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UNIFORM APPARENT CONTRAST NOISE:

A PICTURE OF THE NOISE OF THE VISUAL CONTRAST DETECTION SYSTEM

A. J. Ahumada, Jr. and A. B. Watson
NASA Ames Research Center
Moffett Field, California

Introduction

We have generated pictures which are samples of random
contrast noise. The noise spectrum in a region of the picture
varies with the distance from the region to the center. At
each distance the noise spectrum is inversely proportional to
the human spatial frequency contrast sensitivity function at
the corresponding eccentricity. When an observer fixates the
center of the picture from the appropriate distance the noise
appears to have equal contrast at each spatial frequency and
location. If contrast thresholds are set by internal noise,
then this picture represents that noise.

There is evidence that contrast sensitivity functions at
different eccentricities differ only by a scale factor along the
spatial frequency dimension. This means that such pictures can
be generated by passing "white" noise through a space-invariant
filter and then stretching the output by the appropriate
space-varying magnification factor. The filter shape will be
the inverse of the contrast sensitivity function at the fovea.
The parameters for the filter and the magnification factor were
taken from a model of spatial contrast vision devised by Watson
(ref. 1).

The pictures summarize a noisy linear model of detection
and discrimination of contrast signals by referring the internal
noise of the model to the domain of the input picture. The
detectability of an arbitrary pattern can be estimated by
computing its ideal detectability in sample9 of the noise.
Since unlimited inspection of contrast targets in noise leads to
near ideal detection performance (Burgess et al., (ref. 2)), the
absolute detectability of a low-contrast target in a particular
retinal position for a brief duration can be estimated by adding
a sample of noise to the target and trying to detect the target
visually with no constraints on the viewing conditions.



The Picture

If one views figure 1 from a distance where it subtends four
degrees of visual angle and fixates the center, the contrast
variations in different regions of the picture should look roughly
equal because they are all about the same level above threshold in
log units. Both the contrast in spatial regions varying in
eccentricity from the center and the contrast in different spatial
frequency bands in each region have been made proportional to the
threshold for detecting small contrast variations at that
eccentricity and in that spatial frequency band. There is
evidence that as actual contrast increases, there is a greater
increase in apparent contrast for spatial frequencies with
higher contrast thresholds (Georgeson and Sullivan, (ref. 3)), so
the perceptual uniformity should be best close to threshold.

Figure 1. A picture of the noise of the contrast detection
system referred to its input.

The perceptual uniformity was not the original goal in
generating the picture. The original goal was to make a picture
of noise equivalent to that visual system noise which limits our
ability to detect spatial contrast signals. In engineering
language, we wanted to make a picture representing the noise of
the spatial contrast detection system referred to its input.
Pelli (ref. 4) has discussed temporal and spatial charcteristics
of this noise. Here we are concerned only with the spatial
aspects of the noise which limits the detection of a brief
(approximately one sec, with smooth onset and offset)
presentation of a static, low-contrast signal.
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Although the concept of referring the performance-limiting
noise of a system to its input is common in engineering, it is
not often encountered in perception. The advantage of reporting
unidimensional absolute (or difference) thresholds in stimulus
units was seen as soon as quantitative measurements of
thresholds were attempted. This is equivalent to referring the
noise of the observer back to the input. Consider these three
statements about an observer's ability to detect brightness
differences:

(1) The observer has a brightness difference threshold of
0.1 log units.

(2) The observer has d'=l when the brightness difference
is 0.1 log units.

(3) The observer's noise referred to the input has a standard
deviation of 0.1 log units.

These three statements ascribe equivalent ability to the observer.
Statements like (2) are currently the most popular formal
expressions of thresholds. They result from models of the
detection process in which the presentation of a stimulus value
results in an internal random variable whose variability limits
detection performance. Referring the noise to the input is just
transforming the internal random variable back into the stimulus
dimension. The appropriate transformation is the inverse of the
transformation which computes the mean of the internal
distribution from the value of the stimulus.

