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Abstract

Second-order equations in terms of auxiliary variables similar to

potential and stream functions are obtained by applying a weighted least

squares formulation to a flrst-order system. The additional boundary

conditions which are necessary to solve the higher order equations are

determined and numerical results are presented for the Cauchy-Riemann

equations.
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INTRODUCTION

Least squares methods are often used to solve systems of first-order

equations. Classical discretization and iterative procedures can then be

applied to the resulting system of second-order equations. Simply

differentiating the equations, however, may lead to difficulties particularly

if the nonhomogeneous terms are not regular. In this paper the least squares

method is modified and a system of second-order equations is obtained without

the need to differentiate the nonhomogeneous terms. Numerical examples are

presented and the advantages of the present formulation are discussed.

In Section 2 the classical least squares method is reviewed. The modified

least squares method is introduced in Section 3. Section 4 gives some

numerical details on the application of the two methods and in Section 5 we

summarize our main results.

2. LEAST SQUARES METHODFOR A SYSTEM OF FIRST-0RDER EQUATIONS

For illustrative purposes we consider the equations which describe the

flow in a straight channel with a circular arc airfoil mounted on its lower

wall. The governing equations are those of continuity and vorticity:

(_u) + (_v) = s, (I)
x y

u - v = -_0, (2)
y x
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where p is the density, and u and v are the components of velocity in

the x and y directions, respectively. The nonhomogeneous terms s and

represent some given source and vorticlty distributions in the field. The

linearized boundary conditions associated with this problem are

u = u0 along x = 0 and x = %, (3)

v = v0 along y = 0 and y = h, (4)

where % and h are respectively the length and height of the channel. We

shall refer to the boundary value problem (I), (2) with boundary conditions

(3), (4) as Problem I. This problem is depicted in Figure i.

v =Vo = 0

(pu)x + (pV)y = s

U = U0 U = U0

U --V = --_
y x

V = V0 = f'(x)

Figure I. Pictorial Representation of Problem I
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Let _ denote the domain {(x,y) : 0 < x < £, 0 < y < h} and _ its

boundary. Applying Gauss" theorem to the divergence form of the first

equation yields

ff v- (p_)dA = _ p(_-_)ds, (5)

where _ = (u,v) and _ is the unit outward drawn normal to the boundary.

Alternatively, if the tangential velocity is specified along the boundary

a different compatability relation should be satisfied, in terms of the

vorticity. Suppose that, in this case, the boundary conditions are given by

u = gl(x) along y = 0
(6)

u = g2(x) along y = h

v = v0 = 0 along x = 0 and x = £. (7)

We shall refer to the boundary value problem (I), (2) with boundary conditions

(6), (7) as Problem II. This problem is depicted in Figure 2.
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u = g2(x)

(OU)x+ (OV)y= s

V = V0 V = V0

U -- V = --_

y x

u = g1(x)

Figure 2. Pictorlal Representation of Problem II

According to Stokes" theorem, the vorticlty and the circulation are

related as follows

ff _ dA = _ q- s as, (8)
n _n

where s is a unit vector tangent to the boundary _ and the line integral

is taken in the anti-clockwise direction.

An application of the least squares method to Problem I leads to the the

following minimization problem:

Find the functions u,v which minimize the functional l(u,v) over all

functions belonging to some admissible class where

l(u,v) = f_ {[(0u) x + _ s]2 _ _]2}
(0V)y + _0[Uy vx + dxdy

+ aI _ (u - u0)2 dy + a2 f (v - v0)2 dx, (9)

and e0' =i and e2 are some Lagrange multipliers.



-5-

Supposethat l(u,v) attainsits minimum value for u = u and

v = v • In Eq. (9), p, s and _ are assumed to be known functions. If p

is a positive function of x and y, then the original system (i) is

elliptic. In the nonlinear case, when p depends on the solution u and

v through Bernoulli'sequation, the system is of mixed elllptlc-hyperbollc

type.

We choose as our admissible class of functions those which satisfy the

given boundary conditions and are twice differentiable. Let _ ffi u + E1 _1

and v = v + E^ __, theng z

-I(u*,v*)]

-- * --v*
= - ff E1 nl{P[(PU*)xx + (PV*)xy Sx] + =0[Uyy xy + _y]}dxdy0

- ff E2 _2 {p[(pu*)xy + (pv)yy - s ,] + _0[Vxx u - OOx]}dxdyQ y yx

+ f E1 _i{p[(pu*)x + (pV*)y-s]+ =i(u*-u0)}dy

+ f E2 D2{p[(pu*) x + (pV*)y - s] + _2(v* - v0)}dx

+ _0 f E1 _l[Uy - Vx + _]dx

* * 0(_:_)+- _0 f £2 _2[Uy - Vx + t0]dy + 0(£_). (i0)

Since, by definition,_i vanishes along x = 0 and x = % and _2

vanishes along y ffi0 and y = h, the third and fourthintegralsin (I0) are
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identically zero. Following standard minimization arguments we can show that

the functions u , v which minimize l(u,v) are the solutions of the

boundary value problems shown in Figure 3 and 4, taking e0 = 1.

