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PART I



REED-SOLOMON CODES

For any m <_ 3 and any t < 2m, there exists a t-error-correcting RS code

with code symbols from GF(2m). The code has the following parameters:

n = 2m - 1

n - k = 2t

dmin = 2t + !

The code is capable of correcting any t or fewer symbol errors over a span

of n symbols.



Let a be a primitive element in GF(2 ). The generator polynomial is

g(X) = (X + a)(X + a2)---(X + a2t)

= 90
 + 9j X +..-+ g^j X2t>1 + X2t

where g e GF(2m).

**A polynomial of degree n - 1 or less with coefficients from GF(2m) is

a code polynomial if and only if it is a multiple of g(X).

2 2t**Every code polynomial has a, a -"a as roots.



I C

ENCODING

*Let a(X) = an + a, X +•••+ a, . X
k~! be the message to be encoded.

v/ J. K ™ J.

'Dividing X2t a ( X ) by g(X.)

X 2 t a ( X ) = c ( X ) g ( X ) + B ( X )

''The code polynomial for a(X) is

5(X) + X2t a(X) = c(X) g(X).

X2t a(X)



DECODING

Received polynomial

f(X) = r0 + rx X

*Then

r(X) = v(X) + e(X)

*Syndrome

. s2..... s2t)

where

*If S = 0, r(X) is a code polynomial. If S f 0, r(X) is not a code polynomial

and the presence of errors is detected.



SYNDROME COMPUTATION

^Dividing r(X) by (x + a1),

r(X) - ai(X)(X + a
1) + b.

where b. c GF(2 ). Then

,- = r(a') = b.

for i = 1, 2,---, 2t

*Circuit



Note that r(X) = v(X) + e(X) and v(X) has a, a2,-"a2* as roots. Then

S. = iV) = vCa1) + i(ai)

^ = eia1') (1)

for i = 1, 2,"-, 2t.

Suppose that the error pattern contains v symbol errors,

e(X) = e. X l+e. X 2 +.--+ e. X v (2)
Jl J2 Jv

where 0 <_ j, < j9 <•••< e- < and e. e GF(2m).i f. Jv j£



From (1) and ( 2 ) , we have

•I i <- j. j. « V. = e, a + e. a + • • • + e, a
L Jj J2 Jv

2J, 2J2 2j
= e . a + e • a + • • • + e . a

Jl J2 Jv

2tj 2tJ2 ' 2tj
= e • a + e . a +"*e • a

Jl J2 Jv

Note that v, j,,, e- are all unknown.

"Let

for £ = 1, 2,"-, v.

*8,, Bo'" ' . 8,> are cal led error location numbers

(3)



Now,

S l !

S2 = V'

( 4 )

>2t ^ „ 02t ^ ^ „ 02t

Error-Location Polynomial

o ( X ) = (1 -t B X ) ( l + B X ) . - - ( l + B X)

= 1 + DJ X + o2 X2 + • • •+ ov Xv

Note that

o ( X ) has Bn , Bo '""' ^~ as



(5 )

S , + o, S + o0 S +. . .+ a S = o
v+1 1 v 2 v-1 v 1

(6 )

2t



ITERATIVE METHOD

o(X) can be found iteratively in 2t steps. Let

y

be a minimum degree polynomial whose coefficients staisfy the following

y - H identities:

s + O(M) s +...+ a(n) s =
t +1 °i t °i iy y y

S + a S +...+ au s
£ +2 al £ +1 a£ 2y y y -



Then we compute

d = S + (y) S +...+ (y) S
y ° °

If d - 0, set

If d / 0, find p < y such that d f- 0 and p - I is the largest. Theny p y

d̂-'x'-'Mx).

o(X) = a(2t)(X).



Roots of o(X)

Substitu

o(a1) = 0, then

O O

Substituting the elements 1, a, a ,•••, a of GF(sm) into a(X) if

a

is an error location number.

Error Values

"7 / V \ 1 4- / C 4- \ Y - 4 - f c 4- r* 4- ^ Vt-\h) - I 1- ^bn
 T O, ) A T ^9 T Q ^ i - Ql A

Sv-l +*"+ %-l Sl + av} ̂

Let o'(X) be the derivative of o(X). Then

- _ £ _ £

E
1=1



FOUIER TRANSFORM IN GF(2m)

Let

c ( X ) = c0 + C lX +.-.(:„_! X"-1

be a polynomial of degree n - 1 or less with coefficients from GF(2 m ) . The

Fourier transform of c ( X ) is the polynomial

c . ( x ) = c + c x + • • • + c_ x""1
n _ 1

where the j-th spectral component is given by

n-1

_ - / J \ = A r, 1 JCj = c(a j ) = j^ c,. a

1=0

Note that the spectral components CQ, C ,,•••, C , are also symbols in GF(2 )



INVERSE TRANSFORM

Given c(X), the polynomial c(X) can be determined by taking the inverse

Fourier transform of C(X) with

ci = n modulo 2 C(a

n-1

EV

The polynomials c ( X ) and C ( X ) form a transform pair.



PROPERTIES

(1) The j-th spectral component C, is zero if and only if o.J is a root
J

of c(X).

(2) The i-th component c- of c(X) is zero if and only a" is a root of

C(X).