In the case of multidimensional stimuli, the equivalent
noise at the input will have a multivariate distribution in the
dimensions of the stimulus. For the case of visual contrast
detection for arbitrary targets, the stimulus can be regarded
as a multidimensional stimulus with the contrast of each pixel
being a dimension. The input equivalent noise will then be a
multivariate distribution giving the probability that the pixels
will jointly take on particular contrast values. The
construction of the input equivalent noise for contrast
detection is just the construction of a sample from that
distribution. The theory behind the construction of the picture
of the equivalent noise is outlined and the actual construction
method is described.
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The Theory

The basis for the construction of the picture of equivalent
noise is the signal-specified-exactly version of a model of visual
contrast detection which has been shown to accurately predict a
range of human contrast detection data by Watson (ref. 1) and
Watson and Ahumada (ref. 7). In this model, contrast variations
activate linear feature sensors whose receptive fields are similar
to those of simple cortical cells. Noise is present at the output
of these feature sensors. Both the filtering action of the
feature sensors and the noise at their outputs restrict the
ability of the model to detect low-contrast signals. The noisy
output of the sensors is then combined linearly into a single
number by the ideal decision mechanism, which then compares the
number with a criterion do determine the response. Here we
derive the equivalent input noise for this model. If this noise
is added to any contrast signal and the sum is presented to an
ideal observer, the performance level of the observer will be
equivalent to that of the ideal observer looking at the noisy
feature-sensor outputs. The equivalent noise thus reflects both
the filtering and the noisy aspects of the model.

Before showing the results for this model, we describe an
apparently more general class of models for which the method is
appropriate. The early stages of the visual system are organized
in layers, so it would be convenient to model the visual system
as a series of layers of processing. Figure 2 illustrates a
general multilayer model for spatial contrast detection. A
signal enters and is processed by a series of K layers. The
spatial contrast signal is represented by a column vector S
consisting of N contrast values, one for each pixel in the signal
picture.

.'

S = (Si)' i = 1, N. ( 1)

CONTRAST LINEAR

SIGNAL OPERATOR

~S A 1
(1 x N) (N x N1)

NOISE
N(O,R1) -

LINEAR
OPERATOR

AK
(N K- 1 x N K)

IDEAL
DECISION
MAKER ",

Figure 2. A multilayer model for contrast detection.
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Pictures (spatial contrast signals) are usually represented as
rectangular arrays, but for our purposes it is more convenient to
place the rows end to end and regard a picture as a long row
vector. In our actual computations, the picture resolution is
256 by 256 pixels, so that N is 65,536. Each layer is represented
as a noisy linear operator. For example, the first layer might
represent the receptors, with the linear operator representing the
optical point spread function, and the noise a combination of
photon and transducer noise. In figure 2 the top boxes represent
the linear operators, which are just matrices of coefficients.

(2)

is the kth operator, where a kij is the weighting that the jth
output of the kth operator gives to its ith input and

( 3)

If the first layer represented the receptors, alij would reflect
assumed to be Gaussian with a mean vector of zero and an
arbitrary covariance matrix.

Rk = ( r ki j ), k = 1, K; i, j = 1, Nk (4)

is the kth covariance matrix, giving the covariance between the
noise added to the ith and jth output variables at the kth stage.
Returning to the receptor layer example, the off-diagonal
elements of the noise covariance matrix would be zero to
represent the independence of photon and receptor noise between
two different receptors and the diagonal elements would have the
variances of the outputs of the receptors. The output of the last
stage goes to an ideal classifier, which, for the case of
detecting the presence or absence of a single pattern, is a simple
linear classifier.

How reasonable are the above assumptions when the visual
system is known to have nonlinear response functions and to have
noise sources which are usually characterized as approximately
poisson, where the variance is a function of the signal strength?
This is only a model for the detection of small contrast signals.
Only the small signal response of the system has to be linear and
the noise is assumed to be dominated by the noise generated by the
background level itself. The ideal observer assumption can be
regarded as a convenient way of describing the consequences of
computing the noise of the system referred to its input.
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Mathematically, the mUltiple layers can be represented by a
single layer whose linear operator A is the product of the
previous operators,

( 5)

and whose noise distribution is computable from the noises and
operators of the mulitple layer model. If the noise of the
different layers is independent, the covariance matrix R for the
equivalent single layer is given by

(6 )

where

( 7 )

Figure 3 illustrates this simplification. The two models are
the same from the point of view of the ideal observer. In
either case its inputs are normally distributed with mean SA and
covariance matrix R.

CONTRAST LINEAR
IDEALSIGNAL OPERATOR

~S A
DECISION

(1 x N) (N xM) MAKER

NOISE
f---N(O,R)

Figure 3. A single layer model for contrast detection.

