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ABSTRACT

Two main results are presented. The first deals with a simple

method that determines the minority-carrier lifetime and the effective

surface recombination velocity of the quasi-neutral base of silicon

solar cells. The method requires the observation of only a single

transient, and is amenable to automation for in-process monitoring in

manufacturing. Distinct from many other methods in use, this method,

which is called short-circuit current decay, avoids distortion in the

observed transient and consequent inaccuracies that arise from the

presence of mobile holes and electrons stored in the p/n junction space-

charge region at the initial instant of the transient.

The second main result consists in a formulation of the relevant

boundary-value problems that resembles that used in linear two-port

network theory. This formulation enables comparisons to be made among

various contending methods for measuring material parameters of p/n

junction devices, and enables the option of putting the.description in

the time domain of the transient studies in the form of an infinite

series, although closed-form solutions are also possible. The advantage

of an infinite series formulation is the possibility of identifying

dominant relaxation times of the transient, leading thereby to

simplified descriptions. By outlining the derivation of open-circuit-

voltage decay and junction-current recovery from this two-port

formulation, we systematically compare these methods with the short-

circuit-current decay method that is emphasized here. Small-signal

admittance measurement methods also emerge as special cases of the two-

port formulation, as is discussed briefly.



1. INTRODUCTION

Insofar as minority carriers are concerned, one may regard a solar

cell as a p/n junction diode bounded by front and back surface

characterized by surface recombination velocities: Sfront and ^back*

The surfaces may be free surfaces or internal surface, such as that

adjoining the low-high junction that constitutes a back-surface field

(BSF) region. This characterization places emphasis on the

recombination that can take place at the surfaces, though it includes

volume recombination within the cell.

For well over a decade, workers in photovoltaics have understood

that the presence of a low-high junction in the BSF cell can yield an

effective surface recombination velocity Sb ^ on the low-doped side of

the low-high junction that can be orders of magnitude below the surface

recombination velocity at an ohmic contact (which is of the order of

106 cm/s). Accurate measurement of Sback, together with that of carrier

lifetime in the quasi-neutral base, however, has presented problems.

More recently the importance of passivating the front surface

recombination velocity to increase the power conversion efficiency has

become recognized. The first recognition of this importance, by lies,

appeared in a final report (NASA 1974), of restricted distribution. The

first full discussion of the importance of $front
 ln the journal

literature, which emphasied experimental evidence in conjunction with a

modeling of highly doped Si, by Fossum, Lindholm, and Shibib (1979), met

with resistance at the outset because of the inertia of the dead-layer

concept of Allison and Lindmayer (1973) of early solar-cell theory.

Graduallly an appreciation of the importance of Sfront
 nas emerged. One

may conjecture that this emergence resulted in part from the



understanding that the huge drift field acting on minority carriers in a

diffused front layer that arises in customary p/n junction theory is

absent because of the dependence of the Si energy gap on the shallow-

level dopant concentration.

Thus we recover the model stated in the first sentence of this

INTRODUCTION: the view that a solar cell is a p/n junction bounded by

front and back surface characterized by S^ront and Ŝ .̂ We stress the

importance of experimentally determining $fron and S[3ack as a function

of the fabrication steps used in manufacturing.

From a theoretical viewpoint, this model yields to existing

approaches for the standard solar-cell conditions: steady state (time

independence) of the excitation (applied voltage or illumination). But

from an experimental standpoint, steady-state excitation will not

suffice for a widely applicable experimental determination of S^ront,

%ack» anc' °f other parameters (such as carrier lifetime) needed for

informed design. Moreover, the rapidity of measurement by transient

response of these parameters makes transient measurements attractive for

in-process control at key steps in manufacturing.

2. OBJECTIVES

The general purpose of this research program is to establish a

methodology by which one can experimentally determine S^ront and S, ^

and other parameters, especially carrier lifetime, of the quasi-neutral

base and emitter regions. The methodology sought is to be flexible, in

the sense that it will apply to a wide "range of different solar-cell

designs and in the sense that it will open the way to a variety of

experimental techniques, thus providing cross-checks among measurements



and the interpretations springing from them. Further, we seek a

methodology firmly rooted in theory, thus avoiding possible

misinterpretations of data. Finally, we seek to develop experimental

set-ups enabling an assessment of the utility of the methodology.

A secondary and longer-range purpose is to explore passivants of

various types on the front and back surfaces.

Here we report the findings to date, both theoretical and

experimental.

