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SUMMARY 

Impliclt approxlmate-factored algorithms have certain propertles that are sUlt­
able for parallel processlng. This study demonstrates how a partlcular computatl0nal 
fluld dynamlcs (CFD) code, using thlS algorlthm, can be mapped onto a multlple­
lnstructl0n/multlple-data-stream (MIMD) computer archltecture. An explanatlon of this 
mapplng procedure lS presented, as well as some of the difflcultles encountered when 
trylng to run the code concurrently. Tlmlng results are glven for runs on the Ames 
Research Center's MIMD test faclilty which consists of two VAX 11/780's with a common 
MA780 multl-ported memory. Speedups exceedlng 1.9 for characterlstlc CFD runs were 
lndlcated by the tlmlng results. 

INTRODUCTION 

The purpose of thls study was to develop a method for lmplementlng an impllclt, 
approxlmate-factorlzatl0n algorlthm onto a multlple-instructlon/multlple-data-stream 
(MIMD) computer archltecture. ThlS new archltecture lS representatlve of the new 
generatlon of computers that has Just been introduced. To use these machlnes most 
efflclently, lt lS necessary to understand how the partlcular algorlthms map onto the 
multlprocessor machlnes. In particular, Ames Research Center lS lnterested ln 
explorlng ways to use lts recently acquired Cray X-MP (a two-processor MIMD machlne) 
most efflclently. The test results presented here were obtalned wlth an MIMD test 
faclilty at Ames conslstlng of two VAX 11/780's wlth an MA780 dual-ported memory. 

The particular code that was studied on the MIMD test facillty was the Pulllam 
and Steger "AIR3D" code (ref. 1). AIR3D lS a three-dlmensl0nal, lmpliclt, approxlmate­
factored algorlthm which solves the Euler equatlons or the Navler-Stokes equatlons 
wlth a thin-layer approxlmatlon for elther laminar or turbulent boundary layers about 
an aXlsymmetrlc, hemlspherlcal nose proJectlle. Parallel studles have been conducted 
at Ames to lnvestlgate two other wldely used computatl0nal fluld dynamlcs (CFD) algo­
rithms: TWING, a two-dimensional potential algorlthm, and Rogallo's LES (large eddy 
slmulatlon) code uSlng spectral methods (refs. 2 and 3). The experlence of lmplement­
ing these three benchmark algorlthms onto the MIMD test faclllty has yielded a clear 
method for mapplng certaln CFD algorlthms onto MIMD computers. 

We flrst dlSCUSS a general approxlmate-factorlzatl0n algorlthm and some of ltS 
propertles and then glve a detalled dlScussl0n of AIR3D, which demonstrates the steps 
required to transfer a code onto an MIMD machlne. Included in the discussl0n 18 an 
outllne of the serlal code that helps to explain the structure of the concurrent code 
used. Some of the difficulties encountered in implementing the scheme are presented, 
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as well as some general thoughts on algorithm-based architectures. Finally, results 
are presented of the timings obtained by running the concurrent code on the Ames 
MIMD test fac1lity. 

APPROXIMATE FACTORIZATION 

The approx1mate-factorization algorithm is a part1cular form of the alternating 
d1rect10n, impl1cit (ADI) algorithm f1rst 1ntroduced by Peaceman and Rachford (ref. 4) 
for two-dimensional problems. The scheme was improved and extended to three d1men­
sions by Douglas (ref. 5), Douglas and Rachford (ref. 6), and Douglas and Gunn 
(ref. 7). For a hyperbolic set of equat10ns, such as the Euler equat10ns, wh1ch we 
represent by the general form 

a q + a E + a F + a G = 0 
t x y z 

where q 1S a vector, E E(q), F = F(q), and G = G(q), the correspond1ng f1nite­
difference equations can be expressed in operator notat10n and written as follows: 

(1) 

(2) 

where the left-hand s1de 1S the 1mpl1c1t part and the r1ght-hand s1de is the expl1c1t 
part of the algor1thm. The operators 1n equat10n (2) are general operators that 
result from the fin1te-differenc1ng and 11nearizat1on of the terms conta1n1ng the 
E, F, and G d1fferentials. The approximate factorization is introduced as a less 
computat1onally costly means of 1nvert1ng the operator on the left-hand s1de. The 
operator is first factored 1nto three separate operators that are spat1ally 1ndepen­
dent as follows: 

(3) 

and the approximat1on 1S 1ntroduced by ignoring the second-order terms 1n equat10n (3). 
Th1s allows the introduction of a three-step solution process in wh1ch each step 
1nverts an independent spatial operator. Intermed1ate var1ables are encountered 1n 
this way, but they do not add to the storage requirements since they may overwr1te the 
prev10us level. The three-step solution is given by 

-1 
q** = IF q* 

Y 

n+1 -1 
q = IF q** z 

(4) 

This spat1al decoupling lends itself very nicely to concurrent process1ng. S1nce each 
operator contains derivatives in only one spatial direction, all lines of data 1n that 
coor~1nate can be solved independently. For example, each 11ne of J, where j is 
the x-index, can be solved independently on every point in the k,£ plane, where 
k and £ are the indices of y and z, respectively. Thus, an MIMD mach1ne could, in 
principle, use as many processors as there are points in each plane, assuming no 
other restrict1on. 
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MIMD IMPLEMENTATION 

An MIMD implementation of this spatially decoupled procedure beg~ns as follows. 
The first step is to compute the right-hand side of equation (2). Because it is 
explicit and all data at the current time-step are available (in a shareable memory), 
the data can be divided into several groups. A convenient split is to evenly diVIde 
the data along a particular direction, say x, by the number of processors ava~lable. 
If J is the index representing the x-d~rection and Jmax is the total number of 
x grld points, then for a two-processor system, one processor can be assigned the 
points 1 to Jmax/2 and the other Jmax/2 + 1 to Jmax. All processors must be 
synchronlzed at the completion of thlS step before continuing to the implicit inte­
grat~on. ThlS synchronlzation, following the explicit rlght-hand-side calculatl0n, 
lS the flrst of four such synchronizations. The overall procedure is outllned ln 
figure 1. 

After all processors have verlfled completion of thelr respective segments of 
the right-hand side, the lnverSlon of ~x may begin. A single 11ne of J can be 
lnverted at any point in the k,£ plane independent of all other 11nes of j. Thus, 
the workload can be shared among the several processors lnto any deslred dlvlsl0n of 
the k,£ plane. At the completion of the x-sweep a second synchronizatl0n must 
occur before proceeding to the y-sweep. 

For the y-sweep, the data base can be split anywhere in the J,£ plane to 
separate the decoupled k-llnes for concurrent processing. Upon completlon of thlS 
sweep, the processors must be synchronlzed a third tlme before contlnuing to the 
z-sweep. The z-sweep can be Spilt anywhere in the j,k plane, and computatl0n pro­
ceeds as before. A fourth and flnal synchronlzation lS requlred at the end of the 
z-sweep to complete a single iteration loop. ThlS loop may have to be repeated 
200-600 tlmes before a converged solution lS obtalned wlth tYPlcal CFD appllcatl0ns. 

