fast computers in recent years,
it has become possible to solve the complete Navier-Stokes
equations numerically. Many investigations of a wide range of
subjects have recently been provided with solutions in this way.
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Solutions of the interaction between a shock wave impinging on
the boundary layer have been obtained by Skoglund, Gay [94]
(1969) and MacCormack [67] (1971). Since those are the most
advanced studies in this field and very close to the subject
of this research, their discussion will be more detailed

than that of preceding work.

The two studies are based on developments in the explicit,
two-stage difference schemes by Lax-Wendroff¥, which helped
improve convergence and increase accuracy especially near the
wall. Skoglund, Gay [94] did a logarithmic transformation
of the coordinates, which reduces the size of grid meshes in
the vieinity of the incident shock wave on the boundary layer
and increases their size gradually toward external flow in
the y direction and toward upstream flow in the x direction.
MacCormack [67] divided the grid into two regions; in the
region near the plate the grid was divided into small spaces
in the y direction and the distant region was divided into
larger spaces (the meshes being uniform in each respective grid).
A saving in computer time for the region close to the plate was
achieved through subdivision of the computation by difference
equations into x and y directions separately by a special
technique. Similarly, the differences in changing directions
(alternately forward and backward) were .computed.

Skoglund, Gay [94] added terms for artificial viscosity
for the sake of stabilizing the solution in separated flow,
while MacCormack [67] did not require it since in his differ-
ence schemes there is already enough (numerical) artificial
viscosity for stabilization of the solution.

In both investigations the boundary conditions were
formulated in a similar manner. Skoglund and Gay [94]
assumed an initial boundary layer profile per Chapman-Rubenstein
at the entrance cross section, a linear extrapolation of the
variables at the exit cross section, and along the plate no
components of velocity, adiabatic wall temperature, as well
as density from one of the equations of motion. MacCormack
[67] assumed uniform flow conditions along the entire width
of the entrance cross section (which, for him, was in front
of the leading edge of the plate), zero gradients at the exit
cross section and along the length of the plate no velocity
components and zero gradients for pressure, temperature and
density in the y direction.

In both studies the external flow boundary was assumed to
be far enough from the plate so that the reflected flow lines
of the incident shock wave will exit via the exit cross section

¥See Paragraph 2.2.2.
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and not via the plate. Conditions at the outer boundary were
therefore determined as fixed according to the formulas for
shock wave transition (from both sides of the incident shock
wave). The shock wave itself was determined as having a
width of 1-2 grid meshes in its initial form.

In both investigations the numerical results were calculated
for M, = 2; Rexg = 3.105 and 1.2 < pe/po < 1.4. Comparison

with experimental data by Hakkinen et al [41] makes it clear
that, as far as the division of pressure, the friction along

the length of the plate and the length of the separated region
are concerned, better results were obtained than from the
methods applied previously. Both investigations achieved
approximately the same accuracies, with some advantage on
MacCormack's [67] side. Because of the lack of computed results
for higher Mach numbers and more intense shock waves, no
estimate of accuracy can be made for those ranges.

The MacCormack method has been recently perfected by
MacCormack, Baldwin [69] (1975) and was adapted for use in tur-
bulent flows. The grid form was also changed in that study
so that Ay is changed through an exponential parameter which
permits its outward expansion (similar to the Skoglund, Gay
[94] method).

In addition to these studies, two more are worth mention-
ing, which deal with the numerical solution of complete
Navier-Stokes equations for near (wake) problems. Allen,
Cheng [2] (1979) solved for the field of flow in the wake of
the rear step and Carter [13] (1972) solved the field of
flow around the compression corner. Those two studies are
based on the difference scheme of Brailovskaya [8] (1965)
(which is also an explicit two-stage method). Allen, Cheng
[2] made some changes in this scheme, which removed the
Reynolds number from the conditions of CFL stability and
caused acceleration of convergence particularly at low Reynolds
numbers. In both of these studies the outer boundary is de-
fined as very close to the end of the boundary layer, which
is made possible by formulation of the boundary conditions
for the external flow with uniform flow characteristics along
the characteristic directions that extend from the field of
flow to the outer boundary. Thus the influence of expansion
and compression stream lines, that travel from the boundary
layer to the outer boundary, can be considered.

2.1.3.4. Summary and Comparison of Experimental and
Theoretical Results

Figure 5 presents a comparison of results from the princi-
pal systems demonstrated with experimental results (the equation
was taken from Murphy [74] and MacCormack's [67] results were
also plotted on it).
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Summing up the results: /23

a) The methods that employ the complete Navier-Stokes
equations provide better solutions than those obtained from the
boundary layer methods (at least within the range of flow con-
dition under which they were obtained, i.e. Mo = 2; Rexs =

= 3-10° and 1.2 < p/p, < 1.4).

b) For high Mach numbers and intense shock waves only
results from boundary layer methods are available and those
diverge the more from experimental results the larger the Mach
numbers and the more intense the shock waves are. It appears
that some more improvement is desirable for the solutions ob-
tained with Navier-Stokes equation methods, as well as the
extension of their use for a broader range of parameters Pr;
Rexs; pe/po; M,. The influence of heat transfer (heating

and cooling) and mass transfer (suction and injection) along
the plate should also be investigated.

2.1.3.5. Methods for Analysis of the Separation Phenomenon

Since the phenomenon of boundary layer separation is tied
directly to interaction and is a measure of its intensity, it
is important for practical considerations. We will (in addition
to solutions of interaction that were demonstrated in previous
paragraphs) here discuss several studies that deal with the
analysis of separation against the background of various
problems .

2.1.3.5.1. Theoretical Analysis of the Separation

Tani [98] (1953) and Page [77] (1960) discussed the pre-
diction of separation with formulations of approximation (based
on boundary layer equations). Stewartson, Williams [97] (1969)
thoroughly analyzed the separation of flow during interaction
between an incident shock wave and the boundary layer by means
of equations (constructed from asymptotic developments)
approximated for three different regions: the inner boundary
layer, the outer boundary layer and the separated region,
through adaptations of interregional connections. An estimate
of the type of interference needed to create the separation
and of the size of the separated region, as a function of the
flow conditions, is gained from the results of the analysis.

Additional development of methods for prediction of
separation from the intensity of the pressure gradient was
carried out by Gerhart [33] (1973) and Messiter et al. [T71]
(1971).
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2.1.3.5.2. Practical Prevention Methods

A detailed description of flow separation phenomena and
their negative consequences on alrcraft performance is given
by Cooke, Brebner [17] (1959). Pearcey [81] (1961) and Wuest
[105] (1959) describe separation phenomena caused by .various
types of interaction (particularly for an incident shock wave

and in a compression corner) and discuss different ways for the

control of the boundary layer to prevent separation.

The principal ways suggested are: Suction at the surface
of the plate, special geometric design of the surface of the
plane and artificial transition to obtain turbulence of the
boundary layer where the capability of resistance to the pres-
sure gradient is still stronger than in the laminar condition.

Gai [29] (1969) discussed the experimental results of
the influence of suction on interaction between the shock wave
and the turbulent boundary layer in the compression corner.

Anderson et al. [3] (1969) describe a combined method of
suction in the separated region and injection in the stagna-
tion region, for improvement of laminar characteristics and
reduction of friction on a rough surface with a high Reynolds
number.

Inger, Swean [48] (1975) analyze the influence of suction
or injection in the deflection corners from the plate to the
flow on a laminar boundary layer with a separated region (the
analysis is performed through an approximated solution based
on the Levy-Lees transformation).

2.2. Finite Difference Methods of Solution of Navier-Stokes

~

/25

Equations

This part discusses finite difference methods that were
developed in recent years to solve Navier-Stokes equations
for many and varied flow problems.

2.2.1. Background References

The principles for the solution of differential equations
by means of finite differences were first discussed at length
by Courant, Friedrichs, Levy [18] (1928) who classified the
types of problems and the various methods of computation and
prepared tests for the stability of the solution. Lax [57]
(1967) surveyed their approach with reference to recent devel-
opments on the subject of computation with finite differences.
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Mathematical background, general numerical methods and
discussion of the stability of the solution through application
to practical problems are to be found in books by Forsythe,
Wasov [27] (1960) and Richtmayer, Morton [85] (1967).

A detailed survey of numerical methods for all areas of
fluid dynamics is given in Roache's [86] (1972) book.

A general new formulation of various difference methods
and the connections between them in the solution of all types
of differential equations is given by Isenberg, Davis [49]
(1974) where the principles of consistency, stability and
convergence are also discussed.

2.2.2. Finite Difference Methods

The approach to the solution of Navier-Stokes equations
through finite differences was thoroughly outlined in the
investigations by Crocco [20] (1965) and Cheng [16] (1970),
who suggested a way for an asymptotic solution of the Navier-
Stokes equations that are functions of time, which aspires to
a solution in the constant condition. The process of inte-
gration over time is analogous to the iterative process for
the solution of equations that are not functions of time. That
way 1s justifiable since it is a more correct model of the
physical process. Cheng [16] discussed in great detail the
stability of the solution and the need for introduction of
simulated viscosity by means of a cutoff error in the differ-
ence equations for the sake of a stable final solution.

The equations are formulated in the form of a group (by
means of variables p, pu, pv, E) since that way the gradients
of the variables are smaller and there is less chance for
interferences with the numerical computation that might develop
because of them.

Of the existing methods we will discuss below principally
those that deal with the solution of equations that are time
dependent. In the studies by Lax, Wendroff [58] (1964),
Brailovskaya [8] (1965), as well as Palumbo, Rubin [78] (1972),
basic procedures that are very much alike are discussed for
the solution of a series of equations in their [term unknown]
form through an explicit two-stage method. These methods
differ from each other only in their choices of technique to
compute the finite differences at the grid points. The tech-
nique chosen has significant influence on the cutoff error
that serves as artificial viscosity and plays an important
role in stabilizing the solution for the series of equations.
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Based on the Lax, Wendroff [58] method, many variations
were developed for various cases. Rubin, Burstein [90] (1967)
used this method in solving for inviscid fluids with shock
waves. Thommen [100] (1966) investigated the stability of
viscous flow on a plate and around a step with it.

MacCormack [67] (1969) developed perfections and improve-
ments to the basic scheme and used them to solve the interaction
problem in MacCormack [71] (discussed in this research).
Skoglund, Gay [94] (1969) also solved this problem by introduc-
ing some changes into the scheme. (The last mentioned papers
were discussed at length in Section 2.1.3.3.)

Even the Brailovskaya method [8] was adopted for the solu-
tion of various problems, the most important of which are those
of Allen, Cheng [2] (1970) who solved the flow behind a step,
and of Carter [13] (1972) who solved the flow around a compres-
sion corner. (These papers were also described in detail in
Section 2.1.3.3.)

The Brailovskaya [8] and MacCormack [67] schemes were
adapted for use in this research and are formulated in detail
in Part 4.

The Palumbo, Rubin [78] method is similar in principle to
those of Lax-Wendroff and Brailovskaya. Its distinction lies
in the better arranged computation of differences, according
to which the calculation of each point depends on a larger
region of points (12 in number) around it. This method solved
the problem of compressive flow before and after a step.

The Harlow, Amsden [43] (1971) method is basically differ-
ent from the previous ones. It describes an implicit scheme
for two-dimensional or three-dimensonal flow in which the
pressure is calculated from Poisson's equation (which is
obtained from the momentum and continuity equations). In this
method the variables are solved as non-identical points in
the grid meshes (p, p, T and u, v are calculated in two com-
bined grids alternately by the Staggered Grid Method).

The Scala, Gordon [91] (1967) method is built on an /27
implicit-explicit scheme, using the exponential transformation
of the coordinates. There are two schemes to this method: one
is implicit and solves the unknowns in each field through a
system of linear equations that are solved iteratively; in the
second, explicit scheme, the unknowns are computed separately
for each point by means of repeated substitution. The two
schemes are used alternately.

The last three methods noted are relatively new and have,
in the meantime, been tried out for very simple problems and
only for occasional special cases.
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It seems proper to take note of some additional studies

when comparing results of various numerical methods as to

their accuracy and stability of solution. Brailovskaya et al.
(9] (1970) and also Dorodnitsyn et al. [22] (1972) review
developments of various methods, particularly for incompressible
flow. Emery [24] (1968) and Tyler et al. [99] (1972) compare

a number of methods for the solution of viscous flow problems
and of a one-dimensional shock wave transition in inviscid flow.

2.2.3. Computation Techniques for Flows Including Shock Waves

Due to the physical (and mathematical) discontinuity of the
shock wave strong inhibitions to a numerical solution arise,
which necessitate the employment of varous numerical techniques
for their prevention. The most accepted one is the use of
artificial viscosity through the cutoff error of the scheme or
by addition of more terms to the scheme. The artificial
viscosity "spreads" the discontinuity of the flow over a wider
region than the actual physical width (this method is known as
shock capturing). In all of these methods the artificial
viscosity is so constituted as to be proportional to the
gradients in the field of flow.

The following studies are concerned with quantitative and
qualitative evaluations of artificial viscosity and with
recommendations for its use in different cases. Hirt [44]
(1968) investigated the stability of nonlinear equations based
on testing the cutoff error, Davis, Mallinson [21] (1972)
tested the influence of the cutoff error from preceding differ-
ences in various flow problems, in computation grids of a
different size. Roache [87] (1972) found a connection between
the various influences of artificial viscosity on the solution
of the implicit scheme in the transient and steady states.

Goodrich et al. [37] (1972) developed a perfected method
for adding artificial viscosity terms to the difference scheme,
which is based on consideration of the gradients in both
dimensions of each field of flow. (This method was used in
the present research and is described in detail in Part 4.)

Another way to overcome discontinuity was modelled by 28
MacCormack, Warming [68] (1973). The shock wave is removed
from the region of the finite difference computation by
assigning double values (which are connected to each other
through shock wave transition formulas) to grid points passed
by the shock wave and by calculation of preceding or following
differences in their vicinity so as to avoid calculation of
derivatives for the shock wave path itself. This method is
called shock splitting and it was also tried (with partial
success only) in this research.

L3
.
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2.2.4. PFinite Differences for Special Cases Related to
Research Subjects

2.2.4.1. Boundary Layer Solutions

Since the methods for the solution of boundary layer equations
with finite differences are important for understanding the solu-
tion of Navier-Stokes equations, we will describe their sources
briefly. A detailed survey of existing difference methods is
given by Paskonov, Chudov [80] (1968) and Blottner [7] (1970).
Blottner [7] and also Waiter, Leblanc [102] (1971) and Jaffe,
Smith [50] (1972) developed methods for the computation of
boundary layers that also contain equations of the system's
chemical composition. Jaffe, Smith and Lubard, Shetz [65]

(1968) also discuss the influence of changes in the boundary
conditions (line injections, suction, heating and cooling) on
the results. The difference method by Fliigge-Lotz, Er-Young
[26] (1960) is particularly suitable for help in the solution
of pressure interaction problems. Werle, Bertke [104] (1972)
occupy themselves with computation of the separated boundary
layer by assumption of a velocity profile and its introduction
into the computational model.

2.2.4.2. Approximate Solutions of Navier-Stokes Equations

These solutions, even though they are not applicable for
the most general problem, are of significance for cases where
the entire field of flow, or part of it, is to be described
approximately and in simple fashion.

Some solutions of Navier-Stokes equations through finite
differences for viscous and noncompressive flow are given by
Loer [64] (1971); Lascaux, Raviart [56] (1970); Welch et al.
[103] (1965) and also by Ghia, Davis [34] (1974). The non-
compressibility permits transformation of the variables u, v,
p to Yy, w through release of pressure, which enhances the
final solution considerably. Gosman et al.'s [39] (1969) book
describes the method of general solution for noncompressive
flow with a change in heat, mass and chemical composition.
Jamet [51] (1970) discusses the difference method for compres-—
sion equations that are inviscid and time dependent. The study
by Gottlieb, Gustaffson [40] (1974) assumes an approximate
algebraic expression for the energy equation by assumption of
a fixed overall temperature and solves the hyperbolic flow
through finite differences with artificial viscosity.

2.3. Summary of the Main Changes and Improvements in the /2
Present Study

Below we will summarize the main changes and improvements
to be found in this study, with reference to the most advanced
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existing studies; we will also describe the principles of the
experimental changes that were made, but not included, in the
final computation methods for various reasons. The studies to
which this part refers are those by MacCormack [67] and
Skoglund, Gay [94] (which solve an interaction problem similar
to the subject of this study), as well as by Carter [13]
(solution of interaction around a compression corner through
characteristics in the outer boundary).

2.3.1. The Computapional Scheme

The basic difference scheme was prepared according to two
methods in parallel: the Brailovskaya [8] method (according to
the Carter [13] formulation) and the MacCormack [67] method.

A number of changes and options were tried out with the basic
scheme, to be used in accordance with specific purposes:

a) Change of grid'stfucture in the x direction (not included
in the final scheme):

In addition to the regular, uniform grid (where Ax/Ay = 16)
there is a possibility to use a nonuniform grid, dense in the
middle and spread out toward the corners (where 1.6 < Ax/Ay < 50
and the ratio between the lengths of two adjacent meshes is 1.1),
similar to the Skoglund, Gay [94] method, which is detailed in
Paragraph 3.4.3.2 and in Appendices H and I). This option was
not included in the final scheme since it caused large trunca-
tion errors and strong oscillations in the solution for the
Xicin%ty of the shock wave region (as detailed in Paragraph

.1.1).

b) Differences of the fourth order in the x direction under-
neath the shock wave (not included in the final scheme):

This possibility helped at first to increase accuracy of
computation in the regions with sharp gradients in the x direc-
tion (in a grid where Ax >> Ay), when the differences in the
X direction are computed to an accuracy of O(Ax”), as against
the regular computation with an accuracy of 0(Ax2). Details of
this method are given in Paragraph 3.4.3.1 and in Appendix H.
This option was also not included in the final scheme since
strong oscillations, whose origin is in the contact area between
the regions of second order computation and fourth order compu-
tation, were noted in the computation. (Additional details are
found in Paragraph 4.1.2,)

c¢) Addition of artificial viscosity (included as option
in the final scheme):

The addition of terms for the artificial viscosity aids in
stabilizing the solution, particularly for intense interactions.
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Its employment helps, particularly during the first stages of
computation when the results are still far from the final solu-
tion and sSubject to great changes. Expressions for artificial
viscosity are based on those by Skoglund, Gay [94] with slight
changes, as detailed in Paragraph 3.4.4. The use of this option
aids in the solution but requires preliminary computation for
optimization of several numerical coefficients (details in
Paragraph 4.1.3).

~N
o

d) Testing stability and. convergence (included as option in
the final scheme):

The possibility is offered to calculate the relative change
of the variables u, p, T and the remainders of the four differ-
ential equations for each point of the computational grid, at
each step of the iteration. The average maximum values of these
changes are a measure of the stability of the computation and
the convergence of the solution (as defined in detail in Para-
graph 3.5.3.1). These tests are not performed automatically
during the computation; they are rather offered as optional
choice (because they increase the memory stored and the computa-
tion time by nearly a factor of two).

2.3.2. Boundary Conditions

a) Removal of the shock wave from the computational field
(not included in the final scheme):

In addition to the usual difference computation over the
whole field of flow with the shock wave, the possibility was
provided to remove the shock wave from the field so that the
flow conditions in front of it and behind it would serve as
boundary conditions, as described in Paragraph 3.3.1.5. This
method (which, in the past, has not been tried for this type
of problem) is called shock splitting, or the method of "dis-
continuous" computation of the shock wave path. The use of
this method does not appear suitable at this stage since
significant oscillations were generated along the graded border
of the shock wave (as explained in detail in Paragraph 4.1.14).

b) Boundary condition of the external flow characteristics
(exists in the final computation scheme):

This boundary condition is defined similar to Carter's [13]
formulation and its main purpose is consideration of the influ-
ence of streamlines from the reflected shock wave on the outer
boundary. This permits the cutting down of the computational
field to the region close to the termination of the boundary
layer (in contrast to previous studies in which the outer border
was extended so that the reflected streamlines would not exit
through it but rather in the downstream direction, a procedure
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requiring a computational grid that is much too big). The method
is explained in detail in Paragraph 3.3.1.4.

¢) Boundary condition for density along the plate (exists
in the final computation scheme):

This condition is computed (due to considerations for the
stability of the numerical computation) on the assumption that
at close range in front of the plate, all along it (in the
separated region as well) there prevails the condition

11\ =0 . °of -0
294w as well as the adiabatic condition aglw™ " (as ex-

plained in Paragraph 3.3.1.2.). In some of the previous studies

this boundary condition was computed from the solution to one

of the equations for flow next to the plate, or through extrapola- /31
tion of the density from the field to the plate. Such procedures

are essentially more accurate but are sometimes cause for

instability in the numerical calculation; the above-mentioned

method is therefore preferable.

d) Polhausen profile at the entrance cross section (exists
in the final scheme):

Boundary conditions at the entrance cross section are com-
puted according to the Polhausen method for profiles of flow
in supersonic boundary layers (Paragraph 3.3.1.1).

2.3.3. Parametrical Analysis of Interaction Characteristics

The computations described in this paragraph were carried
out according to the final scheme in which the grid is uniform
in the x and y directions; second order differences are applied
for the entire computation; the shock wave is inside the field
("continuous" computation); artificial viscosity has been intro-
duced and the boundary conditions b), ¢) and d) from Paragraph
2.3.2 apply.

a) Speed of convergence

In the above-mentioned computation method the solution
converges, after only a few hundred iterations, to results with
a relatively large truncation error; yet their accuracy is
only slightly inferior when compared to previous methods of
computation (which required considerably longer computation
time). This-way the computation is serviceable and practical
and, indeed, 100 different computer runs were completed for
testing the parameters of the results, each run taking up only
3-5 minutes of CPU time.
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b) Parametric analysis of the results

Whilé in previous studies analyses of results were carried
out only in a few cases (because computation time was relatively
long) a detailed analysis of the interaction was performed in
this study, according to the principal parameters that influence
it. The influence of the Mach number in the range 2 < My < 4.5,
the Reynolds number 104 < ReXS < 106, the shock wave Intensity
1.2 < pe/po < 3.2, the shock wave distance from the leading edge
3 cm < X, < 9 em and of the Prandtl number 0.72 < Pr < 1.0, was

tested. Also tested was the influence of heat transfer (a non-
adiabatic wall) and mass transfer (suction and injection) along
the plate.

c) Detailed analysis of the influence of suction on the
separated region

A detailed analysis of suction influence, in combination
with various flow conditions, on the interaction in general and
on the separated region in particular was carried out. The
required amount of suction, for each combination with Rexs;

pe/po; Mo to avold boundary layer separation, was determined.

These results have much practical application since the prevention
of separation improves the performance of aircraft components --
particularly of control surfaces and jet engine inlets -- around
which this interaction takes place.

3. Computation System

3.1. Basic Equations

3.1.1. Dimensional Flow Equations

The basic flow equations are the Navier-Stokes momentum equa-
tions, the continuity equations, as well as the fluld state
equation and the formula for the temperature dependence of visco-
sity. The equations meet the following assumptions:

a) The coefficient of bulk viscosity 1is neglected.

b) The coefficient of viscosity 1s a function of temperature,
according to the Sutherland formula.

¢) The state equations are for an ideal gas.
Accordingly, the noninstantaneous equations are written for a
viscous, compressible, heat-conducting fluid in a two-dimensional
Cartesian system (per Schlichting [92])
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Continuity equation * . P (3-1a)

+ 3-4(3)'\«*) +32%1(?,V») =0

s

R . P |
Momentum equation
in the x direction . (3-1b)
¥ o « QU ,}LL d
'P'(‘t." ,(JM"DA JJV ._3 'b)\"'( 5‘)‘» j (-cﬂyz
Momentum equation
in the y direction . . (3-1c)
O B VAR Y 1 Toy) 35 (G
f%.{;,,fu,ﬁﬂ) g~ ”cX"(* xy)? 'oj ‘”)
Energy equation (3-1d)

T X y”
:lU?E%E;*‘Vx§§§;45§§*(ﬁl:)4h§%*(tl; + @
Equation of state .
e RET (3.2)

Sutherland's formula for viscosity

i (3-3)

T

= C —
’v'- ST
¥This assumption is correct for a monatomic gas in which there

is no internal degree of freedom for the molecule. This does
not hold true for a multiatomic gas and the coefficient can

reach the order of magnitude of the regular viscosity coefficient,

particularly within a shock wave. Since there is no good resolu-
tion within the wave in the present computation the volumetric
viscosity can be neglected. Additional detalils on this subject
are offered by Vincenti, Kruger [101] (1965).
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when

Stresses in the momentum equation are defined by

Sk

(

L
)

See note at the end of the paragraph.

The dissipation function in the energy

o
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equation is defined by

3 > ;
< IG5 B 0 - 52238 oo

The terms for heat conductivity are given by

j

h
= 3 “
Qi K b
| , (3-6)
X _ % DT

We define the function of total energy for the energy equation as

Note:

(3-7)

» - N .
g¥= f*[cv'l' v x (W v"“")}

The stresses in the momentum. equation are based on Hooke's

Law for fluids, whose general formula is
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x . 17
X, \¥ * L) ;
.o - - M . * i .« ¢ ¢
7 ( PN u‘)J)J‘J M }’L (u\..,d N u'h") j
Stokes' assumption A* 4 i-PdV=o 'is set against this formula
(its significance béing the néglect of volumetric viscosity).
That is how we obtain Eqgsa:(3-4).

3.1.2. Definition of Non-dimensional Variables

We will define the system of non-dimensional variables as
follows:

y v ;
X=Zs Y= 2z - Y _ 42
i s 0 toer  RI/W5
.V v
- Tt \ V2 -‘1—}
|
.f:‘_ L & l‘.
$= 2 P= &P i = | (3-8)
S Pru Wr/C, | 3
% T N ’
’k’-' 7&' b’: Qﬁ- _ = S
N‘(; Cv S . ugl-/cr
. EY - Ty L ' .
E = F}——u:,_ = f[T/a’ + (u"+v")/,;1] J/

We will also define the coefficients:

L . VL !
Reynolds number R - p L*u+xs
® xs Mo
. g ) i
Mach number M = {u*"q. v ]/3- ‘ (3-9)
¥ /T
Prandtl number - !f*CE
B \
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When x*s -- reference length (distance from the leading edge to
. the shock wave continuation impinges on the plate);
(). —— condition of external flow at the entrance cross-
section. :

We thus obtain the non-dimensional values for external flow

at the entrance cross-section (reference values):

A
W, = { T = =3
A ¢ N I I Po y Mo*

(3-10)

_()o" }’LJ"'4
Since (V*)o = 0 (see Paragraph 3.3.1.1), we obtain V, = 0 when

Hoe(i)o= [i]™

3.2. System of Non-dimensional Equations

A system of non-dimensional equations is obtained from these
last expressions. The four differential equations will be written
in group form for the group variables p, pu, pv, E. This form
is handier for use in numerical computation (the gradients of
these are smaller and prevent the tendency to diverge).