3. ACCOMPLISHMENTS THIS PERIOD

This report has three purposes. First, we outline a mathematical

method that systematically and compactly describes the large-signal

transient and small-signal frequency responses of diodes and the related

devices such as transistors diodes and solar cells. This mathematical

framework enables a comparison among available methods for determining

carrier recombination lifetime and surface recombination velocity of

quasi-neutral principal regions of the devices.

Second, exploiting this description, we survey the adequacy of

various experimental large-signal transient methods for deducing these

parameters. The survey is indicative, not exhaustive.

Third, we examine in detail, both theoretically and experimentally

a method that apparently has not been much explored previously. We

demonstrate that this method yields both the back surface recombination

velocity and the recombination lifetime of the quasi-neutral base from a

single transient measurement for three different p+/n/n+ back-surface-

field solar cells.



4. MATHEMATICAL FRAMEWORK

In this section, we develop a mathematical framework which could be

applicable to most of the large-signal transient measurement methods and

could include small-signal admittance methods for the determination of

the lifetime and the back surface recombination velocity of the base

region of a diode or a solar cell. This analysis will treat the

minority-carrier density and the minority-carrier current in a quasi-

neutral base region in low injection. Focusing on the quasi-neutral

base, assumed to be n-type here (of x-independent donor density NDQ)

with no loss in generality, will simplify the treatment. Extensions to

the quasi-neutral emitter are straightforward, provided one inserts the

physics relevant to n+ or p+ regions.

Assume a p+/n diode in which the uniformly doped quasi-neutral base

starts at x = 0 and has a general contact defined by arbitrary effective

surface recombination velocity SQ^^ at the far edge x = XONg. Such a

contact could result, for example, from a back-surface-field (BSF)

region. Assume also low-level injection and uniform doping of the base

region. Then a linear continuity (partial differential) equation

describes the excess minority holes p(x , t ) :

ap(x,t)/8t = D 82p(x,t)/9x2 - p(x , t ) /T , (1)

where D is the diffusion coefficient and t is the lifetime of holes.
r r

If we take the Laplace transform of (1) with respect to time, we

get an ordinary differential equation in x with parameter s:

-p(x,0") + sP(x,s) = Dp d
2P(x,s)/dx2 - P(x,s)/Tp , (2)



where

P(x,s) =
t=0

e'stp(x,t)dt , s = a+ ju, j = (-1)1/2 (3)

and where p(x,0~) is the initial condition for the excess hole density.

Here, t = 0" denotes infitesimal negative time, and we shall treat

transient excitation for which p(x,t) is in the steady state for t < 0.

Thus P(x) = p(x,t), t<0 where here capital P denotes a steady-state

excess hole density.

Solving Eq. (2) yields

P(x,s) = p(x,0")/s exp(-x/Lp ) exp(x/Lp ) (4)

* 1/2where L = (D T )/(! + st ) and where M^ and 1^, given below, are
r r H r

to be determined by the boundary values at the two edges of the quasi -

neutral base region: P(0,s) at x=0, and p(XQNB's^ at X=XONB"

Substitution of (4) into (2) yields the steady-state continuity equation

for p(x,0~), verifying that (4) is the solution of (2).

Because of quasi-neutrality and low injection, the minority hole

diffusion current dominates in determining the response from the quasi-

neutral base. The following matrix describes the density of this

current at x = 0 and x = Xr

1(0,s) - i(O.O')

KXQNB ,s) -1(XQNB,0-)

eD
_P
*

1 1

e"XQNB /Lp* e XQNB /Lp*

M1

(5)



where i(0,0~) and i(XQMB,0~) are the initial values (at t = 0") of the

minority hole diffusion current at x=0 and x=XQNB. In (5) , hole current

entering the quasi-neutral base is positive, by definition.

Regarding the minority carrier densities at the two edges as the

excitation terms for a system analogous to a linear two-port network of

circuit theory, we have the following two-port network matrix from (4)

and (5) for the two excitations (densities) and the two responses

(currents)

1(0,s) -i(0,0~)/s

KXQNB,s) - i(XQNB ,Q-)/s

A12 P(0,s) -p(0,0")/s-

P(XQNB .s) -p(XQNB,0-)/s
(6)

where p(0,0~) and p(XONg,0 ) are the initial values of the excess hole

densities. Equation (6) extends a similar earlier development [1] by

including initial conditions so that transients may be directly

studied. We call Eq. (6) the master equation for the quasi-neutral

base, and the square A matrix is the characteristic matrix of the base

region. In (6), A12=A21= -e(D /L *) cosech(X m/L *) and and

All = A22 = e (DD/LD^' Fl9" 1 displays the master equation, where the

initial values are included in 1(0,s), -P(XQMB ,S) , etc. for compactness

of expression.

