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STUDY OF THE MAPPING OF NAVIER-STOKES ALGORITHMS ONTO
MULTIPLE-INSTRUCTION/MULTIPLE-DATA-STREAM COMPUTERS
D. Scott Eberhardt,* Donald Baganoff,* and K. G. Stevens, Jr.

Ames Research Center

SUMMARY

Implicit approximate-factored algorithms have certain properties that are suit-
able for parallel processing. This study demonstrates how a particular computational
fluid dynamics (CFD) code, using this algorithm, can be mapped onto a multiple-
instruction/multiple-data-stream (MIMD) computer architecture. An explanation of this
mapping procedure 1s presented, as well as some of the difficulties encountered when
trying to run the code concurrently. Timing results are given for runs on the Ames
Research Center's MIMD test facility which consists of two VAX 11/780's with a common
MA780 multi-ported memory. Speedups exceeding 1.9 for characteristic CFD runs were
indicated by the timing results.

INTRODUCTION

The purpose of this study was to develop a method for implementing an implicit,
approximate—-factorization algorithm onto a multiple-instruction/multiple-data-stream
(MIMD) computer architecture. This new architecture 1s representative of the new
generation of computers that has just been introduced. To use these machines most
efficiently, 1t 1s necessary to understand how the particular algorithms map onto the
multiprocessor machines. In particular, Ames Research Center 1s 1nterested 1n
exploring ways to use 1ts recently acquired Cray X-MP (a two-processor MIMD machine)
most efficiently. The test results presented here were obtained with an MIMD test
faci1lity at Ames consisting of two VAX 11/780's waith an MA780 dual-ported memory.

The particular code that was studied on the MIMD test facility was the Pulliam
and Steger "AIR3D" code (ref. 1). AIR3D 1s a three-dimensional, implicit, approximate-
factored algorithm which solves the Euler equations or the Navier-Stokes equations
with a thin-layer approximation for either laminar or turbulent boundary layers about
an axisymmetric, hemispherical nose projectile. Parallel studies have been conducted
at Ames to 1nvestigate two other widely used computational fluid dynamics (CFD) algo-
rithms: TWING, a two-dimensional potential algorithm, and Rogalle's LES (large eddy
simulation) code using spectral methods (refs. 2 and 3). The experience of i1mplement-
ing these three benchmark algorithms onto the MIMD test facility has yielded a clear
method for mapping certain CFD algorithms onto MIMD computers.

We first discuss a general approximate-factorization algorithm and some of 1its
properties and then give a detailed discussion of AIR3D, which demonstrates the steps
required to transfer a code onto an MIMD machine. Included in the discussion 1s an
outline of the serial code that helps to explain the structure of the concurrent code
used. Some of the difficulties encountered in implementing the scheme are presented,
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as well as some general thoughts on algorithm-based architectures. Finally, results
are presented of the timings obtained by running the concurrent code on the Ames
MIMD test facility.

APPROXTMATE FACTORIZATION

The approximate-factorization algorithm is a particular form of the alternating
direction, implicit (ADI) algorithm first introduced by Peaceman and Rachford (ref. 4)
for two-dimensional problems. The scheme was improved and extended to three dimen-
sions by Douglas (ref. 5), Douglas and Rachford (ref. 6), and Douglas and Gunn
(ref. 7). TFor a hyperbolic set of equations, such as the Euler equations, which we
represent by the general form

5,a+ 3B+ F+36=0 (1)

where q 1s a vector, E = E(q), F = F(q), and G = G(q), the corresponding finite-
difference equations can be expressed in operator notation and written as follows:

q =g q 2

where the left-hand side 1s the implicit part and the right-hand side is the explicit
part of the algorithm. The operators 1in equation (2) are general operators that
result from the finite-differencing and linearization of the terms containing the

E, F, and G differentials. The approximate factorization is introduced as a less
computationally costly means of inverting the operator on the left-hand side. The
operator is first factored into three separate operators that are spatially indepen-
dent as follows:

- 2
oz = EF, %+ 00?) (3)

and the approximation 1is 1introduced by ignoring the second-order terms in equation (3).
This allows the introduction of a three-step solution process in which each step
inverts an independent spatial operator. Intermediate variables are encountered 1in
this way, but they do not add to the storage requirements since they may overwrite the
previous level. The three-step solution is given by

% = n+1 gt n
1 s;s;q X xyzq
qr* = &g (4)
y
qn+1 =$;lq**

This spatial decoupling lends itself very nicely to concurrent processing. Since each
operator contains derivatives in only one spatial direction, all lines of data 1in that
coordinate can be solved independently. For example, each line of 3j, where Jj 1is
the x-index, can be solved independently on every point in the k,2% plane, where

k and 2 are the indices of y and z, respectively. Thus, an MIMD machine could, in
principle, use as many processors as there are points in each plane, assuming no

other restriction.



MIMD IMPLEMENTATION

An MIMD implementation of this spatially decoupled procedure begins as follows.
The first step is to compute the right-hand side of equation (2). Because it is
explicit and all data at the current time-step are available (in a shareable memory),
the data can be divided into several groups. A convenient split is to evenly divide
the data along a particular direction, say x, by the number of processors available.
If 3 4is the index representing the x-direction and Jmax is the total number of
x grid points, then for a two-processor system, one processor can be assigned the
points 1 to Jmax/2 and the other Jmax/2 + 1 to Jmax. All processors must be
synchronized at the completion of this step before continuing to the implicit inte-
gration. This synchronization, following the explicit raight-hand-side calculation,
1s the first of four such synchronizations. The overall procedure is outlined in
figure 1.