CHARACTERIZATION OF RS CODES

IN FREQUENCY DOMAIN

Let n = 2m - 1. Let c(X) be a code polynomial in the t-symbol-correct!ng
2 2tprimitive RS code whose generator polynomial has a, a ,—, a as all its

roots. Clearly the Fourier transform C(X) of c(X) has zero spectral components

at positions j = 1, 2,-", 2t, i.e.

r - r =....= r = nLl L2 L2t u



RS CODES IN FREQUENCY DOMAIN

In frequency domain, a primitive t-symbol -correcting RS code with symbols

from GF^1) consists of all the polynomials

c ( x ) =

over G F ( 2 ) for which

= C 2 t = 0-



SYNDROME COMPUTATION

Let r ( X ) = r» + r, X + ••• + r _. Xn" be a received polynomial. Then

r(X) = c(X) + e(X)

where c(X) and e(X) are the transmitted code polynomial and the error

polynomial respectively. The Fourier transform of r(X) is

R(X) = RQ + R X +...+ Rn-1 X""
1

with

n-1

i=0

Since R(X) = C(X) + E(X),

r.

where C(X) and E(X) are the Fourier transforms of c(X) and e(X) respectively.

For j = 1, 2 , - - - , 2t,

and



SYNDROME (cont.)

Let S = (S,, S2,—, S?t) be the syndrome of r(X). Then

Thus, for j = 1, 2,"-, 2t,

This says that the 2t spectral components R,, R^,***, Rpt of R(X) are the 2t

syndrome components, and are equal to the 2t spectral components E,, E^,"-,

of E(X), the transform of the error polynomial e(X).



DECODING

Once S., S? ,—, S?. are computed, we may use Berlekamp's iterative method to

determine the error location polynomial

o ( X ) - OQ + QJ X + ••• + at X1.

The 2t spectral components E,, £,>>•••, E2t of E(X) are known, the other n - 2t

spectral components of E(X) can be computed from the following recursive

equation:

E
J+t = °i Ej+t-i + 02 Ejn-2 + " -+ 0 t Ej

for j = t + l , t + 2 , " - , n - l - t . The component En is given by

V

where cy is the coefficient of the highest power of a(X) that is not zero,

Once E(X) is found, we take the inverse transform of

C(X) = R(X) - E(X).

This gives c(x).



DECODING

(1) Take the transform R(X) of r(X)

(2) Find o(X).

(3) Compute E(X).

(4) Take the inverse transform C(X) of C(X) - R(X) - E(X)



GALOIS FIELD

Consider the Galois field GF(2m). Let B be an element in GF(2m)

The trace of B, denoted Tr(B), is defined as

m-1

Properties:

(1) Tr(B) e GF(2).

(2) Tr(B + y) = Tr(B)

(3) For a e GF(2), Tr(aB) = a Tr(3)



,111
GF(2 ) may be regarded as an m-dimensional vector space over G F ( 2 ) ,

For any factor A of m, GF(2m) contains GF(2 A ) as a subfield. Let 3 be

an element not contained in any subfield of GF(2m) . Then

(6°, 31,

m,is a basis of GF(2 ).



Let {£Q, £ , , • • - , t ,} be expressed as.

z ^

where a e GF(2). The basis Un, -£,,-••, I ,} is called the dual basis of
"v. U 1 ill"' J.

\ p 9 P i P S * * * 5 P J 1'

0 for xl /

_ 1 for -i =

with 0 £ -i, j < m. In this case

a- = TKB"- a)



BIT - SERIAL MULTIPLICATION

Consider the multiplication of an arbitrary element z by a fixed

element G in GF(2m). Let us express z and z • G in terms of the dual basis

UQ, - f c j , ' " ,

where

z - G - z

Vi Vi

z- = Tr(6^ z)
•A-

z = Tr(BX z G).



BIT - SERIAL MULTIPLICATION CONTINUED

The coefficient z' is related to zn, z , , - - - , z , in linear form. First,
•K. V_/ i III~" J.

we note that

z G)

6- G

For i = 0, we have

= 2 Tr(G

This says that zA is simply a modulo-2 sum of the bits in (ZQ, z,,"-, z _ , ) ,

The coeff icients, T r (G £ - ) ' s can be pre-determined.
X,



BIT - SERIAL MULTIPLICATION CONTINUED!

The coefficients z^, z^,

Consider

can be computed in a serial manner.

where

a,- =

z] = z-c+1

Hence

where

l

z)



BIT - SERIAL MULTIPLICATION CONTINUED

Now

zj = Tr(B z G)

= 2 Tr(G

From the above expression, we see that, to generate z^, we simply replace

the vector (ZQ, z,, z , ) by z ^ , - - - , z ). This can be implemented

easily by a sequential circuit as shown in next view graph. The z-register

initially stores the representation of z in dual basis, (ZQ, z , , - - - , z ,).

After a total of m-shifts, z G is stored in z G-register.



PIT - SERIAL - MULTIPLIER

2 G

Register



REVERSIBLE REED-SOLOMON CODES

Let Y be a primitive element in GF(2 ). Choose b such that

b b+2t-l 2m-l
Y ' Y = Y (1)

Consider the Reed-Solomon code whose generator polynomial g ( X ) has

b b+1 b+2t-l
Y > Y >•* *> Y

as all its roots. Then

2t-l

g(x ) = £ (x + Y
b+j)

j=0

= G 0 + G 1
,2t

The condition (1) gives the following property:

G0 = G2t =

Gl = G2t-l

Gt-i = Gt+

Thus g (X) is self reciprol , and the RS code generated by g (X) is reversible.