Transient solutions can be derived from (6) by inserting proper

boundary conditions, initial values and constraints imposed by the

external circuit. For example, I(0,s)=0 in OCVD open-circuit-voltage-

decay [2], I(0,s)=constant for reverse step recovery [3],-and P(0,s) = 0

for short-circuit current decay, the latter of which is developed in

detail here. For small-signal methods [4]-[5], where dl, for example, is



I (0,s) KXQNB,s)

P(0,s)

21

A12(s)

A22(s)

Fig. 1 Two-port network representation for hole density and hole
current (density) at the two edges of the n-type quasi-neutral base
region.



an incremental change of current, I(O,S)=!QQ/S + dl(0,s) and

P(0,s)=PDC/s + (edV/kT)PDC. Here the suffix DC denotes a dc steady-

state variable. In later sections, we will show briefly how to get

solutions from the master equation for various of these methods.

In a solar cell, the back contact system, including the low-high

junction, is generally characterized in terms of effective recombination

velocity, $eff. The boundary condition at the back contact is

I(XQ..g,s) = ~
e$effP(XQMD»S)' ^

rom a circuit viewpoint, this relation

is equivalent to terminating Fig. 1 by a resistor of appropriate value

dependent partly on Seff. Because Seff in part determines the transient

in the various methods named above, we can determine S ^^ from the

transient response, as will be shown.

In Sees. 6 to 8 we consider the utility of the master equation in

characterizing selected measurement methods. The main emphasis will be

placed on the short-circuit current decay (Sec. 8).

Before doing this, however, we shall remark on the simplicity

provided by the master equation (Eq. 6) by comparing it with its

counterpart in the steady state.

5. TRANSIENT VS. STEADY-STATE ANALYSIS VIA TWO-PORT TECHNIQUES

In general, the current (current density for a unit area) is the

sum of the hole current, the electron current and the displacement

current. For the quasi-neutral regions under study using the two-port

technique described in Sec. 4, the displacement current is negligible.

In the steady state, the two-port description leading to the master

equation simplifies because then the hole current in our example of

Sec. 4 depends only on position x. This x-dependence results from



volume recombination (relating to the minority-carrier lifetime) and

effective surface recombination (relating to the effective surface

recombination velocity). A two-port formulation for the steady state

leads to the same matrix description as that derived previously, in

which the matrix elements A.j-(s) of Eq. (6) still hold but with the

simplification that s = 0. From such a master equation, one can

determine the hole current at the two edges of the quasi-neutral base;

and, using quasi-neutrality together with knowledge of the steady-state

currents in the junction space-charge region and in the p+ quasi-neutral

emitter region, one can thus find the steady-state current flowing in

the external circuit or the voltage at the terminals of the diode. If

the quasi-neutral base is the principal region of the device, in the

sense that it contributes dominantly to the current or voltage at the

diode terminals, then one has no need to consider the current components

from the other two regions.

In contrast the general time-varying mode of operation leads to a

minority hole current in the n-type quasi-neutral base of our example

that depends on two independent variables, x and t. The time dependence

results because the holes not only recombine within the region and at

its surface, but also their number stored within the base varies with

time. This may be regarded as resulting from the charging or

discharging hole current associated with 5p/5t in the hole continuity

equation. This charging or discharging current complicates the

variation of the hole current in space and time. But the use of the

Laplace transform of the two-port technique in effect reduces the

complexity of the differential equation to the level of that describing

the steady state; the dependence on variable t vanishes, reducing the



partial differential equation to an ordinary differential equation in x,

just as in the steady state.

This comparison also brings out another point. Just as in the

steady state, one must interpret the transient voltage and current at

the diode terminals as resulting not only from the quasi -neutral base

but also from the junction space-charge region and the quasi -neutral

emitter. In the interpretation of experiments to follow, we shall

discuss complications arising from this multi -regional dependence.

6. OPEN CIRCUIT VOLTAGE DECAY (OCVD)

In this widely used method [2], the free carriers in the junction

space-charge region enter to contribute to the transient. But,

consistently with Sec. 4, and with most common usage, we concentrate at

first on the n-type quasi -neutral base.

From the master equation [Eq. (6)], the transient solution for the

junction voltage is obtained from open-circuit constraint (for t > 0)

that I(0,s)=0:

{D [coth(XONB/L *)]/L *S
P(0,s) = p(0,0 )/s -- irreups Q N B p p p e f f

(7 )

Here we have assumed that the quasi -neutral base is the principal region

in the sense described in Sec. 4; that is, we neglect contributions from

all the other regions of the device.