After all processors have verified completion of their respective segments of
the right-hand side, the inversion of &; may begin. A single line of 3 can be
inverted at any point in the k,{% plane independent of all other lines of j. Thus,
the workload can be shared among the several processors into any desired division of
the k,% plane. At the completion of the x-sweep a second synchronization must
occur before proceeding to the y-sweep.

For the y-sweep, the data base can be split anywhere in the 3,2 plane to
separate the decoupled k-lines for concurrent processing. Upon completion of this
sweep, the processors must be synchronized a third time before continuing to the
z-sweep. The =z-sweep can be split anywhere in the j,k plane, and computation pro-
ceeds as before. A fourth and final synchronization 1s required at the end of the
z-sweep to complete a single iteration loop. This loop may have to be repeated
200-600 times before a converged solution 1s obtained with typical CFD applications.

An example of a simple two-dimensional problem requiring a two-step solution
procedure with three synchronizations is shown in figure 2. The figure outlines the
process described above for a four-processor system.

SOME OBSERVATIONS

Figure 2 reveals an interesting possibility for hardware implementation of the
approximate-factorization algorithm. If a multiprocessor computer system were to be
designed specifically for this particular algorithm, then a special memory system
could be implemented based on the mesh used in the computation, which follows the
"dance hall model.” In the case of the two-dimensional problem of figure 2, the
computational domain is divided by the four processors and the two sweeps into
16 blocks, as shown in figure 3. However, if one determines which processor accesses
which block, one sees immediately that the diagonal blocks are accessed only by a
single processor. In fact, the blocks in the computational domain may be associated
with matrix elements Ajks where i and k 1dentify the processors that access a
block in the two sweeps. Figure 3 exhibits a four-processor implementation using this
notation. Thus, for a dedicated approximate-~factorization multiprocessor computer
system, the memory configuration may be chosen so that a block is accessed by a single
processor 1f j = k or by two processors if j # k. Since each block 1s accessed by
one processor at a time, the implementation should make use of switches which may be
reset by the software on each sweep.



The primary motivation for considering this approach 1s the problem of memory
bus bandwidth. As more processors are added to a common memory bus, timing conflicts
grow in number, and processors must wait to access memory. Hardware studies show
that four processors on one bus tend to saturate the memory bus, and adding more
processors simply degrades processor efficiency rather than improving overall perfor-
mance. Of course, this varies according to the particular problem being solved. The
memory implementation discussed here would circumvent this problem, provided the
required switching can be suitably implemented in hardware. Also, 1in principle,
there would be no restriction on how many elements, Ajk, are used. Although software
may be required to align the data base for each Ajk access, which would introduce
some additional complexity, this memory implementation would be an interesting possi-
bility for future development.

DESCRIPTION OF CODE

A general discussion of the approximate-factorization algorithm has been pre-
sented, and the specific code studied for this report will now be discussed. Our
handling of the code AIR3D follows the same general solution procedure described above,
but 1t will be outlined here in more detail. First, we discuss the set of equations
and the specific finite-difference operators used. This discussion 1s not essential
to one's understanding of the procedure, provided one is familiar with the general
operator notation presented in the previous sections. The specific modifications
required for concurrent processing, including a discussion of the required system
calls, are given following the code description.

Equation Set

AIR3D is an implicit, finite-difference program for unsteady, three-dimensional
flow calculations. It can handle viscous effects and incorporates an algebraic tur-
bulence model as a selected option. The code can also handle arbitrary geometries
through the use of a general coordinate transformation. The code 1s described in
detail in a paper by Pulliam and Steger (ref. 1), which will only be summarized here.

The three-dimensional, nonsteady Navier-Stokes equations can be tranformed and
written for an arbitrary curvilinear space, while retaining the strong conservation-
law form, without undue 1ncreased complexity of the governing set. The following
form shows the resulting equations when transformed from x,y,z,t space to §&,n,5,T
space:

aTq + BE(E + Ev) + Bn(F + Fv) + QC(G + Gv) =0 (5)
where
P pU pV
pu pul + £ p puv + n_p
q =Jev| , E + J? pvU + gyp s F=J"1 ovV + nyp
pw pwU + g p pwV + n_p
e (e + p)U - &p (e + P)V - nep
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pW
puw + z_p
G=J1t] oww + z P

pwW + L,p

(e + p)W - L.P

and
U = Et + €Xu + Eyv + gzw
V= ne + n.u + nyv + n,w
W= e + LU + Cyv + Y

The quantities U, V, and W are the contravariant velocities written without metric
normalization. Note that this general transformation includes the possibility of a
moving grid. The viscous terms will not be presented here but can be found in many
papers on the subject (refs. 1, 8, 9). 1In this formulation, the Cartesian velocity
components u,v,w are nondimensionalized with respect to the free-stream speed of
sound a_, the density p 1is normalized with respect to p_, and the total energy e
1s normalized with respect to p,a,. Pressure 1s given in terms of these variables by

p=(y - Dle - 0.5® +v? +w?)] (6)
The metric terms themselves are defined in detail in reference 1.

This program makes use of a thin-layer approximation throughout, resulting in
fewer grid points and less computation. The thin-layer approximation uses boundary-
layer-like coordinates and i1gnores viscous terms associated with small velocity
gradients. Therefore, if the § and n coordinates are chosen to lie parallel to the
body surface, only the ¢ viscous terms will be included. This 1s 1dentical to a
boundary-layer model in which streamwise viscous terms are 1ignored. Thus, this
approximation requires grid refinement in only the ¢, or perpendicular, direction.
The new set of equations simplifies to

+ 3 E+3F+3G=Re '3 S 7
8.9 + 9 3, 3 Re™"d, (7)

£

where
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An algebraic turbulence model is also incorporated in AIR3D which makes use of
the method of Baldwin and Lomax (ref. 10).