ENCODING

The encoder for a reversible 2t-symbol -error-correction RS code requires

at most t multiplers. The encoder can be implemented in terms of dual basis

using bit-serial multipliers. Suppose that an information symbol

0 1
+ y a

m-1a

is to be shifted into the encoder. It is first tranformed into the dual form,

2 -

using the dual basis {£Q, £,,•••,

Then z is shifted into the encoder. The products

z G, z , z

are formed using BS multipliers. It takes m clock times to form these

products. Shift the encoder once. The next information symbol is ready to

be shifted into the encoder.



o(X) Register

z(X) Register

Buffer Register r(X)

Syndrome

Computation

Galois Field

Arithmetic

Processor

a(X)
Chiem Search

2(X) Error-Magnitude

Computation

Output
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ABSTRACT

A problem in designing semiconductor memories is to provide

some measure of error control without requiring excessive coding

overhead or decoding time. In LSI and VLSI technology, memories

are often organized on a multiple bit (or byte) per chip basis.

For example, some 256K-bit DRAM's are organized in 32Kx8 bit-bytes.

Byte oriented codes such as Reed Solomon (RS) codes can provide

efficient low overhead error control for such memories. However,

the standard iterative algorithm for decoding RS codes is too slow

for these applications.

In this paper we present some special decoding techniques for

extended single-and-double-error-correcting RS codes which are

capable of high speed operation. These techniques are designed to

find the error locations and the error values directly from the

syndrome without having to use the iterative algorithm to find the

error locator polynomial. Two codes are considered: 1) a d . =4

single-byte-error-correcting (SBEC), double-byte-error-detecting

(DEED) RS code; and 2) a d . =6 double-byte-error-correcting

(DBEC), triple-byte-error-detecting (TBED) RS code.



Index Terms

1. Error Control Coding

2. Error-Correcting-Codes

3. Error-Detecting-Codes

4. Reed-Solomon Codes

5. Byte-Oriented Codes

6. High-Speed Decoding

7 . Computer Memory Systems

8. Byte Organized Chips

9. Chip Reliability



I. INTRODUCTION

Error control has long been used to improve the reliability of

computer memory systems [1]. The most common approach has been to

use a variation of the Hamming codes such as the single-error-

correcting and double-error-detecting (SEC-DED) binary codes first

introduced by Hsaio [2]. These codes are particularly effective

for correcting and detecting errors in memories with a 1 bit per

chip organization. In these memories a single chip failure can

affect at most one bit in a codeword.

Large scale integration (LSI) and very large scale integra-

tion (VLSI) memory systems offer significant advantages in size,

speed, and weight over earlier memory systems. These memories are

normally packaged with a multiple bit (or byte) per chip organiza-

tion. For example, some 256K-bit dynamic random access memories

(DRAM's) are organized in 32K><8 bit-bytes. In this case a single

chip failure can affect several or all of the bits in a byte, thus

exceeding the error-correcting and detecting capability of SEC-DED

codes.

Several papers have been written recently trying to extend

the SEC-DED codes to include byte errors [3-7]. In this paper we

investigate the use of Reed-Solomon (RS) codes for correcting and

detecting byte errors in computer memories. RS codes are a class

of nonbinary codes with symbols in the Galois field of 2 elements

(GF(2m)). These codes are maximum distance separable (MDS), and

thus can provide efficient low overhead error control for byte-

organized memories, since symbol error correction in GF(2 ) is

equivalent to correcting an m-bit byte.



For computer memory applications, decoding must be fast and

efficient. The standard approach to decoding RS codes uses the

iterative algorithm [8] to form an error locator polynomial and

then solves for its roots. It has the advantage of being easy to

implement, but decoding is too slow for computer memory applica-

tions. High-speed decoding can be achieved by using the table-

lookup method [1]. However, even for moderate code lengths, the

implementation of table-lookup decoding is impractical, since

either a large amount of storage or very complex logical circuitry

is needed.

In this paper we investigate some special high-speed decoding

techniques for extended single-and-double-byte-error-correcting RS

codes. These techniques are designed to locate and correct the

errors directly without having to use the iterative algorithm to

find the error locator polynomial. Thus they satisfy the require-

ment of being both high-speed and easy to implement.

II. A dmin = 4 SBEC-DBED CODE

In this section we present an extended Reed-Solomon (RS)

code over GF(2m) with minimum distance d - =4. This code can be

used to correct any single byte error and simultaneously detect

any double byte error. Thus it is called a single-byte-error-

correcting (SBEC), double-byte-error-detecting (DEED) code. Fast

encoding and decoding can be achieved due to some nice features

of the code described below.

The d - =4 Extended RS Code and Its Properties

It has been shown [9] that there exists an (n+3,n) d . = 4



,mextended RS code over GF(2 ) with parity-check matrix given by

» ' [ ±3x3 ! "I I'

where I,v, is the 3x3 identity matrix
—3 x J

, 2 31 a a a

, 2 4 61 a a a a

1

n-1t

2n-2

a

(1)

(2)

a is a primitive element of GF(2m), and n = 2m-l. Because d .mm

4, the code can be used for correcting any single byte error and

simultaneously detecting any double byte errors [1].

From (1) and (2) we see that the H matrix has the following

important properties.

1) H is in systematic form. Hence G_ - the generator

matrix - is also in systematic form:

G = [ H T ! 1 ], (3)
•*- i

Twhere H, is the transpose of H, , and where I_ is

the nxn identity matrix. This implies that encod-

ing and decoding can be implemented in parallel.

