
NASA Technical Memorandum 85945

NASA_TM-8594519840021475

Study of the Mapping of
Navier-Stokes Algorithms onto
Multiple-lnstruction/Multiple-Data
Stream Computers
D. Scott Eberhardt, Donald 8aganoff and
K.G. Stevens, Jr.

July 1984

NI\S/\
National Aeronautics and
Space Administration

'-ANGLEY Q[sc:,c.qc'-' ,'t ~< ::1'
LlGR!\~C \!f,S

HAMPTGN, VIRGINIA

111
NF00806

NASA Technical Memorandum 85945

Study of the Mapping of
Navier-Stokes Algorithms onto
Multiple-lnstruction/Multiple-Data
Stream Computers
D Scott Eberhardt
Donald Baganoff, Stanford University, Stanford, California
K G Stevens, Jr , Ames Research Center, Moffett Field, California

NI\S/\
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

STUDY OF THE MAPPING OF NAVIER-STOKES ALGORITHMS ONTO

MULTIPLE-INSTRUCTION/MULTIPLE-DATA-STREAM COMPUTERS

D. Scott Eberhardt,* Donald Baganoff,* and K. G. Stevens, Jr.

Ames Research Center

SUMMARY

Impliclt approxlmate-factored algorithms have certain propertles that are sUlt
able for parallel processlng. This study demonstrates how a partlcular computatl0nal
fluld dynamlcs (CFD) code, using thlS algorlthm, can be mapped onto a multlple
lnstructl0n/multlple-data-stream (MIMD) computer archltecture. An explanatlon of this
mapplng procedure lS presented, as well as some of the difflcultles encountered when
trylng to run the code concurrently. Tlmlng results are glven for runs on the Ames
Research Center's MIMD test faclilty which consists of two VAX 11/780's with a common
MA780 multl-ported memory. Speedups exceedlng 1.9 for characterlstlc CFD runs were
lndlcated by the tlmlng results.

INTRODUCTION

The purpose of thls study was to develop a method for lmplementlng an impllclt,
approxlmate-factorlzatl0n algorlthm onto a multlple-instructlon/multlple-data-stream
(MIMD) computer archltecture. ThlS new archltecture lS representatlve of the new
generatlon of computers that has Just been introduced. To use these machlnes most
efflclently, lt lS necessary to understand how the partlcular algorlthms map onto the
multlprocessor machlnes. In particular, Ames Research Center lS lnterested ln
explorlng ways to use lts recently acquired Cray X-MP (a two-processor MIMD machlne)
most efflclently. The test results presented here were obtalned wlth an MIMD test
faclilty at Ames conslstlng of two VAX 11/780's wlth an MA780 dual-ported memory.

The particular code that was studied on the MIMD test facillty was the Pulllam
and Steger "AIR3D" code (ref. 1). AIR3D lS a three-dlmensl0nal, lmpliclt, approxlmate
factored algorlthm which solves the Euler equatlons or the Navler-Stokes equatlons
wlth a thin-layer approxlmatlon for elther laminar or turbulent boundary layers about
an aXlsymmetrlc, hemlspherlcal nose proJectlle. Parallel studles have been conducted
at Ames to lnvestlgate two other wldely used computatl0nal fluld dynamlcs (CFD) algo
rithms: TWING, a two-dimensional potential algorlthm, and Rogallo's LES (large eddy
slmulatlon) code uSlng spectral methods (refs. 2 and 3). The experlence of lmplement
ing these three benchmark algorlthms onto the MIMD test faclllty has yielded a clear
method for mapplng certaln CFD algorlthms onto MIMD computers.

We flrst dlSCUSS a general approxlmate-factorlzatl0n algorlthm and some of ltS
propertles and then glve a detalled dlScussl0n of AIR3D, which demonstrates the steps
required to transfer a code onto an MIMD machlne. Included in the discussl0n 18 an
outllne of the serlal code that helps to explain the structure of the concurrent code
used. Some of the difficulties encountered in implementing the scheme are presented,

*Stanford University

as well as some general thoughts on algorithm-based architectures. Finally, results
are presented of the timings obtained by running the concurrent code on the Ames
MIMD test fac1lity.

APPROXIMATE FACTORIZATION

The approx1mate-factorization algorithm is a part1cular form of the alternating
d1rect10n, impl1cit (ADI) algorithm f1rst 1ntroduced by Peaceman and Rachford (ref. 4)
for two-dimensional problems. The scheme was improved and extended to three d1men
sions by Douglas (ref. 5), Douglas and Rachford (ref. 6), and Douglas and Gunn
(ref. 7). For a hyperbolic set of equat10ns, such as the Euler equat10ns, wh1ch we
represent by the general form

a q + a E + a F + a G = 0
t x y z

where q 1S a vector, E E(q), F = F(q), and G = G(q), the correspond1ng f1nite
difference equations can be expressed in operator notat10n and written as follows:

(1)

(2)

where the left-hand s1de 1S the 1mpl1c1t part and the r1ght-hand s1de is the expl1c1t
part of the algor1thm. The operators 1n equat10n (2) are general operators that
result from the fin1te-differenc1ng and 11nearizat1on of the terms conta1n1ng the
E, F, and G d1fferentials. The approximate factorization is introduced as a less
computat1onally costly means of 1nvert1ng the operator on the left-hand s1de. The
operator is first factored 1nto three separate operators that are spat1ally 1ndepen
dent as follows:

(3)

and the approximat1on 1S 1ntroduced by ignoring the second-order terms 1n equat10n (3).
Th1s allows the introduction of a three-step solution process in wh1ch each step
1nverts an independent spatial operator. Intermed1ate var1ables are encountered 1n
this way, but they do not add to the storage requirements since they may overwr1te the
prev10us level. The three-step solution is given by

-1
q** = IF q*

Y

n+1 -1
q = IF q** z

(4)

This spat1al decoupling lends itself very nicely to concurrent process1ng. S1nce each
operator contains derivatives in only one spatial direction, all lines of data 1n that
coor~1nate can be solved independently. For example, each 11ne of J, where j is
the x-index, can be solved independently on every point in the k,£ plane, where
k and £ are the indices of y and z, respectively. Thus, an MIMD mach1ne could, in
principle, use as many processors as there are points in each plane, assuming no
other restrict1on.

2

MIMD IMPLEMENTATION

An MIMD implementation of this spatially decoupled procedure beg~ns as follows.
The first step is to compute the right-hand side of equation (2). Because it is
explicit and all data at the current time-step are available (in a shareable memory),
the data can be divided into several groups. A convenient split is to evenly diVIde
the data along a particular direction, say x, by the number of processors ava~lable.
If J is the index representing the x-d~rection and Jmax is the total number of
x grld points, then for a two-processor system, one processor can be assigned the
points 1 to Jmax/2 and the other Jmax/2 + 1 to Jmax. All processors must be
synchronlzed at the completion of thlS step before continuing to the implicit inte
grat~on. ThlS synchronlzation, following the explicit rlght-hand-side calculatl0n,
lS the flrst of four such synchronizations. The overall procedure is outllned ln
figure 1.

After all processors have verlfled completion of thelr respective segments of
the right-hand side, the lnverSlon of ~x may begin. A single 11ne of J can be
lnverted at any point in the k,£ plane independent of all other 11nes of j. Thus,
the workload can be shared among the several processors lnto any deslred dlvlsl0n of
the k,£ plane. At the completion of the x-sweep a second synchronizatl0n must
occur before proceeding to the y-sweep.