The performance level of the ideal observer as a function of
the contrast signal S can be specified in terms of the hit rate
and the false alarm rate by the measure d' given by

6



d' (8) = z(Prob{DI8ignal=8})-z(Prob{DI8ignal=O}),

where D is the observer's response that a signal was present
and z is the functional inverse of the standard normal
cumulative distribution function. The equation for the
performance level of the ideal observer for the above models is
given by

The derivation of this equation can be found in standard texts
such as Anderson (ref. 6, chapt. 12).

CONTRAST LINEAR
IDEALSIGNAL OPERATOR

~S C DECISION

(1 x N) (NxM) MAKER

NOISE
N(O,J) .....--

Figure 4. A single layer model for contrast detection whose
noise is "white".

( 8)

( 9)

This model can be further simplified to a model with the
same performance function, but with a simplified noise structure.
In this new case, the noise added to each linear filter unit's
output is an independent standardized z score with zero mean and
unit variance. The operator in this new model, then, accounts for
the effects of both the operators and the noises of the previous
models. This version of the model is illustrated in figure 4,
where it is called the "white" noise model because independent,
identically distributed normal variates arranged in a rectangular
array generate a picture in which all spatial frequencies have
equal expected contrast energy. The equation for the linear
operator C in this case in terms of the operator and noise of
the previous model is given by
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C = A a-I,

where a is a matrix of factor loadings of R, that is

(10)

(11)

Since this model is a special case of the previous one, the
identity of performance can be verified by substituting C for A
and the identity matrix I for R in equation 9.

CONTRAST
SIGNAL

S
(1 x N)

IDEAL
DECISION

MAKER

Figure 5. The input equivalent noise model for contrast
detection.

Figure 5 illustrates another model with the same
performance function, but with no linear operator. In this
version, the noise is in the same domain as the signal. Samples
of the noise are pictures and the variances and correlations of
the pixel values have all the information in the original
operators and noises relevant to detection. The equation of the
covariance matrix for the equivalent input noise in terms of the
linear operator of the "white" noise model is simply

T -1
RE = ( C C) •

The identity of the performance function can be verified by
substituting the identity matrix I for A and RE for R in
equation 9. The noise in this model is the noise of the
previous models referred to the input picture domain.
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CONTRAST IDEAL
SIGNAL DECISION

S ~\.

MAKER
(1 x N)

LINEAR
OPERATOR NOISE

D N(O,I)
(M xN)

Figure 6. The input equivalent model with "back-projected"
"white" noise.

The model developed by Watson (ref. 1) has the form of the
"white" noise model. The values for the matrix C are available
in the paper by Watson and Ahumada (ref. 5). Figure 6
illustrates a way of computing the equivalent noise when C is
known. In this figure, the noise starts as independent z scores
and then is "back projected" through an operator D which is the
reverse (transpose) of the operator for the standard noise model
multiplied by an inverse gain factor correction; that is,

(13)

The factor after the transpose is called an inverse gain factor
correction because in the case that C is an orthogonal
transformation, it is a diagonal matrix containing the inverses
of the squared lengths of the rows of C. In general, it also
corrects for the correlations among the rows of C.

The Calculation Method

The initial idea for calculating the noise was just to use
the transpose of C on "white" noise to obtain the picture. We
realized that we had to correct for the gain factors, but we had
not yet derived Equation 12 so we were not aware of the
appropriate way to correct for the correlations. We generated
low resolution pictures (64 x 64 pixels) using this method and
described it in the ARVO abstract (Ahumada and Watson, (ref. 7)).

9



Since the model is not spatially homogeneous, we could not see
any simple way to derive the gain factor correction matrix.
However, the model is approximately a spatially homogeneous model
preceded by a nonhomogeneous magnification function. That is, the
linear dimensions of the linear feature detectors of the model are
scaled by a factor

s = 1 + ce , (14)

where e is the eccentricity in degrees of the center of the
response area from the center of the fovea and the constant c is

estimated to be about 0.023 (mrad)-l (0.4 (deg.)-l). The linear
dimensions of the detectors are thus doubled at an eccentricity
of 44 mrad (2.5 deg.). The response areas of the detectors at
the fovea range from about 0.7 mrad (0.04 deg.) to 91 mrad (5.2
deg.) in octave steps. For all but the largest layers, the
outputs of the detectors can be accurately approximated by first
stretching the picture with a magnification function which is
inversely proportional to that of equation 13, and then filtering
with detectors whose response areas are independent of retinal
eccentricity. This spatially homogeneous model can be represented
by its response in the spatial frequency domain. Neglecting the
presumeably small effects of the actual spatial position and
orientation of the output features, the spatially homogeneous
model can be approximated by a model which has uniform
orientation and phase response, but with a spatial frequency
amplitude response matched to that of the central fovea.