Using the Cauchy's residue theorem, we find the inverse transform

Of Eq. (7):

10



p ( o t ) i 2 i ( 0 '°" ) LP
1 - 1 P p [ (XoV C ° S e c ( Wi V + ( D / L S e f f

(8)

where s. is the ith singularity point (ith mode) which satisfies the

Eigenvalue equation,

Dp vTTs-T/LpS = 0 (9)

and K. = /-1-s. T > 0, where s. < 0.

As can be seen in Eq. (8), the decay of the excess hole density at

x=0 is a sum of exponentials; each Eigenvalue s- is called a mode, as in

the electromagnetic theory. Appendix A treats the details of

determining the Eigenvalues s. from Eq. (9) (and from the similar

Eq. (11) derived below).

The decaying time constant -1/s-p of the first mode is much the

largest of the modes. Both s, and the initial amplitude of the first

mode are functions of SQ̂ ^ and T . Thus separating the first mode from

the observed junction voltage decay curve, by identifying the linear

portion of v(t), will enable, in principle, determination of Sê f and T

simultaneously. But our recent experience, coupled with that cited in

[6], suggests that this is seldom possible in practice for Si devices at

T = 300 K. In Si devices the open-voltage decay curve is usually bent

up or bent down because of discharging and recombination within the

space-charge region.

As mentioned in [4], the mobile charge within the space-charge

region contributes significantly to the observed voltage transient for

11



10 -3Si, in which n. ~ 10 cm , but not in Ge, for which OCVD was first

13 -3developed, and for which n. ~ 10 cm . Here n^ is the intrinsic

density and is also the ratio of the pre-exponential factors that govern

contributions from the quasi-neutral regions relative to those from the

junction space-charge region.

Thus we identify the transient decay of mobile electrons and holes

within the p/n junction space-charge region, which persists throughout

the open-circuit voltage decay (OCVD), as a mechanism that distors OCVD

so significantly that the conventional treatment of OCVD will not

reliably determine T or Srpp. The conventional treatment is consistent

with that proceeding from the master equation, as described in this

section. The interested reader may consult Ref. 4 for experimental

comparisons that lead to this conclusion. We shall not pause here to

present these.

Rather we shall turn briefly to possible methods to remove the

effects of this distortion. In an attempt to characterize the space-

charge-region contribution to the observed transient voltage [6], quasi -

jtatic approximations and a description of the forward-voltage

capacitance of the space-charge region based on the depletion

approximation were combined to give rough estimates of this

contribution. We plan to refine the approximations and the estimates in

a future publication, leading possibly to a variant of OCVD useful for

determining T and SQff

7. REVERSE STEP RECOVERY (RSR)

For this method [3], in which again the diode is subjected to

steady forward boltage for t > 0, we have two constraints (for t > 0).

12



The first is 1(0,s) = constant (reverse current), 0 < t < -u , where TS

is the time needed for the excess hole density p(0,t) to vanish. This
2

is the primary constraint. (The second constraint is p(0,t) = -n-/Nnn

for TS < t < », a result of applied reverse bias through a resistor.)

The primarily observable storage time T is estimated by following

a procedure similar to that described in Sec. 4, proceeding from the

master equation.

This method suffers difficulties similar to that of the OCVD

method. Because p(0,t) > 0 for 0 < t < T , the decay of mobile hole and

electron concentrations in the p/n junction space-charge region

complicates the interpretation of the measured T in terms of the

desired parameters, T and Seff.

In addition to this, during the portion of recovery transient

occuring for TS < t < °°, the reverse generation current is often large

enough to saturate the recovery current so quickly that we have no

sizable linear portion of the first-mode curve on a plot of ln[i(t)]

vs. t. This linear portion provides interpretable data for Ge devices

[3], but not often for Si devices according to our experiments.

We shall not pause here to present experimental evidence, but

rather postpone that presentation until a planned fuutre publication

where comparison with previous work can be comprehensive.

8. SHORT CIRCUITED CURRENT DECAY (SCCD)

8.1 jSrief Physics and Mathematics

In this method, one first applies a forward bias to set up a

steady-state condition and then suddenly applies zero bias through a

resistance so small that the constraint is essentially that of a short

13



circuit. Thus, for t > 0, the p/n junction space-charge and quasi -

neutral regions discharge. One measures the transient current via the

voltage across the small resistor. If the discharging time constants

related to the charge stored within the quasi-neutral emitter and the

junction space-charge region are much smaller than from the quasi -

neutral base, one can separate the first mode of the quasi-neutral-base

response and determine S^ and -c .