For the y-sweep, the data base can be split anywhere in the J,£ plane to
separate the decoupled k-llnes for concurrent processing. Upon completlon of thlS
sweep, the processors must be synchronlzed a third tlme before contlnuing to the
z-sweep. The z-sweep can be Spilt anywhere in the j,k plane, and computatl0n pro
ceeds as before. A fourth and flnal synchronlzation lS requlred at the end of the
z-sweep to complete a single iteration loop. ThlS loop may have to be repeated
200-600 tlmes before a converged solution lS obtalned wlth tYPlcal CFD appllcatl0ns.

An example of a slmple two-dlmenslonal problem requlrlng a two-step Solutl0n
procedure wlth three synchronlzatlons is shown in flgure 2. The figure outllnes the
process descrlbed above for a four-processor system.

SOME OBSERVATIONS

Flgure 2 reveals an lnterestlng possibl1lty for hardware implementatlon of the
approximate-factorization algorlthm. If a multlprocessor computer system were to be
designed speclflcally for thlS partlcular algorithm, then a special memory system
could be implemented based on the mesh used in the computatlon, which follows the
"dance hall model." In the case of the two-dimensl0nal problem of flgure 2, the
computational domain is divlded by the four processors and the two sweeps into
16 blocks, as shown ln figure 3. However, if one determlnes WhlCh processor accesses
WhlCh block, one sees immedlately that the dlagonal blocks are accessed only by a
slngle processor. In fact, the blocks in the computational domain may be assoClated
with matrlx elements Ajk' where j and k ldentlfy the processors that access a
block in the two sweeps. Flgure 3 exhibits a four-processor implementation using this
notatl0n. Thus, for a dedicated approximate-factorization multlprocessor computer
system, the memory configuration may be chosen so that a block is accessed by a s~ngle
processor lf j = k or by two processors if j # k. Since each block ~s accessed by
one processor at a time, the implementation should make use of switches which may be
reset by the software on each sweep.

3

The primary motivat10n for considering this approach 1S the problem of memory
bus bandwidth. As more processors are added to a common memory bus, timing conflicts
grow in number, and processors must wait to access memory. Hardware stud1es show
that four processors on one bus tend to saturate the memory bus, and adding more
processors simply degrades processor efficiency rather than improving overall perfor
mance. Of course, this varies according to the particular problem being solved. The
memory implementation discussed here would circumvent this problem, provided the
requ1red switch1ng can be suitably 1mplemented in hardware. Also, 1n princ1ple,
there would be no restriction on how many elements, Ajk' are used. Although software
may be required to align the data base for each Ajk access, wh1ch would 1ntroduce
some addit10nal complexity, th1s memory implementation would be an interest1ng possi
b1lity for future development.

DESCRIPTION OF CODE

A general discuss10n of the approximate-factor1zation algor1thm has been pre
sented, and the specif1c code studied for th1s report will now be discussed. Our
hand11ng of the code AIR3D follows the same general solution procedure described above,
but 1t will be out11ned here in more detail. F1rst, we d1scuss the set of equations
and the specif1c finite-difference operators used. Th1s discussion 1S not essential
to one's understanding of the procedure, prov1ded one is fami11ar w1th the general
operator notation presented in the prev10us sections. The specific modificat1ons
requ1red for concurrent process1ng, 1nclud1ng a d1Scuss1on of the requ1red system
calls, are given following the code description.

Equat10n Set

AIR 3D is an implic1t, fin1te-d1fference program for unsteady, three-d1mens10nal
flow calculations. It can handle viscous effects and incorporates an algebra1c tur
bulence model as a selected option. The code can also handle arbitrary geometries
through the use of a general coordinate transformation. The code 1S described 1n
deta1l in a paper by Pul11am and Steger (ref. 1), which w11l only be summarized here.

The three-d1mensional, nonsteady Navier-Stokes equat10ns can be tranformed and
wr1tten for an arb1trary curvilinear space, whil€ retaining the strong conservat10n
law form, w1thout undue 1ncreased complexity of the governing set. The follow1ng
form shows the result1ng equations when transformed from x,y,z,t space to ~,n,s,T

space:

where

p

pu

q J- 1 pv

pw

e

a q + a~(E + E) + a (F + F) + a (G + G) = 0
T s V n v S v

pU

puU + ~xP

E + J- 1 pvU + ~yP

pwU + SzP

(e + p)U - StP

4

F

pV

pvV + nyp

pwV + n p z

(e + p)V - nt p

(5)

pW

puW + z.;xP

G J-1 pvW + z.;yP

pwW + Z;;ZP

(e + p)W - Z;;tP

and

D ~t + ~xu + ~ v + ~ w y Z

V nt + n u + n v + n w x y Z

W = I'; t + I'; u + I'; v +
x Y I'; w Z

The quantities D, V, and Ware the contravar1ant veloc1ties wr1tten w1thout metric
norma11zation. Note that th1s general transformat1on 1ncludes the poss1b1l1ty of a
mov1ng grid. The viscous terms w1ll not be presented here but can be found 1n many
papers on the subject (refs. 1, 8, 9). In th1s formulation, the Cartes1an velocity
components u,v,w are nond1mens10na11zed with respect to the free-stream speed of
sound aoo ' the dens1ty p is norma11zed with respe~t to Poo' and the total energy e
1S normalized w1th respect to pooaoo • Pressure 1S g1ven 1n terms of these variables by

(6)

The metric terms themselves are defined in deta1l in reference 1.

This program makes use of a thin-layer approximation throughout, result1ng in
fewer gr1d p01nts and less computation. The th1n-layer approx1mat10n uses boundary
layer-11ke coord1nates and 19nores V1SCOUS terms assoc1ated with small veloc1ty
grad1ents. Therefore, if the ~ and n coordinates are chosen to l1e parallel to the
body surface, only the Z;; V1SCOUS terms will be 1ncluded. Th1s 1S 1dent1cal to a
boundary-layer model in wh1ch streamwise V1SCOUS terms are 19nored. Thus, th1s
approX1mat1on requires gr1d ref1nement in only the 1';, or perpend1cular, dlrect1on.
The new set of equat10ns simp11f1es to

(7)

where

0

~(z:~ + z:2 + 2 + (~/3)(l';xur; + + I';zwz:) I'; x y Z:z)ur; I';yvr;

~(I';~ + 1';2 + 1';2)v + (~/3) (l';xuZ;; + l';yvZ;; + I';zwl';)l';y
S J- 1 Y z Z;;

~ (Z;;~ + 1';2 + Z;;2)W + (~/3)(l';xuZ;; + l';yvZ;; + 2zwz;;)Z;;z y z Z;;

(Z;;2 + Z;;2 + Z;;2)[O.5~(u2 + v 2 + w2) + KPr- 1 (y - 1)(a2)z.;] x y z Z;;

+ (~/3)(Z;; u + Z;; v + Z;; w)(Z;; u + Z;; v + Z;; wr) x y z x Z;; y I'; z ~

5

An algebraic turbulence model is also incorporated in AIR3D which makes use of
the method of Baldwin and Lomax (ref. 10).