The general form of the differential equation is

oW . dF G . 24 .8
T T X T Ay s= 3%~ 2y (3-11)
when
o 1 ; ' -
£ [ £ [ pv
" | . )
P € = P+ pu c puv
sV Juv T eepvt
E U(E+
i J ] P)J _V(E'LP)J
. i O . 7 B o 1 (3—118,)
) vge D T
R ~w ® o - Xy
Re X Ty Re %y &
T~ PR
’%;{'*“VA“V‘C&)' ‘é‘: < rb\Txy-\- vy
L - J
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when (in non-dimensional formulation)
IR i

( dy _ M

69 a X

(3-11b)

AN LWV
rx_,-:}ll _0—3-"'%“’(-

ol Ty 2wt
e=p| T+ gl v)
the equation of the non-dimensional state is
p= f"f"‘ (3-12)
The formula for non-dimensional viscosity is

4 § .
44 S(x"')”ob

Y2
,,"\z , 5(:-')”<L- [(r :)Ho ] = (é_’__' H:T 4+ s/T (3-13)

for S = 110°K Sx S* |
S ,zf () HS T

since the formula for non-dimensional viscosity also depends on
the temperature (dimensional) T* of the external flow.

Four differential equations (3-11) and two algebraic equa-
tions (3-12) and (3-13) represent the system of six equations
in six unknown quantities, when the procedure for solution is
in fact carried out through the differential equations (into
which pressure p and viscosity u are inserted from the algebraic
equations) from which solutions for the unknowns p, u, v, T
are obtained.

In addition to the solution for those unknowns, the Mach
number and the flow function in the field of flow are also
computed by means of the following non-dimensional connections:

t

v w1/
Mach number M = [Ul rv ] (3-14)
r-)7T
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when a, b are random points in the field of flow (the flow
function is computed according to the definition

(fu—’é-b— j’v—-.

Flow -function

(3-15)

)

The coefficients of friction and heat transfer along the
length of the plate are also computed by means of dimensionless
values, as follows:

Friction coefficient  €p= =—— W= (3-16)
Rex I 2%
Heat transfer ér—ﬂ*h
coefficient ca= Pr Rex }J\ 'b‘ar (3-17)

(Computation of heat transfer is carried out only for non-adiabatic
boundary conditions.) Details about development of the last four
" non-dimensional equations are given in Appendix A.

3.3. Initial and Boundary Conditions

The above-defined equations constitute a system of partial
differential, nonlinear equations of parabolic characteristics
vs. time, which, in its permanent form, becomes a system with
aliphatic characteristic. The problem is defined as an initial
value-boundary value problem and requires definition of the
boundary condition along the length of all boundaries of the
field of computation and the initial condition inside each field
of computation. For the four differential equations we require
boundary conditions and initial conditions for the components
of velocity v; u and for density p and temperature T. (The
pressure p and viscosity u are computed, according to the
boundary and initial conditions, by means of the algebraic
equations of state and viscosity.)

3.3.1. Boundary Conditions

The boundaries of the computational field include four
sections, as defined in the following diagram.
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| According to the compu-
tational method where the
shock wave is removed from
the region considered by
the computation (the "non-
continuous" method), the

A external flow included two

AD Entrance cross section sections F;C and DE; plus

AB Plate the boundary section up-

BC Exit cross section . stream from the shock wave,

CD External flow ElE2 and the boundary sec-
tion downstream of it,

E2F2 (as shown in Fig. 2). E2F2 (as shown in Fig. 2).

~N
[@0]

3.3.1.1. Entry Cross Section Conditions

With the assumption of 2P =0 and 2 in the vicinity

X Y l"['o-
of the entry cross section, a velocity profile is obtained through
Polhausen's method (which assumes the velocity profile as the
progression range of the coordinate normal to the plate,
which fulfils the conditions on the plate and at the edge of
the boundary layer) in the following manner (all expressions
" non-dimensional):

(3-18)

T -1 1+ :

= 4+J—; =y [4- -‘*_)

: 4 (‘“ } (3-19)
")Ho I'

Under assumption of fixed pressure (since 9p/3dy = 0 at the entry
cross section)

(3-20)

The profiles of T; u; p are here given as a function of n,
the connection between n and y is given as

gecne () -rw)( 2/48) [ o (e
4 3 "]

P+ Itz -Lnteint-Ln

(3-21)
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Component v of the velocity at the entry cross section may
be neglected

V=0 (3-22)

Detailed development of the boundary conditions at the entry cross-
section are given in Appendix B.

3.3.1.2. Boundary Conditions Along the Plate

From the nonslip conditions along the plate, we obtain
fop velocity components

u=0 (3-23)
v =20 (3-24)
When mass transfer via the plate is made possible, then the v /3
condition changes to:
For injection v >0
(3-24a)
For suction v<O

(In these cases the value of v is on the order of a few percent
of u.)

The adiabatic condition along the plate dictates the boundary
condition for temperature T

2T « 0 (3-25)

Y f

When the plate is kept at a fixed temperature, the T condition
changes to

'S

T = const. (3-25a)

The boundary condition for density can be computed in several
ways:

(a) from one of the motion equations (continuity or momentum),
which assumes a simpler form next to the plate;

(b) through extrapolation from the third or fourth order
of density in the field of flow, towards the plate;

(¢c) from knowledge of pressure and temperature at the plate
(through the state equation) when the temperature is given

32



per (3-25) or (3-25a) and pressure at the plate is computed
on the assumption that next to the plate the relation

2.0
Y (3-26)

is valid. This condition (which prevails in the regular boundary
layer over its entire width) is particularly well fulfilled in
this interaction in the lower part of the boundary layer (which
is close to the plate) and in the separated region, in spite of
the interaction influences. The assumption is therefore justi-
fied (see the note).

Of the three ways available, the last one was chosen due to
consideration of stability for the numerical computation (even
though it is less accurate, basically, than the other two).

The main reason was the tendency of solutions available through
the other two methods (particularly the first one) to oscilla-

tions, since the local computation of the derivatives close

to the plate is not accurate and distorts the numerical values.

Note: During previous tests in this investigation (before /40
formula (3-26) was introduced for computation of the boundary
conditions) and also in other computational studies, it was
found that the assumption of 3p/3y = 0 1s valid as a very good
approximation for the entire length of the plate; its use is
thus entirely Jjustified.

3.3.1.3. Exit Cross Section Boundary Conditions

The location of the exit cross section is so determined that
no further significant changes in flow characteristics can occur
in the x direction. It can therefore be assumed with good
approximation that

QU _ IV _DLP _aT _ :
X A% _ DK —ox -° (3-27)

That is a bit misleading, because there are very small
gradients in the x direction (because of the renewed development
of the boundary layer downstream of the interaction), but due
to the hyperbolic characteristics of the boundary layer these
distortions in the flow field (which are relatively small) do
not have any influence on the interaction region; so the
distortion, if it exists at all, is only a local one.
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3.3.1.4. External Flow Boundary Conditions

The location of this boundary is so determined as to be in
the inviscid region, as close as possible to the plate but
sufficiently far from the region where changes in the interaction
are taking place. The order of magnitude of this distance is
(2-3)6,5 (a computational assessment of this magnitude is given
in Appendix D). :

In contrast to previous studies (like Skoglund, Gay [94]
and MacCormack [67]) where this boundary was chosen to be
sufficiently distant so that its boundary conditions were
uniform and fixed (and reflected waves-went out through the exit
cross section), in this investigation the boundary conditions
are influenced, because of the proximity of the external
boundary to the region of interaction, by the form the develop-
ment of the boundary layer assumes and by the compression and
expansion streamlines that emanate from it. These conditions
are thus not of uniform nature and they must be computed
point by point from the actual conditions in the flow field.

Uniform flow characteristics are therefore used for flow
outside the boundary layer along the directions of the charac-
teristics, so that the external boundary condition is updated
during the computation process in accordance with changes of
the flow characteristics in the field.

Basically, this is done in
the following stages:

External B°“nda‘ry_j_,___-—-ﬁ- : (a) A reference line is
—_— | fixed from which characteris-
N tics¥* fan out to the external
‘j boundary; this line is close
to the external boundary and
Reference LiKe /}%:;‘39____ —— — outside the boundary layer;

Pt -.l‘_

(b) For each point A on
the reference line the direc-
tion of the local flow A6 and
of the local Mach angle u is computed; their sum B gives the
direction of this characteristic;

)iﬂ_) (3-28)
ua

2 1 -
prprsas =i (—m—vﬁ‘—‘)*f}(

A

(¢c) Point B is fixed at the external boundary (where the
flow characteristics are identical to those of A) by extending

¥Two characteristics emerge from each point, as shown in the
diagram, but for the purpose of showling the influence of the
streamlines on the external boundary, the upper characteristic
is necessary (which reaches that boundary).
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a straight line from A to the external boundary at angle B. An
approximately straight characteristic¥* is’assumed, which is
justified since Ah is very small. This computation is done
along the length of the external boundary, except for the point
where the shock wave enters the field.

(d) Computation for both
sides of the shock wave at the
external boundary is carried
out by means of Rankine's

i and Hugoniot's shock wave
formulas. The shock wave
is defined as pressure jump

5,=%¢
HPQ.

which is compelled at the external boundary between the two
reference points E and F. The flow characteristics at point F
are computed from those of E (where the values are fixed by

the characteristics scheme explained in the foregoing paragraphs).

Shock wave transition formulas for stage (d): /U2

[xaMe s T +a
(¥ =) vz sa

= (ug g:.,a‘+v£ano—) $—G + (ugeno- VE“:‘()“"G_@(B-%)

By _VH& sS04 2,
r) neg sta

1
Vg = (uEAJ\r-»Veu,&T) ‘&T-{(Meww —;/ESu.O') 5;5-4(3-30)

(4+ T2 e >-—ﬁ(-—" He $39 *') (3-31)
TF = TE la'_”)'\r - .
Mg $<0°
2(7-1)
The pressure given 1s provided by the compulsory pressure jump

Density 1s provided by the state equation

¥The characteristics should actually be curved because straight
characteristics are present in non-rotational flow only; this
non-rotationality is not preserved in this instance because of
the intersection between the shock wave and the streamlines,
which causes curvature of the wave. This phenomenon is neglected
when the computational grid is very fine and so it is permitted
. to assume the characteristics of this region to be straight

' lines.
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_PF:'I_f_T':
y-1 Tg _ (3-33)
The angle of the shock wave o is given by the relation
1y 74 I .
e st J(Sk+ - 5% | (3-34)

e |

Details of the development of these equations are given in
Appendix F.

It must be pointed out that since the flow characteristics

upstream of the shock wave at E change as functions of flow char-

acteristics in the field, the characteristics of F will also be
dependent on these changes so that here is an expression of the
influence of interaction on the incident shock wave itself (while
previous studies assumed fixed values for both sides of the

shock wave for the entire process of computation).

Note: In general the pressure ratio pe/po serves as charac-

teristic parameter for the interaction, and a ratio pF/pE must

be found that will match it. This procedure is iterative and
explained fundamentally in Appendix C.

3.3.1.5. Shock Boundary Conditions for the Shock Fitting
("Noncontinuous") Method

This method is intended to take the shock wave out of
the field of computation, with the purpose of attenuating the
disturbances of stability that arise because of the strong
gradients along the shock path.

In this method the boundary of the field of computation is
assumed to be on both sides of the shock wave along its entire
length (for the external flow boundary to the sonic line).

The process of computa-
tion is carried out as
follows:

| (a) From the shock

: wave angle (Eq. 3-34),
we find the initial
location of the shock
wave in the field, and
from it we get the

boundaries e = E1E2,

36

~N



upstream of the shock wave and f = F1F2, downstream of it
(assuming-a straight shock wave);

(b) Variable values along e are determined from the upstream
conditions while values along f are determined from the values in
e, by means of formulas for the shock wave transition given in
Paragraph 3.3.1.4;

(¢) After updating the variable values in the :entire flow
field (through a difference scheme) the local gradient of the
shock wave is brought up to date through

Ply) vy vl
0"(3): <c:‘ [ P¢(1)+ r-u/‘ Ly
M&(z) (3-35)

and according to it the location of the shock wave is updated

xs(a)—‘ "”]4}3 lr“’)) OhoL 1 (3-36)
y-

|

The computation is continued per paragraphs (b) and (c).

3.3.2. Initial Conditions

From the purely mathematical point of view no importance
attaches to the way initial conditions are chosen because, if
there is a single value solution (which 1s assumed) it must be
an expression that is not a function of the initial condition.
However, when we talk of a numerical solution for an iterative
process, which represents integration over time, it must be
taken into account that the closer initial conditions come to
the final solution, the faster convergence will occur and
reduce computation time.

Initial conditions are chosen so as not to conflict with
two main limitations:

(a) It is undesirable for initial conditions to be too far
from the solution since oscillations in the values of the varia-
bles can develop during the computation procedure (particularly
during the early stages), which can not always be restrained
(see also Roache [86]).

(b) Initial conditions that are too close to the solution
impair the general nature of the computational scheme and its
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ability to solve various problems where the solution is not
always known beforehand. ‘

Initial conditions for computation have therefore been
assumed as combination of the following data (as in Skoglund,

Gay [941):
‘ _ Shock \
- Wave ' e
A ?
..2(0 ’—> . [ ‘
L l ds 0% 6o Beparatdan \

¥ - ,Dsod:‘ L___ = ,

A50 &% ud

4

(a) The profile of the boundary layer was assumed to be of
slightly larger shape up to the shock wave and smaller again
afterwards in the downstream direction, with a small separated
region existing at the end of the incident shock wave;

(b) The shock wave itself spread to the width of two meshes
outside the boundary layer and to the width of 4-10 meshes in
the subsonic part of the boundary layer. The flow characteris-
tics downstream of the shock wave (in the supersonic region)
were assumed to be uniform and were computed from formulas for
shock wave transition. Definition of these conditions is simple
and general and can be applied in identical manner for the
entire combination of flow conditions. That way we get an
initial guess at the solution, which allows speeding up of
the convergence.

~
=

3.4. Method of Finite Difference Solutions

3.4.1. General

As mentioned before, two difference schemes were prepared
simultaneously; that of Brailovskaya and that of MacCormack
(though most of the computations were later carried out with
the Brailovskaya scheme, since 1t offered savings in computer
time and simplicity of operation, as will be explained in
Paragraph 4.1.1).

The two methods share a similar truncation error:
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Er(snny = © (et 2x™, 297)

The difference in dependence on At has almost no influence
since the gradients vs. time are very small in the asymptotic solu-
tion (as was also shown by Carter [13] in his comparison of accura-
cies in various schemes).

Those two methods have already been employed successfully in
the solution for flows with mixed regions (parabolic, hyperbolic
and aliphatic ones), as explained in paragraph 2.1.3.3).

3.4.2 Definition of the Region of (bmputation

Based on consideration for achieving the maximum possible
accuracy and the minimum size of computational field required that
would permit inclusion of all interaction phenomena (as is done in
the sources listed in paragraph 2.1.3) the dimensions of the field
of computation were determined as shown below:

Iength of field J =450 &

Width of field (3-38)

Z‘.J: 3&*
The considerations for this choice of dimensions are detailed
in appendix D'.
Location of the shock wave was always fixed so that the
intersection between its continuation and the plate would be in

the center of the region of computation.

3.4.3 Computation Grid Dimensions

3.4.3.1 General

Difference computations were prepared simultaneously for
two grids: one of them had a uniform mesh size while in the other
the longitudinal dimensions of the meshes increased directly with
their distance from the center.
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The grid mesh dimensions were also set (similar to the field

dimensions) as fixed multiples of &, and not as invariable longi-
tudinal dimensions since the ratio between them and the boundary
layer thickness is an important parameter which determines the
accuracy of results.

Computation of the number of points in the grid through
these two methods is presented in appendix E'. Considerations
for deciding the mesh dimensions are explained in appendix D'.

The various difference schemes in all methods, as well as an analysis

of result accuracies, are detailed in appendices G' and H'.

3.4.3.2 Uniform Computation Grid

Dimensions for the grid meshes were fixed at

AR= (ro
s } (3-39)

A‘J: 0.1L ¢ cS“.,

resulting in a ratio of Ax/Ay = 16.

A number of difference schemes were prepared for this grid;
two of them offer the accustomed accuracy (of the second order)
with the Brailovskaya and MacCormack methods, one of them offers
improved accuracy (of the fourth order in the x-dimension) with
the Brailovskaya method, which is designated to increase the
accuracy of computation in the regions with strong gradients in
the x-direction. All of the schemes are explained at length in
appendices G' and H'.

3.4.3.3 Non-Uniform Grid

Grid dimensions were fixed as
Axm;h;—o.z &J Ax

resulting in ratios war = 6 d
AX s B
— g0 4Xuwia oy g SYzoalsl, (3-40)

AX increased gradually towards the boundaries of the field
according to the formula for geometrical progression, with a
growth ratio of q = 1.1.

3.4.4 PFinite Difference Scheme

Based on the general formulation of the differential equa-
tions (3-11), two difference schemes were written for the general
case:
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Brailovskaya scheme t t + 1 (3-41)
-A YA

- mn
LAY — t'“

{
w::'=w:,-a[mm (85)0 st

with the truncation error &+ (W)’o(“t o xt &‘d\)

— tay | AvF AG t . t
s (a5
MacCormack Scheme Wiaw W [A* dj ‘SM.n

, B (3-42)
W = 33 War # 0,2 ( ) v /a6 - T
W ' A’t + | — -
2 | ™" ", AR L (AU)MV..SWM

with the truhcation error

& (w) =0 (st ax™, dy‘-)

For this scheme a division of the difference computation
exists for the x and y directions. Detailed formulation of the
two schemes and of the various stages of computation in them is
given in appendix H'.

The general procedure of computation is as follows:

+ .
a) From the last Wpg n\'values EM, L5 and Sww
are computed by means of deflnltlons in formulas (3- 11)
—T
b) Wy, is computedfTom the flﬂst stage of the difference
-
scheme and from it the expressions F'- 5 r(;t*‘ and E;t“
WA ’ W‘W w, v

are calculg&ed (but only for the MacCormack scheme).

c) qur' is computed from the second stage of the difference
scheme and through it the final computation of the variables is
carried out.

The explicit definition of the solved variables in the equa-
tion system is as follows:
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P ‘. w(1)

The variables determined | ., w(2)
by the differential wi(4)
equations - - ‘
‘w(3) |
v w(4)
. .
R L.
wl) _ w2 + w4
[ ] [ y-)
The variables determined | P 'Ef.f'r
by the algebraic = L
equations ' "
. A+ YAV HS
- M\'?.T =
a =) A+ >/T

and
jn -t e

Artificial viscosity must be added to the difference schemes
(3-41) and (3-42) by adding the expression Cp.p to Sm,n- (In fact
this is only done for scheme (3-41)). This expression is introduced
into the difference scheme as an option, for the sake of stabililizing
the solution during the early stages of iteration when the results
are still far from convergence to the end solution. Sometimes
this allows better control of the strong gradients, which makes the
danger of divergence more remote. The definition of Cm.,n is similar
to that formulated by Skoglund, Gay [94] and Goodrich ef al. [37], but
it 1s somewhat simpler. '

_ Cx wA W + C\l A wn
CW‘“ - A)(" A\av

_ (3-44)
CXW\\d =C_CK{IU'M“,“- uw\ml('\\}..\u’. - M‘\.lﬂ)‘ luw\\u’ uMﬂl‘h (W‘“m’ w"’"l”)}

(“/M.nu‘wn.v)- Vinun = Vi (WM'”- W“'““}:” J '

C‘f”‘i“ =C C\I[l lenu 'VM,n

P~

wnen CCx and CCy are uniform numerical coefficients at all '&[UQ
grid points (as against other methods, where the coefficients
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change as function of the local Courant number). At any rate,
these coefficients are chosen for providing optimum influence
on the stablility of the numerical solution.

3.4.5 Boundary Conditions in Finite Differences

The formulation of boundary conditions for finite differences
in accordance with the definitions in section 3.3. is detailed
at length in appendix J.

3.4.6 Additional Computations in Finite Differences

Computations of flow functions and Mach numbers in each field
of flow, as well as of coefficients of friction and of heat transfer
along the plate, are carried out with finite differences according
to the definitions of section 3.3. Details of the computation are
given in appendix J.

3.4.7 Computer Program Procedure

Fig. U4 shows a general flow diagram of the computer program
as prepared for an IBM 168 computer. The region surrounded by the
dash line includes the computation of differential equations and
boundary conditions with finite differences. In the corners of the
rectangles the names of the subroutines have been indicated.

The diagram explains the basic computation for the Brailovskaya
scheme, as explained in section 4.1.2.8.

All subroutines of the computer program, as well as the
manner of employing the program in all its options, are explained
in appendix Q. Also, a list of wvariables in the program with
FORTRAN notations and details about their location in the various
subroutines, is provided.

3.5 Consistency, Stabilifty and Convergence of the Computation /50
Method

3.5.1 Consistency

The difference schemes defined in the previous paragraph
contain truncation errors (which were computed in the reference
sources in which the schemes were developed) of the following
form

Er (Br-.i,’ovsk:-ya ) = o(é.'t\dx\',ab‘)

) L (3-45)
E7 (1acCormaci ) = o (al] ot A'F)\)
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The truncation errors fulfill theICOnsistency condition in

principle
LLM(ET)"’ ©

atyo (3-16)
X> 0
i~

The existence of this condition is given by the fact that
the grid is fine enough so that all changes in the flow field
can be identified in it. An extremely fine grid is, in fact,
required for it, which 1is not practical. For that reason an
optimum grid size 1s chosen, between desired accuracy of compu-
tation and acceptable time for the computation and memory size.
This interferes somewhat with maintenance of the consistency
condition (as will be seen further on in paragraph 4.1.6). Di-
gression from consistency is expressed by the final size of the
grid meshes, causing truncation errors that are not negligible,
particularly in regions with strong gradients (where Ay, Ax, At
of the truncation are multiplied by high values for derivatives
of the variables). This is expressed, among other things, by
significant differences between the solutions for different schemes
(for instance MacCormack [67] and Skoglund, Gay [94]), which
appear to be consistency schemes on the fact of it, because of
their truncation error. This phenomenon also stands out in dif--
‘ferences between results received from the same scheme, when the
grid is made fines (as in MacCormack [671]).

3.5.2 Stability Criterion

There is no possibility for demonstrating a criterion of
stabllity that is both compulsary and sufficient for the difference
scheme of the system of complete differential equations, because
of their complexity and non-linearity. It is therefore customary
to develop approximate differential equations and to employ them
for the well known analysis by ven Neumann, with its significance
in testing whether the difference scheme of these equations
restrains oscillations in the solution or increases them. The
criterion received from this analysis gives the stability condi-
tion for small disturbances only; this is only a compulsary
condition (and not sufficient) in the general case since the non-
linear expressions generally try to increase disturbances in the
solutions and not to diminish them. The analysis relates only
to testing reaction to periodic disturbances and also does not
include a test of the boundary condition influences. The
stability criterion is therefore only an approximate expression
and in practical computations one needs to be more rigorous.

Carter [13] prepared such a stability analysis for the
Brailovskaya scheme along the following stages:

Ly



a) Linearization of complete equations in their non-vectorial
form for two cases - nonviscid flow (for which mixed derivatives of
viscosity and the dissipation term were neglected) and viscous flow
(for which the convection terms were neglected).

b) Writing the difference scheme for the approximate equations.

¢) Placing of a single component of the Fourier series into
the solution.

d) Confirmation of the amplification matrix, which expresses
the relation between values for variables in two adjacent iterations.

e) Computation of the Eigenvalue of the amplification matrix
and establishment of the criterion that would validate the
von Neumann condition (which demands that this value be equal to
or less than 1). Such a criterion is in effect a maximum value
for At, because the Eigenvalue of the amplification matrix is a
direct function of At.

For nonviscid flow the condition

ful v \ \ -1 3-47)
Até[.&x +‘?3'+C 5«‘4'5;\] =aty

is received (also known as the CFL condition after Courant,
Friedrichs and Levy) while for viscous flow¥

At ¢ i ‘Re \ =at, (3-48)
°LJ;¥}(£§‘t;;J !

is presented. In an analysis by MacCormack [67] of the
scheme he developed, condition (3-47) is also found.
MacCormack [67] and also Skoglund, Gay [94], who solved the /52
system of complete Navier-Stokes equations did not at all refer
to the condition At,; of the viscous flow in spite of the fact
that the following relation must be fulfilled

At = Min [A'\-4 ) A‘t.‘_] (3-49)

The justification for it is found in.Carter's [13] analysis,
who found that in such problems ‘almost always Atji<Atp so that in
practice only the existence of Atl is required, in other words the
CFL condition (3-47). ‘

Allen, Cheng [2] (who also solved the Navier-Stokes equations
for flow in the wake of the final step) arrived at the conclusion
that only the CFL condition must be validated by solving the system
of equations for fixed viscosity, which prevented the existence of
the condition for At,.

¥ In other references expressions are found that are slightly
different from (3-48) and they are given in detail in appendix K'.
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Consequently, in this investigation the stability condition
will from now on refer only to the CFL condition. Since computa-
tion of the stability criterion is only carried out as approxima-
tion this investigation will have to establish a more stringent
conditlon, which is

A'l?: . K-
k- 4ty (3-50)
where o = 0.5 This value is in practice an optimum one since
higher values brought the difference scheme to the threshold of
instability, while lower values slowed the pace of convergence
considerably.

3.5.3 Test of Stability and Convergence of Results

3.5.3.1 Variation Coefficients of the Results

As measure of the convergence and stability of the numerical
solution we have, in this study, employed several coefficients that
are computed from the chronological results of the computation
(in each area of iteration).

a) Variation coefficients of the variables

t -
EU. {_ = U Y = MM.V\
Mnﬁ U
° (3-51)
t t-1
E t - P"H_LH - P,Vh“
P M|n ’:0
t
I A
b Mw To

b) Coefficients of the differential equation remainders
(truncation errors)

1~ t 4-L
RY . AW = Ww - Wi (3-52)
LY At

when there are four systems for K for
ws pipaspv: Pl T+ %:::C'J
=) J) ; £V, 8 Y Y

(detailed development of the remainder coefficients is given in
appendix L').