Algorithm

The finite-difference scheme used in AIR3D is the implicit approximate-
factorization algorithm of Beam and Warming (ref. 8). The scheme was chosen to be
implicit to avoid the restrictive stability bounds of explicit methods when applied
to small grid spacings. The delta form of the algorithm, where incremental changes
in quantities are calculated, 1s used to reduce computational errors and, in addition,
is a convenient choice for steady-state solutioms.

Central differencing 1s used for all three directions. The finite-difference
equations are spatially split so that three separate one-dimensional problems are
solved at each time-step. The central differencing yields block-tridiagonal matrices
which are inverted in each spatial coordinate. This decoupling of the spatial coor-
dinates provides the principal motivation for considering parallel processing as a
means of carrying out the calculations in an efficient way.

The approximate factorization of the finite-difference algorithm results in the
following set of finite-difference equations:

A0 -1 a0 -1 AL -1, 3 -1 n
+ hé A" - e J VAT +h§ B - J "VAJI+ hé C - hR M -eJ
(1 Gg e EAE ) ( n € 22y ) ( . e 6C e VCAEJ)Aq
n n n -1 n -1 2 2 2 n
= -At(6,E + § F + 8§ G - Re “§_S -eJ V. A + (V_A + (V. A J
( £ " c r ) J T £ E) ( nly) ( c C) 1Jq
(8)
where Aqn = qn+1 - qn and h = At for first-order Euler time-differencing, or

h = At/2 for second-order trapezoidal time-differencing. The finite-difference oper-
ators V, A, and § are explained in the original paper (ref. 1); they are widely
used. The matrices A", B", and C" are time-linearizations of E*, Fo*l, and
respectively. The coefficient matrix M" 1s obtained by a Taylor-series expansion of
the viscous vector SPt!. These matrices will not be presented here but can be found
in reference 1. Numerical damping terms are added to improve the stability, and are
selected to be second-order accurate to maintain the block-tridiagonal nature of the
implicit part of the code; they are fourth-order accurate in the explicit right-hand
side of the code.

1
Gn+ .

In terms of the operator notation introduced 1n equations (4), each operator
becomes a block-tridiagonal matrix in this formulation. The operators are each
defined by

~Nn -1
= (I +h8 A" -e. 777 AT
Fp T (LA ROAT 8T TWeheD
F = (I+hsB*-¢eIvay (9)
y n 1 nn
= (I +h6. 6" - e,37v_A J - hrRe"ls_ M"
g = z A e TS M)

The block-tridiagonal operators ¥x» Fy, and Fz are spatially decoupled and so
can be 1nverted independently. Each operator contains derivatives in only one direc-
tion; for example, each 3§Q is independent of every other 9%2; .9‘%2 1s thus
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inverted at each n and ¢ coordinate independently. In a Kmax by Lmax MIMD processor
array, a single sweep of each n,f processor would invert the entire &, operator.
The Ames MIMD machine uses only two processors so the workload was shared equally;
consequently, each processor inverted Kmax/2 by Lmax block tridiagonals. The
explicit operator, z&yz, can be handled in any convenient manner since 1t 1s com-
pletely explicit, and all the required data are available at each time-step. The
division used in this study was a simple Jmax/2 split so that the data base was
divided into two blocks of Jmax/2 by Kmax by Lmax points.

It should be noted that this decoupling 1s a feature of the approximate factor-
ization and is not associated with the central differencing used in AIR3D. Thus, any
algorithm exhibiting spatial decoupling should allow the use of the same sort of
parallelism.

Running the Serial Code

The conventional method of running the code AIR3D on a serial machine will now
be described. This will help to give a better understanding of the modifications
introduced to allow the use of concurrency. Figure 4 shows a flowchart of the serial
code, and figure 5 shows a detailed breakdown of tasks in AIR3D with subroutine names
from the program.

The initial segment of the code (see fig. 4) includes the input routines, initial-
1zation routines, and the grid-generation routines. The input routines set the angle
of attack, Mach number, and other important flow variables. Switches are also set
which specify the grid option and 1nitialization option used. Also, the switches
determine whether viscous effects are included and whether they are laminar or turbu-
lent. The 1initialization routines allow the choice of an impulsively started solution
or a start-up from a previous solution which is obtained from a file. The grid-
generation routine allows the selection of either a grid stored 1n a file or the
default grid (a hemispherical nose with a cylindrical afterbody), which 1t calculates.
After this 1initial segment is run, the program enters the main iteration loop.

The main 1teration loop contains the code section which updates the solution by
one 1teration step. This segment begins by calculating the boundary conditions
explicaitly. Then the right-hand-side operator 1s calculated, followed by the explicit
smoothing. At this point, the residual operator 1s availlable (at steady state the
right-hand side becomes zero) and so convergence is tested by calculating the L,
norm. Optional output routines give diagnostic information, such as a pressure dis-
tribution, when requested. The final step in the main iteration loop is the implicit
integration. This requires three sweeps through the data base. In the ¢-sweep a
block tridiagonal 1s inverted for each point in the n,7 plane. Likewise, a block
tridiagonal is inverted for each point in the £,7 and the £&,n planes for the
n-sweep and g-sweep, respectively. This main 1iteration loop accounts for most of the
CPU time, since 1t 1s repeated 200-600 times for typical solutions and 1t 1s computa-
tionally intensive.

The final portion of the code contains the output routines. This portion places
the output data into output files for future data processing.