Algorithm

The finite-difference scheme used in AIR3D is the 1mplic1t approx1mate
factorization algorithm of Beam and Warm1ng (ref. 8). The scheme was chosen to be
implicit to avoid the restrict1ve stabil1ty bounds of explicit methods when applied
to small gr1d spacings. The delta form of the algor1thm, where 1ncremental changes
1n quantities are calculated, 1S used to reduce computat10nal errors and, in addition,
is a conven1ent choice for steady-state solutions.

Central differencing 1S used for all three direct10ns. The fin1te-difference
equat10ns are spatially split so that three separate one-d1mens10nal problems are
solved at each t1me-step. The central differenc1ng yields block-tr1diagonal matrices
which are 1nverted 1n each spatial coordinate. This decoupl1ng of the spat1al coor
d1nates provides the pr1nc1pal motivation for cons1der1ng parallel process1ng as a
means of carry1ng out the calculations 1n an eff1c1ent way.

The approximate factorizat10n of the finite-difference algor1thm results in the
following set of finite-d1fference equat10ns:

(I + ho.An - E J-1V.~.J)(I + ho Bn_ E J-1V ~ J)(I + ho Cn - hRe-1o Mn - E J-1V ~ J)~qn
<, 1 <, <, n 1 n n I;; I;; 1 I;; I;;

= -~t(Oc;,En + 0nFn + ol;;G
n

- Re-10I;;Sn) - EeJ-1[(Vc;,~c;,)2 + (Vn~n)2 + (VI;;~I;;)2]Jqn

(8)

n n+1 n . where ~q = q - q and h = ~t for f1rst-order Euler t1me-d1fferenc1ng, or
h = ~t/2 for second-order trapezoidal t1me-differencing. The finite-difference oper
ators V,~, and 0 are expla1ned in the original paper (ref. 1); they are widely
used. The matrices An, Bn, and Cn are time-l1near1zat10ns of En+l, Fn+l, and Gn+1 ,

respect1vely. The coeff1cient matr1x Mn 1S obta1ned by a Taylor-series expans10n of
the V1SCOUS vector Sn+l. These matrices w1l1 not be presented here but can be found
in reference 1. Numerical damp1ng terms are added to 1mprove the stability, and are
selected to be second-order accurate to ma1nta1n the block-tr1d1agonal nature of the
implicit part of the code; they are fourth-order accurate 1n the expl1c1t right-hand
side of the code.

In terms of the operator notat10n 1ntroduced 1n equat10ns (4), each operator
becomes a block-tr1diagonal matrix in this formulation. The operators are each
def1ned by

6 x (I + he An
c;,

-1) EiJ Vc;,~c;,J

6 (I + he Bn - E J-1V ~ J
y n 1 n n

6z (I + hel;;C
n

- E.J-1V ~ J
1 I;; I;;

- hRe-10I;;Mn)

(9)

The block-tridiagonal operators $x, 6 y , and 6 z are spatially decoupled and so
can be 1nverted independently. Each operator contains derivat1ves in only one d1rec
tion; for example, each 6~Q, is 1ndependent of every other 6~Q,; 6~Q, 1S thus

6

lnverted at each n and ~ coordinate independently. In a Kmax by Lmax MIMD processor
array, a single sweep of each n,~ processor would invert the entire $x operator.
The Ames MIMD machine uses only two processors so the workload was shared equally;
consequently, each processor inverted Kmax/2 by Lmax block tridiagonals. The
expllclt operator, ~xyz' can be handled in any convenient manner since lt lS com
pletely expllcit, and all the requlred data are avallable at each tlme-step. The
dlvislon used in this study was a simple Jmax/2 split so that the data base was
dlVlded lnto two blocks of Jmax/2 by Kmax by Lmax pOlnts.

It should be noted that thlS decoupling lS a feature of the approxlmate factor
izatlon and is not assoclated with the central dlfferencing used in AIR3D. Thus, any
algorlthm exhibltlng spatlal decoupling should allow the use of the same sort of
parallellsm.

Runnlng the Serial Code

The conventlonal method of runnlng the code AIR3D on a serlal machlne wlil now
be descrlbed. ThlS wlil help to give a better understandlng of the modlflcatlons
lntroduced to allow the use of concurrency. Flgure 4 shows a flowchart of the serial
code, and flgure 5 shows a detalled breakdown of tasks ln AIR3D with subroutlne names
from the program.

The initial segment of the code (see fig. 4) includes the input routines, lnltial
lzatlon routlnes, and the grld-generatlon routines. The input routines set the angle
of attack, Mach number, and other lmportant flow varlables. SWltches are also -set
WhlCh speclfy the grld optlon and lnltlallzatlon optl0n used. Also, the sWltches
determlne whether V1SCOUS effects are included and whether they are lamlnar or turbu
lent. The lnltlallzatlon routlnes allow the cholce of an impulsively started Solutlon
or a start-up from a previous Solutlon which is obtalned from a flle. The grld
generatlon routlne allows the selectlon of either a grid stored ln a flle or the
default grld (a hemispherlcal nose wlth a cyllndrlcal afterbody), which lt calculates.
After thlS lnltlal segment is run, the program enters the maln iteratlon loop.

The maln lteratlon loop contalns the code sectlon WhlCh updates the Solutl0n by
one lteratl0n step. This segment beglns by calculatlng the boundary condltlons
explicltly. Then the rlght-hand-slde operator lS calculated, followed by the explicit
smoothlng. At thls pOlnt, the residual operator lS avallable (at steady state the
right-hand slde becomes zero) and so convergence is tested by calculatlng the L2
norm. Optlonal output routlnes glve diagnostlc lnformatlon, such as a pressure dis
tribution, when requested. The final step in the main lteration loop is the impllclt
lntegratlon. This requlres three sweeps through the data base. In the ~-sweep a
block tridiagonal lS inverted for each pOlnt in the n,~ plane. Likewlse, a block
trldiagonal is lnverted for each pOlnt ln the ~'s and the ~,n planes for the
n-sweep and ~-sweep, respectlvely. This maln lteratlon loop accounts for most of the
CPU tlme, since lt lS repeated 200-600 tlmes for typical Solutlons and lt lS computa
tlonally lntenslve.

The flnal portlon of the code contains the output routlnes. This portlon pldces
the output data lnto output flIes for future data processing.

The orlglnal code was wrltten to run on the CDC 7600 Slnce the code lS too compu
tatlonally intensive to run on the VAX 11/780. Because the goal of the present study
was to develop initial experience with an MIMD test bed consisting of two VAX 11/780's
with an MA780 memory, the Fortran code was preprocessed to eliminate CDC 7600 Fortran

7

extens10ns, and the grid density was reduced to make the code compatible with the
available memory. This mod1fication will be described below. Also, oW1ng to the
limited available computational time, no runs were carr1ed through to a converged
solution, which would have requ1red the exclus1ve use of a mach1ne for several days.
Nevertheless, because a converged solution was not required and only t1m1ng data were
needed, timing predictions could be obtained quite accurately for large t1mes from
sets of runs that could be carr1ed out 1n reasonable t1me per10ds.