A maximum value and a mean value (r.m.s.) are computed for
these coefficients in each field of flow. From the results it
1s possible to examine the degree of convergence by investigating
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the development of the coefficients (their most frequent values
or their averages) in the course of the iterations during compu-
tation. Likewise, the division of coefficient values in the
field may be checked and from it may be learned where the areas
most sensitive to oscillations in the solution are.

It is clear that to reach convergence these coefficients
must decrease steadily down to the order of the truncation error
for the difference scheme (or to the order of the computer's
round%ng error, if that is larger than that of the truncation
error).

Stability of the computation must be expressed in the monot-
onous decrease of the coefficients' values as the iteration
progresses, as well as those of their moderate and continuous
gradients in the field of computation.

3.5.3.2 Estimate of the Order of Magnitude of the Compu-
tational Error

In the constant state¥ the Brailovskaya and MacCormack
schemes have a truncation error of 0(Ax?; Ay?) but it is very
different to evaluate its exact numerical value since it is
multiplied by various derivatives and those depend a lot on the
nature of the field of flow and of the boundary conditions.

According to the computation in appendix M' we get At = 0(10-3);
Ay = 0(10-3); ax = 0(10-2); and from them we learn that the fixed
error of the variables (like for instance u, p, T) must be
0(10-%) (without consideration of the values for the derivatives
with which Ax, Ay and At are multiplied and ignoring the tcundary
areas where the truncation error itself is considerably larger).

According to appendix N' a computational estimate was carried /54
out for the magnitude of the truncation error in a regular grid '
of 76 x 25 points, in comparison to computation for a grid twice
as fine in each direction and containing 147 x 48 points. Accor-
ding to this evaluation it was found that the error for the variables
was on the order of 0(10-3).

A check of the actual results of the computation reveals
that most of the errors in the variables were in the order of
0(10-3) (per Fig. 10) and even the averages were around 0(10-%)

(per Fig. 11).

¥When the complete solution has oscillatory components there is an
additional contribution to the truncation error, multiplied by At
in the Brailovskaya scheme and by at2 for MacCormack's scheme.
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In the light of all this a final evaluation can be made
for the computational accuracy of variables, Wthh is in the

range 0(10-3) - .0(10-%).

Note: The rounding error of the computer is in the seventh
digit, which means the addition of an error of 0(10-6) to the
other errors of computation (because the definitive value of
the non-dimensional variables is on the order of 0(1)). It is
dlear that this error has no influence at all, as has even been
proven in one computation for comparison with double the rounding
error (of 13 digits), as explained in Fig. 14.

3.5.3.3 Comparison of Orders of Accuracies for Results
with Different Methods

In appendix 0!' a table is shown comparing various methods
for obtaining results to problems of interaction between shock
waves and boundary layers. The table shows that the computation
accuracy in the present study falls short by 1 -2 orders of
magnitude of the published accuracies for other methods. This
difference also exists between the original MacCormack method
(in MacCormack [67]) and the same method employed in this study
for special boundary conditions. This fact hints at the close
possibility that the boundary conditions caused a larger compu-
tation error (apparently because in the region of the incident
shock wave, where the boundary conditions of the characteristics
are close to those of the shock wave transition path, a signi-
ficant local distortion is generated in the fulfillment of the
flow equations, which also influences a part of the computational
field that is not negligible). In spite of it this computation
error does not affect the final accuracy of the solution very
much, when compared to experimental results and previous compu-
tational results (as will be made clear further on in part 4).

On balance, the differences between results from all compu-
tation methods (MacCormack [67] Skoglund, Gay [94], and the
present research) and experimental results (Hakkinen et al [41])
are on the order of several magnitudes greater than the adver-
tised accuracy of the methods of computation (particularly when
close to the shock wave and in the separated region, which
are two of the most important areas). There is therefore no
great practical significance to the "lower" relative accuracy
of computation in this investigation.

Since a larger computation error requires less computation

{55

time for convergence, solutions were obtained relatively more quickly

for this study than for previous ones (an additional factor that
speeded the convergence was the choice of suitable initial
conditions) and their accuracy, when related to experimental
results, fell only slightly short of MacCormack's [67] work.
(See section 4.,2.1.1).
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This outcome shows, amont other things, that it is worth-
while to accept larger computational errors as a tradeoff against
shortened computer time, for the solution of problems of this
nature. '
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4, Results

4,1. Computation Method

Prior to analyzing the results of computation with the
difference scheme there is need to determine the structure of
the final computation within which it will be executed (among
the various suggested methods and options for computation).
Considerations of accuracy of the results and simplicity of
execution will be the determing factor.

The equations that will be presented in the following para-
graph all deal with the case in which

R =3 x 10°; Po/Py = 1.4; M - 2 (below the reference

exs condition)

This case was chosen because a separated flow already exists in
it and there are various experimental results available for it,
as well as theoretical ones, for comparison. The computer runs
for this part are illustrated in Table 1.

At first the basic schemes for the Brailovskaya and
MacCormack methods will be compared, then the options and various
changes made in the basic scheme will be investigated.

4.1.1. Comparison of the Brailovskaya and MacCormack Schemes

The computation schemes were prepared according to the two
methods by Brailovskaya [8] and MacCormack, as indicated in
section 3.2 (except for the difference methods themselves, all
other characteristic components were introduced into the compu-
tation scheme, such as identical initial conditions and boundary
conditions for both schemes). These schemes were applied in
runs 001 and 051 equally and their results are compared in Figs.
9 and 13.

It turns out that in the results from both schemes are very
much alike, with a slight advantage to MacCormack's scheme
(where the separated region is slightly larger than the upstream
direction). The convergence process is very similar for the
two methods, continuing for about 200 iterations¥ and even the
error coefficients are similar. The computation time per itera-
tion is almost identical for both methods but the memory required
for MacCormack's method is 1.5 times larger than that for the
Brailovskaya method.

¥It should be mentioned that in the MacCormack scheme (in the
initial conditions tested) there is one iteration in the x-direc-
tion for each 8 iterations in the y-direction and the basic At

in the y-direction is about 10% larger than the At of the
Brailovskaya method, so that the number of iterations is only
approximately the same.
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The fact that the errors in the two schemes are of the
same order of magnitude (about 0(10-")) while those in
MacCormack®s [67] (in which the other components of the
computation, like boundary conditions, initial conditions and
also the size of the computation field, are different but
where the mesh size of the grid is similar) method were of
the order of magnitude 70(10-%), strengthens the assumption
that the main cause for computation errors is inherent in the
boundary conditions of the external flow (this is also the
main difference between MacCormack's [67] original work and the
MacCormack scheme applied in this study). We will see that the
distortion in the fulfillment of the flow equations, in the
region of contact between transition conditions of the incident
shock wave and conditions of the characteristics, is relatively
large and the truncation error that it creates (which extends
inward into the flow field) is the main cause for this difference.
But, as already mentioned, accuracy of the actual results does
not fall short of that in the original study by MacCormack [67].

It thus remains to choose between the use of the Brailovskaya
method or the MacCormack method for this research. From the
point of view of accurate results it was preferable to choose
MacCormack's method because of its slight advantage, but because
the computer program was designated for a large scale exercise
(of about 100 runs) to carry out parametric investigation of the
results, it was important to use the program with the smallest
memory that would permit quick and efficient operation from the
technical point of view. For that reason the Brailovskaya method
was chosen for the continuous work in this study.

},1.2 Comparison of Various Improvement Options

In this paragraph various options and changes in the basic
computation method by Brailovskaya, which was chosen for use 1n
this study, will be compared.

The comparison will be made with reference to the experi-
mental results by Hakkinen et al. [41] and with reference to
the analytical results by MacCormack [67] and Skoglund, Gay [94].

The results of those comparisons are shown in Figs. 6 - 14
and relate to the pressure division and frictlon along the plate,
to velocity profiles at various cross-sections and also to the
development of stability coefficients.

A comparison is made for each option or suggestion of change
separately, with the reference method applied being the basic
one (which is defined by a uniform grid, second order differences
over the entire field, continuous computation of the shock
wave path, without artificial viscosity and with initial condi-
tions that already include a schematic form of the field of
interaction and, finally, with a regular roundoff accuracy to
6-7 decimals). The run employing the basic reference method is
indicated in Table 1 as run No. 001.
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4,31.2.1 Influence of the Computation Grid Form

Two main disadvantages of the non-uniform grid are made
clear in the comparison between a uniform and a non-uniform grid
in the x-direction (dense in the middle around the shock wave
and sparse towards the extremities), which is illustrated in
Figs. 6a and l2a by the runs 001 and 006. They are: a tendency
to develop oscillations in the solution close to the region of
the incident shock wave and also computation errors that are on
the average much higher and stem, among other things, from a
truncation error that is greater in a significant part of the
computation field (as shown in appendix G').

In the non-uniform grid there is a strong pressure gradient
in the x-direction next to the shock wave (which also accompanies
the oscillations around it), the significance of it being that
the shock wave is not sufficiently "spread out" by this method.
The separated region has a length that is similar to that in the
uniform grid but it is a little further back in the upstream
direction of the flow, which provides a better exhibition of
how far back the influence interaction reaches. The velocity
profiles for both methods are very similar.

Summing up, it may be said that at this stage the employment
of a non-uniform grid is not indicated because, in dddition to the
added confusion that its use causes, it does not offer the
expected results (unless additional perfections were accomplished).

4.1.2.2 1Influence of the Qrder of Accuracy of Finite
Differences

Computation of the fourth order differences (only in the x-
direction) in that part of the field that is underneath the
point of entry of the shock wave (between the sonic line and
the wall) is carried out in run 003 and its results are demon-
strated for comparison in Fig. 6a. The use of this method was
originally designated to improve accuracy in the local deri-
vatives for the regions with strong gradients, however, because
of the distortion in results generated at the line of contact
between two computation schemes (of the second and fourth order)
disturbances develop that express themselves, among other things,
by oscillations of the separation ry(x) underneath the point
of entry of the shock wave. On the other hand, a slightly
larger separated region in the upstream direction of the flow
is obtained than in the computation using the basic method
(with second order differences in each field). Once again there
are almost no differences in the velocity profiles.

We can then sum up in saying that the incomplete "marriage"
of the two difference systems in the computation field degrades
the accuracy of the solution; it is therefore inadvisable to use
the fourth order differences method for this stage (what's more
since it requires a memory size and computation time that are 1.5
times greater than those in the basic method).
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Note: 1In the first attempt the fourth order differences /59
were not used for the whole field since it is not advisable
to compute with them in the vicinity of the shock wave (for
fear that a local derivative will be dependent on values from
both sides of the shock wave, which can be of much greater
influence in the fourth order differences scheme where each point
is a function of four nelghboring points in the x-direction as
against two points in the second order differences scheme). An
additional reason is that away from the shock wave such a compu-
tation is superfluous, because there are no strong gradients in
the x-direction, which must be suppressed by the use of this
method. On top of it all, a fourth order differences computation
for the entire field will cause a significant increase in memory
size and required computer time (about 5 times). From all that
has been said above the conclusion is reached that the use of
this method is worthwhile only for the subsonic part of the boundary
layer (which is also the more interesting one with regards to
computation results).

4,1.2.3 Influence of Artificial Viscosity

Preliminary computation of about 150 iterations of artificial
viscosity, which was followed by 200 additional iterations in
the regular computation (without artificial viscosity) is carried
out in run 005, with the results compared to the basic method
in Fig. 6a. It appears that artificial viscosity improves the
results somewhat and, in particular, has a beneficial influence
for better "spreading" of the gradients around the shock wave and
on the enlargement of the region affected back of the pressure
division. The size of the separated region and the velocity
profiles do not change, however.

The only drawback in this method is that the coefficients of
artificial viscosity, CCy and CCx, change with the flow conditions
and in a manner that cannot be computed in advance, so that the
optimum values have to be determined in each case separately. Fig-
ure 7 shows the results of computations for three different
combinations of artificial viscosity coefficients (one of which
is the optimum one that is used for comparison in Fig. 6a). Since
this optimization involves many tryouts for each case, it is
not practical when a large number of runs has to be carried out
under different flow conditions¥* (in which the Mach and Reynolds /60
numbers, the intensity of the shock wave, etc., change); for which
reason artificial viscosity has not been introduced in the rest of
the runs for this study from here on. Just the same, were there a
way to develop a simple method for forecasting the value of arti-
ficial viscosity coefficients as function of the flow conditions,
it would be worthwhile to use this option to increase the accuracy
of results.

#In Fig. 7a the results of three cases for different flow conditions,
with and without artificial viscosity, are compared where the opti-
mum coefficients are those chosen from the reference case only
(pe/po=1.l4;Rex;=3x10%; Mo=2). The negative influence of this
artificial viscosity illustrates that the optimum coefficients of
one case are far from being so in another.
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4,1.2.4 1Influence of Shock Wave Computation Method

In contrast to the basic computation method for which the
shock wave "1s in the center of the computation field (and which
is also known as the "continuous" method) a method was examined
in which the shock wave is removed from the computation field
in a way so that its two sides, up to the sonic line, serve as
boundary conditions as explained in paragraph 3.3.1.5 (this
method is also known as "discontinuous"). That method was
employed for runs 007 and 008 (where fourth order: differences
were also introduced underneath the shock wave). The results
are shown for comparison in Fig. 6b.

Comparison of the results brings out that the "discontinuous”
method causes a very strong gradient of pressure in the x-direc-
tion underneath the shock wave, which is accompanied by some
slight overshooting downstream of the shock wave. In addition,
oscillations can be seen in the velocity profile below the shock
wave., In addition, oscillations can be seen in the velocity
profile below the shock wave. Oscillations in the solution below
the shock wave increase when fourth order differences are in-
troduced into the discontinuous method (in accordance with the
explanation in paragraph 4.1.2.2). In spite of all this there
is a small advantage to the '"discontinuous" method, which is
expressed in some effect of the pressure to the rear that enlarges
the separated region.

Otne of the main reasons for
oscillation of the solution near
the shock wave in the '"discon-
tinuaus" method is that during
the iterative computation of
the boundary conditions down-

-——1 ——‘_—r——- ———w ..'w\

stream of the shock wave there !--4—ﬂf- )
is no possibility for any care- upstream downrszream
ful consideration of the re- Trave boundalq \:\_]“ave boundary

flected streamlines that return

in the path of the wave (the

local intensity of the wave in

each iteration is computed ac-

cording to the local ratio of pressures from both sides, the
pressures being average pressures of the vicinity). No accurate
local intensity can therefore be obtained for the shock wave and
for the shape of its curvature into the boundary layer (for which
reason its location is also not accurate). An additional factor,
contributing to oscillations, is the form of the boundary on
both sides of the wave, which is built in the form of steps and
for which the difference computation is not accurate (this
phenomenon is also familiar from other sources like Roache [86],
for instance).

This final factor 1s notably expressed in a non-uniform
grid where the step structure in the vicinity of the shock wave
is even denser and the oscillations of the result even greater,
until it reaches divergence after 100 iterations (as shown in
run 009).
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It should be pointed out, finally, that the "discontinuous /61
method" in its present form is not as satisfactory as the
basic "continuous" method when looking at the results but the
idea of the removal of the shock wave, around which the strongest
gradients in the field operate, 1s worth additional research
since it points a way for conquering the most difficult ob-
stacle in this computation - the path:of the shock wave.

4.,1.2.5 Influence of Initial Conditions

As has already been mentioned in paragraph 3.3.2, it is
desirable that the initial conditions not be too far distant
from the solution, to avoid a potential danger of divergence,
while on the other hand there is no point in being too meti-
culous about it so that the general nature of the method is not
lost. According to the initial conditions formulated in para-
graph 3.3.2, convergence was obtained to an accuracy of
0(10-3) - 0(10-%) after 200 iterations (as is indicated in Fig.
10). For initial conditions that are more removed from the
solution (like a boundary layer that is undeveloped and uniform
along its entire length, without appropriate "spreading" of
the shock wave, etc.) a much slower convergence was obtained,
on the order of 500 - 1000 iterations, in accordance with the
distance of the initial conditions from the form of the final
solution.

4,1.2.6 Influence of the Size of Grid Mesh Dimensions

To verify considerations for the choice of grid mesh dimen-
sions (which was made in paragraph 3.4.3 and in appendix D') an
additional computation, with a grid that is approximately two
times finer, is carried out (where the number of points is 147 x
48 as against 76 x 25 for the regular grid) by means of the
basic method. This fine grid is used in run 041 and the results
are explained in Figs. 8 and 12b.

The results obtained show a "spread'" for the pressure
gradient that is just a 1little bit better but, generally, the
differences in results from the regular grid and from the fine
grid are of no significance (and they are even smaller than the
differences obtained by MacCormack [67] in a similar comparison).
If there are any big differences at all they are indicative of
a lack of refinement for getting an accurate solution, but the
order of magnitude of the differences in this case is quite
significant, considering the range of accuracy expected from
this program.

In the fine grid (which requires 4 times the size of memory
and 4 times the computer time for iteration) convergence was ob-
tained after about 400 iterations so that the computation with
it takes about 8 times longer than computation with the regular
size grid, without getting the reward of significant improvement
in results.
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From results of the computations using the regular grid
and the fine grid, a forecas$t was made for a number of points
in the grid for an accurate solution of the difference method
and from 1t we obtain an evaluation of the order of magnitude
for the computation error¥*. Based on that computation, which
is found in appendix N, the error in the regular grid is on
the order of 0(10-3) and in the fine grid it is 4 times smaller.

4,1.2.7 Influence of the Computer . Roundoff Error on
Accuracy

As explained in para%raph 3.5.3.2, an accuracy of results
is obtained that is 0(10-3 - 10—“) so that there is not much
point in inereasing the regular roundoff accuracy of the
computer (which is between 6 -7 decimals) to double its value
(to 13 decimals). To demonstrate that conclusively run 031

was carried out with double the roundoff accuracy. TResults of
this run are almost completely identical (to the fourth or fifth

decimal) to those of run 001 (with the regular roundoff accuracy).

Equally, the error coefficients are nearly alike as shown in
Fig. 14.

It should be pointed out that computation with double the
roundoff accuracy requires double the memory size and 1.5 times
the computer time used for the regular computation.

Based on the above, all following computations in the
program will be carried out with regular roundoff accuracy only.

4.,1.2.8 Summary of Comparison of Computation Msthods

Comparison of the various types of computation suggested in
this chapter with the form of the basic computation discloses
that actually the basic form, without any attempts for "perfec-
tions" of any kind, is the most efficient and practical to
operate for a large series of runs under different flow condi-
tions.

In spite of the fact that the other methods will give
slightly better results in certain regions, they offer disadvan-
tages that could not be overcome at this stage. In addition,
these methods complicate the computation scheme and, generally,
increase the computer time and the required memory size. This
decision is not a final one, of course, and it is quite possible
that additional basic research will solve part of the problems
mentioned to make 1t possible to combine these methods in a new
and improved computation scheme.

.¥See bottom of page 54 [of original.]
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We will now sum up briefly the basic computation method, /63
which will be employed in this study from now on::

a) a uniform computation grid in x and y directions, over
a computation regilon of 3 x 85 x 150 6, containing 76 x 25
grid plate.

b) roundoff error of 6-7 decimals.

¢c) difference method of the second order, using the
Brailovskaya method for each region computed.

d) no expression of artificial viscosity added to the
difference equation.

e) "continuous" computation of the shock wave path, i.e.,
the shock wave in the center of the computation field and
defined as external compulsion only for the boundary conditions.

f) 1initial conditions include an approximate and very
general description of the interaction field.

A convergent¥* solution i1s obtained with this method (charac-
terized by asymptotic values for the stability coefficients)
after about 200 iterations.

Computer IBM 370/168, on which the runs required for this
investigation were performed, needs 4 minutes of CPU per run and
a memory size of 256K (for continuous computation of the stability
coefficients about double the time and memory size will be requiregd).

~N
()Y
=

4,2 Parametrical Analysis of the Results

Analysis of the results of computation for various flow
conditions, as obtained through the basic computation method,
will be carried out below.

¥The description of development of the stability coefficients in
Fig. 10 shows that after about 200 iterations they approach an
approximate asymptotic value, the average order of magnitude for
errors of the most frequent variables is about 0(10'3) and the
order of magnitude for the average derivatives is 0(10-2). Those
values are in accord with gvaluagion of errors as explained in
appendix L, which is 0(1072 -10"") of the actual values of the
variables.

A description of the division of errors in the field, in

Fig. 11, acknowledges that the main errors of computation are
concentrated around the shock wave in the center of the field.
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4.2.1 Influence of Flow Conditions on the Interaction

For most of the flow conditions for which computations
were made neither experimental nor theéeoretical data exist for
comparison; therefore the analysis will be made with the
assumption that the results are correct, which is based on a
comparison with the few results available until now.

The runs described in this part are concentrated in Table 2.

4,2.1.1. Comparison with Previous Experimental and
Computational Results

Runs 101, 102 and 103 were made for comparison with exis-
ting results for the following conditions:

Mo = 2, Rey, = 3 x 10%, x5 = 5 cm
p./P, = 1.2, 1.4, 1.9

Comparison is made with experimental results of Hakkinen
et al. [41]% for all three cases and also for computation results
of MacCormack[67]** and Skoglund, Gay [94] for p /p =1.2,
1.4 only.

In Fig. 15 a comparison is made for pe/po = 1.2 where the
flow has not yet separated. The results of run 101 are very
close to those of ‘MacCormack[67] (except for the slightly
stronger pressure gradient and the slightly greater friction
downstream, in the computational results).

The most important comparison was made in Fig. 17 for p /p
= 1.4, where the flow has already separated. It turns out that
for all computational methods (including the present one /65
demonstrated by run 102) a lower pressure is obtained upstream,
when compared with experimental data¥*¥*¥, just as the boundary

¥From a description of the experiment and attached Schlieren photo-
graphs it is certain that the experiment was performed under
laminary flow conditions.

¥*¥Results of MacCormack's computations in this paragraph are from
his basic study, MacCormack[67], as contrasted with results of
the present investigation in 4.1.1, using MacCormack's scheme.

¥%¥*¥The difference arises perhaps from the 1naccuracy of measurement
in the separated region (another possibility is a computational
error common to all methods of computation, but that does not
appear likely in view of the successful solutions for a variety

of problems, obtained through these computation schemes).
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layer is smaller below the shock wave. ¥

The difference between results from run 102 and the
other computational data is not a big one. In consideration of
these small differences it may be said that the MacCormack
method is the best one, that of Skoglund, Gay [94] is the least
good one and the computational method used here is somewhere in
the middile.

In general we will see that the present method shows a
slightly larger pressure gradient below the shock wave and
less pressure increase in the upstream flow, as compared to
MacCormack's[67] method, but a more accurate pressure (compared
to experimental data) for the downstream flow after the shock
wave. In the present method the separated region is slightly
smaller and the friction coefficient for the downstream flow
1s greater. There are no significant differences in the velocity
profiles of all three methods of computation.

Fig. 19 explains the comparison of data from run 103 for
Pe/Po = 1.9 to experimental results alone (computational results
are lacking). The pressure division is perfectly correct
but even here the upstream pressure increase is smaller and the
separated region smaller, when compared with experimental data.
Friction of the downstream flow is also lower. As with results
for pe/po = 1.4 the velocity profile below the shock wave, as
‘obtained through computation, shows a thinner boundary layer
and a separated region that extends less into the field.

In addition to the comparisons listed above, flow field
charts with iso-Mach lines, iso-flow lines and iso-pressure
lines were plotted in Figs. 16, 18 and 20, for runs 101, 102
and 103. These charts present a good picture of the flow field, 24t
which compliments the obtained results from Figs. 15, 17 and 19. /66
The charts clearly show the separated region, the incident shock
wave and the reflected streamlines, as well as the development
of the pressure change in the field.

¥ This phenomenon must also be laid to an erroneous measurement
in that region. There is an additional possibility, namely
that during the experiment the flow 1in this region was subject to
characteristics of turbulence that changed the y gradient of
the velocity profile, leading to an ilncrease of the separated
region (while all numerical computations are only for laminar
flow). As a matter of fact, a transfer of the experimental
velocity profile from Fig. 17, in the y-direction, up to the
coalescence of the points where u = 0, shows a much better fit
between the experimental profile and those obtained through the
computation methods.
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To summarize, it has been shown that a comparison of data
~ from the present method of computation, with existing results
from computations and experiments, shows them to be entirely
reasonable and falling only slightly short of those from the
competing MacCormack [67] method (in the range of data where
such a comparsion was possible). For strong interaction, for
which only experimental data were available for comparison, it
appears that the separated region is smaller but the form of its
development, with the intensity of the shock wave and the Mach
number, is in general accordance with experimental data (as we
shall see during the continuation of this data analysis).

The advantage of the present method is in its relatively
early convergence (apparently with a large error of computation,
which does not, however, degrade the accuracy of the final result
very much), which permits its practical application for large
numbers of runs with different flow conditions.

Note: as already mentioned in paragraph 4.1.2.3, some
slight improvement in the accuracy of results might have been
achieved by the use of artificial viscosity, but, for the
sake of simplicity of operation and aviodance of additional
computations to find its optimum coefficients, it was not done.

In the following paragraphs the parametric analysis of the
-influence of the various flow conditions on the interaction
field will be performed (through the runs illustrated in Table 2).

4.,2.1.2. Influence of Shock Wave Intensity

Fig. 21 describes the influence of the shock wave (in the
range of pressure ratios 1.2 < pe/po < 3.15%) on the inter-
action when Mo = 2; Rexg = 3x10° (in runs 101, 102, 103 and 104).
The increase in intensity of the shock wave enlarges the region
to the rear that is influenced by the pressure and, along with
it, the size of the separated region also increases towards the
upstream direction to the flow. At the same time the separated
region enters deeper into the field and because of it the edge _§l
of the boundary layer moves further away from the wall. Fig.
22 describes the flow field picture in run 1084 where a very intense
shock wave of pe/pPg = 3.15 exists. We can see the change in
flow field characteristics more clearly by comparing it to
weaker interactions (as in Figs. 16, 18 and 20.)