The original code was written to run on the CDC 7600 since the code 1s too compu-
tationally intensive to run on the VAX 11/780. Because the goal of the present study
was to develop initial experience with an MIMD test bed consisting of two VAX 11/780's
with an MA780 memory, the Fortran code was preprocessed to eliminate CDC 7600 Fortran
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extensions, and the grid density was reduced to make the code compatible with the
available memory. This modification will be described below. Also, owing to the
limited available computational time, no runs were carried through to a converged
solution, which would have required the exclusive use of a machine for several days.
Nevertheless, because a converged solution was not required and only timing data were
needed, timing predictions could be obtained quite accurately for large times from
sets of runs that could be carried out in reasonable time periods.

Running the Concurrent Code

The concurrent code, called MAIN, runs with several spawned processes operating
on each machine. The program breakdown 1s shown in figures 6 and 7; subroutine names
are given 1in figure 7. The processes on each machine must communicate with each
other and with the processes on the other machines through global sections in shared
memory. The specific mechanisms for this i1nterprocess communication are calls to the
VAX VMS system-service routines and run-time library functions. They will be pre-
sented by their function names; they are described in detail in the VAX system service
manual (ref. 1l1). Since these service calls are machine-dependent, the source code is
not transferable to other MIMD machines without suitable translation of the system
service calls. A diagram showing the process relationships to each other and memory
1s shown in figure 8. The individual sections of this code will now be described.

The first section of MAIN not only contains all of the elements of the initial
part of the serial code, but also includes some important elements of the parallel
processing. In addition to 1nitialization, etc., the first section sets up the global
sections and flag clusters in shared memory and creates subprocesses, which represent
the concurrent code on that machine. The second processor, referred to here as the
slave processor, has a similar bookkeeping program, called SLAVE, for identical
parallel processing functions; however, 1t contains none of the routines of the
original serial code. Calls to MAPPRM, a function call containing the system service
SYSSMGBLSC, reserve global sections that are required for global common blocks.

These blocks, which reside in shared memory, are given the logical names SHRMEMO:name.
Table 1 identifies by name and function the common blocks used 1in each process and
their level of protection (local or global). The system service call SYSSASCEF sets
up flag clusters for interprocess communication. Two flag clusters have been allo-
cated for this program: one represents synchronization communication between subpro-
cesses and the main processes, and the other represents semaphore, or flag, communica-
tion between the main processes on the two processors. Finally, a call to LIBSSPAWN,
a run-time library routine, creates the subprocesses that represent the concurrent
portions of the code. These subprocesses are given the names SUBPRAIR3D$01-04 and
run the program STEPUP and SUBRHS. The numerical extension 1n the subprocess name,
01-04, is the 1dentification number used in the program to define which portions of
data to work with.

All programs that need data from the shared memory sections must map global
sections to the shared memory before they can access 1t. All programs must also
acknowledge, or associate with, the flag clusters which are an essential part of the
interprocess communication. Once the initial setup for parallel processing has been
completed and MAIN has completed the initialization routines described in the serial
code, the grid metric terms must be passed to the other processor's local memory.
This is due to a hardware restriction and will be discussed in detail below. MAIN
notifies the slave processor when 1t has reached this point by setting a flag
(SYSSSETEF) 1in the semaphore flag custer. Slave, which 1s 1dle during the parallel
processing setup (waiting for a flag, SYS$WAITFR), completes the transfer, clears the
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flag (SYSSCLREF) for future use, and sets another flag to notify MAIN that the trans-
fer is complete. Initialization is now complete for MAIN and SLAVE. Most of this
first section of the code is basically sequential, and the remainder does not warrant
the effort to extract parallel segments. The slave processor therefore remains mostly
1dle during this setup phase.

Two processes are spawned on each processor during the setup phase. The programs
submitted are called STEPUP and SUBRHS, which contain the solvers for the implicait
integration and for the right-hand side, respectively. After these two jobs are
created at the beginning of MAIN and SLAVE, they run through an initialization phase
which maps the global sections, associates with flag clusters, and identifies which
half of the data 1t will work on. This i1dentification is obtained by a call to
SYSSGETJPI which returns the subprocess name used by the system (SUBPRARI3DS$xx). The
numerical extension is extracted which becomes its ID number. The 1initaal setup 1s
very short and when complete, the processes hibernate (a call to SYSSHIBER) until
awakened by the main programs.

The main 1teration loop constitutes most of the parallelism found in the code.
Initially, boundary data are calculated serially, because very little improvement 1in
overall speedup would be gained and 1t would not offset the effort needed to paral-
lelize 1t. This could be i1mplemented along with the right-hand side at a future taime,
but 1t would require rather extensive rewriting of that portion of the code. When
the right-hand-side operator 1s ready to be calculated, MAIN notifies SLAVE, through
a semaphore flag, and each wakes the subprocess SUBRHS on 1ts respective machines (by
a call to SYSSWAKE). At this time the main programs, MAIN and SLAVE, go 1into a wait
state unt1l a flag code 1s set by the subprocesses (SYSSWFLAND). The two processes,
called SUBPRAIR3DS03 ($04), now run the concurrent program SUBRHS through a cvcle
which calculates the right-hand-side operator, adds the explicit smoothing, and sets
an exit flag, before returning to a ready state at the beginning of the code and
hibernating there. When both the subprocesses have set their event flags, the main
programs are reactivated. First, the main processes clear the event flags, and then
MAIN continues with the calculation of the residual and calls optional output rou-
tines, as in the serial code. The slave processor remains idle for this short period.