An example of a slmple two-dlmenslonal problem requlrlng a two-step Solutl0n 
procedure wlth three synchronlzatlons is shown in flgure 2. The figure outllnes the 
process descrlbed above for a four-processor system. 

SOME OBSERVATIONS 

Flgure 2 reveals an lnterestlng possibl1lty for hardware implementatlon of the 
approximate-factorization algorlthm. If a multlprocessor computer system were to be 
designed speclflcally for thlS partlcular algorithm, then a special memory system 
could be implemented based on the mesh used in the computatlon, which follows the 
"dance hall model." In the case of the two-dimensl0nal problem of flgure 2, the 
computational domain is divlded by the four processors and the two sweeps into 
16 blocks, as shown ln figure 3. However, if one determlnes WhlCh processor accesses 
WhlCh block, one sees immedlately that the dlagonal blocks are accessed only by a 
slngle processor. In fact, the blocks in the computational domain may be assoClated 
with matrlx elements Ajk' where j and k ldentlfy the processors that access a 
block in the two sweeps. Flgure 3 exhibits a four-processor implementation using this 
notatl0n. Thus, for a dedicated approximate-factorization multlprocessor computer 
system, the memory configuration may be chosen so that a block is accessed by a s~ngle 
processor lf j = k or by two processors if j # k. Since each block ~s accessed by 
one processor at a time, the implementation should make use of switches which may be 
reset by the software on each sweep. 
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The primary motivat10n for considering this approach 1S the problem of memory 
bus bandwidth. As more processors are added to a common memory bus, timing conflicts 
grow in number, and processors must wait to access memory. Hardware stud1es show 
that four processors on one bus tend to saturate the memory bus, and adding more 
processors simply degrades processor efficiency rather than improving overall perfor­
mance. Of course, this varies according to the particular problem being solved. The 
memory implementation discussed here would circumvent this problem, provided the 
requ1red switch1ng can be suitably 1mplemented in hardware. Also, 1n princ1ple, 
there would be no restriction on how many elements, Ajk' are used. Although software 
may be required to align the data base for each Ajk access, wh1ch would 1ntroduce 
some addit10nal complexity, th1s memory implementation would be an interest1ng possi­
b1lity for future development. 

DESCRIPTION OF CODE 

A general discuss10n of the approximate-factor1zation algor1thm has been pre­
sented, and the specif1c code studied for th1s report will now be discussed. Our 
hand11ng of the code AIR3D follows the same general solution procedure described above, 
but 1t will be out11ned here in more detail. F1rst, we d1scuss the set of equations 
and the specif1c finite-difference operators used. Th1s discussion 1S not essential 
to one's understanding of the procedure, prov1ded one is fami11ar w1th the general 
operator notation presented in the prev10us sections. The specific modificat1ons 
requ1red for concurrent process1ng, 1nclud1ng a d1Scuss1on of the requ1red system 
calls, are given following the code description. 

Equat10n Set 

AIR 3D is an implic1t, fin1te-d1fference program for unsteady, three-d1mens10nal 
flow calculations. It can handle viscous effects and incorporates an algebra1c tur­
bulence model as a selected option. The code can also handle arbitrary geometries 
through the use of a general coordinate transformation. The code 1S described 1n 
deta1l in a paper by Pul11am and Steger (ref. 1), which w11l only be summarized here. 

The three-d1mensional, nonsteady Navier-Stokes equat10ns can be tranformed and 
wr1tten for an arb1trary curvilinear space, whil€ retaining the strong conservat10n­
law form, w1thout undue 1ncreased complexity of the governing set. The follow1ng 
form shows the result1ng equations when transformed from x,y,z,t space to ~,n,s,T 

space: 

where 

p 

pu 

q J- 1 pv 

pw 

e 

a q + a~(E + E ) + a (F + F ) + a (G + G ) = 0 
T s V n v S v 

pU 

puU + ~xP 

E + J- 1 pvU + ~yP 

pwU + SzP 

(e + p)U - StP 

4 

F 

pV 

pvV + nyp 

pwV + n p z 

(e + p)V - nt p 

(5) 



pW 

puW + z.;xP 

G J-1 pvW + z.;yP 

pwW + Z;;ZP 

(e + p)W - Z;;tP 

and 

D ~t + ~xu + ~ v + ~ w y Z 

V nt + n u + n v + n w x y Z 

W = I'; t + I'; u + I'; v + 
x Y I'; w Z 

The quantities D, V, and Ware the contravar1ant veloc1ties wr1tten w1thout metric 
norma11zation. Note that th1s general transformat1on 1ncludes the poss1b1l1ty of a 
mov1ng grid. The viscous terms w1ll not be presented here but can be found 1n many 
papers on the subject (refs. 1, 8, 9). In th1s formulation, the Cartes1an velocity 
components u,v,w are nond1mens10na11zed with respect to the free-stream speed of 
sound aoo ' the dens1ty p is norma11zed with respe~t to Poo' and the total energy e 
1S normalized w1th respect to pooaoo • Pressure 1S g1ven 1n terms of these variables by 

(6) 

The metric terms themselves are defined in deta1l in reference 1. 

This program makes use of a thin-layer approximation throughout, result1ng in 
fewer gr1d p01nts and less computation. The th1n-layer approx1mat10n uses boundary­
layer-11ke coord1nates and 19nores V1SCOUS terms assoc1ated with small veloc1ty 
grad1ents. Therefore, if the ~ and n coordinates are chosen to l1e parallel to the 
body surface, only the Z;; V1SCOUS terms will be 1ncluded. Th1s 1S 1dent1cal to a 
boundary-layer model in wh1ch streamwise V1SCOUS terms are 19nored. Thus, th1s 
approX1mat1on requires gr1d ref1nement in only the 1';, or perpend1cular, dlrect1on. 
The new set of equat10ns simp11f1es to 

(7) 

where 

0 

~(z:~ + z:2 + 2 + (~/3)(l';xur; + + I';zwz:) I'; x y Z:z)ur; I';yvr; 

~(I';~ + 1';2 + 1';2)v + (~/3) (l';xuZ;; + l';yvZ;; + I';zwl';)l';y 
S J- 1 Y z Z;; 

~ (Z;;~ + 1';2 + Z;;2)W + (~/3)(l';xuZ;; + l';yvZ;; + 2zwz;;)Z;;z y z Z;; 

(Z;;2 + Z;;2 + Z;;2)[O.5~(u2 + v 2 + w2) + KPr- 1 (y - 1)(a2)z.;] x y z Z;; 

+ (~/3)(Z;; u + Z;; v + Z;; w)(Z;; u + Z;; v + Z;; wr ) x y z x Z;; y I'; z ~ 
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An algebraic turbulence model is also incorporated in AIR3D which makes use of 
the method of Baldwin and Lomax (ref. 10). 