Running the Concurrent Code

The concurrent code, called MAIN, runs with several spawned processes operat1ng
on each mach1ne. The program breakdown 1S shown in f1gures 6 and 7; subrout1ne names
are g1ven 1n f1gure 7. The processes on each mach1ne must commun1cate w1th each
other and w1th the processes on the other mach1nes through global sect10ns 1n shared
memory. The spec1f1c mechan1sms for th1s 1nterprocess commun1cat10n are calls to the
VAX VMS system-service rout1nes and run-t1me l1brary funct10ns. They w111 be pre
sented by the1r funct10n names; they are descr1bed 1n deta11 1n the VAX system serV1ce
manual (ref. 11). Since these serV1ce calls are mach1ne-dependent, the source code is
not transferable to other MIMD mach1nes w1thout sU1table translat10n of the system
serV1ce calls. A diagram show1ng the process relat10nsh1ps to each other and memory
1S shown in f1gure 8. The 1nd1vidual sect10ns of th1s code w111 now be descr1bed.

The first sect10n of MAIN not only contains all of the elements of the 1n1tlal
part of the ser1al code, but also 1ncludes some 1mportant elements of the parallel
process1ng. In add1t10n to 1nltla11zat10n, etc., the f1rst sect10n sets up the global
sect10ns and flag clusters 1n shared memory and creates subprocesses, wh1ch represent
the concurrent code on that machine. The second processor, referred to here as the
slave processor, has a s1m11ar bookkeep1ng program, called SLAVE, for 1dent1cal
parallel process1ng funct10ns; however, 1t conta1ns none of the rout1nes of the
or1g1nal ser1al code. Calls to MAPPRM, a function call contalning the system service
SYS$MGBLSC, reserve global sect10ns that are required for global common blocks.
These blocks, which reslde in shared memory, are g1ven the log1cal names SHRMEMO:name.
Table 1 identifies by name and funct10n the common blocks used 1n each process and
the1r level of protect10n (local or global). The system serV1ce call SYS$ASCEF sets
up flag clusters for 1nterprocess commun1cat10n. Two flag clusters have been allo
cated for thlS program: one represents synchron1zation commun1cat1on between subpro
cesses and the ma1n processes, and the other represents semaphore, or flag, commun1ca
t10n between the ma1n processes on the two processors. Flnally, a call to LIB$SPAWN,
a run-time library routine, creates the subprocesses that represent the concurrent
port10ns of the code. These subprocesses are g1ven the names SUBPRAIR3D$01-04 and
run the program STEPUP and SUBRHS. The numer1cal extension 1n the subprocess name,
01-04, is the 1dentificat10n number used in the program to define wh1ch portions of
data to work with.

All programs that need data from the shared memory sect10ns must map global
sect10ns to the shared memory before they can access 1t. All programs must also
acknowledge, or associate w1th, the flag clusters which are an essent1al part of the
1nterprocess commun1cat10n. Once the in1t1al setup for parallel process1ng has been
completed and MAIN has completed the in1tializat10n routines descr1bed 1n the ser1al
code, the gr1d metr1c terms must be passed to the other processor's local memory.
Th1s is due to a hardware restriction and will be discussed 1n detail below. MAIN
not1f1es the slave processor when 1t has reached this point by sett1ng a flag
(SYS$SETEF) 1n the semaphore flag custer. Slave, which 1S 1dle dur1ng the parallel
process1ng setup (wa1ting for a flag, SYS$WAITFR), completes the transfer, clears the

8

flag (SYS$CLREF) for future use, and sets another flag to not1fy MAIN that the trans
fer is complete. Initia11zation is now complete for MAIN and SLAVE. Most of this
f1rst section of the code is bas1ca11y sequential, and the rema1nder does not warrant
the effort to extract parallel segments. The slave processor therefore rema1ns mostly
1d1e dur1ng this setup phase.

Two processes are spawned on each processor during the setup phase. The programs
subm1tted are called STEPUP and SUBRHS, wh1ch conta1n the solvers for the imp1ic1t
1ntegrat10n and for the r1ght-hand side, respectively. After these two Jobs are
created at the beg1nning of MAIN and SLAVE, they run through an in1tia1ization phase
wh1ch maps the global sect10ns, assoc1ates with flag clusters, and 1dentif1es wh1ch
half of the data 1t w111 work on. This 1dent1f1cat10n is obtained by a call to
SYS$GETJPI wh1ch returns the subprocess name used by the system (SUBPRARI3D$xx). The
numer1ca1 extens10n is extracted wh1ch becomes its ID number. The 1n1t1a1 setup 1S
very short and when complete, the processes h1bernate (a call to SYS$HIBER) unt11
awakened by the main programs.

The ma1n 1terat10n loop const1tutes most of the para1le11sm found 1n the code.
In1t1ally, boundary data are calculated ser1ally, because very l1ttle 1mprovement 1n
overall speedup would be ga1ned and 1t would not offset the effort needed to paral-
1e11ze 1t. Th1s could be 1mplemented along w1th the r1ght-hand s1de at a future t1me,
but 1t would requ1re rather extens1ve rewr1t1ng of that port10n of the code. When
the r1ght-hand-s1de operator 1S ready to be calculated, MAIN not1f1es SLAVE, through
a semaphore flag, and each wakes the subprocess SUBRHS on 1tS respect1ve mach1nes (by
a call to SYS$WAKE). At th1s time the ma1n programs, MAIN and SLAVE, go 1nto a wait
state unt11 a flag code 1S set by the subprocesses (SYS$WFLAND). The two processes,
called SUBPRAIR3D$03 ($04), now run the concurrent program SUBRHS through a cycle
wh1ch calculates the r1ght-hand-s1de operator, adds the exp11c1t smooth1ng, and sets
an eX1t flag, before returning to a ready state at the beg1nning of the code and
h1bernat1ng there. When both the subprocesses have set the1r event flags, the ma1n
programs are react1vated. F1rst, the ma1n processes clear the event flags, and then
MAIN cont1nues w1th the ca1cu1at10n of the res1dual and calls opt10nal output rou
t1nes, as 1n the ser1al code. The slave processor rema1ns 1dle for th1s short per10d.

The 1mp11c1t 1ntegrat10n 1S a much more complex process, because three cycles
are needed to complete a s1ng1e 1teration. Aga1n, as for the r1ght-hand-s1de ca1cu
lat10n, MAIN not1f1es SLAVE to beg1n. Both ma1n processes wake up the subprocesses,
now called SUBPRAIR3D$Ol (02), which run the program STEPUP concurrently. During the
f1rst cycle, the d1rect10n flag (IDIR) 1S set to 1, s1gn1fy1ng a s-sweep. After
each subprocess has completed 1ts half of the calculat10n, synchron1zat10n 1S 1ntro
duced by sett1ng event flags to not1fy the ma1n processes, as w1th SUBRHS. The cycle
then repeats w1th the d1rect10n flag set to 2 and then 3, s1gn1fY1ng n- and s-sweeps.
A s1ng1e 1terat10n loop has been completed at th1s p01nt, requ1r1ng four synchroniza
t10ns. The synchron1zat10ns between the d1rect10na1 sweeps 1n STEPUP are requ1red so
that the 1ntermed1ate starred variables in the three-step-so1ut10n process of equa
t10n (4) w111 be at the proper stage when the processors call upon them. The program
STEPUP loops back to the beg1nn1ng of the code, to the SYS$HIBER call, where 1t wa1ts
unt11 called upon aga1n. Th1s point 1S also the start1ng p01nt for each of the
s-, n-, and s-sweeps.