2) The first nonzero element of every column of H is

the unit element a = 1. (The advantage of this

property will be seen later.)

3) For a systematic code with d . = d, each column of

H, must contain at least d-1 nonzero elements. In

(2), each column of H, contains exactly d-1 = 4-1 = 3



nonzero elements. So H contains the minimum possible

number of nonzero elements.

4) The number of nonzero elements in each row of H is

equal .

Properties 3) and 4) simplify the implementation of the encoder and

the decoder.

Error Correction and Error Detection

Let v = (v~ , v,, •••, v +2) be a code vector that is written

into memory. Let r_ = (rn , r, , •••,
 r
n+2) ̂

e the corresponding

(possibly noisy) vector that is read from memory. Because of

possible chip failures, T_ may be different from v. The modulo-2

vector sum
e = r + v = (e0, e^ •-., e) , ° (4)

where e. ^ 0 for r. ^ v. and e. = 0 for r. = v. , is called the

error pattern. When £ is read, the decoder computes the syn-

drome s_,
T T Tc-1 = -r u1 = c-ir 4. o^u1 = r 0sT = r HT = (v -H e)HT = (sn, sn , s7) . (5)

TSince v H =0^, the syndrome s^, computed from the vector r_,

depends only on the error pattern e_, and not on the transmitted

code vector v.

a) Single byte error correction

Let £ denote the syndrome corresponding to a single byte

error. Then from (5) we have

s

s = e-h. =—s i—i

0

2

(6)



where e. is the error value at location i, and h. is the i —

column of H, 0 <_ i <_ n+2. Note that the first nonzero element of

every column of H is the unit element a , and e.a = e.. There-

fore the error value e. is given directly by the first nonzero

element of the syndrome.

The problem of locating the error is reduced to finding a

column h. of H which satisfies (6) (see Chien [10]). This can be done

in the following way. Check the elements of the syndrome s^ to see

1) if SQ

2) if sl

3) if s2

Otherwise, since

0, s1 =

0, SQ =

0, SQ =

= 0, then i = 0,

= 0, then i = 1,

= 0, then i = 2.

e .h. = e .i—i i

" i

i-3
a

a

=

" _ ~
0

Sl

. S2

(6')

for 3 < i < n+2,

we have

a (7)

and i gives the error location. Define

A 2
u = sl + S0S2'

and note that (7) is equivalent to

u = 0 for s . f Q , je{0, 1, 2}.

b) Double byte error detection

Let s, denote the syndrome corresponding to a double byte

(8)

(9)



error. Then from (5) we have

Id = ejh. + ekhk , (10)

where 0 <_ j < k <_ n+2 .

The following theorem regarding the H matrix of a binary

block code still holds true in the case of a nonbinary code (see

[1]).

Theorem 1 . A code defined by a parity-check matrix H will have

minimum distance d if and only if every combination of d-1 or

fewer columns of H is linearly independent.

Theorem 1 can be used directly to obtain the following property

of the d . =4 extended RS code.mm

Property 1 .

ss ^ sd , (11)

for any single and double byte errors.

t

By property 1, double byte error detection can be done in the

following way. If

sil = °' Si2 ^ °' Si3 ^ °' where i1Ji2,i3e{0,l,2},(12)

or if
s, s?

s. ? 0, for i = 0, 1, 2, and -± f -*- , (13)i SQ s1

then two or more byte errors are detected. Note that (13) im-

plies that

u - s,2 + Ss * 0. (14)



Summarizing the above discussion, we have the following

decoding scheme for the SBEC-DBED code defined by (1) . Read r_,
T Tand compute the syndrome £ = r_ H = (SQ, s,, s_) . Let w(sj

denote the Hamming weight of the syndrome.

1) If w(sO = 0, decide that no errors occurred.

2) If w(sj) = 1, then check:

(i) If SQ ^ 0, e± = SQ, i = 0;

(ii) If S-L ̂ 0, ei = slf i = 1;

(iii) If s2 f 0, ei = sz, i = 2;

where e. gives the error value and i gives the error

location.

3) If w(_s) = 2, decide that two or more byte errors

occurred.
2

4) If w(js) = 3, compute u = s, + s^s^. If u = 0, cal-

culate a = s,/sn and correct a single byte error

with error value e- = s« at location i. Otherwise,

decide that two or more byte errors occurred.

III. A dmin = 6 DBEC-TBED CODE

In this section we first present a special high speed de-

coding technique for the double-byte-error-correcting (DBEC) and

triple-byte-error-detecting (TBED) RS code with dmin = 6. Then

a slightly modified technique is applied to decoding the extended

RS code with two extra information symbols.



The d - = 6 RS Code and Its Propertiesrm n

The generator polynomial for the d . = 6 RS code is given

by

g(x) = I (x+a1),
i=-2

(15)

where a is a primitive element of GF(2 ). The parity-check

matrix, H9 , of the code specified by (15) can be written as

•
1 a

1 a

1 1

1 a

.1 a2

7 2

(0 )

, 2
(a )

1

(a)2

2 2

(a )

-2 n"1 "• • • (a )

i n-1- 1
... (a -1)

1

r - > n ~ l(a)

9 n-1
• • • (a )

(16)

where n _< 2m-l. Because the code has d . =6, then from theorem

1 every combination of d . -1 = 5 or fewer columns of H_ is

linearly independent, and the code is capable of correcting any

two or fewer byte errors and simultaneously detecting any combina-

tion of three byte errors [1].