We first consider the time of response of the junction space-charge

region. Upon the removal of the forward voltage, the constraint at the

terminals becomes essentially that of a short circuit. The majority-

carrier quasi-Fermi levels at the two ohmic contacts immediately become

coincident, and the junction barrier voltage rises to its height at

equilibrium within the order of the dielectric relaxation time of the

quasi-neutral regions, times that are of the order of no greater than

ICT̂ s. This occurs because the negative change in the applied forward

voltage introduces a deficit of majority holes near the ohmic contact of

the p+ emitter and a deficit of majority electrons near the ohmic

contact in the quasi-neutral base. The resulting Coulomb forces cause

majority carriers to rush from the edges of the junction barrier

regions, thus causing the nearly sudden rise of the barrier height to

its equilibrium value. (The physics governing this phenomena comes from

Maxwell's Curl _H = _i_ + aD/dt; taking the divergence of both sides yields

0 = div j_ + a(div JD_)/dt, which, when combined with J_ = (oO/e) and

divD^ = p, yields a response of the order of e/a, the dielectric

relaxation time.)

Following this readjustment of the barrier height, the excess holes

and electrons exit the junction space-charge region within a transit

14



time of this region (about ICT^s typically), where they become majority

carriers in the quasi-neutral region and thus exit the device within the

order of a dielectric relaxation time.

Thus the discharging of excess holes and electrons within the

junction space-charge region in the SCCD method occurs within a time of

the order of lO"1^, which is much less than any of the times associated

with discharge of the quasi-neutral regions. This absence in effect of

excess holes and electrons within the junction space-charge region

greatly simplifies the interpretation of the observed transient. It is

one of the main advantages of this method of measurement.

A more detailed discussion of the vanishing of excess holes and

electrons within the junction space-charge region appears in Appendix B.

The discharge of the quasi-neutral emitter depends on the energy-

gap narrowing, the minority carrier mobility and diffusivity, the

minority-carrier lifetime, and the effective surface recombination

velocity of this region. For many solar cells, this discharge time will

be much faster than that of the quasi-neutral base, and we shall assume

this is so in the discussion to follow.

Having established that the mobile carriers in the junction space-

charge region enter the short-circuit-decay transient during an interval

of time too short to be observed, and noting also now that negligible

generation or recombination of electrons or holes within this region

will occur during the transient, we now turn to the observable transient

current. Inserting the constraint, P(0 ,s ) = 0, into the master

equation, Eq. 6, leads to

15



s) . 1(0 0-)/s - ') C°th"WLp*> * WSeff>) 1l '" V l + [Wseff*<>th<WV> '
(10)

Cauchy's residue theorem yields the inverse transform of (10):

_

1=1 SiLp (y2K2) + (XQ N B /2Se f f)cosec2(K.XQ N B /Lp)

where si is the ith singularity which satisfies the Eigenvalue equation,

p eff

1/2
and where K. = (-1-s.T ) ' > 0, with si < 0.

Truncating (11) and (12) to include only the first mode Sj, we

obtain from (11) and (12):

1/2
coth[(XQNB /Lp)( l + SI-CP) ] = 0 (13)

and

Virst

O.O")^ cot(K lXQNB/Lp) - (Dp^/LpSeff)

1LP (Tp/2K2) + (XQNB/2Sef f)[cosec2(K1XQNB/Lp)]

(14)

16



Equations (13) and (14) contain four unknowns: if-;rst m0de^'
 sl' To

and Seff. The parameters, s^ and if-jrst mocje /Q\ are determined from

the staight-line portion of the observed decay (in Fig. 3c to be

discussed below): p(0,0~) = (n^/NDD)[exp(ev(0~)/kT)-l] . Here v(0") is

known from the steady forward voltage applied for t < 0 and the doping

concentration N^Q of the base is measured by usual methods; DD(NQQ) is

known from the standard tables and Xg^g is measured. Combining (14) and

(13) then yields the desired parameters: T and S ~.

8.2 Experiments and Results

To explore the utility of the SCCD method, we connect the solar

cell under study to node B of the electronic switching circuit

illustrated in Fig. 2.

The circuit works as follows. When V-^(t) is high, switching

transistor T^ turns on, which charges the large capacitor in parallel

with it and divides the high voltage V^ about equally between the solar

cell and the emitter-collector terminals of the transistor. Thus the

voltage across the solar cell becomes about 0.6 V, which one may control

by altering (V1)niqh, the variable resistor connected to the transistor

base, or both. In this mode, the quasi -neutral base charges to store

ultimately a steady-state charge of excess holes and electrons, and

p(0,0") of Eqs. (10), (11) and (14) is established.