¥In this comparison no shock intensities higher than for Mo=2
were included and for pe/po = 3.7 a subsonic region starts after
the shock wave (run 105) and the boundary conditions of the
characteristics cannot be applied.
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It must be stated that in reality a transition of the
boundary layer may develop so that it will be turbulent for
intense shock waves (particularly downstream of the shock wave)
so that the (laminar) computation results won't be so accurate;
but the main interaction phenomena take place upstream of the
flow and are not much influenced by that.

4,2.1.3. Mach Number Influence

Fig. 23 describes the influence of the Mach number on
interaction in the range* 2 <Mo- < 4.5, when pe/pp = 3.15 and
Rexg = 3 x 10°> (runs 104, 111, 1I2 and 113). The comparison
was made for a relatively intense shock so as to obtain the
Mach number influence at strong interactions.

It appears that the higher the Mach number the more acute
the angle at which the shock wave enters the field, which weakens
the interaction. That is visible from the results, inasmuch as
the higher Mo the more the region to the rear, subject to influence
of pressure and of size of the separated region, will decrease.

Fig. 24 describes the flow field of run 112, with a high
Mach number of Mo = 4. The weakening of the force of interac-
tion, when compared to lower Mach numbers (as in Fig. 22 for
instance), is clearly visible in this picture.

4,2.1.4 Reynolds Number Influence

Fig. 25 describes the Reynolds number influence on interac-
tion in the range 1 x 10" < Rexg < 1 x 10%, when Mo = 2,
Po/Py = 1.4 (runs 121, 122, 102 and 123).

The results show that a decrease in the Reynolds number
pushes the pressure increase downstream because of the shock
wave. This is in agreement with a similar investigation carried
out by Reyhner, Flilgge-Lotz [84] for Mo = 3. The separated region /68
increased with the change in Reyx_. from 1 x 10% to 3 x 10° but de-
creased gradually when the Reynoids number was further increased.
One possible explanation for that is that the computation method
tends to show (though in a very coarse manner) the solution for
turbulent flow for this range of the Reynolds number, while in
reality a transition towards turbulent flow in the boundary
layer exists for this range (around Rex. = 1 x 10%), in which
changes are much smaller because of the much stronger flow
resistance to pressure gradients (which also decreases the in-
fluence of Interaction and, with it, the size of the separated
region).

¥For higher Mach numbers (for the same pressure ratio pe/pg = 3.15)
instabilities start to develop in the solution. This is expressed
in run 114, for pe/pPo = 3.15, Mo = 5, where the solution diverges
after 150 1terations.
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Together with the above, the difficulties of exactly de-
termining the size of the separated region from computed results
must be pointed out. This is due to a somewhat unclear de-
termination of the border between the separated region and
the boundary layer (because the changes in velocity components
are very small for this region).

Fig. 26 describes the flow field in run 121 for Rex, = 1 x °
10, showing the influence of a low Reynolds number on tﬁe inter-
action field as compared to the influence of higher values (as
in Fig. 16, for instance).

4,2,1.5 Influence of Shock Wave Entrance Location

Fig. 27 describes the influence of a change in the location
of shock wave impingement for the range 3 cm < xg < 7 cm, when
ve/Po = 1.4 and Mo = 2 and the Reynolds number of the reference
point x< = 5 cm is 3 x 10°. The results were obtained from
runs 13, 102 and 132.

It becomes clear that the larger the distance between the
impingement location of the shock wave on the plate and the leading
edge, the smaller the pressure gradient along the plate and the
greater the influence of pressure towards the rear and on the
size of the separated region. In fact, this is the result of
local growth of the boundary layer thickness in the interaction
region with the increase in Xgs 8O that the boundary layer
becomes more sensitive to pressure gradients.

4,2.1.6 Prandtl Number Influence

Fig. 28 describes the comparison between results for Pr=0.72 (val-
ue for air) and 1.0 (an approximate value used often because it
simplifies part of the equations), when Mo = 2, pe/po=l.u and
Rexgs = 3 % 105 (runs 102, 141). It turns out that neither
pressure division, the friction coefficient, or the separated
region show any change because of it. The only difference ex- /69
pressed is a slight change in the temperature profile next to
the plate, which causes an adiabatic wall temperature that is
about 5% higher for Pr = 1.0. It is to be expected that this
influence will grow with the Mach number and that, because of
it, the form of the boundary iayer and the friction coefficient
willl change slightly.

Those results were found to be in good agreement with a
similar study by Reynher, Fligge-Lotz [84] for Mo = 3.

From this investigation it may be concluded that the ap-
proximations of Pr = 1.0, that are occasionally made in various
studies, are generally justified and particularly when the
Mach numbers are low.
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4,2.1.7 Summary of Flow Condition Effects

From examination of the parameters in this section it
appears that the pressure ratio (i.e. the shock wave intensity
exerts the most important influence on the interaction, es-
pecially on the size of the separated region.

The Reynolds number, too, influences results considerably,
particularly since the width of the boundary layer and its
sensitivity to pressure gradients depend on it.

The other parameters like Mach number, location of the
shock wave impingement and the Prandtl number, exert much less
influence if at all.

Fig. 29 describes the influence of parameters Mo, pe/pO and
Rexg on the development of the boundary layer along the lnterac-
tion field. As expected, the Reynolds number is the primary
determinant for shape and width of the boundary layer develop-
ment while the influence of p./p_ and Mo is of a much smaller
order. e o

4.,2.2 1Influence of Boundary Conditions next to the Plate
"(Heat and Mass ‘Transfer)

The influences of heat transfer (maintenance of the plate
at a fixed non-adiabatic temperature) and mass transfer (suction
or self-injection into the plate) on the flow field in general
and on the separated region in particular, when all other flow
conditions (only in this part) remain fixed at the values Mo=2;
Pe/Po = 1.45 Rex, - 3 x 10°, will be described further on. The
runs for this section are described in Table 3.

4,2.2.1. Influence of Heat Transfer Next to the Plate

The influence of maintaining the plate at various flxed
temperatures in the range¥* 0.4< T, < 1.4 (when T, =C Tw#/Uo#?),
as obtained from runs 201 and 206, is described in Big. 30.

Maintaining the plate at a fixed non-adiabatic temperature
causes a heat transfer next to the plate that influences the
temperature profile but, as it appears from the drawing, the
influence is localized only and attenuates quickly until it
disappears entirely at about the middle of the boundary layer.
The thermal conductivity coefficient next to the plate changes
according to the plate temperature; its value is negative for
a plate temperature that is higher than the adlabatic one and,
conversely, positive when it 1s lower.

¥The temperature of the adiabatic wall for Mo = 2 is TW = 1,05.
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On the other hand, the pressure division, the boundary
layer development and the size of the separated region as result
of temperature changes along the plate, are hardly influenced
at all.

Those results are in agreement with data computed by
Reyhner, Flligge-Lotz[84] for interaction that ends next to a
blunt corner. :

It may be concluded that there is no practical way to
control the size of the separated region through heat transfer
along the plate.

4.,2.2 1Influence of Mass Transfer Close to the Plate

In contrast to heat transfer, mass transfer close to the
plate (which is expressed here by introduction of suction, or
injection, normal to the plate length) does have significant
influence on the flow field of interaction, and particularly on
the size of the separated region#. (11

Fig. 31 describes the influence of velocity, normal to
the plate and next to 1it, in the range of -0.03 < Vw < + 0.02
I 5 -
(when Ve =V

#
U R

What st&nds out in particular is the strong influence on
the friction coefficient, the size of the separated region and
the profiles of the boundary layer. The suction next to the
plate causes the boundary layer to "stick" to it by reducing the
separated region until it disappears completely (in this case
at Vy = -0.02). Injection, on the other hand, causes a broadening
of the boundary layer and an increase in the separated region.
The friction coefficient increased with the increase in suction
velocity and decreased with the increase of injection velocity
into the plate.

), as obtained from runs 211 to 215.

Pressure division 1is almost unaffected, except for slight
oscillations in the initial and final regions of that section
of the plate where suction or injection are present (these
oscillations, which are not visible in Fig. 31, are apparently
the result of local numerical discontinuities in the boundary
conditions on the plate). 1In addition to what was said above,
suction influences the slight delay in pressure increase down-
stream of the shock wave while injection causes slight accel-
eration upstream of the shock wave.

¥Parametrical analysis of the influence of suction on the
various flow conditions and the conditions required to prevent
separation of flow are shown in the following section 4.2.3.
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Fig. 32 describes the flow field influenced by a suction of
V= =0.02 (run 212). The figure shows clearly how the flow N
lines bend and the separated region disappears, when compared
to flow without suction influence under the same conditions (as
in Fig. 16).

Fig. 33 describes the influence of suction and injection on
development of the boundary layer shape.

Finally, about influence of boundary conditions on the
interaction it can be stated that heat transfer has almost none,
while mass transfer has very significant influence on the size
of the separated region and on the shape of the boundary layer.

4.2.3 Detailed Analysis of Suction Effect on the Separated
Flow Region

This section goes into more detail to explain the influence
of suction on the separated region for various flow conditions
and the amount of suction required to prevent separation for
those conditions. The subject receives a great deal of attention
in comparison with other parametrical studies, since it is of
important practical significance.

4,2.3.1. Influence of the Location of Suction Along the
Plate

In runs 211 to 229 the influence of changing the location
where suction on the plate starts in the region¥ 2.6 cm < x < 4.4
cm (when termination of suction is always -0.03 >Vy > 0, “with
flow conditions being: Mo = 2, ps/py = 1. 4 and Rex_ = 3 x 10°.

The results show that this has no actual influence on the solution
and they are nearly identical for all cases.

Since in this comparison the suction region always includes
the entire separated region, the assumption was made that only
suction in the separated region proper had any influence on the
results (mainly because of the size of the separated region),
while no change at all was to be expected in the results due to
suction from any section outside 1it.

To verify this assumption, an additional series of computer
runs was arranged (runs 251 to 267 described in Table 4) for
Mo = 2, pe/Po = 1.4, Rexqs = 3 x 10° and Vi = -0.02. For those
runs the start and flnisﬁ locations of suction changed over a

¥The suction region always starts before the start of flow separa-
tion along the plate, in this case.
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very broad range, so that many cases could be included where
only part of the separated region was influenced by suction
while a part was not. The data shown in Figs. 34 and 34a
confirm that suction is effective (as far as its influence on
the separated region 1s concerned) only when it operates
within the region but not outside it. To benefit most from
suction it must therefore be maintained over the entlre
separated region.

Since it is not known in every case just where the separated
region will appear, the following parametrical tests were run
for suction. The region of suction is thus very broad and covers
most of the plate length so as to obtain maximum benefit from
its influence for each case.

4,2.3.2 Influence of Suction for Various Flow Conditions

In the series of runs described in Table 5 (runs 301 to
452) the influence of the followlng parameters was examined:
5 x 10% < Rey, <1 x 106; 2 < Mo < U; 1.2 < p_/py < 3.2 and
Jem > x5 > 7 cm; with suctlon changlng over ghe range -0.3 >
Vy >0. Results of the runs are shown in Figs. 35, 36 and 37,
with the size of the separated region as a function of suction
velocity for various flow conditions and in non-dimensional
form.

The figures disclose that the pressure ratio pe/po influ-
ences the increase of the separated region and so contributes
to the increase in suctilion velocity required to eliminate it.
It should be noted here once more, as has already been said in
paragraph 4.2.1.1 that the separated region obtained through
computation is smaller than the one in reality, particular for
high pressure ratios; however, the general purpose of the 1n-
fluence exerted by the pressure ratios on the separated region,
for various suction velocities, appears to be superficial and
reasonable.

The influence of the Mach number tends toward decrease of
the separated region, so the suction velocity required to elim-
inate 1t decreases as the Mach number increases.

The influence of the Reynolds number is more complex. As
already described in paragraph 4.2.1.4, the separated re%ion
starts to decrease when Rexg exceeds the value of 3 x 10
(while in the lower range the separated region increased together
with Rexs) On the other hand, when the suction intensity
increases (Vi < .18) the opposite situation is created, with
the separated region continuing to increase with the Reynolds
number, at least to Rexg = 105, If we base ourselves on the
estimate offered in paragraph 4.2.1.4 we can claim that an
increase 1n suction causes rejection of the tendency for
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transition and with it for turbulent flow, so that suction is
responsible for the return to laminar flow, which 1is apparently
also expressed in the numerical solution. To sum it up, the
more the Reynolds number goes up the stronger is the suction
regquired to eliminate the separated region.

The impingement point of the shock wave exerts next to no
influence. In the figures the non-dimensional results for x
vary as they combine, with good approximation, to one 1line.
(That result is forced by circumstances since the length of
the non-dimensional separated region is also referenced to xs).

h.2.3.3 Suction Required to Eliminate the Separated
Region

Figs. 38, 39 and 40 (which were constructed from the
previous Figs. 35, 36 and 37), describe the dependence of
suction veloclity, needed for elimination of the separated
region, on each of the main parameters (pressure ratio, Mach
number and Reynolds number). :

With the aid of appropriate extrapolation from those
figures a summary table was drawn up in Fig. 41 where the
needed suction velocity for prevention of separation is gilven
as the function of those three parameters.

It is also appropriate to recall that Carter [13], in his
investigation of the influence of suction on the flow around a
rounded . corner at an angle of 10° (for which he got a pressure
ratio of pe/Po = 2.2) with Mo =3 and Rey, = 1.68 x 10%, found
a requirement for suction estimated at V, = 0.1 to prevent
separation; despite the difference in the form of interaction
in this research, it turns out that this value is very good
agreement with that received from the table in Fig. 41 for such
flow conditions.

4.2.3.4 Approximate Formulation of the Suction Needed
To Prevent Separation

In the computation described in appendix 0, a single-
valued connection was found between the characteristics of the
separated region and the suction velocity needed for 1its
elimination.

The separated region is characterized by its dimensions
AXg; Ayg and by the maximum negative value of the flow function
(with the focus of the bubble in its center) wich is Yoo

.

The connection is, to a good approximation,

-

vws\/"u‘T

¥ eax

= Cewxt, (4-1)
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where the fixed value is in the range 0.3 - 0.42, the bubble
area is defined as v = Axg . Ayg .l and the flow function
¥ = ¥/p Formula (4-1) was tested for 10 different combinations
of flow conditions (Moj;Re, ; pe/po).

s

5. Discussion and Conclusions

The finite difference computation method, investigated
in this study for solving problems of interaction between .
shock wave and laminar - boundary layer (through solution of the
complete Navier-Stokes equations), provided excellent solutions
when compared with the experimental and theoretical information
presently available. The simplicity of the method's operation
and the relatively short time needed for the solution, permitted
the execution of a large number of runs for various flow condi-
tions, from which it was possible to learn about the interaction
characteristics and the principal factors that influence 1it.

Special emphasis was placed on researching the influence of
suction on the prevention of flow separation next to the plate,
which is of great practical significance.

We will now discuss results and main conclusions reached
from this study:

5.1 Computation Method

The method of computation demonstrated in this study 1is
characterized by the following factors:

a) The method is constructed simultaneously with the second
order difference schemes of Brailovskaya and MacCormack, for a
uniform grid.

b) The field of computation stretches over a range of 150680
length and 380 width around a region where the shock wave impinges
on the plate. The field is divided into a grid of 76 x 25 points
that forms uniform meshes with the dimensions 260 x 0.125.
Convergence for a normal computation occurs within about 200
iterations and the obtained accuracy for the variables (through
truncation error) is in the range of 0(10-3) -0(10=%). Such a
computation, carried out on an IBM 370/168 computer, took 1
minutes of CPU time,

c¢) Boundary conditions for this computation are:

1. Inlet cross-~section - profile of boundary layer
per Polhausen.

2. Exit cross-section - zero gradients in the flow
direction.
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3. Plate - no velocity components (non-slip condition)
and no gradients normal to the direction of temper-
ature (adiabatic plate) and pressure (for approxi-
mate computation of density).

i, External flow - according to the characteristics
from the field (except for the two sides of the
shock wave), this boundary condition distinguishes
the present computation method, with reference
to the other existing solutions, and it permits
the reduction of the computation field up to near
the boundary layer.

d) The computation results agree in the main with those
known from experiments, except that a much smaller separated
region is obtained for very strong interactions, but the tendency
in the development of this section with changing flow conditions
is in the right direction and the right proportions.

The results are in good agreement with those from previous
computations and fall only slightly short of MacCormack's results,
while showing improvement over those by Skoglund, Gay (those
two studies were solved with schemes similar to the one used
here, though the external boundary was assumed to be far from
the plate and fixed conditions were given for its entire length
from both sides of the shock wave. The solution in those studiés
converged after several thousand iterations to a truncation
error of less than ~0(10-6).

e) A number of additional auxiliary methods were tried
during this study, but were not introduced into the final method
of computation because they have not yet shown themselves suitable
for that. They are, however, worth additional research so that
they may become helpful in improving the results.

1. Artificial viscosity - an option was prepared for
addition of artificial viscosity terms to the
difference scheme, which improves the results
slightly but requires computation for optimiza-
tion of the numerical coefficients.

2. Non-uniform grid - with changing dimensions in
the x-direction so that it i1s dense in the center
(next to the shock wave) and sparse towards the
ends. The solution for such a grid has a tendency
for oscillation near the shock wave.

3. Fourth order finite differences - these were used
for the x-direction, below the shock wave, but
caused oscillations in the zone of contact with the
region of second order computation (in the vicinity
of the sonic line).
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i, Removal of the shock wave from computation field -
this "discontinuous" computation of the shock
wave by fixing its two sides as boundaries of the
field, did not bring the expected results and
caused oscillations around the shock wave.

5.2 Parametrical Analysis of the Interaction

The influence of shock wave intensity, 1.2 < pe/poi 3.2 and
its location of operation 3 cm < X 7 em, were investigated. The

6
Mach numbers 2 < Mo < 4.5, Reynolds numbers 1 X10 < Re <1x10
s
the Prandtl numbers Pr = 0.72, 1.0 were used. Also investi-

gated was the influence of heat transfer in the range 0.4 < Tw

“ 1.4 and mass transfer in the range -0.03 “v. < o0.02 along

The length of the plate (non-dimensional valuesy.
The principal results obtained were:

a) Increase of pressure ratio.. in the flow field enlarges
the separated region and the pressure influence to the rear
(pressure increase in front of incident shock wave location).

_ b) The further the location of the incident shock wave

from the leading edge the more "spreads" the influence of the
shock, which is expressed in the decrease of the pressure gradient
and enlargement of the separated region.

¢) Increase of the Mach number weakens the force of the
interaction and reduces the separated region.

d) Increase of the Reynolds number for the point of inci-
dence of the shock wave enlarges the separated region, but above
the value of 3 x 10° it reduces it. Also, the pressure gradient
is moved forward in the upstream direction of the flow. {(Because
of the possibility that at high Reynolds numbers the flow may
no longer be laminar past the shock wave, it is not certain
whether the results for this region are reliable).

e) Influence of the Prandtl number on the result is
nearly negligible, except for a small local change in the tempera-
ture profile in the lower part of the boundary layer.

f) Mass transfer (suction or injection) next to the plate
influences the size of the separated region greatly; strong
suction can completely elminate the separation and reduce the
boundary layer thickness significantly while injection brings
about the opposite results. Pressure division and the rest of the
variables in the flow field are almost unaffected.
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5.3 Suction Influence on the Separated Region and its
Practical Application

Because there 1s great practical implication to the reduc-
tion of the separated region during the interaction, many suction
conditions were investigated in various combinations with the
flow conditions so as to gain detalled information about. its
influence.

First it was found that the suction influence is effective
only in the separated region proper; active suction along this
entire region must therefore be aspired to.

It turned out that the suction values required for preven-
tion of separatfon are in the range 0> Vw > - 0.04, for the

range of various flow conditions investigated (per the previous
paragraph). A detailed table and charts were prepared of the
suction velocity required for prevention of separation as
function of the main flow characteristics Mo, ReX and pe/po,

S
also an approximate empirical formula was found that connects
the above suction velocity to the characteristics of the separa-
ted region (its dimensions and the value of the flow function
within it).

It is to be noted that, in spite of inaccuracies in the
computation of the separated region during the strong interac-
tions, the results are methodical and consistent and so permit
examination of the relative influence of the various suction
conditions on the size of the separated region, for various flow
conditions.

At any rate, it is clear that one cannot rely on the results
(the suction values needed to prevent separation) with complete
confidence, but only as a relative size and as approximate order
of magnitude.

The two principal results in this paragraph - effectivity
of suction within the confines of the separated region alone and
the order of magnitude of the suction velocity needed to prevent
separation, which is up to 4% of the expected speed - are of
important practical significance for the design of aircraft
components where separation of the boundary layer must be prevented
during interactions of this kind (particularly at jet engine
inlets and at control surfaces).

5.4 Proposals for Continuation of the Research

From the results of this research, as well as from similar
studles carried out in the past or recently, it appears that it
will be worthwhile in the future to concentrate on the following
subjects:

71

/18



a) Improvement of those numerical methods that have not
yet been developed sufficiently (as mentioned in paragraph 5.1),
so as to increase the accuracy of their results.

b) Extension of the computation method to turbulent flow by
introducing the appropriate model of turbulence. This subject
is particularly important because turbulent flow occurs in a
significant part of practical interaction problems.

¢) Formulation of the computation method into a general
form so that it would be suitable to a wide spectrum of interac-
tion problems like a compression corner, forward and rear steps,
etc. The method's utility should be such as to lend itself for
quick and easy use for all cases.

d) Adaptation of the computation method to any combina-
tion of geometric boundary conditions so as to permit investiga-
tion of flow over complex bodies on which a number of forms of
interactions of different types occur (so the method will become
a sort of "numerical wind tunnel').

This final subject will not be realized in the near future
since it requires a lot of development and the use of a memory
size and of computer time that are so large as to be impractical
at this stage. But with future development in computers, it is
to be expected that the matter will then be more practical.

Appendix A' - Non-dimensional definitions of characteristic flow
parameters
a. Mach Number h{g‘/zgijjﬁﬁf \
By definition ¥RT* (A-1)
by setting .
> *»
w’ = W\
vE=vus

T u?{"/cp
R=cpmcr Y= Gl
we get ' - (A-2)

Wb Ve
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b. Flow function

We will define a non-dimensional flow function through
non-dimentional variables below:

2¥ _ -

- py

b__!_’ LA,

oY f? _ (A-3)

and we will get the change of the flow function between two
points through the linear integral

3
Wby = Wed b fudsg - vds) T p [ (adyaads o (ach)

When 305@ is the average densiﬁy between points a and b
c. Friction Coefficient

By definition

<* (A-5)
ce = /e J’u* _V;t‘.

%P'AU—

- )-k 0‘3‘
by setting
Re. =LaWe ki |
A
£ M h&=wut
>
Fﬁr=}*rko
_ v
TR
we get c :(.2 e (A-6)
Re }L’bﬁf
d. Heat transfer coefficient
By definition Q¥ (A-T)
€. = (£
{ TN T
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pog\).t;} X': hﬁﬁ.c.&_ﬁ_cﬁ
: ¥

By set-:ting Rexss -——,-\-:r—-

N
T Te/e
*::_‘3";
.1 ar [ s/ "
we get Cq- Fr_-\—e-x- 'p\’b\& (C?T )

with the reference condition V = 0 and so _M;"

the following 1s valid = Co- co ¥ = cf,/cv

from which we get
Pr Q‘f—xs ‘ca

Cq=

i
U° ’
b’f’\To |

(A-8)
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Appendix B' - Flow profile computation of inlet section (per
Polhausen method)

Assumptions for the computation are:

a) e - (B-1)
D °

b) ) j (B-2)
‘bqﬂ- 2oy =

¢) The relation between the profiles of temperature and
veloecitv in the laminar  boundarv laver and comoression on a
flat nlate is (ner Schlichtine M927): P .

3

We define the momentum equation as

do% . e (BeR) (-
Ax* f’é'v- ETINEe
when momentum thickness i1s given by
§Rr%) | oy (B-5)
ek - )
fo& V~o hals
.r"(%‘)

also J[ += &j# (B-6)

(B-7)

We define a new variable

ne= sk
and get (el ¥ kwf_zf a (B-8)
ne ge \A'V-:E:"j .%"-“ d‘“. ) =<Y.j F* rl,_ -

Through exchange of variables from y* to n

we get (B-5) again co By = b (B-9)
(\<t =5 =7n.* “)
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and also valid is . ' G ¥ (B-19)
’9!'3(0 /uo = Rf /Reko = ks /Re“‘
From substitution of (B-3) and (B—lﬁy‘into (B-8a) and

integration over y¥ we finally get the following non-dimen-
sional expression

geros(ENZ)(52) [ur @ e (e

[’ sszeaag_s__l,‘*]’
-*3"2'5*2'1“3"2 “sh ot 2 9'1')

- (B-20)

Formulas (B-3), (B-12) and (B-20) define the flow profile.

As to component V of the velocity at the inlet section V =
can be assumed, based on the following evaluation:

V (y) fulfills the order of magnitude {‘(B-21)

(n] <y{~(,))

We then calculate the numerical value of this order of
magnitude through the use of the following data (which
demonstrate the computation condition in this study)

. ... & ¥ :
Mo =0l t?.c—;[‘rZML‘ Ko c0.938 n, -K: O, ak ua (B-22)
"we get .
yp = A
4
/g\__.;/ - S 3 Gy ke I ey ..... ’}"/-’- ~ 4y (B-23)
Mo StTyw } ‘¥ g = Y
T 2 l 4+ ;:,:\’ (& =3 i, "] T 468

- -
through substitution in (B-20) we get _

¥ ¢ b —_—
-(236 [{AW L= (MS) ["4.' Z_"_}_,n ? :o‘».‘i:

e e (B-211)
~ 16 » 0,08 = ] e, __—), X
= .(.SJ SRy o (/ +foin e 06,6033 (X
and from (B-15) we get CIIA I } s = 6.0l3 %
DK tag o 5

.-D~_

from the condition at the end of the boundary layer
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Voo 28 '
U. T oA where A= is valid
-l
we get o< v(n) < ofte ) (B-25)

(Note: in the region of flow conditions 2< Mo < 5 and
10% <Re < 10% there is no change in the order of magnitude of

V(y)).

From this evalyation it bécomes clear that V nmay Be neglec-
ted at the inlet section with good approximation and we may assume

that
V=20 (B-26)
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Appendix C' - Evaluation of shock wave force for the required

/85

pressure ratcio

The pressure ratio parameter pe/pO characteristic for

interaction (next to parameters Xgo Rex , Mo) expresses the

s
pressure ratio between exit cross-section and inlet cross-
section. This pressure ratio 1s generated by the transition
along the incident shock wave and the diffuse reflected flow
lines (which combine into the reflected shock at great distance
from the plate). As a practical matter, either experimentally

or theoretically, the pressure ratio p2/pl from both sides of

the incident shock wave at the external boundary of the field
is furnished and as result,the ratio pe/pO is obtained.