When _r = v + e_ is read, the decoder computes the syndrome s_,

T T T T
s1 = r H-1 = (v+e)H9

1 = e H9
x

— — — — — — — —

(17)

Let s , _s j, and s^ denote the syndromes corresponding to single,
^~ J \JL ~ L

double, and triple byte error patterns, respectively. Then from

(17) we have:

8



e.a

eia

ei

-1

e .a

eia
2i

(18)

where e. is the error value and i is the error location, 0 < i <
J. ™"" *"•"*

n-1,

-2i . -2i

* d

e.a .

e -a + e -a

e.i + e .

e.a + e .a

e.a + e -a

where 0 _< i < j <_ n-1, and

(19)

t

-2ie -a

- i
e -a

e .

e.a

6ia
2i

-2 i+ e -a J

_ A

+ e -a J

+ e .

+ e -a-1

+ e a2:i

j

-2k "
+ eka

-k
+ eka

+ ek

-k^

- eva2k

K j

(20)

where 0 £ i < j < k _ < n-1.

Before proceeding, we need to prove some properties of the

d . = 6 RS code which will be used later. Theorem 1 can be used
mm



directly to obtain property 1

Property 1 .

for any single, double, and triple byte errors.

Property 2. If a is a primitive element of GF(2m) , then

a"1 + a~J f 0, (22.1)

a"21 + a~2J ? 0, (22.2)

for 0 £ i < j £ 2m-2.

Proof. If a"1 + a'-* = 0, multiply both sides by aa + :) ? 0. Then

we have a + or = 0 . But this is impossible since a is a primi-

tive element. Similarly we can show that (22.2) is also

correct. Q.E.D.

T
Let iLd = t5-?' s-l» S0' Sl' S2^ ' From (19) we have the

following equations:

s_2 = e^^a"21 + e.a"2;i (23.1)

S-l = eia"1 + e.a"^ (23.2)

SQ = ei + e^ (23.3)

Sl = eial + eia:i (23.4)

s? = e-a21 + e.a2;j (23.5)/ i j

T
Property 5. Let s_, = (s_2>

 s _ n > SQ, s,, s2) be the syndrome

corresponding to a double byte error with error values e. and e.

at locations i and j, respectively. Let N denote the number of

10



zero elements of s,. Then

N < 2, (24)

and the equal sign holds for some values of i and j in only two

cases:

1) s_1 = s2 = 0;

2) s-j^ = s_2= 0.

Proof: It can be seen from property 2 that the vectors (a 1,

a"2-"), (a"1, a'J), (1, 1), (a1, c^ ) and (a21, a2;i), where 0 <_

i < j <_ 2 -2, are always pairwise linearly independent except for

the following two pairs:

2) (a, a), (a

- j ̂ f 2i 2j., a J), (a , a J) ;

L, a -h .

These two pairs are linearly dependent for some values of i and j

First we show that if sn = 0, then sv ^ 0, k = -2, -1, 1, 2.U K

Suppose s, = 0 for some k ^ 0. From (23.1)- (23.5), we have

sn0

. S k_

" 0 "

0

= ei
" 1 "

aki + 6J

~ 1 "

k ja J

where e. ^ 0, e. ^ 0, and k =-2, -1, 1, 2. But (1, 1) and

ki ki(a , a J) are linearly independent, and this implies that the

above equation is impossible. Hence s, / 0, k =-2, -1, 1, 2.

Next we show that if s_, = 0 (or s2 = 0), then s, ± 0,

k = -2, 0, 1, and s? (or s ,) can be either zero or nonzero. It

is easy to show that s, ^ 0, k = -2, 0, 1, in the same way as

above. Because (a"1, a"-1) and (a 1, a -1) are linearly dependent

11



for some i and j, there exists 6,^0,

and some i < j, such that

UK0 , , B e G F ( 2 ) ,

0

0
• Bl

a

-2ia

+ *2

V j

a'2 '

Let e. = 3, and e. = B9 . From (23 .2 ) and (23 .5 ) we see that the
1 J- J ^

above equation becomes

s-l
_ S 2

=
0

0

•

= e .i

"a'1

.
a

+ e .
3

"a - J

. a '2^ _

Therefore s_1 = s = 0 for some i and j.

By exactly the same argument as above, we can prove that if

s, (or s_2) = 0, then s, ? 0, k = -1, 0, 2, and s_2 (or s,) can

be either zero or nonzero. This completes the proof that

N = 2. Q.E.D.

Property 4. Let s_A = (s_2, s_1, SQ, Then

sls-2 + S-1S0

S0S1 S2S-1

(25.1)

(25.2)

(25.3).

hold true for all double byte errors.

Proof: 1) Suppose S2s_2 + SQ = 0. Them from (23.1), (23.3),

and (23.5) we obtain

(e,a21 + e-a2:i)(e.a"2:i + e,a~2;j) + e.) = 0

12



Expanding this equation and performing some simplification give us

2i-2j ^ -2i+2j na J + a J = 0.

But this is impossible, since a is a primitive element and i ^ j.
?

Therefore, s2s_2 + SQ ± 0.

2) Suppose s,s_ 2 +
 s_i sn = °» i' e-» sis-2 = S-1S0' Froin (23.1)-

(23.4) we have

(e-a1 + e-a-')(e.a """ + e.a •*) = (e-a 1 + e.a ^(e.+e.

After some simplification we obtain

ai-2J + aj-2i = a-i + a-j.