Now assume that V^ drops to its low value, an incremental change of

about 0.6 V. The capacitor across the transistor acts as an incremental

short circuit and the voltage across the solar cell suddenly vanishes to

a good approximation, thereby establishing the desired short -circuit

constraint. The large capacitor maintains this constraint nearly

17



Vhigh

V<(t) 'low

1Mohm

"ground

10ohm
PULSE

GENERATOR

B «-

BSF
SOLAR
CELL

R2 10ohm

LOG

AMPLIFIER

Fig. 2 The electronic switching circuit used in the SCCD method. The
circuit elements are: switching transistor is 2N3906, the pulse
generator is HP 8004, and the logarithmic amplifier consists of the
usual configuration of an operational amplifier (Burr-Brown 3500C)
connected to node B through a 100 ohm resistor and across which (between
nodes B and C) two oppositely directed switching diodes (IN914)
constitute the feedback loop.

18



perfectly during the first-mode transient of the solar cell; that is,

during this transient, this capacitor and the input voltage source,

which has a small resistance of 50 Q (in parallel with 10 Q) , act as

nearly incremental short circuits. Thus the desired short-circuit

constraint is maintained to a good approximation during the SCCD

transient of interest.

We used three different p+/n/n+ BSF solar cells for which the

parameters are: DEVICE 1--N0D (substrate doping) = 6 x 10
14 atoms/cm3;

XQNB (base thickness) = 348 un, area = 4 cm2; DEVICE 2— NDD = 7 x 10
14

atoms/on3, XQNB = 320 nn, area = .86 cm
2, DEVICE 3--NDD = 3.5 x 10

15

o o
atoms/cm , Xn = 348 \ms area = 4 cm .

We measured the voltage across the solar cell under study. As

illustrated in Fig. 3(a), the voltage drops by 0.1 V within 1 us. This

means that the excess minority carrier density p(0,t) drops to 2% of its

initial value within 1 ps. The speed is circuit limited. One could

design a much faster circuit. Here T^ = -1/Sj is the first-mode decay

time, influenced by both volume and surface recombination in the base.

But the circuit used suffices because -c » 1 us for the solar cells

studied. Fig. 3(b) shows the current during the transient. Fig. 3(c)

is its semi-logarithmic counterpart, illustrating the straight-line

position of the transient obtained from the output of the logarithmic

amplifier in Fig. 2. From this T^ is determined. Since the voltage at

node B is purely exponential for a time, the corresponding output

voltage at node C is linear in time, as Fig. 3(c) illustrates. We used

switching diodes in the log amplifier whose I-V characteristic is

V = .0385 ln(I/I0+l). If the first-mode current is
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v(t)t

v(t)t

(a)

(b)

(0

t=0

Fig. 3 Voltage across BSF #1 solar cell (vertical:.2V/div).
Current through BSF #1 solar cell (vertical:lmA/div).
Log scale representation of (b) (vertical:.IV/div), where

X . — . > -i r • / .. \ / T .in » / » i 'v(t) =;(mkT/e)loge [ i ( t) / I + 1], '' "
In (a ) - (c ) , Horizontal axis is 10
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'first-mode^ = constant exp(-t/Td) , Td = -i/S;L , (15)

then the slope of the output voltage of log amplifier is -38.5

Extrapolation of the straight portion in Fig. 3(c) yields the initial

value of ifirst-mode (0+) as the intercept.

We measured the decay time constant and the initial amplitude of

the first-mode current as follows. For DEVICE 1, Td = -1/s, =

29.3 psec, i f1rst_mode(0+) = 2.73 mA for v(0") = 0.44 V and T = 303.1 K.

For DEVICE 2, Td = 24.5 psec, if irst.mode(0+) = 4-35 mA for v(O') = 0.5

V and T = 302.9 K. For DEVICE 3, ^ = 28.5 psec, if i rs t_mode(0+) =

.696 mA at v(0") = .47 V and 303.5 K. Here v(0~) denotes the steady

forward voltage applied across the solar cell before transient.

From the above development, these results give: For DEVICE 1, T =

119 ps, Seff = 25 cm/s; for DEVICE 2 = T = 119 ps, $eff = 60 cm/s; for

DEVICE 3, T = 213 ps, Sgff = 100 cm/s. These results agree favorably

with those obtained for the same devices by using the more time-

consuming methods detailed in [4] - [5].