It is generally not possible to calculate p2/pl directly
from pe/po and so an iterative computing procedure is required.
We will show a sample procedure for a simple case dealing
with a shock wave that touches the plate and is reflected from
it (without consideration of the boundary layer).
Given data: p3/pl, M1

Required: p2/pl

Solutiqn procedure:

a. an initial value is assumed for p2/pl’ k —_—
for instance X J s (C-1)
b. from the formulas for an [Fk ¥l !
oblique shock wave we get Y w - ) +1 _
the angle of the incident = St I ;J 2¥ (c-2)
wave ("
c. angle of flow deflectionj‘ -1 %1Sw~9)-l} ¢+39\ (Cc=-3)
after the shock +3 y;, N
. ) . ~a {(H\Sh—OI -4}
d. éﬁgle of the reflected wave 91’ 0,+& (c=-0b)
€. Mach number downstream . — v . _C (c-5)
of shock wave y . 4 PH’?:“;) 47:—' .
2. - ~ 4 . -
| So10606) .:_:_\L(H.cge.) .1]
f. Final pressure ratio ' (Cc-6)
P;,‘_ €2 l:}_ &[+.Lt H$\:-9)L"4}]
B = &R w35l sl =4

g. when then (p2/pl) is corrected through

l("’-’/P.)'- {"‘3/;3)‘ > .g.. _
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ra
P _ P o
. w® 3 Pz /
and from here we return to stage b. Te (;; Z -;3 - E) (c-7)
- P ' ’

This process converges quickly and it becomes clear that
the first guess in a. 1s very close to the final solution.

When speaking of the region close to the plate (not far 86
from the edge of the boundary layer) there is as yet no re-
flected wave but only a series of diffuse compression expansion
flow lines, as explained in paragraph 1.2.

Since the form of the flow lines and their direction are
not known in advance, it is impossible to set up a computation
like that described for the model.

Therefore, it is advisable to assume an initial pressure
ratio-p‘z/pl (an approximation of p2/pl = b 7p1 is recommended)

and to find the resulting (p /p ), from the flow field solution
and then to correct p2/p1 baéed on the amount of divergence of

(p3/pl), from the given value of (P3/p1).

It must be pointed out that it is more important (particu-
larly for the purpose of comparison with other results) to
obtain an accurate Pe /p ratio (indicated in the sample by

'p3/pl) than the rlght combination of waves and diffuse flow lines
that generate this value.

— .  An additional factor
T influencing p2/pl is

the nature of the inter-
' section between the in-
cident shock wave and
the reflected diffuse
flow lines, determined
by the distance between
. the external boundary and
the plate. The closerthe external boundary layer is to the plate
the greater the influence of the intersection of reflected
diffuse lines with the wave on its intensity at the boundary (the
intersection causes bending of the wave and thus reinforces it).

v

[ 4

Since calculation of intensity of the incident wave for p_/p
is anyway i1terative, that phenomenon is not important during
the initial stage of evaluating shock intensity and its in-
fluence 1is anyway expressed by the solution of the field flow
during continuation of the iterative computation.

o

Just the same, it is not desirable that most of the re-
flected diffuse lines reach the external boundary upstream of
the incident wave, since the influence of the wave's bending in
the flow field will then not be properly accounted for; on the

80



other hand, it is not desirable to have the external boundary

too far from the plate, so as not to increase the number of
gridpoints unduly. Experience has shown that as long as no
more than 25% of the reflected diffuse flow lines intersect
the external boundary before they meet up with the wave it-
self, the solution is not much affected. Based on this
criterion, the width of the field, ly, is determined in
appendix D', '

In addition to the factors mentioned, the influence of
on the accuracy of the reflected diffuse flow lines must be
noted. Ax must be at least one order of magnitude smaller
than the length of the reflected diffuse lines zone so that

Ax

their influence be a close approximation of the real situation

(see appendix D').

During practical computation an initial evaluation is made
of p2/p1 = /be/po, which is corrected in accordance with the

results obtained until the desired value for pe/po is reached.
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Appendix .D' - Optimum Evaluation of Computation Grid Dimensions

The computation grid must include the region in which the
majority of physical changes in the flow field occur. The grid
density must be sufficiently high to permit observation of the
main phenomena in the flow field, but it 1s also desirable to
keep the number of grid points as small as possible so as not to
place too heavy a load on the numerical computation. Also de-
sirable is that the ratio of of the dimensions Ax/Ay not be too
large for reasons of computation stability.

These considerations will be brought to bear in the evalua-
tion of Ax,Ay, 1x, 1ly.

a. Evaluation of 1x

Based on experimental results and on theoretical evaluations
(see also paragraph 2.1.2), it was found that the region in which
the principal changes in the flow field occur is about 15060
long and is divided into two more or less equal parts on both

sides of the point where the shock wave enters the boundary layer.

Therefore 1x = 15060 (D-1)

During earlier computations (at the start of this study) it
was found that, based on this evaluation, the location of the
boundary downstream is far enough from the zone of interaction
to fully justify the definition of a boundary condition of zero
gradients in the x-direction. Also investigated and verified
was the existence of the adjustment condition @iﬂ O;

(in addition to e at that location). R
2% "0 T
< Ly
A :
/6| N P X&a
T \7 \¢/
/ -
/ / '
) /
1 ) /
| A/
’ ):s. ;'ZS x.’a;)_
k—%@Axs-J
. "zlexs_fl
b. Evaluation of ly
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From the point of view of the region where changes occur in
the flow field, ly must be or the order of magnitude of 2 - 360
(as obtained from previous theoretical and experimental results).
"We do have to consider an additional factor in this study,
though, and that is the proximity of the incident wave to the
diffuse reflected lines, which stems from the closeness of the
external boundary to the plate; for that reason we will employ
the sketch.  The shock wave enters the upper boundary at point /88
X, at the angle 2 and its continuation reaches the plate at
point x_ (with approximate assumption that the wave will not bend
and wil? arrive at the plate).

The separated region stretches between points xsl and Xgo

and its length is Ax_. From the end of the boundary layer above
this section emerge "the diffuse reflected flow lines (compression
lines at the ends and expansion lines in the middle).

Based on previous theoretical and experimental results, it is
known that the largest part of the separated region is located
before point X_ (because of the influence to the rear, exerted
by the pressuré rise through the boundary layer); for the purpose
of an approximate calculation we will then assume that 2/3 of
the Axs section is located before point Xg

Since the density of the diffuse flow lines is much lower
at the periphery that in the center of the reflection zone, we
will only concern ourselves with the central 2/3 of the re-
flection zone in this evaluation. '

Let us also assume that the angle of reflection of the
diffuse lines is equal to 6 (actually the value is very close
to 6, because of the small local flow angle which is on the
order of just a few degrees).

Based on the foregoing data and evaluations we will now
calculate the distance of points Xy and Xpqy from the front end

of the field. It must be ascertained that A is positive or,

at the least, of very small negative value so that all, or the
majority, of the reflected flow lines will go to the external

boundary downstream of the shock wave.

Based on the foregoing evaluations

(D-2)
Xg= 0.8 1;(

4
XC=XS-—'—Y§=0,5‘,@*- %
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Xi =X = AXs

we then defjine X 22 - X\ © 7—;—AX5 (D-3)
Xe -[o sle = 0,63 (o.e:,-A\';)]J« LI
and get VLT ‘ 0 :
1 : i

0.5y - 04T Axe+ %%; \
lX was already determined, previqusly asﬂlx = 150.60
we designate x;/{,: X4 Xy [§s=% 0 (D-14)

AXS/J-;:X ‘ 17/&:'— 1

S

and ultimately obtain Xi= ¥J3- 56 (D-5)

i g

i
x&=?f-tﬂfx*-bd

|

From computational results for 2< Mo< 5 and 1 <pe/po <3
(which agree with 10° < ¢ <40°) the following orders of magnitude
are known for the separated zone:

Axs =(20 + 50) o (D-6)

Now we will investigate the influence of 1, on A in the

region (1 - 7)8o0 .: for this purpose Xy and x, abe calculated

for 16 different combinations of 6 and
Ax for which
AX_ = 20803 3080; 40803 5080
o = 10° °

Nt w

; 20°%; 30%; 40°%;

and the results are tested for the following values of 1_/S8o:

l, 3, 5, 7. The results are sketched on the next page.
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figure is based on results
2213 ;fﬁ-;,_és for which the value A was calculated
accoXding to formulas D=5
4
/3
4 3 5 ¥

From the computational results it appears that in the
region 1.560 < ly < 380 the value f increased greatly for a

A that was either positive or slightly negative, while in the
range 360 < 1y < 780 this increase occurs much slower and more

~
\O
o

|

gradually until it reaches anasymptotic value. The results can
be summed up in the following table:
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¢
& 1 3 5 7 |
’ A> O 10% 50% 68% 81% |
0<¢2<¢.2 30% 89% gs%  100% ]
&g I

It appears then that 1y =380 supplies effectively the re-

quirement that no more than a quarter of the reflected diffuse
lines reach the external boundary before the shock wave. The
improvement available from ly = 580 or 1y = 780 carries little

weight in consideration of the needed increase in gridpoints
(1.7 times and 2.4 times, respectively). The optimum choice
will thus be - '

1, = 360 \ (D-T7)

c. Evaluation of Ay

To be able to detect changes along the width of the boundary
layer Ay must be an order of magnitude smaller than 8o ; so as
not to exceed this principle the maximum value of Ay will be

Ay = 1/860 (D-8)

Note: Because of the increase of the boundary layer by Ay < 0.1léo
in the interaction zone proper.

d. Evaluation of x (For Uniform Grid)

There are two requirements that limit Ax and they are:

1). For the sake of stability it is desirable to maintain
a dimensional ratio of AX/ Ay < 20 and because it has been
determined that Ay = 1/860 it is required that Ax < 2.560

2). Ax must be an order of magnitude smaller than the
length of the reflected flow lines zone so that the lines may be
detected. That length is, according to its evaluation in para-
graph b., about 2/3 x (20 - 50) 6o = (13 - 33) $o
and therefore 1 < Ax/8o0 < 3 must be valid.

From those two requirements it was determined that
AX = 2.680 (D-9)
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e. Evaluation of x (For a Non-Uniform Grid)

For a non-uniform grid it is required that in its center
Ax = 0(Ay) be valid. 1In this study the value chosen is Ax
min = 1.6Ay = 0.2680 (D-10)

According to the ratio of 1.1 for growth of grid meshes
towards the periphery (see considerations in appendix G') we
find that Ax < 260 remains valid in the zone of reflected
flow lines.
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Appendix E' - Computation of Grid Mesh Size

The field dimensions are defined as follows:
Lys 0c S
l}r QJJL ’
The mesh dimensions of the uniform grid
cax= by 6 -‘E
2y = b O } i

The mesh dimensions of the non-uniform grid

AN SR I :"‘():2.)( d‘o

A\a = —ﬂ\d (\\o

Wi coefficl the choice of
ith the efficients ays ay, blx’ b2x’ by h e
increases
Shock wave \§§
e e - : \
\
’ \
o
]
'I:e Y ,ﬁ“j-- '3..1‘.’-“,:._ S ..'.'.-- T S LT WO _\“\.,‘ Bt eant L i e e ..
‘mﬁ-ﬁ}ﬁ“ﬂﬁvﬁﬂwﬁﬂuﬁﬁﬁmm@wwﬁ?WW#wwc
:4 X, - )
- X K
. Ay o
:‘ X .
‘€& .l.* ol

The following relations exist (from now on all length values

are dimensional):
According to appendix A!
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also valid.is Ko = Xg = =z . (E-5)
Lz o0 & j' (E-6)

~

Those are the three equations with the unknowns 1_, x_ and
6o and the procedure for their solution is as follows: °

After extraction of 6o and x_we get L =¥, {x, - £ a
0 o g avk ] ~g CN |

We designate Iz Qqaquf and get a quadratic equation
for 1 T ;
X

o B "+,i< ﬁx :“o\f\'\s / (E-T)

[SERS S

From the two solutions we choose the practical physical /92
value and get N

L. - “HE{K b KXs' K ({24186 xs/x ) ! (E-8)
o* - H
4 4 ‘

.while g; and x, are determined through (E~5) and (E-6). Through
(E-1), (E-2), E~3) and §_  we determine ly and also Ax and Ay
(after substituting the coefficients in those formulas).

The number of gridpoints in the y- dlrectlon in both grids

is N= ok 7,)*4 (E-9)

The number of gridpoints in the x-direction of the uniform
grid is {-Qx (E-10)
M=t 5 +4

The number of gridpoints in the x-direction, in a non-
uniform grid, is based on the mesh length in the center of the
field beilng Axmin' The mesh length increases from the center

of the field towards its periphery according to the formula for
a geometrical series with a growth ratio g.

e o
So we get ";’pr J\,':I:Q-‘ (E-11)
when n 1is determined by (E-12)
Q- ‘ q~. o 4 :
OZA’LKUAC} ";?_._]‘ F aX e =4y "'—; AXuin:
and its solution is (E-13)

b‘;}.u[l (5 - )(“-']

i Ay 1o (7)
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According to the previously determined considerations the
following coefficient values were chosen:

’él(vl:vz g = 1{o j (E-11)
4wﬁ’°d— A < .3 /
1 j
A‘U =01 . "‘
and then we get the number of gridpoints o~y :
M-ré
. (E-15)
NEQLE

The number of points was limited to this value (76 x 25 =
1900) by considerations for an optimum between high accuracy and
reasonable computer time (one computer run without calculations
of coefficient stability for 1900 gridpoints takes 1.0 - 1.5
minutes and at least several hundred runs (iterations) are re-
quired until convergence is reached).
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Appendix F' - Computation of Flow Characteristics in the Shock /9
M Wave Dlrection at the External Boundary.

Given & shock wave with intensity Sh = pF/pE N .

Shock wave

e\
It is required to calculate the Exhumal \\\§\

flow at F as function of the boundazy |
characteristics at E. f

From the Rankine-Hugonilot relatlons we get the angle at
which the wave enters

i . 2 s ae
3 5y S e f"" iz { .“ ) ..:....
e T 1 : Xat (F-1)
- ) F ,,'7: - .f;:*"“ P l
Og = Sien § Lop2h @ 7w ' o3 Iﬁ (F-2)
s !
Velocity components at E: Nﬁn: Mg S5mdly 3 v 2o o
across the shock wave '%C > Ug s 03 “vi gigr (F-3)
parallel to the shock wave
. * r LA N 4 LN
~~ Velocity components at F: Lﬁ z VA [hFJIVT Sl P
b2
(90, s Lz
across the shock wave .
Ve © Vi, (F-14)

parallel to the shock wave

Veloecity components at F according to the original directions
(of the first axes)

in the x~-direction W = Vi, 8907 & Yr e g

4

(F-5)
in the y-direction Ve

*Va, otCE - Vg siag]
% T
b ] (e Bg s:mr;'},;*” 30T - )
i (F-6)

p= iy ;
A PRSI R 4—:

and from the state equation we get R w (F-T7)

We also get

|

—‘PF -t Tr
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Appendix G' - Formulas for Finite Difference Computation

a. Uniform grid, second order accuracy in the x and y directions

According to Taylor's development around m_

g M+l
. !’\‘Ll . L \ h U L: (G 1a)
fines = Fra - w7t "'i'f»\ *.ua W + ol )
* ." v

}..-.41 - 'F\-«-a
ERY

= Jch\h “".PM +'L\~\-\

by subtraction we get j&\z +o(ht)

(G-2)
by addition we get

s (i)

For a grid with uniform spa01ng in the x and y dlrectlons

~N

we get ne "w. LH

N hy
- L\\‘

N F ORI 8 A e W R e T AL

‘.)’v

’u_;{; - f'wwm - '.F'M--i‘ n__eef 1‘7“\—)

'UX'V'\,h &by W\

: . (G-
f‘b_i'_l = JLM‘G‘.-H - 'f’n,v.-—! "’c'(!"‘l\. ‘1‘ (G-3)

[q"] g \ “ ) |
7 W & " . \
fb-"-,}'- - {’V-Nl,r. "-7.’;(:»«.,.'. +'FM"I’* O(L L) r\
nR* ST} g«y" N R ;
vt £ a4 y (
u - e Jra a1~ tue ¥, pe| L ’
— z +C f
(Y \d‘- V-'\‘V. !'“.1 ™ ( !'\‘1 ) ’,}

. H a \ 5:
ot (fm+nhu °{M+hn4}'(fm4.ﬂﬂ ’fm1¢y0 ro (bt h v V

’ox E‘j ‘..4.“ /"11/( L‘? " 7 J

b. Uniform grid, fourth order accuracy in the x-direction (and

second order accuracy in the y-direction)
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According to Taylor's development around m

h W W h

A

) L WM -\ YA WA A\ w:-n.. /(G—Ma)

fanm o -ahghe Al fl - L RF L3 3G 4o(W)

h . |
j'tm-l :}M - !'o.".,\ + é-b .?VM - éijtl:q 4 5;:_'."‘ 7(::: + o.(‘hr) “‘(G—Ub)

\ i 3 LI 14 3
Y R L SR SRR RS

; j‘ May ¥ ‘ A
’ i \ WL W Iy
'_"M-tz,"—’ -)-M'Pdln-grr.-, 17*'.).1\".}‘..,‘ + ‘-i—!ﬂs;t‘m "-:?\V-FMi- O(L\ ) 1\ (G—ud)
w2 i) -BJxg (-]
}‘M - ’S'M—l. -7 ¥ o) * 2 “}:'w.u - fuaan +o qu ~

42 waxa [(o) by Inte - [ (]

L 'fw-L*Jbgmq'4°{M4494“+"F“n’+0(k”
w 42" - -

(G=5)

For a grid with uniform spacing in x and ¥ directions, with
fourth order differences in the x-direction and second order
differences in the y-direction, we get

L%} s !'\'“ lf\l L\( ’ \
3_ " L\»’ |
l n- _ hy “.:
(2 %4 3 L] WA ™ : ;
)4{ ol | VY
r‘é_‘f‘— = *M‘L)V\ - z'?\v\-l‘h + g-f'u.u'“ - ";VA i L.‘ Y ! (G—6)
r.bx bogu ‘{LL\X : -{'0( x )

re'_:{: " j‘ W Ml = '5’%\’ Y=\ + 0 (lh") \

’0\1 V"\(G\ a t,“}

% . .
'b__i' -*N-L\‘ L0 L - :

= 1 Lvatyi =30 frain b Fw4tin --F g

+ = . mit, v 4 |
DA Wy h '{‘1“;‘_ Lt + O([a )

ff;i - Fm,nﬂ -J.-{f.,,._,.,.-+~§-m,:£-l
* ™M l“jb *F °( l"l‘].)




<3
{:
3

i,

4 . . . )
® W heh 1[({’““1»“*1 - %T"‘"‘t'}*' + 2 g’k’A!.nan ‘fhn..m) +

. ° L\ ‘
-(fMﬁqwc-Z}uqu +8$m4hA4 ‘fm*%“*)]*°&hfy7} \(G-6)

Note: when hy is one order of magnitude smaller than h (for the

1

uniform grid of the computation~"x h 16), a higher accuracy is
obtained in (G-3) for derivatives’of v, which is not expressed
in the finite difference equations because of the lower accuracy
for x-derivatives.

In contrast to it, the accuracy of x-direction derivatives
improves in (G-6) and reaches the same order as the derivatives
in the y-direction, so that in general the accuracy of the
difference equations improved. This improvement in accuracy
is particularly convenient near where the shock wave impinges on
the boundary layer, where relatively strong gradients of the
variables exist.

¢. Non-Uniform grid in the x-direction, second order accuracy in

the x and y directions

According to Taylor's development around m

fewa by Y =\
L LT
-F““b:'l[:M - hfu. ‘}\:\4 l’b _“;V\ 'II‘: iy -5-(:(!1‘) (G—7a)

fot = e qh i sipn gt gkl 1)) @-70)

Through [&9'1hfLi]f we get o
A (-‘uu —l“) /4 + (..D .,&.,‘_,).o[ e 7\( c-8)
Through [1u¢LrQw] ’we get G(I*T) Lf?.-h4

_Q“*I 4‘“‘) - ( - 'f—\“q
{; k\_g,(, (i)'r )

when the errors are

hb = | -
Rq= ._T—? (';47) -9 (“7)?"‘:\ o 1(7 -,)f l :,Do(l: 7)
Kl-"ﬁgﬁﬂj [“—9@-4'M J@ﬁﬁ%d%u]’w0(4H4O

For q = 1 the errors in the two derivatives are O(h2);mto
preserve the order of magnitude it is necessary that 1 - q = h.
In practice, the accuracy of the derivatives becomes impaired
when g <1.1 and so we will choose g = 1.1 for the difference
computations of a non-uniform grid.
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with changing spacings in the x—directions and /97

—direction, when the differences are
er of accuracy in both directions, we

For a grid
uniform ones in the ¥
computed to a second ord

get

':__';,’ . ('f'm#\m "‘S‘h.u\ ’/51 +Gm.w 'lu\ .m.)_‘j_ _{_?( I’“i cl)

My Wi (]Aoi)
o - 'S'\M.\\-H ~ &y, v | v
T s d &‘é’—--l-?" - 4o (%4 )
PN (1.4 SALRE:
~ ’ o Vi eadtLy Comtaznl T LT Y "t e B \
’i‘.y“';._\ .','- ’ A i B T 1o, 6 _vg_.' D(!'\.'“--"‘ !
! ! V_“é‘ (.-.,\ (,!) i ’ ’I/
0_:_'! l .= ‘ ‘i' ety T4 ":"-.x\ a b L ke .
.-OB‘ ‘ M ‘i/\\l" 2 +° ( L"it)
g !
"g_:%; I - \~§—u\+t,v\u - -FWNV\-\I.) ’/9 +( 'Ft,.‘ ywa T r} el W ,) q
t T .
2\1 AL o2 ;|7 l’(x ("\‘]) ‘ -
- —(j‘vu«\ O "',C Wuh_:i)j/q * (‘F"‘“ Al - .g‘“_i‘ h-.;,cg. Ll v ‘ ..
"2 hyhe () ‘ o byl
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Appendix H' - Detailed Finite Difference Equations

a. The Brailovskaya scheme (for uniform and non-uniform grids)

The complete difference equations will be formulated
further on, in their general form and to a second order accuracy
(without artificial viscosity terms). Let us define the symbols
as follows '

i [an~uni£orm grid |Uniform, Grid

= | AXwm AKX vans 4.0

= | <o
"

(A% weax,..) AX

>
oL
o

- By

-

The general form of the equations

w v -
? *’bF_‘_'ae.':S (H-1)
. . . vt X o
First integration stage _ U

™ t t t ¢ ;
wi ow b L atb ( e 4 t,_ |
™, v W 2 hx [ FH“'“ rm‘“.) 1 * (FWMA - r‘“":f) (}]4

__At' t ¢ \
oot o] eat st
Ratty NI \
’ (H-2)
Second integration stage

NRRTIRY A [ R LA U

WA VA w & ‘4\, M'“|“ w'u

oy X
-;_&[\t:; [G'::‘y:.u - Gh.n—‘i] + At ) S:\.V\

The equations for fourth order accuracy are written in
similar form according to appendix -G' paragraph b.
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The expressions for the equations of a uniform grid, to
second order accuracy, will be detailed further on in the form
in which they appear in the original Brailovskaya [8] scheme
and also in the computer program. (parallel terms for a non-
uniform grid and for fourth order differences, were developed
for the computer program in similar fashion, by means of the
definitions given in appendix G'). '

r‘P er 1
= Voo _ W2 (H-3)
LTV hand
PV L ws
E : wy
- JMI“ - 'JM)H
P [ w2 ]
= .o P-t—f)u" Pt Wyl
™ vl 7 (H-1)
Py W,V
u( e
: | w(EP)], Ulwie) |
[ Pv ] [ wy ]
uv . .
G'w\mz f 2 M} *
Pt PV P+wiy
viE«e), . | vlwuse),,., G5
[ o ] [ o 1
S el 2 7 + L2 t“f ) (H-6)
mm Red X Ty Re 2 7y -
CRN 2T '
N _7%(,“ +U~G';0-V‘c,7- - _—&-ﬁ¢ur,1ky@
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"

ThS+ Ly
| h *8#751-eh>.,~q.t,su‘l,s+h/75+s'q5‘v'u,m-mg'

hfa+'ii$‘+7{‘g+v s

ATSHS 25+ vos + pes 5 = (H-6)
0
When

(H-T)
Sab £ 408 o oo s o ]
saz L) 4 (S TS W u.....-b\u.—-)J
/«5352’7’%3“‘?‘%) JK;[)AM.(V..‘.W.-VM...) = Psnaner (Vewar, s = V...,...)]
Sal J;%(;.}c;): -c%rw(p,a.,(v...,.-vmm) Powtin (Viaduas - v_...))
S92 23030 Al (e pe Y - A )|
S NS a‘“‘[(}u..,..+y«~...)(vm.,,. Vi)~ (Ponn® o Y- \G,.)

J
2
s [ N ST

S Bti T ‘3%“"%97)7‘ [/J\.n nu(um«'wu-uwlmu) - Pw.a-l (uuu.wl - um-l.»-!).‘

-l

L()\“"“-" ¢}A....,)(Tm. e 'I‘M,.\ -(}A..m}d\u-:,. Ten =T .M)]
Shkx f-:—; '25“/\—‘ Ty b\ [F,.m, y.... Waoma) = n...) (J’\w\m"ﬂ, ,-!)(TH.. -y ]

J
A R (SSHTIS FRPUR F AR W |
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(H-7)
~
S hi - UAV'?:‘/ Jﬁ [(P“" w Veane ‘}A"‘ e Viadt, - N“) ()'\“"v"‘“*}‘hl,u‘uvn)\‘/u, V. I,u/J
i

|

[ oot it Pt

49 ’b-’):

,: S l"f o 3 Oa )’\ .“..VM MJI+)'AM.$\/M v){VM na = VH,..) )ANuVKU"'}AM.H-'VMN)KUH o=V ,,.)J

[ %9
s~ =
Z> -

3‘ T auy
% ShL"é%(y“tg) S
SU'-) . %UV% 3 ;{%E‘U},J.,,th (Uwu,wu - U u,uq) -}A ety Vet (U ol ual - Uu.'....)-]

remmm—— e,

l VY. o 4
S ‘8 .I’b—;(yuf‘a)' /!lc;u7 [}A '“‘fnwu“ﬂ"gu (V““'.V“' "V“‘"-""') "}A \M-',huW'.w(Vm-!,mt ."'Vlm-l,ud)}

(3

S L{q = b(rufbx) TT[P“ i U, .ul(Vm. aa =V -l,m:) }Au.a—ou (YT (VM‘, wer = Viasp, e .)]