Multiplying both sides by a •* ? 0, the above equation becomes

3i _,. 3j i + 2j . j + 2i ,_,,.a + a j = a J + a J , (26)

or

(a1 + a j ) (a 2 1 + ai+;i
 + a 2 j ) = ai + j (a1 + aj) .

This can be reduced to

a21 + a2j = 0, if j.

But this is impossible. Hence s,s_2 + s ,s0 f 0.

3) Suppose sns, + s2s_, =0. In the same way as above we obtain

3i 3j i+2j _,. j + 2 ia + a j = a J + a J

This is exactly the same as (26) . Hence the equality is invalid,

and s Q s , + s 2 s _ , ^ 0 . Q.E.D.

Decoding Using the Quadratic Equation

In this subsection we show that the well known quadratic

13



equation over GF(2m) can be used to decode the dmin = 6 RS code.

Also, we present a method for solving it.

It was shown in property 2 that if a is a primitive element

of GF(2m), then a"1 + a"^ t 0 and a"21 + a"2;i t 0 both hold

true for any 0 < i < j < 2m-2. From (23.1) and (23.3) we have

ei =

det

•

det

c

0

S-2

1

»•

a

1

a'2'

1

!i -2ja J

S-2 + S0a"2:1

From (23.2) and (23.3) we have

det

e. =
+ soa"3

det

a
'1

a + a

Therefore

<; + <; n
1 0

a"1 +

-2 0
•'

(a"1 + a

. 2

(27)

(28)

(29)

Now multiplying both sides by (a"1 + a'1*) ^ °' (29) becomes

(a"1 + a"J)(s_1 +

After simplification we have

= S-2 +
1 (30)

14



= 0. (31)

Multiplying (31) by a •* gives us

s_1(a
1 + aj) + s_2a

1a:i + SQ = 0. (32)

In the same way, from (23 .3)-(23.5), we can obtain

s1(a
1 + o^) + SgCt1^ + s2 = 0. (33)

Now define

b = a1 + c^, (34.1)

c = a1aj. (34.2)

Also define

Y! - sQ
2 + s_lSl, (35.1)

Y ^ s s + s 2 f35 21T O O O O J l « J * J « t * l
L L "• L \j

Y3 -
 sis-2

 + S-1S0' (35.3)

^4 - sosi + S2s-r C35-4)

Solving (32) and (33) for b = a1 + a-1 and c = a1a-) , we obtain

b = a1 + c^ = -— , (36.1)

c = aV = -— , (36.2)Y3

for Y3 i- 0. Also, from (34.1) and (34.2) we see that a1 and

a-' are the roots of

y2 + by + c = 0. (37)

This is the well-known quadratic equation over GF(2 ) . We

will see later that (37) plays an important role in decoding.

15



Therefore we call it the "decoding equation". Because of its im-

portance, in the remainder of this subsection we present a method

of solving it.
2

The formula for the roots of the quadratic equation y + by +

c = 0 is (-b±/b2-4c )/2. , Unfortunately, for finite fields of

characteristic two, this formula is not applicable because the

denominator is zero ( 2 = 1 + 1 = 0 ) . However, there are several

known approaches to solving this problem. One way of finding the

roots is by trying each element of the field in sequence [11].

But this is unacceptable for fast decoding because it takes a

long time. The method given in [12] is probably the best one

known. We present it here.

Define

x ^ y/b. (38)

Then (37) becomes

where

x2 + x + K = 0, (39)

K = c/b2. (40)

Let B be any element of GF(2m), and define

. m-1 7i
T?CB) = I 6 (41)
L i=0

T2(B) is known as the trace of B- It is either zero or one [12].

For even m, define
(m-2)/2 22i

T,(B) = I BZ , m even. (42)
i = 0

If (39)has solutions, T,(K) is either zero or one [12]. Equa-

tion (39) has solutions in GF(2m) if and only if T2(K) = 0

[8,13].

16



Suppose T2(K) = 0, i.e., (39) has solutions. Let x, be a

solution of (39) . Then x~ = 1 + x, is the other solution. Then

we have the following results [12]:

1) m odd

2*
x = I K^ = IK' (43)
1 jeJ iel

where I = {1,3,5, •••, m-2}, J = {0,2,4, ..., m-1}.

2) m = 2 modulo 4

(m-6)/4 7 72+4i
x, = I (K+ir)̂  , for T.(K) = 0, (44.1)
1 i=0 . 4

(m-6)/4 7 ?2+4i
x, = a, + I (K+IT)̂  , for T.(K) = 1,(44.2)

i=0

where a, is a solution of the equation a, + a, + 1 = 0

3) m = 0 modulo 4

7 7m-l (m/4)-l ?2i+m/2
x, = S + SZ + KZ (1 + I KZ ) ,
1 i=0

where

s = • r "r K

for T4(K) = 1, (45)

(22i-H-m/2 +

For T4(K) = 0, select an element 6 of GF(2
m) such that

T7(B) = 1, compute K^ = B+3 , and solve z + z + K 1 + K = 0

using (45) with K replaced by K, + K. Then x, = B+z, is a solu-

tion of (39), where z, is obtained from (45). For m = 4, 8, 12,

(45) reduces to the following forms:

17



m = 4, X-L = K8 + K12;

„ _ o Y - V33 . Y66 . V129 V132in — o , X - . — j\ TJ^ "^ K *K ,

„ _ 19 „ _ V2048ri . V64 V256 A ,,1024,m — J. / , X-. — J\. { J. ••• JV -r Jv + K J

K129 + K258 + K513 + K1026 + R516

K1032

Decoding of the d . = 6 RS Code_ _ _ _ mm _ _ _

Suppose that a double byte error with error values e- and e.

at locations i and j (i < j) occurs. By our definition, s, =
TJ>_2, s_1, SQ, s,, s2) is the syndrome associated with this

error pattern. From property 4 we know that

T2 = S2S-2

= SlS-2 + S-1S0

and

Therefore b and c in (36.1) and (36.2) exist. Hence (37) has

two roots, a and or. We summarize as a theorem.