Algorithm 

The finite-difference scheme used in AIR3D is the 1mplic1t approx1mate­
factorization algorithm of Beam and Warm1ng (ref. 8). The scheme was chosen to be 
implicit to avoid the restrict1ve stabil1ty bounds of explicit methods when applied 
to small gr1d spacings. The delta form of the algor1thm, where 1ncremental changes 
1n quantities are calculated, 1S used to reduce computat10nal errors and, in addition, 
is a conven1ent choice for steady-state solutions. 

Central differencing 1S used for all three direct10ns. The fin1te-difference 
equat10ns are spatially split so that three separate one-d1mens10nal problems are 
solved at each t1me-step. The central differenc1ng yields block-tr1diagonal matrices 
which are 1nverted 1n each spatial coordinate. This decoupl1ng of the spat1al coor­
d1nates provides the pr1nc1pal motivation for cons1der1ng parallel process1ng as a 
means of carry1ng out the calculations 1n an eff1c1ent way. 

The approximate factorizat10n of the finite-difference algor1thm results in the 
following set of finite-d1fference equat10ns: 

(I + ho.An - E J-1V.~.J)(I + ho Bn_ E J-1V ~ J)(I + ho Cn - hRe-1o Mn - E J-1V ~ J)~qn 
<, 1 <, <, n 1 n n I;; I;; 1 I;; I;; 

= -~t(Oc;,En + 0nFn + ol;;G
n 

- Re-10I;;Sn) - EeJ-1[(Vc;,~c;,)2 + (Vn~n)2 + (VI;;~I;;)2]Jqn 

(8) 

n n+1 n . where ~q = q - q and h = ~t for f1rst-order Euler t1me-d1fferenc1ng, or 
h = ~t/2 for second-order trapezoidal t1me-differencing. The finite-difference oper­
ators V,~, and 0 are expla1ned in the original paper (ref. 1); they are widely 
used. The matrices An, Bn, and Cn are time-l1near1zat10ns of En+l, Fn+l, and Gn+1 , 

respect1vely. The coeff1cient matr1x Mn 1S obta1ned by a Taylor-series expans10n of 
the V1SCOUS vector Sn+l. These matrices w1l1 not be presented here but can be found 
in reference 1. Numerical damp1ng terms are added to 1mprove the stability, and are 
selected to be second-order accurate to ma1nta1n the block-tr1d1agonal nature of the 
implicit part of the code; they are fourth-order accurate 1n the expl1c1t right-hand 
side of the code. 

In terms of the operator notat10n 1ntroduced 1n equat10ns (4), each operator 
becomes a block-tr1diagonal matrix in this formulation. The operators are each 
def1ned by 

6 x (I + he An 
c;, 

-1 ) EiJ Vc;,~c;,J 

6 (I + he Bn - E J-1V ~ J 
y n 1 n n 

6z (I + hel;;C
n 

- E.J-1V ~ J 
1 I;; I;; 

- hRe-10I;;Mn) 

(9) 

The block-tridiagonal operators $x, 6 y , and 6 z are spatially decoupled and so 
can be 1nverted independently. Each operator contains derivat1ves in only one d1rec­
tion; for example, each 6~Q, is 1ndependent of every other 6~Q,; 6~Q, 1S thus 
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lnverted at each n and ~ coordinate independently. In a Kmax by Lmax MIMD processor 
array, a single sweep of each n,~ processor would invert the entire $x operator. 
The Ames MIMD machine uses only two processors so the workload was shared equally; 
consequently, each processor inverted Kmax/2 by Lmax block tridiagonals. The 
expllclt operator, ~xyz' can be handled in any convenient manner since lt lS com­
pletely expllcit, and all the requlred data are avallable at each tlme-step. The 
dlvislon used in this study was a simple Jmax/2 split so that the data base was 
dlVlded lnto two blocks of Jmax/2 by Kmax by Lmax pOlnts. 

It should be noted that thlS decoupling lS a feature of the approxlmate factor­
izatlon and is not assoclated with the central dlfferencing used in AIR3D. Thus, any 
algorlthm exhibltlng spatlal decoupling should allow the use of the same sort of 
parallellsm. 

Runnlng the Serial Code 

The conventlonal method of runnlng the code AIR3D on a serlal machlne wlil now 
be descrlbed. ThlS wlil help to give a better understandlng of the modlflcatlons 
lntroduced to allow the use of concurrency. Flgure 4 shows a flowchart of the serial 
code, and flgure 5 shows a detalled breakdown of tasks ln AIR3D with subroutlne names 
from the program. 

The initial segment of the code (see fig. 4) includes the input routines, lnltial­
lzatlon routlnes, and the grld-generatlon routines. The input routines set the angle 
of attack, Mach number, and other lmportant flow varlables. SWltches are also -set 
WhlCh speclfy the grld optlon and lnltlallzatlon optl0n used. Also, the sWltches 
determlne whether V1SCOUS effects are included and whether they are lamlnar or turbu­
lent. The lnltlallzatlon routlnes allow the cholce of an impulsively started Solutlon 
or a start-up from a previous Solutlon which is obtalned from a flle. The grld­
generatlon routlne allows the selectlon of either a grid stored ln a flle or the 
default grld (a hemispherlcal nose wlth a cyllndrlcal afterbody), which lt calculates. 
After thlS lnltlal segment is run, the program enters the maln iteratlon loop. 

The maln lteratlon loop contalns the code sectlon WhlCh updates the Solutl0n by 
one lteratl0n step. This segment beglns by calculatlng the boundary condltlons 
explicltly. Then the rlght-hand-slde operator lS calculated, followed by the explicit 
smoothlng. At thls pOlnt, the residual operator lS avallable (at steady state the 
right-hand slde becomes zero) and so convergence is tested by calculatlng the L2 
norm. Optlonal output routlnes glve diagnostlc lnformatlon, such as a pressure dis­
tribution, when requested. The final step in the main lteration loop is the impllclt 
lntegratlon. This requlres three sweeps through the data base. In the ~-sweep a 
block tridiagonal lS inverted for each pOlnt in the n,~ plane. Likewlse, a block 
trldiagonal is lnverted for each pOlnt ln the ~'s and the ~,n planes for the 
n-sweep and ~-sweep, respectlvely. This maln lteratlon loop accounts for most of the 
CPU tlme, since lt lS repeated 200-600 tlmes for typical Solutlons and lt lS computa­
tlonally lntenslve. 

The flnal portlon of the code contains the output routlnes. This portlon pldces 
the output data lnto output flIes for future data processing. 