Figure 7. "White" noise. The contrast value of each pixel
is approximately normally distributed and independent of all
other values.
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Figures 7, 8, and 9 illustrate the actual calculations
performed by the computer programs, whose listings appear in the
appendix. All these programs were written in Fortran and were run
under the RT-ll operating system on an L8I-ll/23 processor. In
addition to the program listings, the appendix also contains the
operating system commands and program parameters used to create
the actual files of data displayed in the figures. Like figure 1,
figures 7 and 9 were photographed from the monitor of our raster

~ graphics display.

Figure 7 shows the "white" noise with which we started. It
was generated by the program FNOIS, which computes an
approximately normally distributed value for each pixel by
adding 12 uniformly distributed pseudorandom numbers. We then
transformed this picture into the spatial frequency domain using
a floating point two-dimensional FFT program, FFFT. Next, the
noise in the transform domain was multiplied by the inverse of an
approximation to the spatial spectral sensitivity of the fovea.
The sensitivity function used is given by

s(f) = exp(-(f/14.)2) - 0.9 exp(-(f/l.0)2), (15)

where f is the spatial frequency in cycles per degree. This
function is plotted in figure 8A. The amplitude of the noise in
the frequency domain was multiplied by the factor a(f) given by

a(f) = s(32)/s(f), f < 32

= 0, f > or = 32. (16)

This function is plotted in figure 8B. Since the 256 pixels
across a picture are assumed to span 4 degrees of visual angle,
frequencies in either the horizontal or vertical directions are
limited to 32 cycles per degree. Higher frequencies do occur in
diagonal directions, since the spatial frequency is given by

(17)

in terms of the frequencies in the x and y directions alone. The
amplitude of the noise at these frequencies was limited so that
essentially invisible noise power at these frequencies would not
use up the small dynamic range of the output, which was limited
to 8 bits. The frequency domain filtering was done by the program
FDOGM.
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Figure 8. (A) The model's contrast sensitivity at zero
eccentricity as a function of spatial frequency. (B) The
amplitude factor of the filter used to make the homogeneous
filtered noise from the white noise.

Figure 9 shows the result of transforming the filtered noise
back into the spatial domain. As figure 8B indicates, this is
essentially high-pass noise. We expected it to be more like
band-reject noise because the spatial frequency sensitivity
function is usually plotted in logarithmic frequency co-ordinates
and the sensitivity function looks reasonably symmetric in these
co-ordinates.

Finally, the noise of figure 1 was obtained from the noise
shown in figure 9 by stretching the noise according to the
inverse of the cortical magnification factor. Using the
subscript 1 for the spatially homogeneous input picture and the
subscript 2 for the stretched output picture, the intensity I for
the output is just copied from a corresponding intensity in the
input, that is

(18)
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Figure 9. The spatially homogeneous filtered noise.

The input co-ordinates in degrees of visual angle corresponding
to an output were found by

where the inverse expansion factor m is given by

where r 2 is the length of (x2'Y2)' that is

The constant c is the parameter in the inverse local cortical
magnification function in Watson's model (ref. 1) given by

M(e) = l/(l+ce),

(19)

(20)

(21)

(22)

",--

which is just the multiplicative inverse of equation 13.
Equation 20 is just the integral of this local magnification
function along the radius to the point. The inverse of the
constant c is the eccentricity in degrees at which the inverse
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local cortical magnification function has dropped to a value of
one half. We set this value to 44 mrad (2.5 deg.), which

corresponds to a value of 0.023 (mrad)-l (0.4 (deg.)-l) for c.

There is an additional complexity in the program BCRMG which
stretched figure 9 to obtain figure 1. The co-ordinates for a
point in the input corresponding to a point in the output do not
usually fall exactly on a point in the input. The output in the "
general case has to be interpolated from the surrounding points.
In this case we used a four by four interpolation function which
is the product of the sine function in each direction, with the
amplitude of the interpolation normalized to correct for the fact
that the sine function was only computed at the four closest
values in each direction.