Theorem 2 . If s 2, s_,, SQ, s,, s2 are the elements of s d̂, the

decoding equation (37) has two roots, a1 and a-1, where i and j

are the two byte error locations and 0 _ < i < j £ 2 - 2 . In other

words, whenever a double byte error occurs, its error locations

can be found by solving the decoding equation (37) .

Since a1 + or1 ̂ 0 when a is a primitive element of GF(2 ) ,

(23.3), (23.4), and (36.1) imply that

18



e. =

det

det

50 1

»! «>
I 1

a a^

_ V3 + si _ soaJ + si
a1 + a3 b

, (46.1)

and

e.f (46.2)

where e. and e. are the error values at locations i and j of the

double byte error.

Now let s^ = (s - , s_,, s«, s, , s,,) be the syndrome corre-

to a sing

From (18) we have:

sponding to a single byte error with error value e- at location i.

-2 e.o

-i

ei

eia

2i

From (47.1)-(47 .5) , we see that

? 0, for i = -2, -1, 0, 1, 2,

and

-2 S0 Sl

Note that (48.2) is equivalent to

2= s o s-isi =

(47.1)

(47.2)

(47.3)

(47.4)

(47.5)

(48.1)

(48.2)

(49.1)
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Y3 = SlS-2 + S-1S0 = °

Y4 = S0S1 + S2S-1 = °-

The above result implies the following theorem.

Theorem 5. If s 2, s_,, sfi, s, , s~ are the elements of £ , then

Si f 0, for i = -2, -1, 0, 1, 2, and YI = Y3 = Y4 = 0.

In other words, whenever a single byte error occurs, s. ^ 0

for i = -2, -1, 0, 1, 2, and YI = Y3
 = Y4 = 0- From (47.3) and

(47.4) we have

a1 = -^ , (50.1)
S0

ei = SQ, (50.2)

where i gives the error location and e. is the error value of a

single byte error..

Properties 1-4 and theorems 2 and 3 imply the following

theorem.

Theorem 4. If more than two elements of the syndrome s^ =

T
(s_2, s_ 1 ? SQ, s-,, s_) equal zero; or if YO> Y-r, J» are not all

equal to zero, but at least one of them does equal zero; or if

the decoding equation (37) does not have roots in GF(2 ); then

at least three byte errors have occurred.

We now summarize the decoding scheme obtained above for the

DBEC-TBED RS code defined by (15) and (16) . Read r_, and calcu-

T T
late the syndrome £ = r H., = (s_2,

 s.i» sn' si' S2^ ' Let W^— ̂  '

w(V), and w(y_") denote the Hamming weights of s^ = (s_2, s_1, SQ,

sl» S2)T' J* " (Y1' Y3' Y4^' and 1" ~ (Y2' Y3' Y4)> respectively.

20



6)

1) If w(s_) = 0, decide that no errors occurred.

2) If 1 = w(sO = 2, decide that at least three byte

errors occurred.

3) If 3 _< w(sj <_ 4, go to step 5

4) If w(sj = 5, compute y_' . If w(y_') = 0, calculate

a = — — , and correct a single byte error with error
S0

value e. = SQ at location i. If w(̂ ') / 0, go to

step 5.

5) Compute ^" . If w(y") < 3, or if w(y") = 3 but

T2(K) = 1, decide that at least three byte errors

occurred.

If w(y") = 3 and T2(K) = 0, solve the decoding equa

tion (37) and find the roots a and or . Compute

e. = or + s,)/b and e. = sn + e., and correct a

yte error with error va

locationsi and j, respectively.

double byte error with error values e. and e. at

Decoding of the Extended Code

The parity-check matrix H2 given in (16) can be extended to

form a new parity-check matrix given by

1 0

0 0

0 0

0 0

0 1

The code specified by H_ is an (n+2, n-3)d . = 6 extended RS
—3 v mm

code, where n <_ 2 -I [14, 15, 16].

It again follows from Theorem 1 that

(51)
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ss f £d * lt (52)

for all single, double, and triple byte errors. If the error

locations are confined to locations 0 through n-1, all the pre-

vious results apply.

Now assume that errors occur at location n or n+1. Then the

syndrome is given by:

(53.1)

e
n

0

0

0

0

=

" S - 2 ~

S-l
so
Sl
S2

for a single byte error at location n, or

" 0

0

0

0

_ e n + l _

~ S - 2 ~
s_ 1

S0
sl
S2

(53.2)

if the error is at location n+1.

syndrome is given by:

For a double byte error the

e.a
'21

eia

e -

-i

eia

e- a2i

-2

'-1

(54.1)

with two errors at locations i and n, respectively, where

0 < i < n-1; and
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eia

e.a

e .a

e.

e.a:

2i .
n+l

'-2

'-1

(54.2)

with two errors at locations i and n+1, respectively, where

0 < i < n-1. Finally

en
0

0

0

. 6n+l _

=

~ S - 2 ~
s_ 1

S0
sl
S2

(54.3)

with two errors at locations n and n+1, respectively.