The orlglnal code was wrltten to run on the CDC 7600 Slnce the code lS too compu­
tatlonally intensive to run on the VAX 11/780. Because the goal of the present study 
was to develop initial experience with an MIMD test bed consisting of two VAX 11/780's 
with an MA780 memory, the Fortran code was preprocessed to eliminate CDC 7600 Fortran 
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extens10ns, and the grid density was reduced to make the code compatible with the 
available memory. This mod1fication will be described below. Also, oW1ng to the 
limited available computational time, no runs were carr1ed through to a converged 
solution, which would have requ1red the exclus1ve use of a mach1ne for several days. 
Nevertheless, because a converged solution was not required and only t1m1ng data were 
needed, timing predictions could be obtained quite accurately for large t1mes from 
sets of runs that could be carr1ed out 1n reasonable t1me per10ds. 

Running the Concurrent Code 

The concurrent code, called MAIN, runs with several spawned processes operat1ng 
on each mach1ne. The program breakdown 1S shown in f1gures 6 and 7; subrout1ne names 
are g1ven 1n f1gure 7. The processes on each mach1ne must commun1cate w1th each 
other and w1th the processes on the other mach1nes through global sect10ns 1n shared 
memory. The spec1f1c mechan1sms for th1s 1nterprocess commun1cat10n are calls to the 
VAX VMS system-service rout1nes and run-t1me l1brary funct10ns. They w111 be pre­
sented by the1r funct10n names; they are descr1bed 1n deta11 1n the VAX system serV1ce 
manual (ref. 11). Since these serV1ce calls are mach1ne-dependent, the source code is 
not transferable to other MIMD mach1nes w1thout sU1table translat10n of the system 
serV1ce calls. A diagram show1ng the process relat10nsh1ps to each other and memory 
1S shown in f1gure 8. The 1nd1vidual sect10ns of th1s code w111 now be descr1bed. 

The first sect10n of MAIN not only contains all of the elements of the 1n1tlal 
part of the ser1al code, but also 1ncludes some 1mportant elements of the parallel 
process1ng. In add1t10n to 1nltla11zat10n, etc., the f1rst sect10n sets up the global 
sect10ns and flag clusters 1n shared memory and creates subprocesses, wh1ch represent 
the concurrent code on that machine. The second processor, referred to here as the 
slave processor, has a s1m11ar bookkeep1ng program, called SLAVE, for 1dent1cal 
parallel process1ng funct10ns; however, 1t conta1ns none of the rout1nes of the 
or1g1nal ser1al code. Calls to MAPPRM, a function call contalning the system service 
SYS$MGBLSC, reserve global sect10ns that are required for global common blocks. 
These blocks, which reslde in shared memory, are g1ven the log1cal names SHRMEMO:name. 
Table 1 identifies by name and funct10n the common blocks used 1n each process and 
the1r level of protect10n (local or global). The system serV1ce call SYS$ASCEF sets 
up flag clusters for 1nterprocess commun1cat10n. Two flag clusters have been allo­
cated for thlS program: one represents synchron1zation commun1cat1on between subpro­
cesses and the ma1n processes, and the other represents semaphore, or flag, commun1ca­
t10n between the ma1n processes on the two processors. Flnally, a call to LIB$SPAWN, 
a run-time library routine, creates the subprocesses that represent the concurrent 
port10ns of the code. These subprocesses are g1ven the names SUBPRAIR3D$01-04 and 
run the program STEPUP and SUBRHS. The numer1cal extension 1n the subprocess name, 
01-04, is the 1dentificat10n number used in the program to define wh1ch portions of 
data to work with. 

All programs that need data from the shared memory sect10ns must map global 
sect10ns to the shared memory before they can access 1t. All programs must also 
acknowledge, or associate w1th, the flag clusters which are an essent1al part of the 
1nterprocess commun1cat10n. Once the in1t1al setup for parallel process1ng has been 
completed and MAIN has completed the in1tializat10n routines descr1bed 1n the ser1al 
code, the gr1d metr1c terms must be passed to the other processor's local memory. 
Th1s is due to a hardware restriction and will be discussed 1n detail below. MAIN 
not1f1es the slave processor when 1t has reached this point by sett1ng a flag 
(SYS$SETEF) 1n the semaphore flag custer. Slave, which 1S 1dle dur1ng the parallel 
process1ng setup (wa1ting for a flag, SYS$WAITFR), completes the transfer, clears the 
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flag (SYS$CLREF) for future use, and sets another flag to not1fy MAIN that the trans­
fer is complete. Initia11zation is now complete for MAIN and SLAVE. Most of this 
f1rst section of the code is bas1ca11y sequential, and the rema1nder does not warrant 
the effort to extract parallel segments. The slave processor therefore rema1ns mostly 
1d1e dur1ng this setup phase. 

Two processes are spawned on each processor during the setup phase. The programs 
subm1tted are called STEPUP and SUBRHS, wh1ch conta1n the solvers for the imp1ic1t 
1ntegrat10n and for the r1ght-hand side, respectively. After these two Jobs are 
created at the beg1nning of MAIN and SLAVE, they run through an in1tia1ization phase 
wh1ch maps the global sect10ns, assoc1ates with flag clusters, and 1dentif1es wh1ch 
half of the data 1t w111 work on. This 1dent1f1cat10n is obtained by a call to 
SYS$GETJPI wh1ch returns the subprocess name used by the system (SUBPRARI3D$xx). The 
numer1ca1 extens10n is extracted wh1ch becomes its ID number. The 1n1t1a1 setup 1S 
very short and when complete, the processes h1bernate (a call to SYS$HIBER) unt11 
awakened by the main programs. 

The ma1n 1terat10n loop const1tutes most of the para1le11sm found 1n the code. 
In1t1ally, boundary data are calculated ser1ally, because very l1ttle 1mprovement 1n 
overall speedup would be ga1ned and 1t would not offset the effort needed to paral-
1e11ze 1t. Th1s could be 1mplemented along w1th the r1ght-hand s1de at a future t1me, 
but 1t would requ1re rather extens1ve rewr1t1ng of that port10n of the code. When 
the r1ght-hand-s1de operator 1S ready to be calculated, MAIN not1f1es SLAVE, through 
a semaphore flag, and each wakes the subprocess SUBRHS on 1tS respect1ve mach1nes (by 
a call to SYS$WAKE). At th1s time the ma1n programs, MAIN and SLAVE, go 1nto a wait 
state unt11 a flag code 1S set by the subprocesses (SYS$WFLAND). The two processes, 
called SUBPRAIR3D$03 ($04), now run the concurrent program SUBRHS through a cycle 
wh1ch calculates the r1ght-hand-s1de operator, adds the exp11c1t smooth1ng, and sets 
an eX1t flag, before returning to a ready state at the beg1nning of the code and 
h1bernat1ng there. When both the subprocesses have set the1r event flags, the ma1n 
programs are react1vated. F1rst, the ma1n processes clear the event flags, and then 
MAIN cont1nues w1th the ca1cu1at10n of the res1dual and calls opt10nal output rou­
t1nes, as 1n the ser1al code. The slave processor rema1ns 1dle for th1s short per10d. 