The 1mplicit integration 1s a much more complex process, because three cycles
are needed to complete a single 1teration. Again, as for the right-hand-side calcu-
lation, MAIN notifies SLAVE to begin. Both main processes wake up the subprocesses,
now called SUBPRAIR3D$01 (02), which run the program STEPUP concurrently. During the
first cycle, the direction flag (IDIR) 1is set to 1, signifying a &£-sweep. After
each subprocess has completed 1ts half of the calculation, synchronization 1s intro-
duced by setting event flags to notify the main processes, as with SUBRHS. The cycle
then repeats with the direction flag set to 2 and then 3, signifying n- and ¢-sweeps.
A single 1teration loop has been completed at this point, requiring four synchroniza-
tions. The synchronizations between the directional sweeps 1in STEPUP are required so
that the intermediate starred variables in the three-step-solution process of equa-
tion (4) will be at the proper stage when the processors call upon them. The program
STEPUP loops back to the beginning of the code, to the SYS$HIBER call, where 1t waits
unt1l called upon again. This point 1s also the starting point for each of the
£-, n—, and g-sweeps.

The final section of the code 1s 1dentical to the serial code except that MAIN
must now notify SLAVE to exit and delete the subprocesses. MAIN also deallocates the
shared memory global sections and flag clusters. For most of the output routines, the
slave processor remains 1idle.



A summary of the system calls that were used in this implementation 1s presented
to assaist in making the code transportable to other MIMD machines. First, the pro-
gram must be allowed to control mapping of data into shared memory, so that each
processor can access global common blocks, yet protect local data. Next, a mechanism
for setting up flag clusters must exist with the followilng communication devices:

(1) a wait for a particular flag device; (2) a wait for a logical AND of the flag
cluster with a variable mask; (3) a clear flag; and (4) a set flag command. Services
that allow process hibernation and waking are also desirable, although flag communica-
tions could replace these calls. Lastly, a routine for spawning subprocesses would
be required to run this particular implementation. The subprocess creation is not
necessarily required since the code could reside in the MAIN and SLAVE codes; however,
this would not separate tasks conveniently. If the subprocess implementation 1s used,
the numerical ID extension to the subprocess name 1s convenient for identification.
Regardless of implementation, some mechanism for process 1dentification must exist
(processor number, etc.), so that the programs will know which data they are assigned.
Once these system calls are available, AIR3D can be transferred to any MIMD machine
with the proper translation of the VAX system service calls in the current program.

DIFFICULTIES OF IMPLEMENTATION

Several trade-offs and compromises were made 1n this concurrent implementation
of AIR3D. Most of these were a result of the limitations imposed by the particular
MIMD test facility employed. First, because the code 1s computationally intensive,
converged solutions could not be generated on the two VAX's. The time required to
reach a properly converged solution would have required the total dedication of both
the MERCURY and JUPITER computers at Ames for several days. Since this amount of run
time was not even considered, the test cases were run for only 10 to 20 i1terations to
get sample timings.

Another rather severe restriction encountered was the limited size of the MA780
dual-ported memory in the system. Only 1/4 Mbyte was available, and all shared
memory requirements had to fit within this memory size. Because the code 1is three-
dimensional and each grid point has 14 variables associated with 1t, the shared
memory was quickly used up and two steps had to be taken to tailor the problem to the
limited memory. First, the grid metrics were removed from shared memory and a copy
was placed in each processor's local memory. This eliminated 3 of the 14 variables
required. It must be noted that in an unsteady problem, where the grid metrics change
dynamically, this procedure would not be allowed. The passing of the grid metrics
from the main processor to the slave processor occurs during the initialization
routines as described above. The second step taken was to reduce the grid density.
The normal default case for the hemispherical nose, cylindrical afterbody geometry was
an array of 48 x 12 x 20 points for the 1nviscid case and a 30 x 18 x 30 array for
the viscous case. All cases in this study used a 20 x 10 x 20 array which results in
407 fewer grid points. At this level of coarseness, the code became unstable after a
large number of i1terations and no attempt was made to seek a converged solution. This
was not a serious limitation because the objective of this study was to obtain a run-
time comparison between a serial and an MIMD configuration, and for this comparison
convergence is not a necessary condition. These two steps would not have been
required on a machine with a larger shared memory, such as the Cray X-MP.

Another approach was initially taken but then dropped because it was clear that

a converged solution was not required for this study. The approach considered was to
place only the data that were required by the slave processor in the shared memory,
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which meant that only half of the data had to be in shared memory at one time. How-
ever, this also meant the data had to be reformatted and shifted at least twice for
each iteration. This reformatting added an unfair burden to the timings of the con-
current code. Since this reformatting was not a consequence of the MIMD architecture
but a result of the limited memory available, reformatting represented an undesirable
approach. One clear advantage that this approach brought to light was that the slave
processor required only a generic solver for all three sweeps of the implicit inte-
gration. This resulted 1n a compact code which, on certain vector machines, could
speed up the computation time of the slave processor considerably.

In the original formulation of the program, metric derivatives were calculated
as needed to avoid the extra memory space required to store them. The code was
written to calculate all of the metric derivatives along a particular line when the
subroutine was called. This presented no problem with the implicit part of the code
since all lines of data were decoupled. However, with the explicit part of the code,
when the metric derivatives crossing the division between the two data halves were
calculated, some overlapping data were needed in the calculation, and extra work was
necessary given the current code structure. The amount of overlap required was two
points, for the fourth-order finite-differencing used 1n this code, since each half of
the explicit calculation must '"see" into the other half of the data a distance of
two points.

RESULTS

Results 1in the form of timing measurements will now be presented and discussed.
These timings were performed on the Ames MIMD test facility run as a single-user
system. This allowed for the use of all the memory available, with only the operating
system competing for CPU time. The two options tested were the Euler equations and
Navier-Stokes equations with the turbulent, thin-layer approximation.