U ----V -- t0
y x

0[( U)xx+ - s]yx

u = u0 u = u0
+u -v +_ = 0

yy xy y

U = V -_0
y x

Figure 3. PictorlalRepresentatlon of the u Problem (Problem I)

v=v 0

p[ (pV)yy + (PU)xy - Sy]

vx = Uy + _ v = u +
-u +v -_ = 0 x y

yx xx x

v = v0

Figure 4. Pictorial Representation of the v Problem (Problem I)
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Phillips [3] shows that when p = 1 the least squares formulationhas a

unique solution. Moreover,this solutionsatisfiesthe originalproblem.

In an iteratlve procedure it is natural to use the problems defined in

Figures3 and 4 to solve for u and v, respectively. There are many ways in

which iteratlvemethods can be implementedto solve such a coupled system of

equations.

For Problem II, where the tangentialrather than the normal componentof

the velocity is specified around the boundary, the functional we need to

minimize takes the form

J(u,v) = I! {[(PU)x + (pV)y - s]2 + =O[Uy - Vx + co]2}dxdyQ

+ _I I (v - Vo)2 dy + cz2 I (u - Uo)2 dx. (ii)

In a similar fashion we can proceed to show that the functions u , v that

minimize J(u,v) over all admissiblefunctionsmust solve the boundaryvalue

problems,shown in Figures5 and 6, again taking s0 = i.

u=u 0

P[(PU)xx + (pV)yx - Sx]

(PU)x = -(pV)y + s (PU)x = -(pV)y + S+u - V --_0 = 0
yy xy y

U = U0

Figure 5. PictorialRepresentationof the u Problem (ProblemII)
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(pV)y = -(pu)x + s

O[(pV)yy + (PU)xy - Sy]

V = V 0 V = V0
-u +v -_ = 0

yx xx x

(pV)y = -(pu) x + s

Figure 6. Pictorlal Representation of the v Problem (Problem II)

3. MODIFIED LEAST SQUARES METHOD

If the original system is written in the form

DU = B (12)

where

b p -b
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then the above classical least squares formulation leads to a system which can

be represented symbolically by

EDU = EB, (13)

where

x y

y x

To avoid the need for differentiation, a new variable V is introduced

through the relationship

EV = U. (14)

Hence, Eq. (12) becomes

DEV = B. (15)

This choice is equivalent tO applying a weighted least squares to the system

(12) where the weight is related to

R = (DE)-I.

The system of equations (15) is similar to the system (13) with one exception;

the nonhomogeneous terms are not differentiated• With reference to Hafez [2],

a positive weighting function Q may be introduced and Eq. (15) is slightly

modified to read
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DQEV = B. (16)

In the particular example under consideration, Q is chosen to be

Q =

i/0

and so V can be identified in terms of potential and stream functions. More

precisely, we have

Bx( p 5x) + By(p By) 0 )

DQE =

0 Bx(IIp Bx) + By(llp By)

Also, if VT = (€,_), then Eq. (14) can be written in the following component

form to express u and v in terms of ¢ and _:

Cx + 1/0 +y = u
(17)

_y - llp +x = v.

For the case in which _ vanishes identically, the boundary conditions on

$ and _ can be chosen so that _ vanishes identically and Eq. (16) reduces

tO

(P _x)x + (0 Sy)y = s. (18)
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With the associated Neumann boundary conditions for Problem I or Dirichlet

boundary conditions for Problem II, the formulation is complete.

Alternatively, if s vanishes identically, the boundary conditions on

and _ can be chosen so that _ vanishes identically in _ and Eq. (16)

reduces to

(_x/p) x + (_y/p)y = -_, (19)

and together with Dirichlet boundary conditions for Problem I or Neumann

boundary conditions for Problem II, the formulation of this problem is

complete.

In the general case when neither s nor m vanish identically in _ the

governing equations are (18) and (19). We note that the problems for _ and

decouple except for the boundary conditions.

This modified formulation is related to the Helmholtz theorem (see [2])

which allows a vector to be decomposed into two vectors, the first of which is

curl free while the second is divergence free, i.e.,

= V_ + V × A. (20)

For two-dimensional flows, the vector A can be represented by one component,

while for three-dimensional flows, at least two Components of A are needed.

With the present method, s and m (or both) can be discontinuous. In

such a case, unlike u and v, _ and _ remain continuous. Their

derivatives, of course, are not continuous.