9. DISCUSSION

Most measurement methods for the determination of the minority-

carrier lifetime and the surface recombination velocity of the base

region of Si solar cells share a common problem caused by the existence

of the sizable number of the mobile carriers within the space-charge-

region. These methods, among open-circuit voltage decay (Sec. 6) and

reverse step recovery (Sec. 7), were originally developed for Ge

devices. Si has a much larger energy gap Eg than does Ge. Thus the
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distortion of the measured response by carriers stored in the junction

space-charge region is much more pronounced in Si, mathematically

because of the role of the intrinsic density nn- discussed in Sec. 6.

If the electronic switch providing the short circuit closes fast

enough, the mobile holes and electrons stored for negative time in the

junction space-charge region play no role in determining the response of

the short-circuit-current decay described in Sec. 8. In our

experiments, the simple circuit of Fig. 2 had speed limitations, but

these limitations did not markedly influence the accuracy of the

determined base lifetime and surface recombination velocity. This lack

of influence results because the decay time of the first-mode response,

which accounts for vanishing of minority holes both by volume

recombination within the quasi-neutral base and effectively by surface

recombination, greatly exceeded the time required for the excess hole

density at the base edge of the space-charge region to decrease by two

orders of magnitude. Details concerning this issue appear in Sec. 8.

Apart from this potential circuit limitation, which one can

overcome by improved circuit design, a more basic consideration can

limit the accuracy of the short-circuit-current decay (SCCD) method. In

general, the current response derives from vanishing of minority

carriers not only in the quasi-neutral base but also in the quasi -

neutral emitter. For the solar cells explored in this study, the

emitter contributes negligibly to the observed response because of the

low doping concentration of the base and because of the low-injection

conditions for which the response was measured. But for other solar

cells or for higher levels of excitation, the recombination current of

the quasi-neutral emitter can contribute significantly.
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The contribution from the quasi-neutral emitter may be viewed as an

opportunity rather than as a limitation. That is, the SCCD method may

have utility wider than that treated here. If the quasi-neutral emitter

contains excess charge whose decay time dominates in determining the

transient observed, in some devices the parameters of the physical

electronics of the highly doped and thin quasi-neutral emitter can be

explored using SCCD. An example may be a transistor with a thin and

highly doped base region or a solar cell having a high open-circuit

voltage controlled by the recombination current in the emitter. For

such devices, the absence of contributions from carriers in the junction

space-charge region becomes a particularly key advantage not offered by

either open-circuit voltage decay or step reverse recovery. The SCCD

method also may enable parameter determination if high injection in the

base prevails. Exploring these possible uses will require fast

switching circuits and determination of the existence of a dominant

relaxation time from minority carriers in the highly doped emitter.

Note that the SCCD method determines the base lifetime and the

effective surface recombination velocity of a BSF solar cell by a single

transient measurement. One can easily automate the determination of

these parameters from parameters directly measured from the transient by

a computer program, and the measurement itself may be automated. This

suggests that SCCD may be useful for in-process control in solar-cell

manufacturing.

This paper began with a mathematical formulation of the relevant

boundary-value problem that led to a description similar to that of two-

port network theory. The advantages of this formulation were only

touched upon in Sec. 3 and only the bare elements of its relation to
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open-circuit voltage decay and step reverse recovery were developed.

Further exploitation to enable systematic development and comparison of

small-signal and transient methods for the determination of material

parameters of solar cells and other junction devices is planned as a

subject for future study.
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APPENDIX A

Although there are several ways to treat the sudden application of

a short circuit replacing forward bias V, perhaps the simplest is to

think of voltage -V being applied in series with V at t=0. This

treatment emphasizes the change in voltage that starts the ensuing

transient. See Fig. A-l(a), below.

Thus at t = 0, this change in voltage raises the right ohmic

contact by magnitude eV relative to the left ohmic contact because the

ohmic contacts are in equilibrium with the adjoining semiconductor in

the sense that the distance between the quasi-Fermi level of majority

carriers and the majority-carrier band edge remains the same as in

equilibrium. They are in non-equilibrium in the sense that charge

carriers can pass through the contacts. At t = 0+, some arbitrarily

small time after the application of the short circuit, the change in

applied voltage has caused electrons to exit the n-type material

adjacent to the contact, leaving behind unbared donor atoms and the

positive charge shown in Fig. A-l(b). Similarly holes exit the p-type

material (electrons enter the valence band from the metal), giving rise

to the negative charge shown in Fig. A.l(b). A near delta function of

current i(t), flowing in the direction shown in Fig. A.l(a), establishes

this charge configuration at t = 0+. Note that i(t) during the entire

transient for t > 0 flows in a direction opposite to that occuring for

negative time because the transient results in removing the electrons

and hole present under forward V.