The f1na1 sect10n of the code 1S 1dentica1 to the serial code except that MAIN
must now not1fy SLAVE to exit and delete the subprocesses. MAIN also dea110cates the
shared memory global sections and flag clusters. For most of the output routines, the
slave processor rema1ns 1d1e.

9

A summary of the system calls that were used in th1s implementat10n 1S presented
to ass1st in making the code transportable to other MIMD machines. F1rst, the pro
gram must be allowed to control mapping of data into shared memory, so that each
processor can access global common blocks, yet protect local data. Next, a mechanism
for sett1ng up flag clusters must exist w1th the follow1ng communication dev1ces:
(1) a wait for a particular flag dev1ce; (2) a wa1t for a logical AND of the flag
cluster w1th a var1able mask; (3) a clear flag; and (4) a set flag command. SerV1ces
that allow process hibernation and waking are also des1rable, although flag commun1ca
t10ns could replace these calls. Lastly, a routine for spawn1ng subprocesses would
be required to run th1s particular 1mplementation. The subprocess creat10n is not
necessarily required S1nce the code could reside in the MAIN and SLAVE codes; however,
this would not separate tasks conveniently. If the subprocess 1mplementation 1S used,
the numer1cal ID extens10n to the subprocess name 1S convenient for 1dent1f1cat10n.
Regardless of 1mplementat10n, some mechanism for process 1dentif1cat10n must eX1st
(processor number, etc.), so that the programs will know wh1ch data they are ass1gned.
Once these system calls are available, AIR3D can be transferred to any MIMD mach1ne
w1th the proper translat10n of the VAX system serV1ce calls 1n the current program.

DIFFICULTIES OF IMPLEMENTATION

Several trade-offs and comprom1ses were made 1n th1s concurrent 1mplementat10n
of AIR3D. Most of these were a result of the 11m1tations imposed by the particular
MIMD test fac111ty employed. First, because the code 1S computationally 1ntens1ve,
converged solutions could not be generated on the two VAX's. The time requ1red to
reach a properly converged solut10n would have required the total ded1cat10n of both
the MERCURY and JUPITER computers at Ames for several days. S1nce th1s amount of run
t1me was not even cons1dered, the test cases were run for only 10 to 20 1terat10ns to
get sample t1m1ngs.

Another rather severe restr1ct10n encountered was the lim1ted S1ze of the MA780
dual-ported memory in the system. Only 1/4 Mbyte was ava1lable, and all shared
memory requ1rements had to fit w1th1n th1s memory size. Because the code 1S three
d1mens10nal and each gr1d p01nt has 14 var1ables assoc1ated w1th 1t, the shared
memory was qU1ckly used up and two steps had to be taken to ta110r the problem to the
11m1ted memory. F1rst, the gr1d metr1cs were removed from shared memory and a copy
was placed 1n each processor's local memory. Th1s el1m1nated 3 of the 14 var1ables
requ1red. It must be noted that 1n an unsteady problem, where the gr1d metrics change
dynam1cally, th1s procedure would not be allowed. The pass1ng of the gr1d metr1cs
from the main processor to the slave processor occurs dur1ng the init1al1zat10n
rout1nes as descr1bed above. The second step taken was to reduce the gr1d dens1ty.
The normal default case for the hemispher1cal nose, cyl1ndrical afterbody geometry was
an array of 48 x 12 x 20 p01nts for the 1nv1sc1d case and a 30 x 18 x 30 array for
the V1SCOUS case. All cases 1n this study used a 20 x 10 x 20 array wh1ch results 1n
40% fewer gr1d p01nts. At this level of coarseness, the code became unstable after a
large number of 1terat10ns and no attempt was made to seek a converged solut10n. Th1s
was not a ser10US lim1tation because the ob]ect1ve of th1s study was to obtain a run
t1me compar1son between a ser1al and an MIMD conf1gurat10n, and for th1s compar1son
convergence is not a necessary condition. These two steps would not have been
required on a mach1ne w1th a larger shared memory, such as the Cray X-MP.

Another approach was in1tially taken but then dropped because it was clear that
a converged solut10n was not requ1red for this study. The approach considered was to
place only the data that were required by the slave processor in the shared memory,

10

which meant that only half of the data had to be in shared memory at one t~me. How
ever, th~s also meant the data had to be reformatted and shifted at least twice for
each iteration. This reformatting added an unfair burden to the timings of the con
current code. Since this reformatting was not a consequence of the MIMD arch~tecture
but a result of the limited memory available, reformatting represented an undes1rable
approach. One clear advantage that th~s approach brought to light was that the slave
processor requ~red only a gener~c solver for all three sweeps of the implic1t inte
grat~on. This resulted 1n a compact code which, on certain vector machines, could
speed up the computat~on t1me of the slave processor cons~derably.

In the orig~nal formulat~on of the program, metr1c derivatives were calculated
as needed to avo~d the extra memory space required to store them. The code was
wr~tten to calculate all of the metric derivat~ves along a part~cular l~ne when the
subrout~ne was called. Th~s presented no problem w1th the ~mpl~c~t part of the code
Slnce all lines of data were decoupled. However, wlth the expllcit part of the code,
when the metrlc derlvatlves crosslng the divlslon between the two data halves were
calculated, some overlaPPlng data were needed in the calculatl0n, and extra work was
necessary glven the current code structure. The amount of overlap requ1red was two
pOlnts, for the fourth-order flnlte-dlfferencing used ln this code, Slnce each half of
the expllcit calculatlon must "see" lnto the other half of the data a d1stance of
two pOlnts.

RESULTS

Results ln the form of tlm~ng measurements wlll now be presented and d~scussed.
These tlmlngs were performed on the Ames MIMD test facllity run as a slngle-user
system. This allowed for the use of all the memory avallable, wlth only the operating
system competlng for CPU tlme. The two options tested were the Euler equatl0ns and
Navler-Stokes equatlons wlth the turbulent, thin-layer approximatl0n.

Three timlng measurements are presented for the two flow solvers. The three
tlmlngs lnclude progresslvely more hardware/operatlng system penaltles. The measure
ments were made to demonstrate the var~atl0ns in tim~ng speedups that are found for
dlfferent computer enVlronments. The three measurements are for CPU task tlmlng,
total CPU timings, and real-time (stopwatch) tlmlngs. Speedup as used here lS
dehned by

Speedup
t
serlal

t concurrent
(10)

The flrst set of timings, the CPU task tlmlngs, was made by recording the CPU
tlme for each element, or task, of the program. The tasks are defined in a manner
consistent with the previous dlScussl0n of the code. They include the setup, WhlCh
lS serlal, both the serlal and concurrent parts of the explic~t calculat~on and the
lmpl~clt lntegratlon, the boundary conditions and residual calculation, and, finally,
the output routines. The serlal portions of the expliclt calculation and the ~mplicit
lntegration are primarily overhead, required for parallel processing. This timing
procedure makes lt easy to separate the serial and concurrent tlmings for extrapolat
ing speedup for a larger number of iteratl0ns. Tables 2 and 3 compare the serial
timings and the concurrent timings for the Euler and Navler-Stokes solvers, respec
tlvely. The data presented are representative of all the iterations, since the task
tlmlngs for each lteratlon were found to be very close, although not ldentical. From