Summary

To summarize, the noise of figure 1 is perceptually
homogeneous in the spatial and spatial frequency domains. Except
for a contrast gain factor, it represents in a single picture the
spatial contrast detection ability of the visual system. It is a
picture of the noise of the visual contrast detection system in a
useful sense. Once any signal is added to the noise the result
can be inspected at any magnification, gain, or for any length of
time to see whether the signal is "visible".
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APPENDIX

This appendix contains the Fortran IV source code listings of
the programs used to create the figures, preceded by a list of the
required RT-ll system commands and program control parameters.

1 RT-ll system commands and program parameters
1 Device m: should be fastest device available
1 (we used a ramdisk device driver).
create m:image.flo[1024]
r fnois
create image.byt[128]
r fb
28.0,0.0
copy image.byt noise.byt
! figure 7 in file noise.byt
r ffft
o
r fdogm
r ffft
-1
r fb
100.0,0.0
copy image.byt noidog.byt
1 figure 9 in file noidog.byt
copy image.byt m:input.byt
r bcrmg
1 figure 1 in file image.byt

program fnois
c This program fills the file M:IMAGE.FLO with 256 times 256
c floating point numbers which are approximately independent,
c normally distributed values with a mean of 0.0 and a
c standard deviation of 1.0. These numbers are followed by an
c equal number o~ zeros in anticipation of a complex fft.
c

real z, row(256)
c row, column dimensions

n= 256
open( unit=l, name= 'M:IMAGE.FLO', type='OLD',
& access= 'DIRECT', recordsize= n)

c random seeds
iran= 0
jran= 0

c do rows
do 6 j=l, n

c do columns
do 7 i= 1, n
z= O.
do 10 k= 1, 12

15
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10 z= z + ran(iran,jran)
row(i)= z - 6.0

7 continue

jl= j
write(l'jl) (row(i), i= 1, n)
type *, j, row (1), row (n )

6 continue
c do zeros

do 8 i= 1, n
8 row(i)= 0.0

do 9 j= 1, n
jl= j + n

9 write(l'jl) (row(i), i= 1, n)
stop
end

program fb
c Converts floating input of n records of length n,
c to byte output (-128 to 127) using scale factors input
c from the terminal. Scale factors are obtained from
c program frang.
c

real c(256)
byte a(256)
integer ia
n= 256
open( unit= 1, name= 'M:IMAGE.FLO', type= 'OLD',
& access= 'DIRECT', recordsize= n)
nd4= n/4
open( unit= 2, name= 'IMAGE.BYT', type= 'OLD',
& access= 'DIRECT', recordsize= nd4)
type*, , scale factor, offset ?'
accept*, scale, offset
do 7 j= 1, n
jl= j
read(l'jl) (c(i), i=l, n)
do 8 i= 1, n
fa = scale*c(i)+offset
if ( fa .It. O. ) fa = fa - 1.
a(i) = fa

8 continue
write(2'jl) (a(i), i=l, n)
type*, , row', jl

7 continue
stop
end
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program frang
c Finds the maximum and minimum values in a complex image.
c

real c(256), d(256)
n= 256
open( unit=l, name= 'M:IMAGE.FLO', type= 'OLD',
& access= 'DIRECT', recordsize= n)
cmax=-lOOOOOOO.
cmin= 10000000.
dmax=cmax
dmin=cmin
do 7 j= 1, n
jl= j
jml= jl+256
read (1' j 1 ) (c ( i), i = 1, n)
read(l'jml) (d(i), i= 1, n)
do 8 i= 1, n
cmax=amaxl(cmax,c(i))
dmax=amaxl(dmax,d(i))
cmin=aminl(cmin,c(i))
dmin=aminl(dmin,d(i))

8 continue
type*, , row ',jl

7 continue
type*, , cmax,cmin,dmax,dmin=' ,cmax,cmin,dmax,dmin
stop
end

program ffft
c Two-dimensional complex floating point fft.
c Inverse flag is a for direct, nonzero for inverse.
c Calls one-dimensional subroutine:
c fft( n, c, d, costab, invers)
c Output is written over input file, M:IMAGE.FLO
c

real c(256), d(256), costab(65)
real cbuf(8,256), dbuf(S,256)
n= 256
n2= n*2
Ibuf= 8
open( unit=l, name= 'M:IMAGE.FLO', type='OLD',
& access= 'DIRECT', recordsize= n)
pi = 3.1415927
twopi = 2. * pi
type*, , non-zero entry for inverse? '
accept 100, invers