Having established the existence of this negative charge, we now

consider what happens subsequently. Here enters a result developed

earlier from operating on Maxwell's equation by the divergence operator:
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(a) for t < 0, switch
Figure A-l

is closed, S9 is open; conversely for t > 0; theI Q I | UJ U •*> U > O VTI I l-Wl I -* I • -* N- • v — *-— j — J • ~ - \- - - * - - . _ - ^ v- i _| * *.

junction space-charge region is defined ty x < x < XN. (b) charge density
at t = 0+. (c) charge density for t of the'Vder of a dielectric relaxation
time. (d) the total current is x-independent but is essentially majority-
carrier convection current in the two quasi-neutral regions and is
displacement current in the space-charge region for t of the order of a
dielectric relaxation time, (e) electrons and holes drift out of the space-
charge region in a transit time, (f) the resulting excess hole density in the
space-charge region after a transit time has lapsed.
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0 = div curl H =div JN + div jp + div[d(eE)/dt] . (A.I)

From this result, two consequences emerge: (1) the charges in

Fig. A-l(b) redistribute to the positions shown in Fig. A-l(c) within

the order of a dielectric relaxation time -c = e/cr; and (2) the total

current is solenoidal, that is, its divergence is zero, where here the

total current includes the displacement current.

The consequence of (2) is illustrated in Fig. A-l(d) for a

particular time of order of T. Notice the large time-rate of change of

electric field E within the junction space-charge region, x_ < x < x^.

Here we have employed a one-dimensional model so that the operator div

becomes the operator d/dx. Thus we see that the electric field in the

space charge region grows rapidly so that within t of the order of T the

barrier height has returned to its near equilibrium value and the

electric field is several times larger than it was in negative time.

But in negative time, the drift and diffusion tendencies of the junction

space-charge region were perturbed only by perhaps one part in 10 in

the forward voltage steady state; that is, the space-charge region was

in quasi-equilibrium. For t of the order of T, the drift tendency now

overwhelms the diffusion tendency, and holes and electrons drift out of

the space charge region in a transit time T' determined by

x^-Xp/velocity where the velocity approaches the scatter limited

velocity because of the high field (Fig. A- l (e)) . For typical devices,

T' will be of the order of 10"^ s. After this time has passed, the

hole and electron concentrations will have returned nearly to their

equilibrium values.
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Because 10"11 s is a time not observed by typical measurement

equipment, we think of the initial condition established by shorting the

terminals suddenly as that of quasi-neutral regions still storing

approximately the same excess charge as was present in the steady state

of negative time, of a space-charge region at the equilibrium barrier

height and devoid of excess holes and electrons, and as an excess

minority carrier density in the quasi-neutral regions that drops sharply

to zero at the space-charge region edges (Fig. A-l(f)).
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APPENDIX B

Determination of the Eigenvalues for SCCD and OCVD

In this report, we have two Eigenvalue equations, Eqs. (9) and

(11), that determine si of each mode for OCVD and SCCD. These are

coth(XQNB(l + Si,p)1/2/Lp) + Dp(l + s^)/^ - 0 (9)

and

(Dp(l + S ixp)1/2/LpSef f)coth(XQNB(l + Sl1;p)
1/2/Lp) = 0 . (10)

In (9) and (11), Eigenvalues exist only if

1 + S.JT < 0 (or si < -1/T or T. > T ) (B-l)

where T. = -1/s. .

Granting (B-l), we have

where (-l-s^p) > °- Replacing (1 + S.T )1//2 in (9) and (11) with

J(- ! -S.T ) yields

cot(XQNBK./Lp) - (DpK./Lp) = 0 (B-2)

and
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where

Eqs. (9) and (B-2) are identical and so are (11) and (B-3) under

the condition of (B-l). (B-2) and (B-3) imply an infinite number of

Eigenvalues as shown in Figs. B-l and B-2.

For SSCD the vanishing determinant of the inverse of matrix A of

Eq. (6) provides an alternate method for determining the Eigenvalues s^,

but no such systematic method exists for OCVD. More details regarding

this are planned for future publications.
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Fig. B-l The eigenvalues for OCVD where Yn. = cot ( A . ) , A. = Xn WnK./L
a n H Y - / D S / Y A A ' ' ' M N B 1-a n H Y -and Y -

Y:M

A;

Fig. B-2 The eigenvalues for SCCD where Y. = cot A-, A- = Xn M DK-/L r
a n d Y - = - ( X / O S ) A - ^ " "
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