Three timing measurements are presented for the two flow solvers. The three
timings include progressively more hardware/operating system penalties. The measure-
ments were made to demonstrate the variations in timing speedups that are found for
different computer environments. The three measurements are for CPU task timing,
total CPU timings, and real-time (stopwatch) timings. Speedup as used here 1s
defined by

tserlal
Speedup = T (10)

concurrent

The first set of timings, the CPU task timings, was made by recording the CPU
time for each element, or task, of the program. The tasks are defined in a manner
consistent with the previous discussion of the code. They include the setup, which
1s serial, both the serial and concurrent parts of the explicit calculation and the
1mplicit integration, the boundary conditions and residual calculation, and, finally,
the output routines. The serial portions of the explicit calculation and the implicit
integration are primarily overhead, required for parallel processing. This timing
procedure makes 1t easy to separate the serial and concurrent timings for extrapolat-
ing speedup for a larger number of iterations. Tables 2 and 3 compare the serial
timings and the concurrent timings for the Euler and Navier-Stokes solvers, respec-
tively. The data presented are representative of all the iterations, since the task
timings for each iteration were found to be very close, although not identical. From

11



these timings it is clear that within the main iteration loop, a significant improve-
ment in computation time is achieved. The tasks that calculate the right-hand-side
operator and invert the left-hand-side operator show speedups of nearly 2.0, with very
little overhead. The main 1teration loop showed a speedup of 1.905 for the Euler
solution and 1.914 for the Navier~Stokes solution. These results demonstrate that
the overall speedup attained for this particular implementation 1s quite good for a
single-iteration cycle. The single-iteration cycle represents a respectable asymp-
totic limit for typical numbers of iterations required in CFD applications that
include initialization and output routines. Plots of speedup versus number of itera-
tions are shown in figures 9 and 10. These curves were computed using the following
formula:

Speedup = [tsetup + n(tBC + tRHS + tLHS) + toutput]serial (11)
peedir = Tt +n(ty, + tope + L) + € ]
setup BC RHS LHS output-concurrent

An interesting observation was made in developing these timings: the two pro-
cessors used yielded different timings for the same concurrent task; the timings were
found to vary by as much as 5%. However, each processor was consistent with its own
timings. As a result, 1t was decided to use the task timings for the extrapolated
MIMD performance curves from the same processor that executed the serial code.
Another observation made with these timings was that some tasks are not penalized
properly for certain overhead. For example, no task 1s charged for the CPU time
required to wake a process or cause 1t to hibernate. 1In view of this, care was taken
so that most parallel-processing overhead was properly charged.

The next two sets of timings to be presented represent the total time spent in
executing the code (including all overhead), but exclude penalties for work done by
the operating system in job management, etc. These results would be representative
of nontime-shared machines, where no job management interruptions are allowed, and
where all processors operate at the same speed. They also provide a check on the
previous timings. Tables 4 and 5 show results for the Euler and Navier-Stokes solu-
tions, respectively. This time 1s simply the sum of the CPU time for the main process
and for each of the subprocesses. Again, for this implementation, where each pro-
cessor has a slightly different speed, the speedup 1s measured by using the data for
the same processor that was used for the serial code. These results are slightly
lower than the previous results, as seen 1n figures 9 and 10, since all program-
related overhead was properly charged.

The last set of timings are ''stopwatch-style'" timings; they are presented in
tables 6 and 7. The measured time represents the total elapsed time from 1initial
start-up of the job to 1its conclusion. This is the actual speedup 1in turnaround time
that one could expect for this system. This number includes all job accounting over-
head from the operating system and the difference in speed of the two processors.
This timing, however, 1s very machine-dependent and, given the MIMD test bed used, 1t
can be assumed to represent the low end of the speedup (see figs. 9 and 10). The
difference between this timing and the timings of the first method represents the
improvement that can be made within a given computer environment.

All three timings show that the Navier-Stokes solution, with the turbulent, thin-
layer approximation, yielded a greater speedup than the Euler solution. This 1s a
consequence of the greater number of calculations needed for the Navier-Stokes solu-
tion that appear in the parallel portions of the code. An even greater speedup of
both solvers could be achieved 1f the additional effort were taken to parallelize the
boundary conditions and residual calculations. These two portions of code are located
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in the main 1i1teration loop and are, therefore, a significant cause of inefficiency.
The initial setup and final output routines represent such a small fraction of the
total CPU time for the case of a larger number of iterations, which is the more
realistic case, that it is not useful to devote any effort to extracting any paral-
lelism they may contain. The timings reported here represent speedups that are
obtainable using standard programming practice.

CONCLUSIONS

A significant amount of parallel code has been identified in a standard bench-
mark CFD code. The code uses an approximate-factored algorithm that, in a very
straightforward manner, can be run on a concurrent processing computer. This implicit
algorithm was shown to achieve a speedup of greater than 1.9 on a two-processor
system for representative solutions and to do so without an undue amount of effort.
The general approximate—~factored algorithm appears to be a very good candidate to run
on the new generation of MIMD computers.

The computer environment encountered in this study brought to light some features
that should be considered. 1In this study 1t was found that the two processors used
required different execution times. Although this would not be significant on a
machine like the Cray C-MP, it made significant differences on the Ames MIMD test
facility. The conclusion drawn from this observation 1s that concurrent algorithms
should strive to be asynchronous. This would eliminate overhead from the different
processor speeds. The approximate-factored algorithm 1s not an algorithm that can be
run asynchronously, so a more complex scheme of balancing processors would be
necessary.