.i

my__ 4
‘Sl{n b —-—%UJV‘D;—) AL [“y_’ [}A“M"Vﬂmu (uwt.uu 'uhq.wu) ‘))\u\..\-a Vm.n-‘ (U\uu,vw -u"'"'l“?;
‘ ’
—
b. MacCormack scheme (only for a uniform grid) /101
The general form of the equations
WL F L, 2E . DSH, TS (H-B)
i DX h% DR %}—
and in another form ' -
! : _‘f.u 24 28 _ (H-9)
A= F“S'Il
B=6-5. o
Here follows the general description of the scheme:
The first integration stage
o | ot . : -
W s Wk SR (A - Brie) = 25 (B~ Bunin) (87100,
/\

99



£4)

WA A

When. ]

~ 1
3t W s i) - 2By - S )]

when Wiz warmd

wd = wod (t,2)

. V\lvl r \N\bd (£—\~\A)L() /2_ N,

The second integration stage
£ £ oy f

e =)

IWN::!Md,w\A

Ry T ne wd

\Mulr ‘\Abll(w\ll *'\L)

nd = woed (nd 4y, 1)

Note: +the function mod is defined by

100

mod(#g) = % - z;aé(g_). y

M

[ P ] [ w4 ]
| Pu | W
W, s =
Y w
; L E Jh.\ﬂ L Wl{lh.v\
[ p» ] [ o ]
| Prpu’ _ 4 T2 -
: Hw«,‘- fuv Re \C*\’
_\A(E"\D)J "o _%?{ YUGh HV Tuy |

(H-11)

(H-12)

(H-13)

(H-14)

(H-15)

(H-16)
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B e (H-16

j

L wa 1 o

&

! %[Al.*(umn.“'um.o,n - "‘ (\/M,.,“—Vm,‘.ﬂ]

f P+wall ‘

;= - s : 'y u ) -uUu ™ L -V,
t| wav gl [y i = )« 5, (i )
! M(WL!"P) JPYAX[T-““‘” TW hﬁj 3 uMn[OA(uMd,a uh l,n) 14.7 (VM PR
; - < b i +Van (uu “wdr um.u-o) .JM(VM‘I.\'-VN‘I.-)]

[ PV ] I o Y
puv . o -
et et | TR, .
vies) |, LBy umy ey, © o (E-LT)
[ o
Wi ) [ﬁj(uwguu'uh‘“.a *j&(vm....-v.;..,,.,)]
Wi » y |
P Rl I O T I
V{wha 0 . &7"—5[7#.,,,_-1'.‘.,,“}4 \LM“LM}(uM ot )  (a

+ .—;'-Vm.“[i\'r (V-u.-ul “Viam -) -az.x(u“'"‘“' U h\-hu).]

During the actual integration the computation is split
up into x and y directions. For all KI runs in the y-direction
a computation for the x-direction is made where KI = INT
(DTX/DTY)

';TPT"’:’_‘-"A"/Z%("“’J] DTY= 0.8y [ [ora( 1402 M4)] (H-16)
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N A set of computer runs for the y-direction is I while for
the x-direction it is Il when

IJfIUT(I/KI) (H-19)

Details of the computation procedure

1). Computation in the x-direction -

First the values A, B are calculated according to the defini-
tions and then integration of the difference scheme is carried
out per time period ATX.

;[Ww]‘: [Wm.w] - %’: {[Am:,“)- [A M.‘-u,v}]} b-r‘r“&wJ B i ')} (H-20)
when_ _
wme=ws $A- 1wt (1) o

3= -
[ A+ - W\L—.LA!T( w ) 4 1 (A-21)
o

: nj = A+ IA/T{

This arrangement generates alternately forward and rear
differences in the x and y directions.

From the results of the W values the values ;, i, %, 5, ﬁ, ﬁ;
are calculated and from them the values of A.

FPinally, the average derivative in the x-direction is
calculated, for use in the XKI runs to come in which only inte-
gration in the y-direction 1s carried out.

'[FW\]_ L {[AMlln]'[ﬂhi-l,u] [AI‘,,.] [HX(-.M } (H-22)

when l JA* T
w_ we+ T4 - f”’( /’2)*’“ ' (H-23)
lk-_-w\;MA—-M—\-d M(M“)"‘L

Note: Experience has shown the desirability of the definition

[Fm n] = 0 for the first run (because the calculation of the
3

derivative is not accurate) and afterwards the computation stage
for the y-direction is performed.
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2). Computation in the y-direction -

~
}—J
(@]
ey

First the values for B are calculated, according to the
definitions and then the stages of integration are performed,
according to the time period A TY.

Pirst integration

[W\.a']: [W“.n]“ DT\;{ [Gu,.,) l&m n)-]} b-rv[ ,,] (H-21)

hj = h 1. - INT (I/,x)u

This arrangement generates alternately forward and rear
differences.

when

(H-25)

From the results of ¥ values the values p, n, T, P, V, U
are calculated and from them those for B.

Second integration

;[WM -"HW.‘,.. Win ] bnv[ T“j)"[e“‘:i*]}”’”lp“-d} (H-26)

when

N = hetnfd —nai _,t;,/r(i’i"_‘:’?&'_i)y‘z_
M= ns L-TwT(I/2)+2 } (H-27)

This arrangement generates alternately forward and rear
differences, which are opposite in dlrection to those of the
first integration.

3). Final calculation of the variables U, V, p, T, u, p
is performed from the final values obtained for W.

103



Appendix I' - Detalls of boundary conditions and other computa-
' tions in finite differences

a. Boundary Conditions at the Entry Section

According to formula (3-19) the relation‘fz’"-. f(v “), (I-1)
is valid and in that way the sultable n 1is obtained for
all gridpoints in the y-direction. From equations (3-16) to
(3-18) we can obtain Prn ) i} Warw as function of
[ ) ’ ] d

3 ]
") 4,":'.9.'1” -Jrl'\ +'2" (I—2)
4 N
B e——— y a_,_-'_ [ 1
h"") Mo [41’ ‘/;: 2 Ho (‘i" W, w ] (1I-3)

FPro=z — d Ry
1 v T (1- W)

. (1-5)
v’!'ﬂ Y

and from the equations of state and of viscosity. we also get

f/b\d. N Pa,v

b. Boundary Conditions Along the Wall

VR
Velocilty components from the non-~slip condition
Uy £ 9 } (I-6)
VW\.l =0
when for suctlon : Vi, £ 0 ’
and for injection Vw4 >0
AT '
Temperature must fulfill the adiabatic condition 'm(-) o =0
and we will assume the following relation (which fulfills that
condition as: Timm= e+t :’ (I-7)
The coefflcients a and b¥we will find by substituting the
values/(M‘s) )(w\, )into the equation
Q,O“h'&) ) )
; ' T = /6- A + OC
/ () wn® A4y)
S S S — = A (ray) +a
(ML) (my4)  (mal) Ty ( h),
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M From the solution of the two equations we get /106
T‘“ﬂ. e T“\g} l, ' -
but Twg ¥ Twm| =ou ‘ Sayv 3 st
\,'.-.o ’
! 4 i .
and therefore ETwm = S’Tm,;":;" TMQ (I-8)

According to the considerations in paragraph 3.3.1. 2
pressure will be computed for the condition

20

Similar to the temperature computation we then get ©Jiy=e

4 -L
Fan = 3P ~ 3 Pmg (1 g

and from the equations of state and viscosity we also get /,\M‘. ; -PWM

Here we will bring up a few more methods for computing
which are basically more accurate (without the approximate

assumption of %B = 0) but result in an unsteady solution for

numerical comput ation:

1). Linear extrapolation -

- ,
Assuming the relation Duns= 0s+,(lfy_
. we get Prag ® 2w = P (I-10)
2). Square extrapolation -
Assuming the relation /f“"'" Tow+ ’4'3 vey’
we get Pra = 3P wmr =3 Pus + P,y (I-11)
3). Development of continuity equation
\ fu ‘/ I\ WF LY yE -
‘ B—i '\'/b hc 'ﬁ f _“ “\‘U‘;ﬁ + rov + V'O_j: © (1—12)
| X 3 a7 d
We develop the expression around p01nt \(w\ ‘)
while neglecting the second order \ Jl (m2)
(”\"l;’) [iﬁ\‘) (:\‘\‘H)')
and finally we get ) (1-13)
'/‘\\ ~
- ! * @) @i W H @)
J“‘PM" ‘Ph" + fk\ Rwmrhe = L\‘"“’p\- .‘_f &) VW\,I. -0 -
At ] ) M| ——— =
ax © Ay
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J) ‘t)- ’ _PM.l(t—') T
T T Ai[“““"‘ Yo V(H ]
2ax A‘,)

4). Development of the approximate equation of continuity -

This is the approximate formulation of the continuity
equation

dg I _ 2 eY
2% | 0% (I-14)
and after development of the expression around point 'Q“|)
we get v
(t-\) )
('t ‘) Lwir ° Vg2 (I-15)
PWHJ < Mﬂ

¥

Based on the gradients of the variables in the x-direction
being zero, we get

¢. Boundary Conditions at the Exit Section

(BN Mn =l na o"‘\
Vaiyn = Vaaetn (1-16)
PM.'!" = PH'I |“

CTiawm ¢ Trm-tan

d. Boundary Conditions for the External Flow

Computation of the characteristics for the external

boundary: L - ANy >
N /, /r ’
- 7/ /7 //
/ / 2
\ \ A 5
e ) e
M- ) m+

The characteristics are computed from the next to the
last line vs. the last line and their direction Bm 1s defined

by .
A Mg +9 :{3 ( “'( N2
}A ' MJ'[‘ IA"IM" ﬁ .}3 KM.N ] (1—17)
The value of a random variable Fm N will thus be determined

as a function of its values from line N-1

£ pet (60) # Foamt i (AKX ~axy) (I-18)

\FM;U g (A\.Y“AXLJ- AXU)
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"when the lines of the characteristics bisect the vertical grid
lines, the definition of Fm N will change accordingly.
b ]

The values at the external boundary, at the first point
downstream of the shock wave, are defined according to equa-
tions (3-26) to (3-29) in paragraph 3.3.1.4, so that the values
of point (m_,N) ahead of the shock wave define the values of
point (m_+ f,N) behind it.

For reasons of computation stability we compared the values
of point (ms+2,N)with those of (Ms+ 1,N): there appears to be

almost no effect on the results but 1t does tend to prevent
fluctuations in the solution.

The value of Vms+1,N is not computed from the transition

equation of the shock wave like the rest of the variables, be-
cause the changes in this variable are of the same amount as
its actual value and such a computation would cause severe
osclllations in the solution. This value is therefore computed

through extrapolation of V from the field by means of the charac-
teristics method, similar to calculation of the rest of the points

at the external boundary.

e. Boundary Conditions on Both Sides of the Shock Wave in the
Field, for "Non-Continuous" Computation.

This boundary condition is computed according to the
following stages:

- ' of—-ae ?"3“ - -

1). The first iteration

gives the point of
entry into the field
(M, >N ) and its

intensity Sho from
which the entrance "

angle 1is calculated: - . ?s

m, G ulr)

/108

L

- [y FDE T ao19)
L Mo J

|07

>0

2). Computation of the initial location of the shock wave
in the field (assuming a straight shock wave)

NOER LT '»‘?r(o.?.) (1-20)

3). Setting of the upper boundary of the shock wave Mu(N)
and of its downstream boundary y e :
| 40 n)
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4y, Location of the lower boundary at n_ so that it is
close to the sonic line where M = 1 (through “computational
test).

5). Computation of values upstream of the shock wave (for
points Mu(n)) through extrapolation of values from the upstream
flow.

6). Computation of the values downstream of the shock
wave (along points (waln) from values calculated for Mu(n)

from formulas for the transition of a slanted shock wave, which
are given in paragraph 3.3.1.4).

The value for the velocity component V downstream of the
shock wave is not computed that way (for the same reasons as
discussed in previously in section d.) but through extrapola-
tion from nearby points at the downstream flow.

7). After correcting the computation for the entire flow
field by means of the difference scheme, we find the new. local
gradient of the shock wave 'g;(h) from the local pressure ratio.

on both sides of the shock wave boundaries from the
formula

AR IERE=0
: 0:-(“\“;:[ ::*wg}
| | x

8). From the local gradient the location of the shock
wave 1s brought up to date

(I-21)

: n
|
m(n) = Mo*‘j -}(7[0'0\)] dn (I-22)
' © e e

afterwards one continues according to paragraph (3) to (8) and

S0 on repeatedly.

f. Additional Computations (Based on the Definitions in
Appendix A')

I'v‘ - -
1). Mach number - M, = J ;“"3' :V”“'" (I-23)
ve * b"‘. T My

2). Flow function (I-24)

- Wwint = WX
."7/““"; ‘;’h,“'ph” “’i’(rh'n-‘- f»ﬂh-’)( w 'h‘& V-\nV\)A\ 4

-

"':Q_L(fm.nv’*ﬁ\.;..h-»)( IO .{ VM.‘"N) AX
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3). Friction Coefficient along the plate - (I-25)

Per definition DU
C¢ = X Wt o ’
-~F Rex, P, Y /i)

We will calculate "('on)m in the following manner:

we assume that the following relation exists next to the plate

M= Ot O FAYY = Oy
by substituting the points - C‘o“i W

Uma = 00 ."w\\\\ ) (“'\‘;\'\ ) (“‘\
A
b\“‘1:¢k°-¥0“193 +(\;£93

s v
Oy +QO\\¢‘0"'A°WLU

we get

UMyt
from the solution of the three equations 0~-=.'2J‘-\7(4u u.,;-.l\/u-.,.'i“u,;)
and finally we get . i . :
P ey M (hu,, - 30[.,-,,‘“1“,,) (I-26)

). Heat transfer coefficient along the plate -

 Per definition ca = Ml o (2T (1-27)
! w r Re*; s °D/"‘"
- (oY W
we calculate v like ('Q__) and get
s ) D‘d L]
(I-28)

(EI -\..'_-25‘9 (h7 =3 Tey +To, L)
Finally, we get o |

My ()’-—() _
ECQM: -‘ZP: ﬁeﬁ‘é.a )\N.\\(I’T.\'L—;} 'Mu* .’;.9
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Appendix J' - Comparison of Stability Criteria for Computation
oI Viscous. Flow According to Various Sources

Based on various approximations in the development of
linear equations for compressive and viscuous flow, different
At criteria were obtained for assurance of stability in the
computation. Some of the most important results (in dimension-
less form) are shown below:

a. According to Brailovskayal8] At ¢ Re - ng

without the energy equation (J-1)

b. According to Brailovskaya[8] with the energy equation

| . mr(y )
c. According to Skoglund, Gay[94] (7-3)
-~ Ab < -
d. According to Carter [13] (J-4)

0.5 Py Re
rRr/p

If we set the non-dimensional values (the approximate
values)

st ¢ = K

P & 0.3 Y=44 M4 P
we get }
Fb,= 0015 Re
Fd, = 0.035 MJ"Re (3-5)
Fs = 0.3 Re

= 0.5 PRe

For 2< Mo< 4 all the expressions offer approximate values
in the range F/Re = 0.1 - 0.2.

In this research only the criterion of Fo was taken into

account because 1t 1s based on a minimum of approximations of
the basic equations.
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Appendix K' - Development of Coefficients of the Differential /111
Equation Remainders B

Arrangement of the general computation with difference
schemes for the t-th iteration

For the Brailovskaya scheme

- der’ivative_t .
wt ot —Ai[ navTxa J (K-1)
Evv{ ) i derivativ ¢

=W ~ Al NIt

For the MacCormack scheme
f - . derivative t="*
de = vvi" - A;{[ R EY) j (K-2)

derivative -

|
| Y .~ . s ]t
éwt = ;‘{'{wt" .x,-vs/t “Ai[ PRRREE ] }

when all derivatives in each scheme are calculated as described

in appendix H'. The remainder of the differential eguation is
defined by " g.t+ derivative
- w
] ¢ - | £t (K-3)
R 'M) [m-\ng_]

According to the rear differéntials we get
(‘b w)"‘"_ wt- Cytr

Bt At
From the previous definitions . . (K-5)

dan

(K-4)

(for both schemes) t

. [ o of
['derivatiﬁe = wt o w
At

In the same way of making use of the approximation of the rear
derivative of &w — can be exchanged for .,t° :
? — uC Wo.
, 8t W : S
Then we get '
.//R*-' bzwi-‘- V‘/t - W-l'-"

l= 21 (K-6)

This expression provides, of course, only an order of
magnitude estimate for the remainder and not its exact_ value,
because of the approximations in the computation procedure.
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Appendix L' - General Evaluation of the Computation Error /112

2D . .
' We will perform an evaluation for the following reference
conditions: pe/pO = 1.4; Re, =3 x 10%; Mo = 23
s
R . - - - -2
Reference dimensions are: Xner = Xg 5 x 10
§ =14 x 10 —um
o]
From this we get:
_Kd 55102 . -5
t’.({‘ v, = 700 .7)(10
,uv d‘ 8x10°% | 152 - e 10°2
/Xuz.’ = =p 1.6 : 10 )
5x20
feves 5x10 > _, 4573 _ 0(10'3)
H v & X¥zf' 5x10 2 -
o.sttess  5x20°C -4 -3 -4
t - = - =5 7x10 = 0(10 +o(1o )
j € et 7%10
| AW ~/mt)
- L RBY o +
Ay PGS ET

The truncation error for the Brailovskaya scheme is
determined through E,= o(at, Ax2, Ay? )

If we take into consideration the influence of the
oscillatory solution tomponent as well (because there is no
significance to the dependence on At in the steady solution),
we shall see that the truncation error (which is of the same
order of magnitude as the reminders of the differential equations)
is Ep = (10-3) - (10-%). The order of magnitude of the variables
themselves, however, is At times larger, in other words
(10=5) -~ (10-7). :

This analysis does not take into account the value of the
double derivatives At, AXx, Ay in the complete formula for trunca-
tion error which, in certain regions, may increase to several
times that amount.

a
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It is also known that near the boundaries, and particularly
in the region where the shock wave enters, the truncation error
is greater since the local deviation between the accurate flow
equations and the difference equations is larger.

As we will see from the results (see Figs. 10 =14 and also
appendix M') an average order of magnitude of 0(10-3) - 0(10-%)
ls obtained for the errors of variables which indicates that the
lastmentioned factors exert significant influence.
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Appendix M' - Evaluation of the Computational Error (Through /113
Comparison of Results Irom Grids of Different Density) '

A comparison of results was made between those from the

regular grid (run 001) and those from the fine grid (run 041),
for the following parameters:

Kg = 0.05m; p./p = 1.5; Re, = 3x10%; MO = 2;
s
Regular grid parameters - Ax = 7.97 x 10‘”; Ay = 4,98 x 10”°
Regular grid parameters - aAx = M.lelO_u; Ay = 2.51 x 10_5

(The exact ratio for the mesh of the grids is 1:1.944 in the
x-direction and 1:1.984 in the y-direction).

The results obtained for two characteristic points (for
which the location comes closest to being alike for both grids)

Location 1in

Type of grid Non-dimensional values the field
(] o4 T M N
Before
Regular grid 0.1377 0.1730 1.0250 19 2
the _ _
. 0.1751 1.0293 _
shock wave | Fine grid 0.1435 (& 36 3

o.1581 %] o0.1751% | 1.0204 %

After
! Regular grid | 0.2004 0.2585 1.1171 55 2
the :
0,1973 0.2522 1.1209 106 3
shock wave .
Fine grid 0.1957% | o0.2522%| 1.1211%

¥Since the points from the regular grid and from the fine
grid shown here do not match up completely, an interpolation was
carried out from the fine grid results to the appropriate points
. in the regular grid.

Let us assume that the computational grid errors relate to
each other as the square of the grid spacings . (and that is
based on a truncation error of the order 0(h2) of the difference
scheme)
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fo - for the regular grid 4.~ §

2
~ AR AV .
f‘F - for the fine grid )tF .f (7‘_)1
From here we get the exact value of the solution /1114
!_f‘z' bte- fe (M-2)
. 3
That way we will find the exact values for the points
examined and any divergence from them in the two grids.
‘Locatlon 1in
Non~-dimensional values ths £49l1d.
Type of grid :
v P Ll M N
Before 0.4518 0.4758 1.0310
' the Regular grid |4V, =.0139 Jaf =.,0028 [aTe =.0064 | 19 2
Fine grid (LU = o 0035 AP,: =,0007 &Te = 0016 38 3
shock wave
After 0.1941 0.2501 1.1220 _
Regular grid [aV.=,0063 |aP. =,0084 |7, =,0049 55 2
~~the . . 5
! Fine grid 4y, =,0016 |&f.=,0021 |aT; =,0012 | 106
" |shock wave ’

the order of 0(10-3) a
smaller by a factor of

It turns out that the errors in the regular grid are on

L.

pproximately (in the fine grid they are
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Appendix N' - Comparison of Errors and Computation Times in
N Various Studies
A table of comparison was prepared, based on various
studies made previously:
gg;;:i:i" Lax-Wendroff M eshod Brailovskaya Method
MacCormack Skoglund, kronzon [94] ) Carter [13:‘Bresent'
[67] Gay [94] : Study.
MC SG _KR_ CA IR
AX/‘!"_, 2 -6 3 — 20 Q7 - 17 3 —.6 2
A‘B/& 115 .2 -7 .07 005 “01 ¢125
ax )/ o 20 - 40 1-2 1 -2 3 -7 16
Gridpointgl 1000 - 2000 2000 -3500 2000 -7000 2000 - 5000 2000
' = = - = =S =3 =
Accuracy || ~ 10 °© ~10° 10 °- 10 ° 10 10 °- 10
v oot Z - -1000 | 1500 -3000 200
1terats )| 9000 —90C0 2000 - 8000 S00
UR, SG, MC - interaction of shock wave enterlng the boundary
layer '
—~
KR - interaction of flow due to a rear step
CA - interaction of flow due to a forward compression corner
NOTES :
a. Ay for method MC relates to a grid that is fine and close to
the boundary layer (while in the coarse, outer grid aAy/so
= 1.5 - 3). '
b. The wide range of change in Ax and Ay, in method SG, stems
from a change in the grid so that its mesh size becomes a
minimum close to the plate center, but increases in both x
and y directions as one moves toward the periphery.
¢c. The accuracy criterion for convergence is not well enough

defined . to apply to the same var
for the various methods,

a qualitative one only.

quires a relatively shorter time for c
order of magnitude) with lower accurac
(but, as will be shown, with no signif

116

iables and in the same way .
so that the comparison must remain

The comparisons do bring out that the method used here re-

onvergence (by a whole
y than in previous studies
icant computation errors).
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Appendix 0' - Formula for Computation of Suction Required

to Prevent Separation

A test was made to find, from the results of runs for
suction under various flow conditions, a connection between the
suction required to prevent separation and the data for the
separated zone.

For that purpose the following parameters are defined (all
non-dimensional):

Area of separated zone (the bubble) y
/’:':\- - wRop
R A N \ Y. 4
' ‘ ﬁ?==@axbé)(bf3’f)'
g— Lh. T .
(for depth of unit) ' (0-1)

Function of the flow at the bubble focus (the most negative value)

[ “
1. ~ioee

Loanss '-“}'f"/' g (0-2)

s ; AR '
when defined as 'VV :‘-‘,'PJI {b‘(}uj - 3L
i

3
[

Suction velocity (required to eliminate the separated zone)

(when suction is normal to the wall

Yors %9!

IL:\-:{:U (0-3)
L\‘Js‘-J:"'

Now we will compute the expression C, which is defined by

'i)u-,'_;g/":;: ( O-I‘l )

4

.C::

for various flow conditions 3
Note even when szyk,g) have dimensions the value of C will
be non-dimensional because the dimensions of its components are

,‘E/&fs.?' - M/* ) [Jz ERWA ; ['!?'] = }w"’/&'»’r_'.

From the computation table (on the following page) it
becomes clear that, generally, the value for C is in the region
C = 0.30 - 0.42 (except in one instance where C = 0.24, 1In
that case Re is exceptionally low and it becomes difficult to
locate the boundaries of the separated region accuractely,
because of the small differences in the velocity component
values).
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Since the cases examined cover a wide range of flow
conditions, it may be assumed that the value expresses a
singular relation between the suction required to prevent
separation and the parameters of the separated region.

To sum it up: the suction required to prevent separation
can be designed by means of this formula:

VurC L& C=03i:P6 (0-5)
COMPUTATION TABLE: /117

Original flow conditions without suction LFuc'l:d.on
. preven
ubble d.imens Mesh dimeng, Parameters :pf.‘f‘:tio

Flow parameters {(accdg.to nr. in the grid | for the bubble
A r Fig.k
Run of meshes) focus )

7 5 -
No, 2xep| LW sp (2220767207 oy [(Plye ] X

102 2,01 1.4 3x105 11.5 3.5 | 8.00} 5.00}-,0011| ,6511{ ~-.023
1.9

[ o af

= ed

Ho S ‘Q'ex‘

103 2.0 v 3:(1"35 12,5 | 4.0 8 OO 5. OO -,0015) ,7221 -.029 ]
) Ol VR S RISt Y FTITERPY 3 o REIER ISR Y Ye! AR Et] SRR ECCI O T LA NI, BF et e (L
.'LIA '1"1046‘ 1' 2.:.0 K 3.15 3)(105 15;0 4 445 8 00 50 OO -00026 09472 -a 035

112 2.0 | 3.15 3x‘05 12.0 5.5 B8.741 5.46]|-.0011! ,4794} -,027

112 | 4.0.] 3.15 3x105 20.5.1 3.5 | 9,541 5,96]-.0005; .3480| .-, 018 |

w12 1 4.0 11,9 1ax10°] 8.5 2.5 | 9.54| 5.96|~.0003]| .3516 -.012
113 ! 4,5 | 3.15 3x10°[10.0 3.5 | 9.92| 6,20{+,0004| ,3123| -.,016

! 122;£_2.Q: 1.4 |s5x10*] 6.0 | 2.5 |11.40 .7.10{-,0011| ,7342|, -,015 |,
123 ; 2.0 | 1.4 |1x10%|12.5 | 3.5 | s.33! z.33 -.001C{ .6463] -.025
124 1 2.0 | 1.4 |sx10%|13.0 | 4.0 | 2.75! 1.72]-,0007] .si22] -.02¢

e Sty .‘.n,,:v s ) o o[ ) c: "(6‘:_) l
o Ul W3 R R
102 6.44x107" - -,023 | 1,69 3.;5 o
103 8.00 .29 -.029 2,08 -
104 17,29 : -,035 2,74 .
I REt! 12. 60 ;3435 -.027 2.29 4.17
| 112 8 35 2.89 -.018 1.44 3.65 -
- [x12 4.83 2.20 -.012 0.85 3.09
|1 o113 e e 2.93 -.016 1.28 3.63 °
122 4,85 2.2 -.015 1.50 204"
123 3.10 1.76 -.026 1.55 2 s "
| 104 0.98 0.99 -,009 1.009 ,
: T A . 3.08

A
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Appendix P - Description of the Computer Program /118

a. Description of the Basic Program

Fig. 4 shows a basic block diagram in which the various
subroutines and their operation in the program are described.
Below we will describe the main program and the subroutines
attached to it.

