General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
HYDROGEN STORAGE IN THE FORM OF METAL HYDRIDES

M.G. Zwanziger, C.C. Santana, S.C. Santos

Translation

Abstract

Reversible reactions between hydrogen and such materials as iron/titanium and magnesium/nickel alloy may provide a means for storing hydrogen fuel. In this paper, a demonstration model of an iron/titanium hydride storage bed is described. Hydrogen from the hydride storage bed powers a converted gasoline electric generator.
HYDROGEN STORAGE IN THE FORM OF METAL HYDRIDES

By M. G. Zwanziger, C. C. Santana and S. C. Santos, UNICAMP [Universidade Estadual Campinas = State University at Campinas], Grupo de Energia, C. P. 1176, 13100 Campinas, SP (Brazil)

SUMMARY One of the critical aspects of hydrogen technology is the storage of this raw material for later use. The reversible chemical reactions between hydrogen and metallic alloys are a promising avenue of research. The idea has been tested in practical applications by several laboratories with iron/titanium, magnesium/nickel and lanthanum/nickel systems, to mention a few. We demonstrate an iron/titanium hydride bed that feeds hydrogen to a converted gasoline motoelectric generator.

(Authors' summary)

1. INTRODUCTION

Currently there are various research centers, world-wide, that are studying the feasibility of hydrogen storage in the form of hydrides, whose energies of formation and dissociation are reversible, with kinetic and thermodynamic characteristics (in addition to energy density and cost) suitable for practical applications.

** Numbers in the right margin indicate foreign pagination
Considerable progress was achieved during the last decade and the technical feasibility of fuel tanks for automobiles has already been shown by various companies, such as Billings, in the US and Daimler-Benz, in West Germany.

In Brazil there is the possibility and hope of producing electrolytic hydrogen from the still fairly abundant hydroelectric power reserves. As a traditional market technology, the cost of energy to the consumer - in the form of electrolytic hydrogen - is comparable to petroleum-based fuel costs, at current price schedules. Under these conditions it is reasonable to consider hydrogen operation for fleets of heavy freight transports, traveling between certain destinations, to minimize supply problems. The basic point of the entire matter is the storage, and here metal hydride tanks are a practical and safe alternative.

2. PHYSICOCHEMICAL ASPECTS

Metal hydrides are compounds formed by the reaction between metals and metal alloys and hydrogen. The metal hydride formation reactions of interest are exothermal, with the heat removed providing a measure of the quantity of hydrogen absorbed. At a given temperature, each system is in equilibrium with a certain hydrogen pressure, called the equilibrium pressure. The reaction is reversible, which made these systems attractive as possible hydrogen storage devices. The pressures involved are moderate (a few Kgf/cm2) and the process is safe, since it is necessary to supply thermal energy to obtain hydrogen. Hydrogen densities in terms of hydrogen atoms per unit volume are higher even than those for liquid hydrogen, as shown in Table 2 of reference 2.

The equilibrium pressure is a function of the temperature and of the hydrogen concentration in the solid phase. Figure 1,
Figure 1. Pressure isotherms as a function of composition for ideal metal-hydrogen systems

above, shows the typical behavior of metal-hydrogen systems.

As hydrogen is absorbed at constant temperature T_1 and the hydrogen/metal ratio increases, the equilibrium pressure rises sharply, to point A. During this period the solid consists of a solution of hydrogen atoms in the metal, but not a different compound. From point A on, the increase in hydrogen concentration causes no further increase in the equilibrium pressure; X-ray analysis shows that the solid consists of a mixture of metal + metal hydride, with the proportion of the latter increasing until all the metal has become metal hydride, a state described by point B, in Figure 1. From point B on, we have a solution of hydrogen in the metal hydride, with a typical increase in pressure as a function of the composition. In some systems (for instance, in the iron-titanium alloy), yet a second plateau can be observed, at a higher pressure level.

The curves marked T_2 and T_3 show the effect of temperature ($T_1 < T_2 < T_3$). Figure 2, below, shows the dissociation pressures as a function of temperature, for some systems.

One system of practical interest, despite its high density, is
that of the iron-titanium alloys, due to its low costs and moderate equilibrium pressure [1].

The equiatomic intermetallic compound FeTi (46.4% Ti by weight, 53.6% by weight iron) reacts reversibly with hydrogen to form hydrides according to the reactions

\[
\begin{align*}
\text{FeTi} + \frac{1}{2} \text{H}_2 & \rightleftharpoons \text{FeTiH}, \quad \Delta H = -6.7 \text{ kcal/mol} \\
\text{FeTi} + \frac{1}{2} \text{H}_2 & \rightarrow \text{FeTiH}_2, \quad \Delta H = -0.3 \text{ kcal/mol}.
\end{align*}
\]

The reaction products are solids of metallic appearance, gray, fragile, readily reduced to powder, not pyrophoric and release hydrogen only slowly to the air.

The variation of the equilibrium pressure as a function of the hydrogen content is shown in Figure 3 (from [1]), for various temperatures. The FeTiH system has also a characteristic hysteresis effect in the absorption/desorption process.

Some advances in the physical chemistry of hydrate formation, including the effect of additional chemical elements to the alloys, are described in [3-6].
3 STORAGE TANKS FOR H_2 IN HYDRIDE FORM

In order to test the utilization of hydride tanks for energy-generation purposes, a demonstration unit was built. A FeTi alloy was used, prepared at UNICAMP in an electron beam furnace and activated in the storage tank itself. A quantity of 2.7 kg of the alloy were placed in a storage tank formed by two steel cylinders with a combined capacity of 0.8 l, connected to a Montgomery generator group of 3.6 V mechanical power with the carburetor removed. Hydrogen was injected directly into the admission tube. The storage capacity achieved was 250 normal liters of hydrogen at an equilibrium pressure of 15 kgf/cm². This quantity is half the ideal quantity because a non-stoichiometric alloy was used.

The power is regulated by means of a needle valve on the hydrogen line. The motor was not modified in any other way. Under these conditions, the thermodynamic energy conversion yield is necessarily rather poor, but the device functioned normally and...
Figure 4. Hydride tank — demonstration unit

without problems.

Figure 4, above, shows a schematic of the assembly.

REFERENCES