The 1mp11c1t 1ntegrat10n 1S a much more complex process, because three cycles 
are needed to complete a s1ng1e 1teration. Aga1n, as for the r1ght-hand-s1de ca1cu­
lat10n, MAIN not1f1es SLAVE to beg1n. Both ma1n processes wake up the subprocesses, 
now called SUBPRAIR3D$Ol (02), which run the program STEPUP concurrently. During the 
f1rst cycle, the d1rect10n flag (IDIR) 1S set to 1, s1gn1fy1ng a s-sweep. After 
each subprocess has completed 1ts half of the calculat10n, synchron1zat10n 1S 1ntro­
duced by sett1ng event flags to not1fy the ma1n processes, as w1th SUBRHS. The cycle 
then repeats w1th the d1rect10n flag set to 2 and then 3, s1gn1fY1ng n- and s-sweeps. 
A s1ng1e 1terat10n loop has been completed at th1s p01nt, requ1r1ng four synchroniza­
t10ns. The synchron1zat10ns between the d1rect10na1 sweeps 1n STEPUP are requ1red so 
that the 1ntermed1ate starred variables in the three-step-so1ut10n process of equa­
t10n (4) w111 be at the proper stage when the processors call upon them. The program 
STEPUP loops back to the beg1nn1ng of the code, to the SYS$HIBER call, where 1t wa1ts 
unt11 called upon aga1n. Th1s point 1S also the start1ng p01nt for each of the 
s-, n-, and s-sweeps. 

The f1na1 sect10n of the code 1S 1dentica1 to the serial code except that MAIN 
must now not1fy SLAVE to exit and delete the subprocesses. MAIN also dea110cates the 
shared memory global sections and flag clusters. For most of the output routines, the 
slave processor rema1ns 1d1e. 
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A summary of the system calls that were used in th1s implementat10n 1S presented 
to ass1st in making the code transportable to other MIMD machines. F1rst, the pro­
gram must be allowed to control mapping of data into shared memory, so that each 
processor can access global common blocks, yet protect local data. Next, a mechanism 
for sett1ng up flag clusters must exist w1th the follow1ng communication dev1ces: 
(1) a wait for a particular flag dev1ce; (2) a wa1t for a logical AND of the flag 
cluster w1th a var1able mask; (3) a clear flag; and (4) a set flag command. SerV1ces 
that allow process hibernation and waking are also des1rable, although flag commun1ca­
t10ns could replace these calls. Lastly, a routine for spawn1ng subprocesses would 
be required to run th1s particular 1mplementation. The subprocess creat10n is not 
necessarily required S1nce the code could reside in the MAIN and SLAVE codes; however, 
this would not separate tasks conveniently. If the subprocess 1mplementation 1S used, 
the numer1cal ID extens10n to the subprocess name 1S convenient for 1dent1f1cat10n. 
Regardless of 1mplementat10n, some mechanism for process 1dentif1cat10n must eX1st 
(processor number, etc.), so that the programs will know wh1ch data they are ass1gned. 
Once these system calls are available, AIR3D can be transferred to any MIMD mach1ne 
w1th the proper translat10n of the VAX system serV1ce calls 1n the current program. 

DIFFICULTIES OF IMPLEMENTATION 

Several trade-offs and comprom1ses were made 1n th1s concurrent 1mplementat10n 
of AIR3D. Most of these were a result of the 11m1tations imposed by the particular 
MIMD test fac111ty employed. First, because the code 1S computationally 1ntens1ve, 
converged solutions could not be generated on the two VAX's. The time requ1red to 
reach a properly converged solut10n would have required the total ded1cat10n of both 
the MERCURY and JUPITER computers at Ames for several days. S1nce th1s amount of run 
t1me was not even cons1dered, the test cases were run for only 10 to 20 1terat10ns to 
get sample t1m1ngs. 

Another rather severe restr1ct10n encountered was the lim1ted S1ze of the MA780 
dual-ported memory in the system. Only 1/4 Mbyte was ava1lable, and all shared 
memory requ1rements had to fit w1th1n th1s memory size. Because the code 1S three­
d1mens10nal and each gr1d p01nt has 14 var1ables assoc1ated w1th 1t, the shared 
memory was qU1ckly used up and two steps had to be taken to ta110r the problem to the 
11m1ted memory. F1rst, the gr1d metr1cs were removed from shared memory and a copy 
was placed 1n each processor's local memory. Th1s el1m1nated 3 of the 14 var1ables 
requ1red. It must be noted that 1n an unsteady problem, where the gr1d metrics change 
dynam1cally, th1s procedure would not be allowed. The pass1ng of the gr1d metr1cs 
from the main processor to the slave processor occurs dur1ng the init1al1zat10n 
rout1nes as descr1bed above. The second step taken was to reduce the gr1d dens1ty. 
The normal default case for the hemispher1cal nose, cyl1ndrical afterbody geometry was 
an array of 48 x 12 x 20 p01nts for the 1nv1sc1d case and a 30 x 18 x 30 array for 
the V1SCOUS case. All cases 1n this study used a 20 x 10 x 20 array wh1ch results 1n 
40% fewer gr1d p01nts. At this level of coarseness, the code became unstable after a 
large number of 1terat10ns and no attempt was made to seek a converged solut10n. Th1s 
was not a ser10US lim1tation because the ob]ect1ve of th1s study was to obtain a run­
t1me compar1son between a ser1al and an MIMD conf1gurat10n, and for th1s compar1son 
convergence is not a necessary condition. These two steps would not have been 
required on a mach1ne w1th a larger shared memory, such as the Cray X-MP. 

Another approach was in1tially taken but then dropped because it was clear that 
a converged solut10n was not requ1red for this study. The approach considered was to 
place only the data that were required by the slave processor in the shared memory, 
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which meant that only half of the data had to be in shared memory at one t~me. How­
ever, th~s also meant the data had to be reformatted and shifted at least twice for 
each iteration. This reformatting added an unfair burden to the timings of the con­
current code. Since this reformatting was not a consequence of the MIMD arch~tecture 
but a result of the limited memory available, reformatting represented an undes1rable 
approach. One clear advantage that th~s approach brought to light was that the slave 
processor requ~red only a gener~c solver for all three sweeps of the implic1t inte­
grat~on. This resulted 1n a compact code which, on certain vector machines, could 
speed up the computat~on t1me of the slave processor cons~derably. 