11

these timings it is clear that w1thin the main iteration loop, a sign1ficant 1mprove
ment in computation time is achieved. The tasks that calculate the right-hand-side
operator and invert the left-hand-side operator show speedups of nearly 2.0, w1th very
little overhead. The main ~terat~on loop showed a speedup of 1.905 for the Euler
solution and 1.914 for the Navier-Stokes solution. These results demonstrate that
the overall speedup atta1ned for this particular 1mplementat10n 1S quite good for a
single-1teration cycle. The single-1teration cycle represents a respectable asymp
totic lim1t for tYP1cai numbers of iterations requ1red 1n CFn applicat10ns that
1nclude init1alizat10n and output routines. Plots of speedup versus number of 1tera
tions are shown in figures 9 and 10. These curves were computed using the following
formula:

Speedup
[t + n(t + t + t) + t]. setup BC RHS LHS output ser1al

(11)
[t + n(t + t + t) + t] setup BC RHS LHS output concurrent

An interest1ng observat10n was made in developing these t1m1ngs: the two pro
cessors used yielded different t1mings for the same concurrent task; the tim1ngs were
found to vary by as much as 5%. However, each processor was conslstent wlth its own
t1m1ngs. As a result, 1t was decided to use the task t1m1ngs for the extrapolated
MIMD performance curves from the same processor that executed the ser1al code.
Another observation made with these tim1ngs was that some tasks are not penalized
properly for certa1n overhead. For example, no task 1S charged for the CPU t1me
requ1red to wake a process or cause 1t to h1bernate. In view of this, care was taken
so that most parallel-process1ng overhead was properly charged.

The next two sets of timings to be presented represent the total time spent in
executing the code (including all overhead), but exclude penalt1es for work done by
the operat1ng system in job management, etc. These results would be representat1ve
of nont1me-shared mach1nes, where no Job management 1nterruptions are allowed, and
where all processors operate at the same speed. They also prov1de a check on the
prev10us tim1ngs. Tables 4 and 5 show results for the Euler and Navier-Stokes solu
t10ns, respectively. Th1S time 1S simply the sum of the CPU t1me for the main process
and for each of the subprocesses. Agaln, for thlS implementatl0n, where each pro
cessor has a Sllghtly d1fferent speed, the speedup 1S measured by uS1ng the data for
the same processor that was used for the ser1al code. These results are slightly
lower than the previous results, as seen 1n figures 9 and 10, S1nce all program
related overhead was properly charged.

The last set of t1mings are "stopwatch-style" t1m1ngs; they are presented 1n
tables 6 and 7. The measured time represents the total elapsed t1me from 1n1t1al
start-up of the Job to 1tS conclus1on. This is the actual speedup 1n turnaround t1me
that one could expect for th1S system. This number 1ncludes all Job account1ng over
head from the operat1ng system and the d1fference in speed of the two processors.
Th1s tim1ng, however, 1S very machine-dependent and, glven the MIMD test bed used, 1t
can be assumed to represent the low end of the speedup (see figs. 9 and 10). The
difference between this t1ming and the timings of the f1rst method represents the
improvement that can be made with1n a given computer environment.

All three t1m1ngs show that the Navier-Stokes Solut10n, w~th the turbulent, thin
layer approximation, Y1elded a greater speedup than the Euler solution. This 1S a
consequence of the greater number of calculations needed for the Navier-Stokes solu
t10n that appear 1n the parallel port10ns of the code. An even greater speedup of
both solvers could be ach1eved 1f the additional effort were taken to parallelize the
boundary condit10ns and residual calculations. These two portions of code are located

12

1n the main 1teration loop and are, therefore, a significant cause of 1neff1c1ency.
The init1al setup and final output routines represent such a small fraction of the
total CPU t1me for the case of a larger number of iterations, which is the more
rea11st1c case. that it is not useful to devote any effort to extracting any paral
le11sm they may contain. The t1mings reported here represent speedups that are
obta1nable uS1ng standard programm1ng pract1ce.

CONCLUSIONS

A s1gnif1cant amount of parallel code has been ident1fied 1n a standard bench
mark CFD code. The code uses an approximate-factored algorithm that. 1n a very
stra1ghtforward manner, can be run on a concurrent process1ng computer. This 1mplicit
algor1thm was shown to ach1eve a speedup of greater than 1.9 on a two-processor
system for representat1ve solut10ns and to do so w1thout an undue amount of effort.
The general approximate-factored algorithm appears to be a very good candldate to run
on the new generat10n of MIMD computers.

The computer enV1ronment encountered in th1s study brought to light some features
that should be considered. In this study 1t was found that the two processors used
requlred dlfferent execution t1mes. Although th1s would not b,~ slgniflcant on a
machlne 11ke the Cray C-MP. 1t made signlficant dlfferences on the Ames MIMD test
fac111ty. The conclusion drawn from th1s observat10n 1S that concurrent algor1thms
should str1ve to be asynchronous. ThlS would e11m1nate overhead from the d1fferent
processor speeds. The approx1mate-factored algorithm 1S not an algorithm that can be
run asynchronously. so a more complex scheme of balanc1ng processors would be
necessary.

Some stumb11ng blocks at the beg1nning of the research helped to show the 1mpor
tance of memory management. Local and shared memor1es must be separate and protected.
ThlS requ1rement led to the s1gn1f1cant 1nteractl0n between the programmer and the
operat1ng system/computer architecture wh1ch 1deally should be elim1nated 1n an opera
t10nal computer. Solut1ons to th1s problem lnclude des1gn1ng algor1thms that elther
use only shared memory or use a min1mal amount of shared memory. where asynchronous
passlng of lnfluence parameters 1S used 1nstead of code var1ables themselves.
Another approach would be to deslgn addit10nal language constructs and make them
ava11able to the programmer who helps control memory protect1on. A soph1sticated
operating system and comp11er that could handle these h1gh-level language constructs
would be requ1red. No matter wh1ch approach 1S taken. 1t must e11m1nate the need for
the programmer to access the operat1ng system for memory management.

A whole new area of research can be formed in concurrent algor1thm development.
Most work 1n the past has been of an explicit nature. but th1s study has shown that
even imp11c1t algorithms possess a s1gn1f1cant amount of paralle11sm. Research 1S
being init1ated on asynchronous algorithms meeting most of the requ1rements developed
above.

13

REFERENCES

1. Pulliam, T. H.; and Steger, J. L.: On Implicit Finite-D1fference Simulations of
Three Dimensional Flow. AlAA Paper 78-10, 1978.

2. Holst, T. L.; and Thomas, S. D.: Numerical Solution of Transonic Wing Flow
fields. AlAA J., vol. 21, no. 6, June 1983.

3. Rogallo, R. S.: Numerical Experiments in Homogeneous Turbulence. NASA TM-81315,
1981.

4. Peaceman, D.; and Rachford, H.: The Numerical Solution of Parabol1c and Eliptic
Different1al Equat1ons. SIAM J., vol. 3, 1955.

5. Douglas, J.:
Methods.

On the Numerical Integrat10n of
SIAM J., vol. 3, 1955.

Ut + Uxx + Uyy by Implic1t

6. Douglas, J.; and Rachford, H.: On the Numerical Solution of the Heat Conduct1on
Problems in Two and Three Space Var1ables. Trans. Am. Math. Soc., vol. 82,
1956, pp. 421-439.