Some stumbling blocks at the beginning of the research helped to show the impor-
tance of memory management. Local and shared memories must be separate and protected.
This requirement led to the significant interaction between the programmer and the
operating system/computer architecture which 1deally should be eliminated in an opera-
tional computer. Solutions to this problem include designing algorithms that either
use only shared memory or use a minimal amount of shared memory, where asynchronous
passing of influence parameters 1s used i1nstead of code variables themselves.

Another approach would be to design additional language constructs and make them
available to the programmer who helps control memory protection. A sophisticated
operating system and compiler that could handle these high-level language constructs
would be required. No matter which approach 1s taken, 1t must eliminate the need for
the programmer to access the operating system for memory management.

A whole new area of research can be formed in concurrent algorithm development.
Most work in the past has been of an explicit nature, but this study has shown that
even implicit algorithms possess a significant amount of parallelism. Research 1is
being initiated on asynchronous algorithms meeting most of the requirements developed
above.
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TABLE 1.~ COMMON BLOCK PROTECTION

Common block Function MAIN | SLAVE | STEPUP | SUBRHS
BASE Constants, switches G G G G
GEO Grid constants L
READ I/0 switches L
VIS Viscous constants G G G
VARS Solution vector G G G
VARO Previous solution G G G G
VAR1L Grid metrics G* G* G* G*
VAR3 Metric derivatives L L L
COUNT Iteration count L
PPRCSS Parallel processing G G G G
PLOT Plot switches L
TURMU Turbulence stresses G G G
MUKIN Temperature G G G
FsS Free stream G G G
BTRI Matrix coefficient L
RHS RHS switches L

Notes: G = global (shared memory); L = local; G* - global on

each processor.

TABLE 2.- TASK TIMINGS:

EULER EQUATIONS

Time-MIMD code, sec .
Time-serial code,
Task sec Speedup
Serial | Concurrent
Setup 6.58 6.03 0.916
RHS .02 4.02 7.78 1.926
Residual + BC .74 .74 1.0
LHS .09 13.64 26.76 1.949
Qutput (1.64) Not measured Assume 1.0
(optional)
Time/1teration (.85) (17.66) (35.26) 1.905
Output routines 3.24 3.29 1.015
Speedup = Csetup ¥ (*rc * Trus * Trus) * Soutput
- 1 ' 1 [] []
tsetup + n(tBC + tRHS + tLHS) + toutput
n - iterations
t - seraial
t' - MIMD
Examples:
Iterations Speedup Iterations Speedup
1 1.574 15 1.872
2 1.705 50 1.895
5 1.813 100 1.900
10 1.857 400 1.904
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TABLE 3.- TASK TIMINGS:

NAVIER-STOKES EQUATIONS

Time-MIMD code, sec Time-serial d
Task me-serial code, Speedup
Serial Concurrent sec
Setup 6.57 6.07 0.924
RHS .02 7.84 15.15 1.927
Residual + BC .84 .84 1.0
LHS .08 15.47 30.50 1.972
Output (1.64) Not measured Assume 1.0
(optional)
Time/iteration (.94) (23.31) (46.42) 1.914
Output routines 3.24 3.22 .994
Examples:
Iterations Speedup Iterations Speedup
1 1.635 50 1.906
2 1.751 100 1.910
5 1.842 400 1.913
10 1.876
15 1.889
25 1.899
TABLE 4.- TOTAL CPU TIMINGS FOR EULER EQUATION
Number of
iterations EMaTN® S€C | gpus® Se° tLHS’Sec “mimp® Se° tserlal’ sec | Speedup
1 11.60 4.21 13.67 29.48 45.32 1.537
1 11.79 4.23 13.74 29.76 : 1.523
2 14.25 8.41 27.36 50.02 82.70 1.653
5 16.10 20.98 67.95 105.03 187.36 1.784
10 22.60 42.04 132.38 197.02 365.60 1.856
15 28.03 63.03 204.58 295.64 544.49 1.842
25 33.45 104.79 338.04 476.28 897.78 1.885
TABLE 5.- TOTAL CPU TIMINGS FOR NAVIER-STOKES EQUATION
Number of
1terations | SMAIN® 5€¢ | Trus® S€¢ | 'rus® S€C | tmimp’ S | Yseriay> Se¢ | Speedup
1 11.62 7.84 15.47 34.93 56.70 1.623
2 13.93 15.69 30.87 60.49 105.07 1.737
5 16.19 39.15 77.15 132.49 244 .24 1.843
10 20.58 78.17 155.13 253.88 478.13 1.883
25 33.36 196.72 386.95 617.03 1173.25 1.901
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TABLE 6.~ STOPWATCH TIMINGS FOR EULER EQUATION

Number of t sec | t sec | Speedup
iterations | MIMD’ serial’
1 44,61 1.034
1 36.98 4614 1.248
2 58.10 82.70 1.423
5 114.68 188.32 1.642
10 213.66 366.98 1.718
15 311.86 545.98 1.751
25 499.44 899.53 1.801

TABLE 7.- STOPWATCH TIMINGS FOR
NAVIER-STOKES EQUATION

Number of t sec | t sec | Speedup
i1terations | MIMD’ serial’
1 43.73 58.39 1.335
2 68.58 106.75 1.557
5 151.50 246.11 1.642
10 269.69 479.39 1.778
25 647.78 1175.21 1.814
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PREVIOUS ITERATION

L —— RHS

- SYNCHRONIZE
/ _ SYNCHRONIZE

F—1_>q**

/ - SYNCHRONIZE

F -1 — qn+1

/ - SYNCHRONIZE

NEXT ITERATION

Figure l.- MIMD procedure for solving
approximate-factored algorithms.