From (54 .1)-(54 . 3) we obtain the following results.

1) If

'-2 = S0 = Sl = S2 (55)

then a single byte error occurred. From (54.1), we

have the error value e = s 0 and the error location n.n -2

2) If

S2 S-2 = S0 = Sl = (56)

then a single byte error occured with error value

e +, = s- at location n+1.

3) If

? 0, for i =-1, 0, 1, 2, (57.1)
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and

s_7
 s-i sn si
£ ± i = _V_ = __L fr-j

s ' s s s ' (-'3/ •b-l bO 1 S2

then a double byte error occurred. From (54.1) we

have the error values e. = s,. and e = s ? + e.ct
 1

s_- + s0a at locations i and n, respectively,
s

where i is obtained from a1 = — . Note that (57.2)
S0

is equivalent to

Yl = SQ + S-1S1 = ° (58.1)

Y3 =
 S
1
S_2

 + s-iso ̂  ° (58.2)

Y4 = soSl + s2s_1 = 0 (58.3)

4) If

si ? 0, for i = -2, -1, 0, 1, (59.1)

and

s i sn si s?
s-2 -1 0 1

i.e.,

Yl = SQ2 + S-1S1 = ° (60.1)

Y3 = slS_2 + s_lSo = 0 (60.2)

Y4 = soSl + s2s_1 ? 0 (60.3)

then a double byte error occurred with error values

e- = sn and e n = s_ + s^a
 1 at locations i andi 0 n+1 2 0

n+1, respectively, where i is obtained from a = — .
S0
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5) If

s_2 f 0, s2 f 0, and s_1 = SQ = s-ĵ  = 0, (61)

then a double byte error occurred with error values

e = s 2 and e +, = s? at locations n and n+1, re-

spectively.

Now we combine the discussion in this subsection with that

of the previous subsections to obtain the following decoding

scheme for the DBEC-TBED RS code defined by (51) . From the

T Tvector r_, compute the syndrome s_ = r_ H, = (s_2, s , , s0, s, , s2)

Again let v(s) , w(Y_'), and w(Y_") denote the Hamming weights of

1 = Cs_ 2, s^, SQ, slf s2) , y_' = (YJ, Y3, Y4) , and Y_" =

(Y2»
 Y3> Y4^» respectively.

1) If w(ŝ ) = 0, decide that no errors occurred.

2) If w(sj) = 1, then check:

(i). If s_7 ^ 0, correct a single byte error with

error value e = s 0 at location n;n - L
(ii). If s2 ^ 0, correct a single byte error with

error value e n = s0 at location n+1;n+1 L

(iii) . Otherwise, decide that at least three byte

errors occurred.

3) If w(_s) = 2, then check:

(i) . If s 2 f 0, s2 i- 0, correct two byte errors

with error values e = s 0 at e ., = s9 atn -2 n+1 Z

locations n and n+1, respectively,

(ii). Otherwise, decide that at least three byte

errors occurred.

4) If w(s) = 3, go to step 7.
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5) If w(s_) = 4, then check:

(i) . If s - = 0, compute j'. If w(̂ ') = 1 and

y, ̂  0, compute a1 = — and correct two byte
•* 0

errors with error values e. = s~ and e = s 0 +i U n -Z

sna
 1 at locations i and n, respectively. If

not, go to step 7.

(ii) . If s? = 0, compute j
1 . If w(jy_') = 1 and
s,

Y. ^ 0, compute a1 = — and correct two byte4 SQ
errors with error values e. = s~ and e _,_, =i U n+l

*") "

s2 + SpO,
 1 at locations i and n+l, respectively

If not, go to step 7.

(iii). Otherwise, go to step 7.

6) If w(̂ ) = 5, compute y_'. If w(y.') = 0, compute
i S,

a = — and correct a single byte error with error
S0

value e- = s~ at location i. If not, go to step 7.

7) Compute y". If ™(y") < 3, or if w(y") = 3 but T9(K) =
— — -*- £

1, decide that at least three byte errors occurred.

8) If w(y") = 3 and T2(K) = 0, solve the decoding equation

(37) and find the roots a and or. Compute e. =

(ŝ or1 + s,)/b, e. = s0 + e., and correct two byte

errors values e. and e. at locations i and j, respect-

ively.

IV. CONCLUSIONS

We have presented new decoding techniques for two byte

oriented RS codes. These decoding techniques are based directly

on the syndrome, and do not involve applying the iterative algorithm

to find the error locator polynomial. Hence high-speed decoding
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can be achieved, making these codes well suited for error correc-

tion and detection in byte-organized computer memory systems such

as LSI and VLSI chips.

The d - =4 code is capable of single-byte-error-correction

(SBEC) and double-byte-error-detection (DEED) and can be extended

to include three additional information symbols. The d . = 6

code is capable of double-byte-error-correction (DBEC) and triple-

byte-error-detection (TBED) and can be extended to include two

additional information symbols. The decoding method applies to

the extended codes with only slight modification.

Code efficiency is high since only three parity symbols are

used in the d . =4 code and only five in the d . =6 code. Inmm ' mm

addition, the basic code length n can be selected to match the

organization of the memory (as long as n = 2 -1) without changing

the decoding method. However, efficiency is maximized when n =

2 -1 is chosen.
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