1) Main Program MAIN

In this program control of the computer run procedure is
exercised through the calling up of various subroutines. In it
there are also definitions for a number of parameters that de-
termine the desired options for computation, the form of the
output and also the possibility for locading or unloading results
into/from the assembler. Details of the parameters are given
in paragraph c.

2) ARVIS - Artificial Viscosity

This subroutine is called up from GRID and its function is
to add terms for artificial viscosity to the expressions in the
difference schemes (in both integration steps). The coefficients
of artificial viscosity, ccx and ccy, are determined by MAIN,.

3) CNBC - Boundary Condition at the Entry Section

This subroutine computes the conditions at the entry section,
which remain fixed in the course of the iterations and which are

only dependent on the flow data Mo, ReX > Xgs P and To. The

S
computation is carried out per the Polhausen method.
4) DATA - Precessing of Flow Data and Grid Preparation

This subroutine calls up flow data like Mo, ReX > Xg5 P,
s
and p /p and also the definitlons of the computational field
dimen§iofs through ratios uiy} %7. An,”ﬂ . From these
data the dimensions of the computation grid are calculated, as
well as the time interval for 1ntegrat10n (based on the crlterlon
for steadiness).

5) DISC - Loading/Unloading of Intermediate Results into/from
Assembler

Through designation of Ny and/or NI for the I/0 units this

subroutine is employed to write and/or call up the appropriate
results from the assembler on the disec.
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6) FLOW - Accompanying Calculations from the Results
Obtained

In this subroutine. the Mach number and the flow function
for the whole field, as well as the friction and heat transfer
coefficients along the plate, are computed from the results of
the computation.

7) GRID - Operation of the Finite Difference Schemes

In this subroutine the two-stage integration for the
Brailovskaya difference scheme with second order finite dif-
ferences is carried out, in which the variables u, v, p, t
are calculated. (The subroutine includes a possibility for
omitting the section along the shock wave in the case of the
non-continuous computation method).

8) INCND - Computation of Initial Conditions

This subroutine computes the initial conditions for all
the variables in the entire field and this is done based on
considerations that were determined for the choice of initial
conditions.

9) OTPT - Printout of Results

Since the printout of the results is a required condition

this subroutine produces results for the variables in the compu-

tational field x, u, v, p,p,t, u, m, Y
(The friction and heat transfer coefficients are printed by the
FLOW subroutine).

10) PP - Pressure Computation

This function computes the pressure from the equation of
state.

11) SHOCK - Computation of the External Boundary Condition
Next to the Shock Wave

This subroutine computes the boundary conditions on both
sides of the shock wave, at the external boundary of the flow,
and also permits calculation of the boundary conditions on
both sides of the shock wave, along its entire length, by means
of the non-continuous method in which the shock wave is removed
from the computational fleld

12) STAB -~ Computation of Steadiness Coefficlents
In this subroutine the steadiness coefficients for each

iteration are computed and they are printed out in tables, ac-
cording to existing printout conditions (see note).
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13) VRBC - Computation of Boundary Conditions (Except
for the Shock Wave)

In this subroutine those boundary conditions are computed
that require updating for each iteration. They are located:
along the plate, in the downstream flow and in the external
boundary (except for downstream of the shock wave)..

14) YY - Computation of Viscosity

This function computes the viscosity from Sutherland's
formula.

Note: Because STAB requires a very large memory and is not
absolutely necessary for each computation, it can be dispensed
with to save a lot of room and computer time (the method is
described in paragraph c).

b. Description of Additlional Optilons

1) The Difference Scheme by MacCormack

The subroutine GRIDM (which exists parallel to GRID)
performes the finite difference computation according to Mac-
Cormack's method. (there is no possibility for the use of
artificial viscosity and, therefore, no way to remove the shock
wave from the computational field as is done in GRID).

2) Difference Computation to the Fourth Order of Accuracy

The subroutine GRID1 (which exists parallel to GRID)
permits computation of the finite differences in the x-direction
below the shock wave to the fourth order of accuracy, in
contrast to the other parts of the field where second order
accuracy prevails.

3) Use of a Grid with Non-Uniform Meshes in the x-Direction

The computation program can also be used for a grid with
non-uniform meshes in the x-direction (which decrease in the
direction towards the center) when Axmin=1.6Ay

in the center of the grid. For that purpoée the following
subroutines exist (parallel to the subroutines of the uniform
grid):

Subroutine DATAX instead of.DATA'to process flow data and /120
grid preparation.

Subroutine GRIDX instead of GRID to compute finite differences
(per Brailovskaya method only).
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Subroutine VRBCX instead of VRBC to compute the boundary
conditions.

In addition to these subroutines there are two more functions
HH and HL, by means of which the location and size of the
meshes in the x-direction are determined.

Note: The two functions HH and HL must be included in the
program for the use of a uniform grid as well, since there are
subroutines common to both types of grids (like CNBC, SHOCK
and others) that require the use of those functions.

¢. Operation of the Program

1) Control Card

A batch type run of the program includes the following
control cards:

// JOB ...
// EXEC
// FORT.SYSIN DD x
MAIN program cards
/X
data cards
//
Parameters of the JOB -card:

Memory: ywithout the use of STAB (250-350) K
with the use of STAB (500-700) K

Time for 200 iterations - without the use of STAB (200-300)'sec
with the use of STAB (400-500) sec

Lines of print for 200 iterations including the printing of the
initial conditions -

without the use of STAB about 1700 lines

with the use of STAB about 2300 lines
(the ranges for change in the parameters are for the use of
various options).

For that reason it is recommended to use the following
values with the JOB-card:

without the use of STAB - T60, L02, R350

with the use of STAB -~ T85, L0O3, R700
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2) Preparation of MAIN for a Run

~
}_l
no
}_J

]

There are a number of indices in the MAIN program that ,
control the procedure of the run and they must be defined
before each run, in accordance with the requirements:

NI - Use of a data assembler as initial condition:

NI = 1 without use of assembler initial conditions are
computed with INCND.

NI # 1 initial conditions are read from assembler
(whose logic number is identical to NI).

NO - Use of data assembler to store output results:
NO = 1 without use of assembler to conserve output
NO # 1 results of the final iteration IMAX are loaded
into the assembler (whose logic number is iden-
ti¢al to NO); the condition NO # NI must also
exist.

JAV - Use of artificial viscosity:

JAV 0 without use of artificial viscosity

JAV

1 with use of artificial viscosity

CCX
~ Coefficients of artifical viscosity (generally in
CCcY the range 0.01 - 0.1)

MODE - Use of continuous and non-continuous computation of
the shock wave path:

MODE = 1 continuous computation (regular computation
method)
MODE = 2 non-continuous. computation (does not produce

good results at this time).
KPRT - Use of uﬁiform and non-uniform grid:
KPRT = 0 uniform grid
KPRT = 1 non-uniform grid

Q - Ratio of adjacent mesh lengths in a non-uniform grid
(generally recommended Q = 1.1)
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IPRO - Possibility for printout of initial condition:

IPRO

0 without printout of 1nitial condition

IPRO

1l with printout of initial condition
I - Number of the first iteration in the run:

I = 0 when the run starts with initial conditions
calculated through INCND

I > 0 when the run starts with previous conditions
called up from the assembler

NC - Approximate boundary of the sonic line:

This index indicates the value of the n-th point in the
y-direction, in which the approximated sonic line exists (for
computations of the non-continuous method)

SSH - Initial value for the pressure ratio on both sides
of the incident wave (this value is to a first approximation equal
to the root of the overall pressure ratio between the downstream
and upstream flow).

Note: For the baslic computation method it is required that
KPRT = 0, MODE = 1, JAV = 1. Additional parameters that are
not in use during this stage are introduced as fixed values
into all runs. They are:

SK =1, J =20, ISP = 0, INCD = 2, IGRD = 1, NC1 = 2
3) Preparation of Additional Data for DATA (or DATAX) /122

In accordance with the 1nput format the following data
must be inputted:

Pirst card -

EMO - Mach number of the external flow

RE - Reynolds number at the intersection of the continuing
shock wave with the plate

PR - Prandtl number

TPS - Initial value for the overall pressure ratio between
downstream and upstream flow

XSH - Distance, of the point of intersection between the

continuing shock wave and the plate, from the leading
edge
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SY - Constant of the Sutherland equation (SY = 110°¢)

ALT - Reference altitude (M'), used actually only to
obtain the external temperature (in 1ts dimensional
value in C), which 1s required for the viscosity
formula. (Generally ALT = 0 is used).

Second card -

G - The constant y = 1.4

Gl - Ratio between the field length and the boundary layer
thickness at entry section '
G2 - Ratio between the field width and the boundary layer

thickness at entry section

Z1l - Ratio between the grid mesh length and the boundary
layer thickness at entry section

722 - Ratio between the field width and the boundary layer
thickness at entry section

EC Criterion for convergence (for the moment an exag-
geterated value of EC = 1 x 10-20 is introduced so that the
program should stop before reaching IMAX)

SD - Criterion for divergence (for the moment an exaggerated
value of SD = 1 x 1020 is introduced; usually, when there is a
tendency for divergence the program will stop at a much earlier
stage when negative values for temperatures are obtained, which
causes calculation of the root of a negative expression in the
viscosity formula, so conditions for termination of the run and
printout of the results are inputted into GRID when the tempera-
ture has a minus sign).

Third card -

IMAX - The maximum number of required iterations (generally
no more than 200, so as to avoid overly long runs; when a larger
number of 1terations is required it is recommended to divide
the run into stages, with the results of each stage loaded into
the aisembler and serving as initial conditions for the next
stage).

KPR - The number of iterations between printouts (recom-
mended 1s KPR < 100).
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4) General Notes
a) Before the run it should be verified that the ratios
61/7Z1 and 62/Z2 (whose integral value is the number of grid-
points in the x and y directions, respectively) match the size
of the defined dimensions in COMMON and in DIMENSION.
b) From experience it is known that the initial value
of the pressure ratio between the downstream and the upstream
flow, TPS, must be very little smaller (about 2-5%) than the
required final value.
¢c) When the operation of subrouting STAB must be pre- /123
vented (for reasons of saving space and computer time) a
fictitious subroutine called STAB must be introduced together
with MAIN, which will be designated:
SUBROUTINE STAB
COMMON/B/
IDIV = 0
ICONV = 0
RETURN
END

This subroutine (which will eliminate the original STAB)
will generate the values ICONV, IDIV, which will prevent the
needless stopping of the program.

In place of this operation the callup CALL STAB can also
be eliminated in MAIN and in its place to define IDIV = 0 and
ICONV = 0. As far as the computation is concerned there is
nearly no difference between those two alternatives.

d) To run the non-uniform grid (instead of the uniform
grid) the following cards in MAIN must be changed:

CALL DATAX instead of CALL DATA
CALL GRID instead of CALL GRID
CALL VRBCX instead of CALL VRBC
e) To use fourth order differences below the shock wave

(instead of second order differences) the following card in
MAIN must be changed:
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CALL GRID! instead of CALL GRID

f) To use the MacCormack scheme instead of the
Brailovskaya scheme, the following card must be changed in MAIN:

CALL GRIDM instead of CALL GRID

Also, at the end of the subroutine DATA the command DT = DTY
must be introduced.
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7~ D) List of general FORTRAN symbols
» Location in the subroutines , -
Name of f % Explanation S Pd LV Y B I ;;L,fi_' Yl #lasf 0] &
Variable| Z EISI2IRIE N ol i F 0L |8 S el
.:n). _.;q_:Ze;au-:.-‘;2032;‘.,-:-‘:#-¢.;:P~.~:.~5.>_'::2f
Q X< uf Qi ol O] &) S| Sj=jviian) s 3T =)
A Aux. va.lue in_subroutine DATAX | ix

i AA " CNBC . x: |

LABL(MFN) " " GRID(M) X
g 2 {II I‘IL (1) " " " ) X l

. I\R-‘(” I\I\ " " " " ] “K-"' '

B_ﬁg " " " " . x

: I_AB Aux. value in subroutipne ARVIS x :

' ABU2 " " " " ® { !
ABV‘I " " " " R N ‘
ABV2 1} " " " )4 |}
ADP Desisnated value of DP X
ADT ”"” L1 L1} ‘{I y
ADU " " " DH X

" ALT Level(M')for calc, of ref, temp, Xy

'AM Mach number at external bouzdary XX

AQ F - !

DI Designated value of RES1 : Yy '

hv " " 11} RESZ )‘I !

ARS 3 " " " RES3 X H

| ARSL . " " " RES4 X !

" VIS IName of subrout, for art, viscosl’ !¥ Xl lxx :
AQ Dimensional sonic vel, (Ref,) xin
AT (M N Aux value in_subroutine GRID(M) *

A2(M,N) 0 . " . x !
Aj (M . N) " " " " " b4 .
AALM;N) " " " " " X

B p 1] ”" " " T)ATAX x

BB " " " " CNRC b 4 '
8387 (M NT " " " " nR_TD(M\ o 3
dbd( ,d) " " " " w X i
b'B) (M N) " " " " " b i i
ﬂﬂl}(}mf) " " " " . " » f i
53] Carner of characteristic xix X
B1{M,N) Aux, yalue in subroutine ¢ RIT){M) X

BZZMJN) " " " " 1) ) X

Bs(MiN) " " " " " b

_BL(}1,N) " [1] ” " " )L
CCX G lArt,viscos, coeff, in x-directiml ¥Ix

F-CCY G " " " " - " wiX ' :
CK hux. value in subroutine DATA. %[ '
CK1 " " " " n ;(' H
CK2 " " " " el W |
CNEC . faop Y_CrOsamsec A ¥ ’

) ] Aux, value for subroutine TNCND' 4 !
no " " SHOCK, INCND EE i
DATA pubrout., for use of field&grid 13! 3 ! | l

TVITRY As above,for nonuniform grdddata ! EY P | i !

i_WDX Aux, value in subroutine DATAX I S | Ll

I "DELC Dimens Jwidth of at enty Xi¥ J i

1. DIre Bubroutine for data incr,/decreashs! i I | | f R LI

IRKICIRS Coeff. for pressure change IR . | BEEREREEN
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! | > Location in the Subroutiﬁnes
N . ~{=lAl"D
/\I\ame of 2 Explanation Wl A J:’j 2 ;' Ar, “ ol = F
Variable |3 Q;;‘Tff,:rb:sz}::::g‘ 3[EIE] Sl | =1
S ’ | & 62| 8| 22| §1 6 5 3] 5| 2|5 5| 51¥ | 5
DPMX Max. coeff, of pressure chapre % |
DI ux, value in subroutine IN(“ID » A
_})T A ITime step A v | Al x X Xl x % l
iTsX Max, value of time step per GFL i j . |4IR
DTMX Max,coeff. of temperature chanee' X !
o158 Aux, value ip subroutine INCND P i
_DIS,[ " " " [1] ” i 'l f
DTy AlfTime step in x-direct,per scheme Bl K X
.q: A] " " " v " " " § rand ¥
_DUGLLN) Velocity change coeff, x
Us Aux, value in subroutine INCND X !
_DIMY Max,coeff, of velocity chanse X
DVSH Aux, value in subroutine INCND 3
D!JS " " " (1] " i X
DX ! .
DXS Aux, value in subroutine DATA | XiX e
=C Convergence criterion | x| x
SEMM, ) ¢ {Mach number X X
_EMA Mach 1 e : ¥ 5
A_BMAY(X) Mach number at sonic line : ¥
VoOZMS Aux, value in subroutine INGND X i
EMO A _[Ref, Mach nugber at entry cross-beb I%X|X|X X i 1
M1 Mach number at sopic line x| - (L
| M2 " " " I " a1 4 | -
pi Transform., of v in praofife % !
BLOY Subroutine for comp, from resultsX X IR
r]ﬂx.l') hux, value in subroutine GRID(}M) X '
" T} " " I“ICND x M
FB(M. " " " " GRID(M ol Rl '
?%(:mm " " " " " X -
!, (L'L 7."‘) " " " " " T b 4 :.
Al Constant X sl [u[alni{x{xjv] [x vix .
G'?IDO‘) Bubroutine for fin, differ, Br. ¥ X it
GRIDYM) " Mc, |X X [
GRIDA(D) Like GRID(B Jfor nonuniform grid |~ ¥
GRAID1(E) " for 4th order differ.X X
Qd The ratio MA[3e wlx l =
& 7 MAgo x[% ' :
| () Funct, of nonuniform grid cell 1pni=’t vi_ X MY Xt
q€ym Aux, value in subroutine INCND | . » .
uyo PiMin, value of HH (‘M\f ! ¥ Xt
HL(G) Func, of cell length in nonunif)srid : A
K REAL value of 1l i x| —
nl\JL " " NE . r [ !l li :
o " "W NN | {wly] f 1
HI.-'S hux, value in subroutine DATA ! x| ' 1—"
50 Ratio betw. lengths of adj. cells % il
v o Aux, value in subrovutine INCND ! 1! ' N
l_."!.;:”? L1} " " " " e ' ‘. i - )l L ; i I_;
7 l ! ! - | ! P Pl
[ |_ |Distance of grid in x-direction Xt (01AL Tseisiaixafat | 1§ [ xix1 .
o Al " m nw g T Taej i b sl xiafasi 0 1 | ] x;vf o
L___r 71 i Number of iterations S 0 Wi bl ix el BV v X
A | Aux. index for intesr, githe. ol 51 1 1 [ 1 Tl Jeiei 7 {1 & 3 gt
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Paint of shock wava 1np-:n _On_.,f__{:nlfl

N Location 1in the subroutines
~e of a2 - . P e LR Y
 iable ;,', Explanation v ‘9" J . fr/'-.jllc_ﬁl p N .“! - \)l 1()
: X :'3 ISR E ok e l -d 1 A e 4=
e il o o G [ie g tlw S| S YE S
3 1‘3:10“‘?0\!4‘5\'%1‘5“0“‘1\4’*&“"'1
TCV ux, index in subroutine STAR ~ ] )
ICONV B1fIndex for convergence criterion X! I ;
N 1 " divergence " X Z.
| _IGRD Not used(For comh, of CGRIDAGRIOAN ' ! !
IMAX Bl Max.number of itetarions i AR !
IN teration counter f print condi ! 1 ~
INCD S WMux., index for suhrontine INCND_'L1 ¥ ®
INCND Subroutine f. comp.of init, cond 1 H _ 7
IPRIN']L B ux, jndex £ p‘(‘“n‘f‘ing of racnl—“ ~ X
TPRO S Wux,index £, orint. init. conditl¥y
iSP S_Not used: {for init. numbers) ¥
i T..of iter. in wx-dip.Tor-GRID(M) 5
J Blhux, index for suhrautine SHOCK: .+ X ad
JAV Bij » " " " ARV TS 1% o Al "
K_ General index : X :
KT Reference DTX/DTY : Lik-q X
KKX Aux., index for subroutine STAR d
KPR piiir. of iterations betw, printoutk. ¥ix Ll ¥ »
“RPRT pilindex for desien, of grid type |¥ = x
'_‘KX ’ Aux, index for subroutine STAR X
L General index X Al_in(x
ibI{ Auxiliary index % '
) .0C M.Qf_nhange_coeff_;ﬁv_ma.x_ps ., od -
_-I 'R‘! " - p'—\q1 Bs%’ X
l tIRa -n . " ”" " " " " R q? x
LMR3 " "on ”" " " vopRg b 4
LMRL‘. " " " " " wonop 7, »”
E}IT " ”" " " " " " ,-h x
LMU " " " " " " " VelQLi b4
LNP Loc, N of cha.nf’e coeff.f, max.prbss fa
LNR1 oo AL ; 15 a
. LNR? " " " " " " 'LRES? £
LNB:‘S‘ " " " " " " Hazinete] n
TINP[L " " " " " " Qainain 3
LNT " " " " " " L g X3
LNU " ' b " " " Byel : S o
_L1 Aux. indey X1 |8
1.1 A Length of £ield in x-directian AR RS
1.5 A " " " "o, M " ®Ix
M S Qurrent index in grid x-directs RI_JAIRDSI Iwiviwisxing IxixiXixl Jelw
MAIN ame of main prnrcr;am X : { i
MI uxiliary index A A3
MK nx. indey in subrouting SHOCK pit
MIKC 1 " " " " " <
ML Y_'L.l"n'r'lz index 3 Ry
MM B umber of grid .points in x-direct v &L e] el sle x5 i3] ww I
LMMM Aux, index in subrontine SHOCK X P
MMX - i i
NN B | Aux, index =}M=1 NRABRRERREE ui X '
N2 "o =MD | REI i
ANC) Aux, index f, ext.bound. conditihn . 1 REAEY '
MOD 121 lndex f. choice of comput. method IREINCIEIE a1 |
M) 2 Tpit, Jac, of chack wave in fiela )iednd axd Il P4 j
s i L T T | , IR |
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Location in the sup‘:c%outlnes
sl
fame of 3 ‘ . | dm‘{l {SI iz %~( wl 1 fxp :
Jariable | ¥ Zxplanation ‘—';ca*&«}'ﬁﬂg.‘eéi,_g,cc;’.;’,,.»,--
- i ‘SN‘SQQHJ?SQMU?‘-Q.' t“""‘&:g'l'”
O ; Iit qlalgju Of Sl g o v >| >
MSH] B =MSH=-1 2% - x ]
MSK11 B =MSH+1 Xl x X b3 |
1SH111 =MST+5 ! 2 !
MSM Aux, 1ndex In stbrotutine INTHD 7
Mq_rl " [1) " " 'A
MST =MSH~1 X
MS2 =MSM+1 b
_MT RIAL Value of FB(M) ~—~ %
-MT1 Aux, index in subroutine INCND paa
lﬂTa " " " " " " x
CA)) Auxiliary index X Mx
- MTIO Reference viscosity (dimensional X, % :
e Auxilary value in subroutine x| x X
M7
71 Aux, index in subroutipe THCND X
-‘”Z] l: " " " " x
MZ? " [1] " " L1} ‘
.M?L?? ”" " " " " x
M1 B {Half of gridepoints in x-direct XX x
M1 Aux, index in subroutine INCND X i
M22 " " " " " X1
N B [ Current index in v-dir. of eridl 1 X{X{xi x| x]xi xiafxistixl Xiafx{x{iv
(¥ 1 Loc, of sopic line in v-directiop® % Xinix >
_NC1_- - Index not in use
NE Aux, index jn subroutine CHARC X
NT Rz Fumber of logic units of inpmuted¥ RIY v R w|¥
—NT ux, mdex in .subroutine GRIDLM) %
NK . " o NEC x
L " " " " GRID( M) ¥
~“NO B3 Nr oflogic units of output colll X %
NN B INr, of grid-points in y-directién RIA (I RIL el Xl XX | xirlx
NNC Aux, index in subr,INEND,=NC-1 x
NNCC " (1] " . x
NN Bl =N-1 wix!xt x| xlwlslvly x{ ixiw
11 huxiliary index ' 2 i ) I
\>'d Aux.jndex in subrontine DATA [ AR |
N1 Half of #rid-points in v-directiorn XX
_ bornexr _of flow direct. at ext.holindanry “"‘ :
0))]
.OTDPT Subroutine for printing pesultsl™ ba Rix|gix| Xt x :
(M.N) | ¢|Pressure * x| {xlx]xlxdwel s efx]xix] | ¢
PA Pressure upstream of shaock wave . X :
—RR(M N) Eressure after first integration Xja] vl x 3
PE Init, pressure dowmstr  of shock idads h X |
PM REAT, valne aof : R ‘
PM1 ] Aux., valne in _subroutine TNCD : e !
PN BEAL _value of N b 1 ;
PNN " " " NI . A I | I Yo
PO Function of pressure computatiod | RIX[ amiZ] NIA] TR |
__PR AlPrandtl number . f |32 M Tathse R
SH “|Aux, value ip subroutine THCHD ! i i ! X i
' _PSt o " " wo 11 l = RS
| ReT(M ) ¢ IFlow function A ;_F‘ Pl 1) L S
0 [Reference pressure (dimensionall | i 1i7(7f | I I I
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Location in the subroutines
Name of 2 . l ol | ==zl=T |
‘,{ariable ;:. Expla.nah{on 3 ;?. 3 o t* 3, S 1; ? :,;;-}c C § - ,}’,Ej
- ’ o < op T -\ CHIFV B o ~d - Ly SO =t s -
3 NEEEERENR R ERHEEEEEEEER
PO(M,N) | IPressure in iteration I-2 A
P1(M.N) . " " " I-1 ! &
, Q Filensth ratio beiw. adjact, mesheg|® X £ X! fulx
ol Heat transfer along the plate |
W0 Ref, va._]_._qe_fbr_Msfer(notl bd
< |_qua Heat transfer alongthe plate bl |
“1RM.N) __(Cloensity RANEBHREFRRARRBRERAAE
RE eynolds number 2 wixivly : :
REST(M,N Remainder of continuity equatibn N
RES1X Max " " " b X
:RES2(M N " " _momentum equ, X
nrsex Max " " " " ' A
RESS-(M ,.N " " " " H ' 3 j
-IQE_ST}{* : Max " s " " ! el
RESLF(MLN 1t " _energy equatioy o
RESI-LX liay " " " " 3¢
_RR “{Dummy __parameter in fupction PP »
RO ‘ Dimensional reference density ol B
_RO (u) Density in_Jteration I-2 : K
RiR! (M N) . " " " I-1 1 X :
SD Al Diversence criteriaon. . ~p x
SH . ’ |
_SHA_ Aux, valne in subroutine SHOCK % l:
3—SHAN AlEntr, corner of ext. shock wave [N x| X
EAN1 Flow refl  comer under init, con E g :
= | _SHOCK |Subp,- for comp.. of sshock w, bound¥ > E
© oK S Not in use cond, | X H
SM1 Aux., value in subroutine TNCND X i
. SMZ . " " " " " 3¢ '
SP Number of srid-points ~ - ' X .
SSH Init, walne of wavepath pmedg.raflX LR A ¥ !
STAB Suhrontine for comp. of stahcaefX X i
D [-2TE [Aux, value of subroutine SHOCK R L
—» |STX1 Vig, for der, of x in contin, equ, 1¥|.
STX2 " """ “momepntumx" X I
’smxa ' " " " on " " " X% 1
STV " " " " on "PnPI‘Ej[ " % )
STY1 . " "y " contin. eqf, 'X :
- STY2 i " " " v "momentum x" X !
STY3 " " " "wonoon " Tl ¥
Q}\‘!' STYL " " hd Y _energy iy ® I :
| _SUMYCINY {8ema inders., —..continuity equatio ® [
TolsuMa (TN 1T " __momentum x " X I
SUMACENY | v & N < -
SUML(IN) vou " enersy " ) '»!
SY. A_|SUTHERTAND's viscosity constant al =
S Aux, value in subroutine INCND. ®I |
oo " e w " x| g
KGN Visc, term in momentum x equation NI i |
—~321 Aux. expr., for visc, in momentum!x leqhi, PN EES ; I i
N _;22 " " " " " e e l o RePA l 'r l
S23 " " " " " L B T rel ol P |
Son " " " " " " " EIHEEINR ! [
— D Vise, term in momentum._y. eqna.timgT HEREEEEER | I
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Location in the subroutines _
Yame of 2 : : IR SlElale { 3 J
}a.\riable ;“é Explanation §§§t§§3§§z§§§t 33—};3‘ 1,
|3 ‘ 24505 10| 88955 5 2 A E E951A2
[ 531 JAux, expr.for visc, in moment,y équ AR ELE:
i S32 ! ! ! N ! v x mIX
S%3% " " . " " W h i el «
S3L " " " " " " " r L |y
Su(M,N) Visc. term in energy equation i i 3l
S4L1 Aux, expr,for visc,in enersyv equ,! L3 31X
"3, T T " W v w| Tx]%
%3 T o n n_w v x| Ix|%
st{_]_* " " ) " " " " ' 9 x| %
545 D R xj | X[ %
546 X I R ol | x[=
SL7 " KD " v v % el
SLLS " " " " " " T | 8 X
Su9 v "o " " » * ad I
SLA " N : X1 ] x|
T(M,N) Cl Tenp. < A EANARIRSRIR SRS
TA Temp. upstrean 4 -
TAUW . ‘riction strength along the plate .
i TAUEO ef ., value for frictign(not used) LR .
TAUW1 rictiop strength along the piatd : .3
TB(M.N) Temp, after the first intesration 11X
TR . Init, temp, downstream of shock wl
TPS Init, press.ratio betw, field endk R|£ Z
TREF Ref ,time for comp. of time step XI5 : :
NUSE : Dumny parameter in function PP X
T.. L) Temperature as function aof 574 LY
TV Plate temp, at entry cross-sectioh )
0 Dimensional ref, temperature L R
0 Ref, temp, at entry cross-section X
TOO " " " " " "7 OO=T () b4 A
L0ULN) | Temperature in iteration T1-2
_T1T(MLEN) " " " T_1 ]
U(M, ) Velocity in x-direction I el x| xlxixixlx) |7 -
UA . Velocity x upstream of shock wave X !
UB(M.N) Velocity x after first integratiq ' 2iLiylY !
UU (L) Velocity x as function of ETA X !
UO(M,N) | IWelocity x in iteration I-2 !
_"’ (LM’ " " " (1] I—l f
UE Init, velocity x downstrean of u X '
_V(M.N) Velocity in x-direction X xRl i IX) | %
VA Telocity y upstream of shock wave X
VR(M N Velocity y after first integratioh X % 1xix
ye Init, velocity y downstream of walke L
VN1 Aux, value in.subroutipne TINCND X
VN2 " " " ! z L.
VRRC Subroutine for comp, of boupnd.conld”
_VRBCX As above,for non-uniform grid N
VT (M. N) Coeff, of temperature change :
VT Aux., value in subroutine INCND h
VT2 ! " " " " . Xl
|y Aux, value in subroutine SHOCK I I
V. " . n z
vyt " " " " " ; -+ !
S A N S ] e