100 format(ilO)
if( invers .ne. a ) inverse= -1

c fill cosine table
do 10 i= 1, n/4 +1

10 costab(i) = cos( twopi*(i-l)/n )
c type*, ( costab(i), i= 1, n/4 +1)

17



c do row transforms first
do 1 j = 1, n
jl= j
jml= jl+ n
read (1 ' j 1 ) (c (i), i = 1, n)
read(l'jml) (d(i), i=l, n)
call fft( n, c, d, costab, invers)
j2= j
jm2= j2+ n
write(1'j2) (c(i), i = 1, n)
write(1'jm2) (d(i), i= 1, n)
type *, , row', j

1 continue
close(unit=l)

c do columns
nbuf= n/lbuf
open( unit=l, name= 'M:IMAGE.FLO', type='OLD',
& access= 'DIRECT', recordsize= Ibuf)
nrec= n*(n/lbuf)
do 6 il = 1, nbuf
ibuf = il
do 9 j= 1, n
jl = ibuf
ibuf = ibuf + nbuf
jml = jl + nrec
read(l'jl) (cbuf(i,j), i= 1, Ibuf)
read(l'jml) (dbuf(i,j), i=l, Ibuf)

9 continue
do 11 i2 = 1, Ibuf
do 7 j = 1, n
c(j) = cbuf(i2,j)
d(j) = dbuf(i2,j)

7 continue
call fft( n, c, d, costab, invers)
do 8 j= 1, n
cbuf(i2,j)= c(j)
dbuf(i2,j)= d(j)

8 continue
icol= i2+ Ibuf*(il-l)
type *, , col " icol

11 continue
ibuf= il
do 12 j= 1, n
jl= ibuf
ibuf= ibuf + nbuf
jml= jl + nrec
write(l'jl) (cbuf(i,j), i= 1, Ibuf)
write(l'jml) (dbuf(i,j), i=l, Ibuf)

12 continue
6 continue

stop
end

18



program fdogm
c Multiplies the amplitudes of a complex frequency domain
c image by an amplitude response having the form of the
c inverse of the difference of two Gaussians.
c The 256 pixels are assumed to subtend 4 degrees of visual angle.
c Spatial frequencies above 32 cycles per degree are given
c an amplitude of zero.
c

real c, d
real crow(256), drow(256)
real gl( 256), g2( 256)
n= 256
open( unit= 1, name= 'M:IMAGE.FLO', type= 'OLD',
& access= 'DIRECT', recordsize= n)
nd2= n/2
nd2pl= nd2+l

c Difference of Gaussian parameters: ampl,spreadl,amp2,spread2
c are respectively, al, bl, a2, b2.

al=l.
a2=.9
bl= 10.*4.
b2= 0.7*4.
nx= 3.5*b1
nx=minO( nd2pl, nx)
c= -0.5/(bl*bl)
do 10 i= 1, nx
x=i-l

10 gl(i)= a1*exp(c*x*x)
if(nx .ge. nd2p1) go to 14
do 11 i=nx+l,nd2pl

11 gl(i)= O.
14 continue

nx= 3.5*b2
nx=minO( nd2pl, nx)
c= -O.5/(b2*b2)
do 12 i= 1, nx
x=i-1

12 g2(i)= a2*exp(c*x*x)
if(nx .ge. nd2pl) goto 15
do 13 i= nx+1,nd2p1

13 g2(i)=O.
15 continue

nx= minO( 32, nd2p1)
dogmin= a1*al*exp(-.5*(32/l0.)**2)
type* , dogmin

c do rows
do 6 j=l, n
jl= j
read(1'j1) (crow(i), i=l, n)
j1= j+ n
read (1' j 1 ) (d row ( i), i =1, n)

c do columns
do 7 i= 1, n
ix=i
if( ix .gt. nd2pl) ix= n-ix+2
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iy= j
if( iy .gt. nd2pl) iy= n-iy+2
factor= dogmin/( gl(ix)*gl(iy)-g2(ix)*g2(iy)
if(factor.gt.l.) factor= O.