7. Douglas, J.; and Gunn, J.: A General Formulation of Alternating D1rect10n
Methods. Numer. Math., vol. 6, no. 5, 1964.

8. Beam, R. M.; and Warming, R. F.:
s1ble Navier-Stokes Equations.

An Implicit Factored Scheme for the Compres
AlAA J., vol. 16, no. 4, Apr. 1978.

9. Steger, J. L.: Impl1c1t F1nite-Difference S1mulat1on of Flow About Arb1trary
Two-D1mensional Geometries. AlAA J., vol. 16, no. 7, July 1978.

10. Baldwin, B. S.; and Lomax, H.:
Separated Turbulent Flows.

Thin Layer Approx1mat10n and Algebraic Model for
AlAA Paper 78-257, 1978.

11. VAX/VMS System SerV1ces Reference Manual (vers10n 3.0). Digital Equ1pment
Corporat10n, Maynard, Mass., 1982.

14

TABLE 1.- COMMON BLOCK PROTECTION

Common block Function MAIN SLAVE STEPUP SUBRHS

BASE Constants, sW1tches G G G G
GEO Grid constants L
READ I/O sw1tches L
VIS V1SCOUS constants G G G
VARS Solution vector G G G
VARO Previous solution G G G G
VAR1 Gr1d metrics G* G* G* G*
VAR3 Metric derivat1ves L L L
COUNT Iterat10n count L
PPRCSS Parallel process1ng G G G G
PLOT Plot switches L
TURMU Turbulence stresses G G G
MUKIN Temperature G G G
FS Free stream G G G
BTRI Matr1x coeff1c1ent L
RHS RHS sW1tches L

Notes: G = global (shared memory); L
each processor.

local; G* - global on

TABLE 2.- TASK TIMINGS: EULER EQUATIONS

T1me-MIMI> code, sec T1me-serial code, Task Speedup sec Serial Concurrent

Setup 6.58 6.03 0.916
RHS .02 4.02 7.78 1. 926
Res1dual + Be .74 .74 1.0
LHS .09 13.64 26.76 1. 949
Output (1. 64) Not measured Assume 1.0

(optwnal)
T1me/1teration (.85) (17.66) (35.26) 1. 905
Output routines 3.24 3.29 1.015

t + n(tBC + t RHS + t LHS) + t
Speedup = setuE outEut

t' + n(t~c + tiHS + t~HS) + t' setup output

n - iterations
t - ser1al
t' - MIMI>

Examples:
Iterat10ns SEeeduE Iterat10ns SEeeduE

1 1.574 15 1.872
2 1.705 50 1.895
5 1.813 100 1.900

10 1.857 400 1.904

15

TABLE 3.- TASK TIMINGS: NAVIER-STOKES EQUATIONS

Time-MIMD code, sec
Time-serial code, Task Speedup

Serial Concurrent sec

Setup 6.57 6.07 0.924
RHS .02 7.84 15.15 1.927
Residual + BC .84 .84 1.0
LHS .08 15.47 30.50 1.972
Output (1. 64) Not measured Assume 1.0

(optional)
Time/iteration (.94) (23.31) (46.42) 1. 914
Output routines 3.24 3.22 .994

Examples:

Iteratl.ons Speedup Iterations Speedup

1 1.635 50 1.906
2 1. 751 100 1.910
5 1.842 400 1. 913

10 1.876
15 1.889
25 1.899

TABLE 4.- TOTAL CPU TIMINGS FOR EULER EQUATION

Number of
l.teratl.ons t MAIN , sec t RHS ' sec tLHS,sec t MIMD , sec t serl.al' sec Speedup

1 11.60 4.21 13.67 29.48
45.32 1. 537

1 11. 79 4.23 13.74 29.76 1.523
2 14.25 8.41 27.36 50.02 82.70 1.653
5 16.10 20.98 67.95 105.03 187.36 1. 784

10 22.60 42.04 132.38 197.02 365.60 1.856
15 28.03 63.03 204.58 295.64 544.49 1.842
25 33.45 104.79 338.04 476.28 897.78 1.885

TABLE 5.- TOTAL CPU TIMINGS FOR NAVIER-STOKES EQUATION

Number of
l.terations

t
MAIN

, sec t RHS ' sec t LHS ' sec t MIMD , sec t serial' sec Speedup

1 11.62 7.84 15.47 34.93 56.70 1.623
2 13.93 15.69 30.87 60.49 105.07 1.737
5 16.19 39.15 77 .15 132.49 244.24 1.843

10 20.58 78.17 155.13 253.88 478.13 1.883
25 33.36 196.72 386.95 617.03 1173.25 1.901

16

TABLE 6.- STOPWATCH TIMINGS FOR EULER EQUATION

Number of t
MIMD

, sec t
iterations serial' sec

1 44.61 46.14 1 36.98
2 58.10 82.70
5 114.68 188.32

10 213.66 366.98
15 311.86 545.98
25 499.44 899.53

TABLE 7.- STOPWATCH TIMINGS FOR
NAVIER-STOKES EQUATION

Number of
lteratl0ns t MIMD , sec t serlal' sec

1 43.73 58.39
2 68.58 106.75
5 151.50 246.11

10 269.69 479.39
25 647.78 1175.21

17

Speedup

1.034
1.248
1.423
1.642
1. 718
1. 751
1.801

Speedup

1.335
1.557
1.642
1. 778
1.814

PREVIOUS ITERATION

/"
Lxyz • RHS

/ - SYNCHRONIZE

F -1
x • q*

/ - SYNCHRONIZE

F -1
y .. q**

/ - SYNCHRONIZE

F -1
z

.. qn + 1

/ - SYNCHRONIZE

NEXT ITERATION

Figure 1.- MIMD procedure for solv1ng
approximate-factored algor1thms.

1

2

3

1,1 1,2 ! 1,3 , 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4
k = 1

J = 1 Jmax

Figure 3.- Memory partition for a
four-processor system set up
for a two-dimensional problem.

INITIALIZATION

DATA INPUT
GRID GENERATION

VARIABLE INITIALIZATION

4
<n = 1 - Nmax>

k = 1

J = 1 Jmax
SWEEP 1

1 2 3 4

k = 1

J = 1 Jmax
SWEEP 2

Figure 2.- Implementat10n of a two
dimensional problem on a four
processor system.

18

MAIN ITERATION LOOP

BOUNDARY CONDITIONS
RIGHT-HAND-SIDE OPERATOR

EXPLICIT SMOOTHING
CALCULATE RESIDUAL - CONVERGANCE?

IMPLICIT INTEGRATION
- x-SWEEP
- y-SWEEP
- z-SWEEP

OUTPUT EVERY N ITERATIONS

FINAL OUTPUT ROUTINES

Figure 4.- Serial code flow summary.

PROGRAM AIR3D

, INITIA
GRID
JACOB
METOUT (4x) XXM, YYM, ZZM

OUT2
EIGEN XXM, YYM, ZZM

STEP <n = 1 - Nmax>

BC XXM, YYM, ZZM

RHS ZZM
FLUXVE
DIFFER

YYM
FLUXVE
DIFFER

XXM
FLUXVE
DIFFER
VIXRHS ZZM

MUTUR ZZM
SMOOTH XXM, YYM, ZZM

FILTRX XXM
AMATRIX (J = 1, Jmax)

BTRI

FILTRY YYM
AMATRX (k = 1, '('l1ax)

BTRI

FILTRZ ZZM
AMATRX (I = 1, Lmax)

VISMAT ZZl'vl
BTRI

MAP
OUT2 (x4)

< EhlD n-LOOP>
OUT (x6)
PLOT (x4)
PLANE

Figure 5.- Serial code subroutines.