In the orig~nal formulat~on of the program, metr1c derivatives were calculated 
as needed to avo~d the extra memory space required to store them. The code was 
wr~tten to calculate all of the metric derivat~ves along a part~cular l~ne when the 
subrout~ne was called. Th~s presented no problem w1th the ~mpl~c~t part of the code 
Slnce all lines of data were decoupled. However, wlth the expllcit part of the code, 
when the metrlc derlvatlves crosslng the divlslon between the two data halves were 
calculated, some overlaPPlng data were needed in the calculatl0n, and extra work was 
necessary glven the current code structure. The amount of overlap requ1red was two 
pOlnts, for the fourth-order flnlte-dlfferencing used ln this code, Slnce each half of 
the expllcit calculatlon must "see" lnto the other half of the data a d1stance of 
two pOlnts. 

RESULTS 

Results ln the form of tlm~ng measurements wlll now be presented and d~scussed. 
These tlmlngs were performed on the Ames MIMD test facllity run as a slngle-user 
system. This allowed for the use of all the memory avallable, wlth only the operating 
system competlng for CPU tlme. The two options tested were the Euler equatl0ns and 
Navler-Stokes equatlons wlth the turbulent, thin-layer approximatl0n. 

Three timlng measurements are presented for the two flow solvers. The three 
tlmlngs lnclude progresslvely more hardware/operatlng system penaltles. The measure­
ments were made to demonstrate the var~atl0ns in tim~ng speedups that are found for 
dlfferent computer enVlronments. The three measurements are for CPU task tlmlng, 
total CPU timings, and real-time (stopwatch) tlmlngs. Speedup as used here lS 
dehned by 

Speedup 
t 
serlal 

t concurrent 
(10) 

The flrst set of timings, the CPU task tlmlngs, was made by recording the CPU 
tlme for each element, or task, of the program. The tasks are defined in a manner 
consistent with the previous dlScussl0n of the code. They include the setup, WhlCh 
lS serlal, both the serlal and concurrent parts of the explic~t calculat~on and the 
lmpl~clt lntegratlon, the boundary conditions and residual calculation, and, finally, 
the output routines. The serlal portions of the expliclt calculation and the ~mplicit 
lntegration are primarily overhead, required for parallel processing. This timing 
procedure makes lt easy to separate the serial and concurrent tlmings for extrapolat­
ing speedup for a larger number of iteratl0ns. Tables 2 and 3 compare the serial 
timings and the concurrent timings for the Euler and Navler-Stokes solvers, respec­
tlvely. The data presented are representative of all the iterations, since the task 
tlmlngs for each lteratlon were found to be very close, although not ldentical. From 
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these timings it is clear that w1thin the main iteration loop, a sign1ficant 1mprove­
ment in computation time is achieved. The tasks that calculate the right-hand-side 
operator and invert the left-hand-side operator show speedups of nearly 2.0, w1th very 
little overhead. The main ~terat~on loop showed a speedup of 1.905 for the Euler 
solution and 1.914 for the Navier-Stokes solution. These results demonstrate that 
the overall speedup atta1ned for this particular 1mplementat10n 1S quite good for a 
single-1teration cycle. The single-1teration cycle represents a respectable asymp­
totic lim1t for tYP1cai numbers of iterations requ1red 1n CFn applicat10ns that 
1nclude init1alizat10n and output routines. Plots of speedup versus number of 1tera­
tions are shown in figures 9 and 10. These curves were computed using the following 
formula: 

Speedup 
[t + n(t + t + t ) + t ]. setup BC RHS LHS output ser1al 

(11) 
[t + n(t + t + t ) + t ] setup BC RHS LHS output concurrent 

An interest1ng observat10n was made in developing these t1m1ngs: the two pro­
cessors used yielded different t1mings for the same concurrent task; the tim1ngs were 
found to vary by as much as 5%. However, each processor was conslstent wlth its own 
t1m1ngs. As a result, 1t was decided to use the task t1m1ngs for the extrapolated 
MIMD performance curves from the same processor that executed the ser1al code. 
Another observation made with these tim1ngs was that some tasks are not penalized 
properly for certa1n overhead. For example, no task 1S charged for the CPU t1me 
requ1red to wake a process or cause 1t to h1bernate. In view of this, care was taken 
so that most parallel-process1ng overhead was properly charged. 

The next two sets of timings to be presented represent the total time spent in 
executing the code (including all overhead), but exclude penalt1es for work done by 
the operat1ng system in job management, etc. These results would be representat1ve 
of nont1me-shared mach1nes, where no Job management 1nterruptions are allowed, and 
where all processors operate at the same speed. They also prov1de a check on the 
prev10us tim1ngs. Tables 4 and 5 show results for the Euler and Navier-Stokes solu­
t10ns, respectively. Th1S time 1S simply the sum of the CPU t1me for the main process 
and for each of the subprocesses. Agaln, for thlS implementatl0n, where each pro­
cessor has a Sllghtly d1fferent speed, the speedup 1S measured by uS1ng the data for 
the same processor that was used for the ser1al code. These results are slightly 
lower than the previous results, as seen 1n figures 9 and 10, S1nce all program­
related overhead was properly charged. 

The last set of t1mings are "stopwatch-style" t1m1ngs; they are presented 1n 
tables 6 and 7. The measured time represents the total elapsed t1me from 1n1t1al 
start-up of the Job to 1tS conclus1on. This is the actual speedup 1n turnaround t1me 
that one could expect for th1S system. This number 1ncludes all Job account1ng over­
head from the operat1ng system and the d1fference in speed of the two processors. 
Th1s tim1ng, however, 1S very machine-dependent and, glven the MIMD test bed used, 1t 
can be assumed to represent the low end of the speedup (see figs. 9 and 10). The 
difference between this t1ming and the timings of the f1rst method represents the 
improvement that can be made with1n a given computer environment. 

All three t1m1ngs show that the Navier-Stokes Solut10n, w~th the turbulent, thin­
layer approximation, Y1elded a greater speedup than the Euler solution. This 1S a 
consequence of the greater number of calculations needed for the Navier-Stokes solu­
t10n that appear 1n the parallel port10ns of the code. An even greater speedup of 
both solvers could be ach1eved 1f the additional effort were taken to parallelize the 
boundary condit10ns and residual calculations. These two portions of code are located 
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1n the main 1teration loop and are, therefore, a significant cause of 1neff1c1ency. 
The init1al setup and final output routines represent such a small fraction of the 
total CPU t1me for the case of a larger number of iterations, which is the more 
rea11st1c case. that it is not useful to devote any effort to extracting any paral­
le11sm they may contain. The t1mings reported here represent speedups that are 
obta1nable uS1ng standard programm1ng pract1ce. 

CONCLUSIONS 

A s1gnif1cant amount of parallel code has been ident1fied 1n a standard bench­
mark CFD code. The code uses an approximate-factored algorithm that. 1n a very 
stra1ghtforward manner, can be run on a concurrent process1ng computer. This 1mplicit 
algor1thm was shown to ach1eve a speedup of greater than 1.9 on a two-processor 
system for representat1ve solut10ns and to do so w1thout an undue amount of effort. 
The general approximate-factored algorithm appears to be a very good candldate to run 
on the new generat10n of MIMD computers. 