8 crow(i)=factor*crow(i)
drow(i)=factor*drow(i)

7 continue
jl= j
write(l'jl) (crow(i), i= 1, n)
jl= j + n
write(l'jl) (drow(i), i= 1, n)
type*, 'row ,j

6 continue
stop
end

program bcrmg
c This program generates a picture in IMAGE.BYT
c by sampling and interpolation from M:INPUT.BYT
c according to the linear approximation to the cortical
c magnification factor.
c A sinc function is used for the interpolation, with a gain
c correction factor to compensate for amplitude variations
c caused by truncation of the sinc function.
c

byte row2(256), bufl(256,4)
real w(201)
real cor(lOO)
n= 256
nd4= n/4
open( unit= 1, name= 'M:INPUT.BYT', recordsize= nd4,
& access= 'DIRECT', type= 'OLD')
open( unit= 2, name= 'IMAGE.BYT', recordsize= nd4,
& access= 'DIRECT', type= 'OLD')
pi = 3.1415927
twopi = 2. * pi

c Sinc weighting function.
do 200 i= 2, 201
il=i-l

200 w(i)=sin(pi*il/lOO.)/(pi*il/lOO.)
w(l)=l.

c Amplitude correction.
do 300 i= 1, 100

300 cor(i)=1.0/(w(i)+w(i+lOO)+w(102-i)+w(202-i))
c viewing distance in pixels so 1 pixel is 1/64 degree

vdist=57*64
c coefficient of magnification factor in pixels

c= 0.4 * 57. / vdist
ci= L / c

c lower and upper ranges of output pixel ranges
n12 = 1
nu2 = n

c input and output magnification center coordinates
no2 = ( nu2 + n12 ) / 2
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row
, nu2
column
, nu2

ilml, 1)
ilml, 2)
ilml, 3)
ilml, 4)

iI, 1)
iI, 2)
iI, 3)
iI, 4)

ilpl, 1)
ilpl, 2)
ilpl, 3)
ilpl, 4)
ilp2, 1)

r

origin = no2
jo1d= -1

c For each output
do 10 j2 = n12

c For each output
do 1 i2 = n12
di = i2 - no2
dj = j2 - no2
r2 = sqrt ( di * di + dj * dj )
if r2 .eq. O. ) goto 2
r1 = ci * alog ( 1. + c * r2 )
ratio = rl / r2
goto 3

2 ratio = O.
3 xl = ratio * di + origin

y1 = ratio * dj + origin
il = xl
j1 = yl
idx= int((xl-il)*lOO.)+l
idy= int((yl-jl)*lOO.)+l
wx2= w(idx)
wy2= w(idy)
wx1= w(100+idx)
wyl= w(lOO+idy)
wx3= w(102-idx)
wy3= w(102-idy)
wx4= w(202-idx)
wy4= w(202-idy)
ilpl = il + 1
jlpl = jl + 1
ilml = i1 - 1
jlml = jl 1
i1p2 = il + 2
jlp2 = jl + 2
jrecl= jlml
if(jlml .eq. jold) goto 9
jold= jlml
do 8 j= 1, 4
read(l'jrecl) ( bufl(i,j), i=l,n )

8 jrecl= jrecl+l
9 continue

all = bufl(
a12 = bufl(
a13 = bufl(
a14 = bufl(
a21 = bufl(
a22 = bufl(
a23 = bufl(
a24 = bufl(
a31 = bufl(
a32 = bufl(
a33 = bufl(
a34 = bufl(
a41 = bufl(
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a42 = bufl( ilp2, 2)
a43 = bufl( ilp2, 3)
a44 = bufl( ilp2, 4)
ave = wxl*(wyl*all+wy2*a12+wy3*a13+wy4*a14)
& +wx2*(wyl*a2l+wy2*a22+wy3*a23+wy4*a24)
& +wx3*(wyl*a3l+wy2*a32+wy3*a33+wy4*a34)
& +wx4*(wyl*a4l+wy2*a42+wy3*a43+wy4*a44)
row2(i2) = ave*cor(idx)*cor(idy)

1 continue
jrec= j2
write(2 I jrec) (row2(i), i= 1, n)
type*, I row , jrec

10 continue
stop
end
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