Kmax 1
2
3
4
k=1
1=1 Jmax
SWEEP 1
Kmax
1 2 3 4
k=1
1=1 Jmax
SWEEP 2

Figure 2.- Implementation of a two-
dimensional problem on a four-
processor system.

Kmax
11 1,2 1,3 14
21 | 22| 23| 24
31| 32 | 33| 34
41 | 42 | 43 | 44
k=1
1=1 Imax

Figure 3.- Memory partition for a
four-processor system set up
for a two-dimensional problem.

INITIALIZATION

DATA INPUT
GRID GENERATION
VARIABLE INITIALIZATION

<n=1- Nmax>

4

MAIN ITERATION LOOP

BOUNDARY CONDITIONS
RIGHT-HAND-SIDE OPERATOR
EXPLICIT SMOOTHING
CALCULATE RESIDUAL — CONVERGANCE?
IMPLICIT INTEGRATION

- x-SWEEP

- y-SWEEP

- zSWEEP
OUTPUT EVERY NITERATIONS
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FINAL OUTPUT ROUTINES

Figure 4.- Serial code flow summary.



PROGRAM AIR3D

XXM, YYM, ZZM

XXM, YYM, ZZM

<n=1-Nmax>

INITIA
GRID
JACOB
METOUT (4x)
ouT?2
EIGEN
— STEP
BC
RHS
SMOOTH
FILTRX
BTR!
FILTRY
BTRI
FILTRZ
VISMAT
BTRI
MAP
OUT2 (x4)
OUT (x6)
PLOT (x4)
PLANE

XXM, YYM, ZZM

ZZM
FLUXVE
DIFFER

YYM
FLUXVE
DIFFER

XXM

FLUXVE
DIFFER
VIXRHS

XXM, YYM, ZZM

XXM

YYM

ZZM
MUTUR 2ZM

AMATRIX (5 = 1, Jmax)

AMATRX (k= 1, KXmax)

2ZM

AMATRX (Il =1, Lmax)

2ZM

< END n-LOOP >

Figure 5.~ Serial code subroutines.
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MEMORY MAPPING AND SUBPROCESS SETUP

MAP GLOBAL SECTIONS {SERIAL)
CREATE FLAG CLUSTERS (SERIAL)
CREATE SUBPROCESSES (SERIAL)

INITIALIZATION

DATA INPUT (SERIAL)
GRID GENERATION (SERIAL)
VARIABLE INITIALIZATION (SERIAL)

<n=1-Nmax>

A MAIN ITERATION LOOP
BOUNDARY CONDITIONS (SERIAL)
RIGHT-HAND-SIDE OPERATOR (PARALLEL)
EXPLICIT SMOOTHING (PARALLEL)
CALCULATE RESIDUAL — CONVERGENCE? (SERIAL)
IMPLICIT INTEGRATION (PARALLEL)
- x-SWEEP
- y-SWEEP
- zzSWEEP
OUTPUT EVERY N ITERATIONS (SERIAL)
FINAL OUTPUT ROUTINES (SERIAL)
SUBPROCESS DELETION AND MEMORY DEALLOCATION (SERIAL)

Figure 6.- Concurrent code flow summary.
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MAPPRM MAPPRM
SPAWN SPAWN
INITIA
GRID
JACOB
METOUT (x4) (XXM, YYM, ZZM}
METPASS METREC
ouT2 (XXM, YYM, ZZM)
EIGEN
STEP ————— <n =1~ Nmax>
BC
SUBRHS
RHS
2ZM 1=2, Jmax - 1
FLUXVE k=2, Kmax -1
DIFFER I =1, Lmax
YYM §j=2,Jmax -1
FLUXVE k=1, Kmax
DIFFER t=2, Lmax - 1
XXM =1, Jmax
FLUXVE k=2, Kmax -1
DIFFER 1=2, Lmax - 1
SMOOTH
(SYNC) {SYNC }
STEPUP
FILTRX XXM k=2, Kmax -1
AMATRX =2, Lmax -1
{(y = 2, Jmax)
BTRI
(SYNC) (SYNC )
FILTRY YYM 4= 2, Jmax - 1
AMATRX |=2 Lmax-1
(k = 2, Kmax)
BTRI
(SYNC) (SYNC)
FILTRZ 2ZM 1=2,Jmax - 1
AMATRX k=2, Kmax -1
(1=1, Lmax)
VISMAT
BTRI
(SYNC) (SYNC)
MAP
ouUT2 {x4)
< END n-LOOP >
OUT (x6)
PLOT (x4)
PLANE
DELPRM DELPRM

Figure 7.- Concurrent code subroutines.
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MERCURY

LOCAL
GEO
READ
VAR3
COUNT
PLOT

STEPUP

LOCAL
VAR3
BTRI

SUBRHS

LOCAL
VAR3
RHS

MA780

JUPITER

BASE
VIS
VARS
VARO
PPRCSS
TURMU
MUKIN
FS

STEPUP

LOCAL
VAR3
BTRI

SUBRHS

LOCAL
VAR3
RHS

Figure 8.~ Process/memory allocation (using data block names).
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—— COMPONENT TIMINGS

@ TOTAL CPUTIME
[0 REAL TIME

20

SPEEDUP

N ,

1 J
1 10 100 1000
ITERATIONS

Figure 9.- Speedup of the Pulliam-Steger AIR3D code using two processors to
solve the Euler equations.

— COMPONENT TIMINGS
B TOTAL CPUTIME

EAL TIME
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SPEEDUP

15 L

1 10 100 1000
ITERATIONS

Figure 10.- Speedup of the Pulliam-Steger AIR3D code using two processors to solve
the Navier-Stokes equation with a thin-layer approximation and an algebraic
turbulence model.
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