134

- 180 - l
Mame  of z ! Location 1r} the stroutines :
* o . . !_. e ".; R - :
iable E Explanation ~ _\'f_ .\‘c'g,.‘: '\'3_;.:3;4::?]-,'-,_,;; o] :."l,\_. _,l ,\l ;
r)l.a.r\ . i 3 WAl S vhiagul g -4 ot R L = o e;lci . .
‘ \8 Y et ":l B R T T i I E R Dt g FrL
’ ! L U i D R b BV Y R B AR A P
volli, ) Ve Iocit "i"n‘ “iteration I- T :
TN . ratlon 2-2 ’ 5 s ;
"]/ 33;: AuxL value inp subroutine SHOCK X . '
[Y &1 " " " wo . 1 I T
Ve m m " " - . —t— :
V_)nl‘ . K1 " " " " : : I ' = i l
ve —~ v 4 ’r ‘
UBLV(ML I V] € after the first interration . 1 ] AR [
VE2M NI ¥, v o " | RRNRE
wRIM I VIS v e e " | INE wielalnl :
"IDIL(M T'\ i U crlg,*-k(ﬂ-*.v‘kn " " " ! N4 ,!'_! [ 4 & £ L :
"i.‘-,(fﬁ‘:'fi Y ;L - —aecard ) I % i) X i
'..1-‘ ‘. ':‘ u) " " " " ;( .i‘ iz I .
Wcs (:,! . N ) g v " " " " g _(rz 714 - I
UL (M, N) | VSApthiav) v v " ¥ ] iR :
ZL Aux, value in subroutine VRBC , : : - Wisei :
[ vT1.1 " " " " " y. M :
Rk :
Y':::::l: " : " " " " : 1 x Xi ] '
v . " : . " 11 " " 1 x x 1';
CTREF Ref  length  XBFEF=XSH l X1 !
gech! oc, of imping, of cont. shock w.! %I Ix :
‘\Xg ux, v, in subr, VRBG _ /on plate t i ! FAFH 1.
L " " " " " ‘ 1 Nxz [ o A
‘ XZ ux, valuye dn _subroutine YRRCX 4 ] ! x4 i
TY(M NY -jClViscosity X4 W s 0 X T adw] TR [l x :
_}”:\(M N) Visc, after the first integration J Poaxt by | | !
o t e Aux. value in subroutine DATA R K ] :
L_Y'I‘ _ e " " " " " o, x Y 1, :
i vy y isc, on plate at entry cross-sec 2l ] © :
j 11 Function of viscosity comnutatiogi L X Poax IR e s i ITxixiX
Y0 ‘ Ref, viscosity at entry cross-seci ! il i i ! \
XEJL‘ " " " " - HYOO_—_XO ».:’i& } } :
A REAL value of NN i1 Ix i
. :‘:Z‘\”-i " " " MM ‘ . )L! t l :;
: _._Z_Y(L) ux. value in suhrantine CNRO Y 1 i : N | i
A Ratio L.a/§o 1L i 1 ]
22 Ratio  L2[%e » i ; H
XM hux, valye in subroutine DATA XjA i
KN\ " " " " % b4 '
KNIIM) Aux, value in subroutine VERG 1 x| % ;-
i
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TABLES OF COMPUTER RUNS

~
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(WS
0O

TABLE 1A.° CHECK OF COMPUTATION METHOD

Flow conditions for all runs: pe/pO = 1.4 ReXS = 3-105;

Mo = 2.0 o
|Pun Yo, [ovatlcsyn [1een ] yay Jkoer Juose]  Motes -
001 200 | O | 1 (0] 0 1 Reference Run
co3 fl2o0 0 {2 o0 [0 |1
005 350 o) ra i o) 1l Artificial viscosity only for the
l fi+~=+ 150 jterations
006 200 { O 1 0 1 1
007 200 (o] 1: 0 0 2 |Component downstream of the shock
wave's whole lensth ,computed by )
008 200 [ 0 T2 [0 [0 [ 2 [average approximation sapme as abdve
009 200 | O 1 0 1 2 |lsolation after 150 iterations
fs=s==s=s xlEs=== :====:f====:===== e T R e . ‘
021 400 | 1 1 o] 0 1 !
022 4C0 | 1 1 0 1
s ATIERS=S=SERS== L====:===== 22— -2t gl =t-=._— _:_ —_— T ==
Computation is carried out with
031 400 1 1 L 0 0 1 %ogb%e aﬁcugacy (13 digits instead of
- 1711sS
041 .600 i ‘ 1 0 0 1 Computation carried out with fine grid
147x48 (1nstead of the rezniar 74x25l)
a
C51 £00 1 1 © ° 1 computation is carried out by intezration
CECEEEr e S S SR R S S S S S N R S S S S R R S T ST o e e —— . e —— — — —— a— .
s = 1 continuous computation
Notation: MODE 2 noncontinuous computation of the shock

KPRT

JAV

IGRD

ISTB ~

IMAX

= O

wave path

uniform grid
nonuniform grid in x direction

without artificial viscosity
with artificial viscosity

the entire field with second order differences
part of the field below the shock wave with
fourth order differences

without computations of stability
with computations of stability

maximum number of iterations for the run
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TABLE 1B. CHECK OF INFLUENCE OF ARTIFICTAL VISCOSITY

' a

L 3_11;'“_ o=zl === 9—C=-——:.==§=C=i_=1t===?=%='.{=s==_ :;/====_==y=;:= |
o081 .05 .01 3x10° . (1.4 | 2
082 .10 .OL 3x10° (1.4 | 2
083 .10 .05 3x10° [1.4 | 2

¥ 2 ¥ -5 331 %3 It 2 3 3ttt 3t 1t Xttt ittt 33 ‘

B 6

091 .10 .01 1x10° {1.4 | 2
092 .10 .01 sx10® [1.4 | 2
093 .10 .01 3x10° |3.15 | 4

=======E= ===;=============l=========== :=====-===."=='=:l

Note: The first 150 iterations in this series of runs were
performed with artificial viscosity, the following 200 without it.
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a TABLE 2. CHECK OF DEPENDENCE OF RESULTS ON PERIMETERS /141
(A1l runs were performed according to the basic method
-of run 001, up to 200 iterations)

fRun 10, L P- x-"-m‘___:gi.‘:,z_‘s__ velip,| Mo __:_'___Z_I_olt_e§____________._ _________

R % be = ——

These results are used for
, comparison with previous
analytical and experimenta

5
5

105 |.72 | .05 | 3x20° 1.9 |[2.0 || Tesults .
5

104 72 .05 3x10 3.15 |2.0

105 72 .CS 3x10~ 3.7 2.0 [ No solution available for the
boundary conditions of the chara-
cteristics since a subsonic resgiop

s===s=sss|fsssssbessssbassssssssbs. . ssbosa=d.18.d0wsinean of the shock wave __
111 fj.72 | .05 | 3x10° |3.:is |3.0 .
122 [l.72 | .05 | 3x10° [3.15 l4.0
113 |l.72 | .05 | 3x10° [3.15 [4.5
114 .72 .05 3x105 3.15 | 5.0 || The solution is isolated after
& , 150 iterations
121 .22 | 05| 1xt0* |1.4 |2.0 |
122 [l.72 | W05 | sxw0® [1.4 2.0
123 72 | o5 | 1x0® (1.4 |2.0 |
- .

124 «72 +05 5x10 1.4 2.0 |l From a practical point of view
the flow 1s already turbulent and

the results therefore questionable

mrmmm=== T I I P I L i I I I rie s = = = ===

131, |72 | .03 |1.8x10° [1.4 2.0
132 72 | o7 |4.2x10° 1.2 |2.0
133 |l.72 | .09 |s.ax10° l1.4 2.0 N '
VSRR | VSRR SRR USRI U SUUI | S
141 ffz.c | o5 | 3x10° [1.4 |2.0
U | SRS ANV SRR NS U | R

¥Run 102 is similar to 001.
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TABLE 3. INFLUENCE OF BOUNDARY CONDITIONS (THERMAIL CONDUCTIVITY /142
AND MASS TRANSFER BY THE PLATE) ON THE FIELD OF FLOW
"(Al11 runs were performed according to the basic method
of run 001, up to 200 iterations). Flow conditions
for all runs: p_ /p, = 1.4; Rex = 3.105; M, = 2.0.

Run No., Suction regio to stard Yoo _Q,'Tvi ” Notes i

Znd Besinnine }
Dist,|5Tid Pt.pist, [Grid pt.| ‘Ja U _

srzanzazszad Mk Ecssauuibtd Vit sone=zaguvds=nzsnhasnanzll ;oaazaazeassas s smmaer :

201 0,4 '

. Check of influence of

=02 0.6 heating or cooling of

- a plate surface on the

R03 , o 0.8 |l interaction

204 1.0 '

208 ' 1.2

106 1.4

ER AN ARSI L S IULNIRIBI LI AFICZ2TISAIRAZIXIUBAANINRNIBWIRI[N JI=S2IIFL2ISEBIRSRL IL.ITUX

211 6.8 GO 3.2 15 -0,03
: Check of influence of

Qie 6.6 0 3.2 15 |-0.02 suction or injection at
“(E;:'r) the plate surface on
213 C.3 60 | 3.2 15 |[-0,01 | 2% Il the interaction

[
214 | 68| o | s.2] 15 | o.on| ¢ |

215 c.8f{ .cO 3.2 15 0.02

Fanuuna:‘-u 2 BT LT RARRYPUAIRIN AN PUINARITIRISITANE R RS LA I RTEETIID

221 6.0 €0 2,6 8 |«0.03
222 6.8 €0 2.0 8 |-0,02
Check of influence of
208 G.8 co 2.6 8 |-0.01 location for start of
suction on the size i
a4 6.9 60 3.8 29 ~0.03 of the separated region
N i
225 | 6.8 6o | 3.8| =22 |-0.00 BT

"
226 | 6.0] co | z.8| =22 [-0.01

227 6.3 €0 4.4 20 -0.03

’ <20 6.8 GO 4.4 30 }|~0.02

220 G.g8 co 4.9 20 |-0.02 b

VARNKEADNLRBILEUT I AN I RN I AT VU TSI LNEN U TSI RILCVDRRURL LI X S ERL Tl ERUSTUT L

TLA



TABLE 4. INFLUENCE OF LENGTH AND LOCATION OF SUCTION ZONE ON THE /143
SEPARATION

(A1l runs were performed according to the basic compu-
tation method of run 001, up to 200 iterations). Flow
conditions for all runs: Rey = 3.105; P./P, = 1.4,

M, = 2.0. (The length of the separated region without

Suction, under these conditions, is in the range of
35 < m < 45 grid points on the plate surface.)

Aun Ho. %ugﬁ&on Rezion w. ref, to g?gl%tart“

o oeaooliDistanee |Orid FolntDisinee [T oI
252 4.0 25 3.2 15
252 4.8 35 | 3.2 15
253 5.6 45 3.2 15
254 6.4 55 3.2 15
255 4,8 35 4.0 25

| 256 5.2 40 4,0 25
257 || 5.6 45 4,0 25
258 6.0 50 4.0 25
259 4.8 35 4.4 30
260 5.2 40 4.4 30
261 5.6 45 4.4 30 1
262 6.0 50 4.4 30 |
263 5.2 40 4.8 35
264 5.6 45 4.8 35
265 6.0 50 4.8 35 ?
266 5.6 45 5.2 40

| 267 6.0 50 5.2 40

setizmzzscz=slzcz=zs====4

1y7



TABLE 5A. INFLUENCE OF SUCTION ON THE SEPARATION UNDER VARIOUS /144
. FLOW CONDITIONS
(A1l runs were performed according to the basic compu-
tation method of run 001, for 200 iterations.) A
region of suction is present in the range of 15 < m <
< 60 grid points on the plate surface for all runs.

‘R-‘%'n—i\‘l‘?‘: ----- ‘5_-;-, --"—Lé:"j—— —R—e-fi ————— l:“ ~== -—Ff—/fg— :——nggﬁ—-—===========;============
l..__ __________________ F==s=c=sSg==s====y=o=s=s=====
301 || -0.03 3x10° | 2.0 | 1.9
302 || ~0.02 3x10° | 2.0 | 1.9
Influence of Suction on the
303 || -0.01 3x10° | 2.0 | 1.9
.05 Intensity of various Shock Waves
304 || -0.03 3x10° | 2.0 | 3.15
305 | -0.c2 3x10° | 2.0 | 3,15}
306 l-o.01 3x10° | 2.0 | 3.15
311 | -0.03 sx10% | 2.0 | 1.2
~ 312 | _0.02 5x10%* | 2.0 | 1.4
I Influence of Suction on the
313 || -0.01 sx10° | 2.0 | 1.4
.05 5 various Reynolds Numbers
314 | <0.03 1x10% | 2.0 | 1.4 |}
315 | 0,02 1x10° | 2.0 | 1.4
31 -0.01 1x10° | 2.0 | 1.4 -
321 (| -0.03 3x10° | 3.0 | 3.15 5
322 || —0.02 3x10° | 3.0 | 3.15 :
‘ 5 Influence of Suction on the
323 | -0.01 2x10° | 3.0 | 3.15
05 5 various liach Fumbers
326 - | -0.03 2x10° | 2.0 | 3.15
325 || -0.02 3x10° | 4.0 | 3.15
328 | -0.01 3x10° [ 4.0 | 3.15 J
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TABLE 5A (continued) PARAMETRIC CHECK FOR VABIOUS Xg 145

(RuaNo. | T | (Ks {fey, | Mo |Pe/pp (0 TOYS e e
331 ||-0.005 3x10° | 2.0 | 1.4 !
5 Influence of suction on the
332 -0,015 3x10 2.0 1.4 various shock wave intensitiles
333 Il -0.005 3x10° | 2.0 | 1.9
0.03 5
334 -0.015 3)(10 2.0 1.9
335 ||-0.005 3x10° | 2.0 | 3.15 K
\
336 || -0.015 3x10° | 2.0 | 3.15
----------- R ik ltialal kil ad shaterkatmdelal adendedee ket e - an - = = - -~ - - - - ¢ - - - e - - - - -
341 -0, 005 5)(1.04 2.0 1.4
‘ ) Influence of suction on the
342 -0,.015 5x104 2,0 1.4 |} various Reynolds numbers
0.03 6
343 -0...005 1x10 2.0 1.4
344 |[-0.015] ° |1x10% | 2.0 | 1.2
------------------------ 1---—--- o o =p an on G an v G -5 " Gy Gy = -y G G ap Gl Gb G WD G G S0 A D G ey W S WD W G S G S SN G R S ey
351 |} -0.005 3x10° | 3.0 | 3.15 |
352 -0,015 3x105 2.0 3.15 \Influence of suction on the
' ' 0.03 5 various lach numbers
354 |} -0,015 J 3x10° | 4.0 | 3.15 -
T+t ittt &1 3 -t 2t 2 Lt 2t 1 =S SmERafkR=S=ssSss t Tt f Tt it i ittt -tttk & & 1
361 0,01 3)(10g 2.0 1.4
362 ~0.025 3><105 2.0 1.4' Influence of suction on trlue .
, : various shock wave intensities
263 || -0.015 3x10° | 2.0 | 1.9
362 ||-0.025] ©°97 |3x10° | 2.0 | 1.9
365 | -0.015 2x10° | 2.0 | 3.15
366 || -0.025 3x10° | 2.0 | 3.15 .
---------------- 2 Dubuimiaiaiak Aaiubud- e r------r-----' ""“"‘--“----""°""-----------';
371 0,015 5x10 2.0 1.4 i
4 Influence of suction on the :
372 -0.025 0. 07 S5x10 2.0 1.4 various Reynolds numbers {
. :
373 ||-0.015 1x10% | 2.0 | 1.4 i
374 || -0.025 1x10% | 2.0 | 1.4 -
ASSVURY | RO PV Vi S IS SO S SIS :
‘.f\ 381 “ -0,C15 3><lClS 3.0 3.15
5 - | Influence of suction on the
382 -01025 o 07 3X10 3.0 e 15 ' Va-rious Mach numbers
283 ||-0.015 3x10° | 4.0 | 3.15
384 |l-0.025 3%10° | 4.0 | .15 :
l,=========.’ ;======::======:::===== BB R S-S F -5 R ===='—’======;:====='—'==========='ﬂkﬂ




TABLE 5B. CHECK OF VARIQUS COMBINATIONS OF FLOW CONDITIONS /146
DURING SUCTION
* (A1l runs were performed according to the basic compu-
tation method of run 001, up to 200 iterations). The
suction zone is located for all runs in the range
15 < m < 60 grid points on the plate surface.

v -

401 {-0.010 3x10° | 3.0 | 1.4
402 {-0.005 3x10° | 4.0 | 1.4
403 |-0.015 3x10° | 3.0 | 1.9
404 |-0.010 3x10° | 4.0 | 1.9
405 |-0.005 sx10% | 3.0 | 1.4
406 .0 sx10% | 2.0 | 1.4

' 407 [-0.015 5x10° | 2.0 | 1.9

L

' a08 {-0.010 sx10* | 3.0 | 1.9
409 | -0.005 sx10® | 4.0 | 1.9
410 | -0.020 sx10% | 2.0 | 3.15
411 1-0.015 | <95 |sx10%* | 3.0 | 3.15
412 §-0.010 sx10% | 4.0 | 3.15
413 | -0.010 1x10% | 3.0 | 1.4 |
414 | -0.010 1x10% | 4.0 | 1.4
415 | -0.010 1x10°% | 2.0 | 1.9
416 | -0.010 1x10% | 3.0 | 1.9
417 | -0.020 1x10% | 4.0 | 1.9
2418 | -0.010 1x10% | 2.0 | 3.15
419 | -0.010 1x10% | 3.0 | 3.15
420 | -0.010 1x10% | 4.0 | 3.15
431 | -0.016 3x10° | 2.0 | 1.4
¢32 | -0.025 3x10° | 2.0 | 1.9
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Fig. 6a ~ Cowparison of computatlonsl options
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Fig. 11 -~ Distridbution of Stabil.lty T I I T 0370141 1~~y.1y
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Fig. 12b - Comparison of Stability Coefficlents between
' different prids.
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Fig. 13 - Comparison of Stability Coefficients betweon
different Difference Schemes.
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" Fig. 14 - Comparison of Stability Coefficients
4 for different Computer accuracies
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Fig. 1?7 .- Comparison of Rup 102 to
Experdmontal and Comput-
ational results
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Fig. 18 - Flowrield for Run 102
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Fig. 19 - Comparison of Run 103% to

4

P
I3
w

03 €3109--103 I R YT~ qa
Experimental results 01‘D1v‘u1"'n1‘~~,-1v,°; TIg vy

22 REe.*s3"M0° Pa/R.= 44
%

o oo Hakkinen™' (Experimental)
Present Study (Run 103)

X (Cm)

.04

A Re0

Re,? '}.Cumr

Raged. 350" .o
X4 ;

a
Q
Q
Q
2]

— —— .U
0.4 .8 0.4.8 0.4 8 U,




- 168 -

Y

Fig. 20 - Flowfield for Run 103 103 M333-ADIALN-MTP—AVRN—-20 -1 8
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Fig. 27 - ShocK impingement 1ocationlx.
influence on the Interaction.
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Fig. 28 - Prandtl number ¢ influence
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Fig. 29 - Influence of variation
‘of P¢/p,)He; ke, on the
Boundary Layer shape.
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Fig.30 - Wall 'I‘ein;éerature T, influence
on the Interaccion.
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Fig. 31 - Wall SuctionyInjection APAT Y KNP YD N3t~y y
* velocity v, influence on IIKY- Ve NI A0 nax )
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Fig. 32 - Flowtield for Run 212

212 AN RO A -TTY TR =32 T Y

<S50

| VY Pefp,e 1.4  Reu +3u0® Vig=- o2 { Suction)
: . =3 \oo 3
R0 (¥ 10

o~
2]
ﬂ'\,
O,
2

aLAre— 4 50
x

178

&,.6,.0" y (w) 2
.r.08
4 P(x,y)
-, o4

4140
£ 30
1.33
£3

{02 L —
g
=]
: e
AN
P23
x™x
[
&1

PE &

1.2.8

186




- 182

Fig. 33 - Influence of variation
of caTw/us ; vw/us on the
Boundary Layer shape.
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Fig. 34a - Influence of suction length
and location on the separated
- ragion,
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Flg. 35~ Dependenca of separation'length‘l{;zon gsuction
velocity Y for varioua pressure ratio
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. 36 - Dependence of aeparation length "—-Yon suction
veloeity ¥ for various Mach numbers
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V. e
Fig. 38 - Suction valocity —;‘E’ needed nyaq.on’“—‘/&: APIIVA MVIIND =381y
to prevent separation in the Pe Ve M SN0 PIND
Pa y¢ ., Plane, P V5 e
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Fig. 59- Suction wolocity J:’needed ML‘%—”P—’J-‘WTW'—SQ-ﬁ11:

to prevent separation in the Fe i g TITIOITPIAY
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Fig. 40 ~ Suction volocity T needed
to prevent soparation in the

M, I Ac‘ plane.
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Filg. 4!

- Table for the dependence of suctian

valocity neoded to prewent separation

on the flow paramoters.
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3, O3 =.l2y =.0PT 0 -,022 0 -,00Y -0l
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2. O3y -8 -.025 0 =028 =.0172 0 -.Q13
3. 36 =032 -.C2 -.026 =-.221 ~-.016
5. L2032 -.035 0 -.05 -.0e5 =,0z24 =.020
5x105 1. el - Lty =00 -.0Cs -.l020> -.ClZ
2. ES = 3 -0 -.C18 =~.21% =-,01C
2. 036 -.C35 -,025 ~.024 -.016 -,01%
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6 z. 42 - Uyl -.u33 -.250 -l -.c22
1%10 1. R Tt VT N T
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