The computer enV1ronment encountered in th1s study brought to light some features 
that should be considered. In this study 1t was found that the two processors used 
requlred dlfferent execution t1mes. Although th1s would not b,~ slgniflcant on a 
machlne 11ke the Cray C-MP. 1t made signlficant dlfferences on the Ames MIMD test 
fac111ty. The conclusion drawn from th1s observat10n 1S that concurrent algor1thms 
should str1ve to be asynchronous. ThlS would e11m1nate overhead from the d1fferent 
processor speeds. The approx1mate-factored algorithm 1S not an algorithm that can be 
run asynchronously. so a more complex scheme of balanc1ng processors would be 
necessary. 

Some stumb11ng blocks at the beg1nning of the research helped to show the 1mpor­
tance of memory management. Local and shared memor1es must be separate and protected. 
ThlS requ1rement led to the s1gn1f1cant 1nteractl0n between the programmer and the 
operat1ng system/computer architecture wh1ch 1deally should be elim1nated 1n an opera­
t10nal computer. Solut1ons to th1s problem lnclude des1gn1ng algor1thms that elther 
use only shared memory or use a min1mal amount of shared memory. where asynchronous 
passlng of lnfluence parameters 1S used 1nstead of code var1ables themselves. 
Another approach would be to deslgn addit10nal language constructs and make them 
ava11able to the programmer who helps control memory protect1on. A soph1sticated 
operating system and comp11er that could handle these h1gh-level language constructs 
would be requ1red. No matter wh1ch approach 1S taken. 1t must e11m1nate the need for 
the programmer to access the operat1ng system for memory management. 

A whole new area of research can be formed in concurrent algor1thm development. 
Most work 1n the past has been of an explicit nature. but th1s study has shown that 
even imp11c1t algorithms possess a s1gn1f1cant amount of paralle11sm. Research 1S 
being init1ated on asynchronous algorithms meeting most of the requ1rements developed 
above. 
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TABLE 1.- COMMON BLOCK PROTECTION 

Common block Function MAIN SLAVE STEPUP SUBRHS 

BASE Constants, sW1tches G G G G 
GEO Grid constants L 
READ I/O sw1tches L 
VIS V1SCOUS constants G G G 
VARS Solution vector G G G 
VARO Previous solution G G G G 
VAR1 Gr1d metrics G* G* G* G* 
VAR3 Metric derivat1ves L L L 
COUNT Iterat10n count L 
PPRCSS Parallel process1ng G G G G 
PLOT Plot switches L 
TURMU Turbulence stresses G G G 
MUKIN Temperature G G G 
FS Free stream G G G 
BTRI Matr1x coeff1c1ent L 
RHS RHS sW1tches L 

Notes: G = global (shared memory); L 
each processor. 

local; G* - global on 

TABLE 2.- TASK TIMINGS: EULER EQUATIONS 

T1me-MIMI> code, sec T1me-serial code, Task Speedup sec Serial Concurrent 

Setup 6.58 6.03 0.916 
RHS .02 4.02 7.78 1. 926 
Res1dual + Be .74 .74 1.0 
LHS .09 13.64 26.76 1. 949 
Output (1. 64) Not measured Assume 1.0 

(optwnal) 
T1me/1teration (.85) (17.66) (35.26) 1. 905 
Output routines 3.24 3.29 1.015 

t + n(tBC + t RHS + t LHS ) + t 
Speedup = setuE outEut 

t' + n(t~c + tiHS + t~HS) + t' setup output 

n - iterations 
t - ser1al 
t' - MIMI> 

Examples: 
Iterat10ns SEeeduE Iterat10ns SEeeduE 

1 1.574 15 1.872 
2 1.705 50 1.895 
5 1.813 100 1.900 

10 1.857 400 1.904 
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TABLE 3.- TASK TIMINGS: NAVIER-STOKES EQUATIONS 

Time-MIMD code, sec 
Time-serial code, Task Speedup 

Serial Concurrent sec 

Setup 6.57 6.07 0.924 
RHS .02 7.84 15.15 1.927 
Residual + BC .84 .84 1.0 
LHS .08 15.47 30.50 1.972 
Output (1. 64) Not measured Assume 1.0 

(optional) 
Time/iteration (.94) (23.31) (46.42) 1. 914 
Output routines 3.24 3.22 .994 

Examples: 

Iteratl.ons Speedup Iterations Speedup 

1 1.635 50 1.906 
2 1. 751 100 1.910 
5 1.842 400 1. 913 

10 1.876 
15 1.889 
25 1.899 

TABLE 4.- TOTAL CPU TIMINGS FOR EULER EQUATION 

Number of 
l.teratl.ons t MAIN , sec t RHS ' sec tLHS,sec t MIMD , sec t serl.al' sec Speedup 

1 11.60 4.21 13.67 29.48 
45.32 1. 537 

1 11. 79 4.23 13.74 29.76 1.523 
2 14.25 8.41 27.36 50.02 82.70 1.653 
5 16.10 20.98 67.95 105.03 187.36 1. 784 

10 22.60 42.04 132.38 197.02 365.60 1.856 
15 28.03 63.03 204.58 295.64 544.49 1.842 
25 33.45 104.79 338.04 476.28 897.78 1.885 

TABLE 5.- TOTAL CPU TIMINGS FOR NAVIER-STOKES EQUATION 

Number of 
l.terations 

t
MAIN

, sec t RHS ' sec t LHS ' sec t MIMD , sec t serial' sec Speedup 

1 11.62 7.84 15.47 34.93 56.70 1.623 
2 13.93 15.69 30.87 60.49 105.07 1.737 
5 16.19 39.15 77 .15 132.49 244.24 1.843 

10 20.58 78.17 155.13 253.88 478.13 1.883 
25 33.36 196.72 386.95 617.03 1173.25 1.901 
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TABLE 6.- STOPWATCH TIMINGS FOR EULER EQUATION 

Number of t
MIMD

, sec t 
iterations serial' sec 

1 44.61 46.14 1 36.98 
2 58.10 82.70 
5 114.68 188.32 

10 213.66 366.98 
15 311.86 545.98 
25 499.44 899.53 

TABLE 7.- STOPWATCH TIMINGS FOR 
NAVIER-STOKES EQUATION 

Number of 
lteratl0ns t MIMD , sec t serlal' sec 

1 43.73 58.39 
2 68.58 106.75 
5 151.50 246.11 

10 269.69 479.39 
25 647.78 1175.21 
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Speedup 

1.034 
1.248 
1.423 
1.642 
1. 718 
1. 751 
1.801 

Speedup 

1.335 
1.557 
1.642 
1. 778 
1.814 



PREVIOUS ITERATION 

/" 
Lxyz • RHS 

/ - SYNCHRONIZE 

F -1 
x • q* 

/ - SYNCHRONIZE 

F -1 
y .. q** 

/ - SYNCHRONIZE 

F -1 
z 

.. qn + 1 

/ - SYNCHRONIZE 

NEXT ITERATION 

Figure 1.- MIMD procedure for solv1ng 
approximate-factored algor1thms. 