19

J = 2, Jmax - 1
k = 2, Kmax - 1
1= 1, Lmax

J = 2, Jmax - 1
k=1,Kmax
1= 2, Lmax - 1

J=1,Jmax
k = 2, Kmax - 1
1= 2, Lmax - 1

k = 2, Kmax - 1
1= 2, Lmax - 1

J = 2, Jmax - 1
1= 2, Lmax - 1

J = 2, Jmax - 1
k = '2, Kmax - 1

MEMORY MAPPING AND SUBPROCESS SETUP

<n = 1 - Nmax>

MAP GLOBAL SECTIONS
CREATE FLAG CLUSTERS
CREATE SUBPROCESSES

INITIALIZATION

DATA INPUT
GRID GENERATION

VARIABLE INITIALIZATION

MAIN ITERATION LOOP

BOUNDARY CONDITIONS
RIGHT-HAND-SIDE OPERATOR

EXPLICIT SMOOTHING
CALCULATE RESIDUAL - CONVERGENCE]

IMPLICIT INTEGRATION
- x-SWEEP

- V-SWEEP
- z-SWEEP

OUTPUT EVERY N ITERATIONS

FINAL OUTPUT ROUTINES

SUBPROCESS DELETION AND MEMORY DEALLOCATION

F1gure 6.- Concurrent code flow summary.

20

(SERIAL)
(SERIAL)
(SERIAL)

(SERIAL)
(SERIAL)
(SERIAL)

(SERIAL)
(PARALLEL)
(PARALLEL)
(SERIAL)
(PARALLEL)

(SERIAL)

(SERIAL)

(SERIAL)

MAPPRM
SPAWN
INITIA

GRID
JACOB
METOUT (x4) (XXM, YYM, ZZM)
METPASS

OUT2 (XXM, YYM, ZZM)
EIGEN

STEP ,.----.. <n = 1- Nmax>
BC

SUBRHS

RHS
ZZM) = 2, Jmax - 1
FLUXVE k = 2, Kmax - 1
DIFFER 1= 1, Lmax
YYM) = 2, Jmax - 1
FLUXVE k = 1, Kmax
DIFFER 1= 2, Lmax - 1
XXM) = 1, JmdX
FLUXVE k = 2, Kmdx - 1
DIFFER 1= 2, Lmax - 1

SMOOTH

MAPPRM
SPAWN

METREC

(SYNC) (SYNC)

(SYNC)

(SYNC)

(SYNC)
MAP
OUT2 (x4)

OUT (x6)
PLOT (x4)
PLANE
DELPRM

FILTRX XXM k=2,Kmax-1

BTRI

FIL TRY

BTRI

FIL TRZ

VISMAT
BTRI

AMATRX 1= 2, Lmax - 1
() = 2, Jmax)

YYM) = 2, Jmax - 1
AMATRX 1= 2, Lmax - 1

(k = 2, Kmax)

ZZM) = 2, Jmax - 1
AMATRX k = 2, Kmax - 1

(I = 1, Lmax)

< END n-LOOP >

Figure 7.- Concurrent code subrout1nes.

21

(SYNC)

(SYNC)

(SYNC)

DELPRM

MERCURY

MAIN

LOCAL
GEO
READ
VAR3
COUNT
PLOT

STEPUP

LOCAL
VAR3
BTRI

SUBRHS

LOCAL
VAR3
RHS

\VARll

MA780

BASE
VIS
VARS
VARO
PPRCSS
TURMU
MUKIN
FS

JUPITER

SLAVE

LOCAL

STEPUP

LOCAL
VAR3
BTRI

SUBRHS

LOCAL
VAR3
RHS

IVARll

F1gure 8.- Process/memory allocat1on (us1ng data block names).

22

a..
::>
Q
w
w
a..
en

- COMPONENT TIMINGS

• TOTAL CPU TIME
20 0 REAL TIME

19 -------------- - -- ---

1 8 0

0

1 7 0

0

1 6

1 5 L.--_____ -'---_____ -'--____ ----'

1 10 100 1000
ITERATIONS

Figure 9.- Speedup of the Pulliam-Steger AIR 3D code using two processors to
solve the Euler equations.

a..
::>
Q
w
w
a..
en

COMPONENT TIMINGS
• TOTAL CPU TIME

20
o REAL TIME

o
15~ _____ ~ _____ ~ _____ _J

1 10 100 1000
ITERATIONS

Figure 10.- Speedup of the Pulliam-Steger AIR3D code using two processors to solve
the Nav1er-Stokes equation with a thin-layer approximation and an algebra1c
turbulence model.

23

1 Report No 2 Government Ace_,on No 3 Recipient's Catalog No

NASA TM-85945
4 Title and Subtitle 5 Report Date

STUDY OF THE MAPPING OF NAVIER-STOKES ALGORITHMS
ONTO MULTIPLE-INSTRUCTION/MULTIPLE-DATA-STREAM 6 Performing Organization Code

COMPUTERS July 1984
7 Author(s) 8 Performing Organization Report No

D. Scott Eberhardt and Donald Baganoff (Stanford A-9716
Univ. , Stanford, CA), and Ken Stevens 10 Work Unit No

9 Performing Organrzatlon Name and Address

Ames Research Center 11 Contract or Grant No

Moffett Field, CA 94035
13 Type of Report and Period Covered

12 Sponsoring Agency Name and Address Techn1cal Memorandum
National Aeronaut1cs and Space Admin1strat10n 14 Sponsoring Agency Code

Wash1ngton, DC 20546 505-37-01
15 Supplementary Notes

P01nt of Contact: Ken Stevens, Ames Research Center, MS 233-14, Moffett
Field, CA 94035, (415) 965-5949 or FTS 448-5949

16 Abstract

Imp11c1t approximate-factored algor1thms have certa1n propert1es that
are sU1table for parallel processing. This study demonstrates how a par-
t1cular computational flu1d dynamics (CFD) code, using th1s algorithm, can
be mapped onto a multiple-1nstruction/multiple-data-stream (MIMD) computer
architecture. An explanation of this mapp1ng procedure is presented, as
well as some of the diff1cult1es encountered when try1ng to run the code
concurrently. Timing results are given for runs on the Ames Research
Center's MIMD test facility Wh1Ch cons1sts of two VAX 11/780' s w1th a
common MA780 multi-ported memory. Speedups exceeding 1.9 for character1st1c
CFD runs were ind1cated by the timing results.

17 Key Words (Suggested by Author(s)) 18 Distribution Statement
Navier-Stokes equat10ns Unlimited
MIMD
Concurrent process1ng
Computational fluid dynam1cs Subject category - 62

19 Security aasslf (of thiS report) 20 Security Classlf (of thiS page}
121

No of Pages 1 22
Proe,"

Unclassified Unclassified 26 A03

"For sale by the National Technical Information Service Sprongfleld, Virginia 22161

End of Document