1 

2 

3 

1,1 1,2 ! 1,3 , 1,4 

2,1 2,2 2,3 2,4 

3,1 3,2 3,3 3,4 

4,1 4,2 4,3 4,4 
k = 1 

J = 1 Jmax 

Figure 3.- Memory partition for a 
four-processor system set up 
for a two-dimensional problem. 

INITIALIZATION 

DATA INPUT 
GRID GENERATION 

VARIABLE INITIALIZATION 

4 
<n = 1 - Nmax> 

k = 1 

J = 1 Jmax 
SWEEP 1 

1 2 3 4 

k = 1 

J = 1 Jmax 
SWEEP 2 

Figure 2.- Implementat10n of a two­
dimensional problem on a four­
processor system. 
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MAIN ITERATION LOOP 

BOUNDARY CONDITIONS 
RIGHT-HAND-SIDE OPERATOR 

EXPLICIT SMOOTHING 
CALCULATE RESIDUAL - CONVERGANCE? 

IMPLICIT INTEGRATION 
- x-SWEEP 
- y-SWEEP 
- z-SWEEP 

OUTPUT EVERY N ITERATIONS 

FINAL OUTPUT ROUTINES 

Figure 4.- Serial code flow summary. 



PROGRAM AIR3D 

, INITIA 
GRID 
JACOB 
METOUT (4x) XXM, YYM, ZZM 

OUT2 
EIGEN XXM, YYM, ZZM 

STEP <n = 1 - Nmax> 

BC XXM, YYM, ZZM 

RHS ZZM 
FLUXVE 
DIFFER 

YYM 
FLUXVE 
DIFFER 

XXM 
FLUXVE 
DIFFER 
VIXRHS ZZM 

MUTUR ZZM 
SMOOTH XXM, YYM, ZZM 

FILTRX XXM 
AMATRIX (J = 1, Jmax) 

BTRI 

FILTRY YYM 
AMATRX (k = 1, '('l1ax) 

BTRI 

FILTRZ ZZM 
AMATRX (I = 1, Lmax) 

VISMAT ZZl'vl 
BTRI 

MAP 
OUT2 (x4) 

< EhlD n-LOOP> 
OUT (x6) 
PLOT (x4) 
PLANE 

Figure 5.- Serial code subroutines. 
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J = 2, Jmax - 1 
k = 2, Kmax - 1 
1= 1, Lmax 

J = 2, Jmax - 1 
k=1,Kmax 
1= 2, Lmax - 1 

J=1,Jmax 
k = 2, Kmax - 1 
1= 2, Lmax - 1 

k = 2, Kmax - 1 
1= 2, Lmax - 1 

J = 2, Jmax - 1 
1= 2, Lmax - 1 

J = 2, Jmax - 1 
k = '2, Kmax - 1 



MEMORY MAPPING AND SUBPROCESS SETUP 

<n = 1 - Nmax> 

MAP GLOBAL SECTIONS 
CREATE FLAG CLUSTERS 
CREATE SUBPROCESSES 

INITIALIZATION 

DATA INPUT 
GRID GENERATION 

VARIABLE INITIALIZATION 

MAIN ITERATION LOOP 

BOUNDARY CONDITIONS 
RIGHT-HAND-SIDE OPERATOR 

EXPLICIT SMOOTHING 
CALCULATE RESIDUAL - CONVERGENCE] 

IMPLICIT INTEGRATION 
- x-SWEEP 

- V-SWEEP 
- z-SWEEP 

OUTPUT EVERY N ITERATIONS 

FINAL OUTPUT ROUTINES 

SUBPROCESS DELETION AND MEMORY DEALLOCATION 

F1gure 6.- Concurrent code flow summary. 
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(SERIAL) 
(SERIAL) 
(SERIAL) 

(SERIAL) 
(SERIAL) 
(SERIAL) 

(SERIAL) 
(PARALLEL) 
(PARALLEL) 
(SERIAL) 
(PARALLEL) 

(SERIAL) 

(SERIAL) 

(SERIAL) 



MAPPRM 
SPAWN 
INITIA 

GRID 
JACOB 
METOUT (x4) (XXM, YYM, ZZM) 
METPASS 

OUT2 (XXM, YYM, ZZM) 
EIGEN 

STEP ,.----.. <n = 1- Nmax> 
BC 

SUBRHS 

RHS 
ZZM ) = 2, Jmax - 1 
FLUXVE k = 2, Kmax - 1 
DIFFER 1= 1, Lmax 
YYM ) = 2, Jmax - 1 
FLUXVE k = 1, Kmax 
DIFFER 1= 2, Lmax - 1 
XXM ) = 1, JmdX 
FLUXVE k = 2, Kmdx - 1 
DIFFER 1= 2, Lmax - 1 

SMOOTH 

MAPPRM 
SPAWN 

METREC 

(SYNC) (SYNC) 

(SYNC) 

(SYNC) 

(SYNC) 
MAP 
OUT2 (x4) 

OUT (x6) 
PLOT (x4) 
PLANE 
DELPRM 

FILTRX XXM k=2,Kmax-1 

BTRI 

FIL TRY 

BTRI 

FIL TRZ 

VISMAT 
BTRI 

AMATRX 1= 2, Lmax - 1 
() = 2, Jmax) 

YYM ) = 2, Jmax - 1 
AMATRX 1= 2, Lmax - 1 

(k = 2, Kmax) 

ZZM ) = 2, Jmax - 1 
AMATRX k = 2, Kmax - 1 

(I = 1, Lmax) 

< END n-LOOP > 

Figure 7.- Concurrent code subrout1nes. 
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(SYNC) 

(SYNC) 

(SYNC) 

DELPRM 



MERCURY 

MAIN 

LOCAL 
GEO 
READ 
VAR3 
COUNT 
PLOT 

STEPUP 

LOCAL 
VAR3 
BTRI 

SUBRHS 

LOCAL 
VAR3 
RHS 

\VARll 

MA780 

BASE 
VIS 
VARS 
VARO 
PPRCSS 
TURMU 
MUKIN 
FS 

JUPITER 

SLAVE 

LOCAL 

STEPUP 

LOCAL 
VAR3 
BTRI 

SUBRHS 

LOCAL 
VAR3 
RHS 

IVARll 

F1gure 8.- Process/memory allocat1on (us1ng data block names). 
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Figure 9.- Speedup of the Pulliam-Steger AIR 3D code using two processors to 
solve the Euler equations. 
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Figure 10.- Speedup of the Pulliam-Steger AIR3D code using two processors to solve 
the Nav1er-Stokes equation with a thin-layer approximation and an algebra1c 
turbulence model. 
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