The jump conditions of a weak solution of Eqs. (18) and (19) are

(assuming s and m are integrable),
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dx

[%]- (a-f)D[PCy]= o (21)
and

dx

[*x/p] - (_)D [*y/P] : 0, (22)

and since it is assumed that Cxy = Cyx and Cxy = Cyx' across a

discontinuity D, the following relations hold

dx

[¢y]+ (W)D[¢x]:0 (23)
and

dx

[+y] + (_)D [+x ] = 0. (24)

It is obvious then, that a linear combination of Eqs. (21), (22), (23), and

(24) satisfy the jump conditions admitted by Eqs. (i), namely,

[ pu ] dx(_)D[pv]--0 (25)
and

dx

[v] + (_)D [u] = 0. (26)

In a sense, ¢ and _ are integrals of u and v and thus a second-order

system can be constructed without differentiation.

4. NI_IERI_a_LRESULTS

We present results for the case in which p = i, i.e., Eqs. (I) and (2)

are the Cauchy-Riemann equations. Equations (18) and (19) can be discretized

using finite difference or finite element methods and the resulting algebraic
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system may be solved using SOR, ADI, conjugate gradient or multigrid

techniques, for example.

The system of Eqs. (18) and (19) represents two Poisson equations, one for

and one for _, when p = i. Many of the standard iteratlve methods may

be used to yield a solution to these equations. We have chosen to use the

multigrld method since such methods are fast and efficient for these problems.

The domain _ is covered with a square grid of mesh length h = I/N

where N is a positive integer. Each of the Poisson equations:

V2 $ = s,

(27)

V 2 _ = -m,

is discretized using standard second-order central difference approximations.

We restrict ourselves to Problem I in which the normal component of the

velocity is specified around the boundary. We consider three types of problem

and associated with each one will be different boundary conditions:

(a) s _ 0. In this case the boundary conditions can be chosen so that $

vanishes identically. The resulting problem for _ is one in which

Dirichlet conditions are given on the boundary. These are obtained by

integrating the given velocity boundary conditions around 8_.

(b) m _ 0. In this case the boundary conditions can be chosen so that

vanishes identically. The resulting problem for $ is one in which

Neumann conditions are given on the boundary. Here we require that the

compatibility condition be satisfied in order for a unique solution to

exist.
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(c) s _ 0, m _ 0. This is the general case where we need to solve for both

and _. The treatment of the boundary conditions in this case must

be consistent with Eqs. (5) and (8).

We consider a multigrid method of _solution to these problems using the

correction storage algorithm of Brandt [I]. Let GI,..-,G m be a sequence of

grids approximating the domain _ with corresponding mesh sizes hl,-'-,h m.

Let hk = 2hk+ 1 for k = l,...,m-l. The problem is discretized on each grid

Gk as described above. We use the same components in the multigrid procedure

as those chosen by Phillips [3]. Very briefly these are pointwise Gauss-

Seidel with the points ordered in the checkerboard manner for relaxation,

half-weighting to transfer the residuals to the coarser grid and bilinear

interpolation to transfer the correction to the fine grid.

We consider three test problems defined in the unit square and

characterized as follows:

(i) s = O, m = (_) (m2 + n2) sin(rmx) sin(nmy),

u = sin(n_x) cos(n_y), v = -(--rim)cos(rmx) sin(my),

= 0, _ = _(I) sin(n_x) sin(my);

(ii) S = (m2 + n2) (_) cos(n_x) cos(nmy), m = O,

u = sin(nzx)cos(m_y), v = (_) cos(rmx)sin(m_y),
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i)= -(_-_ cos(n=x) cos(m_y), 4_= O;

(ill) s = (m+n)_ cos(n_x) cos(m_y), _ = (m-n)_ sln(n_x) sln(m_y),

u = sln(n_x) cos(m_y), v = cos(n_x) sln(m_y),

= -(m+n) cos(n_x) cos(m_y), @ = -(m-n) sln(n_x) sln(m_y), m # n.
(m24_2)_ (m2+n2)=

In all of the numerical experiments we took the finest grid to be such

that N = 32 and considered a total of five grids in the multlgrld context.

The initial approximation was taken to be zero everywhere except where the

solution was specified by the boundary conditions. The iterations were

terminated when the %2-norm of the residual had been reduced by a factor of

10-4 from its initial value. After solving Eq. (27) for _ and/or @, we

obtain the corresponding values of u and v by approximating the left-hand-

side of Eq. (20) by central differences. We note that increased accuracy

could have been obtained if we had used some global interpolation scheme.

The first problem corresponds to one of the examples considered by

Phillips [3]. Results very similar to those for u and v discussed in [3]

are obtained using the modified least squares approach outlined in this paper.

Close agreement was achieved in measurements of different norms of the errors

in the discrete solution and in the convergence histories of the two

techniques. Similar conclusions were reached for the second problem.
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With the normal component of the velocity specified around the boundary,

the boundary conditions in terms of _ and _ take the form:

_x + _y = Uo along x = O, x = i,

(28)

_y - @x = Vo along y = O, y = i.

We have chosen to decoupie these boundary conditions in terms of # and

by putting @ = 0 on the boundary and obtaining conditionsfor @ from Eq.

(28).

The details of the algorithm applied to the third problem are given in

Tables I, II, and III. In Table I we give the detailsof the _ calculation.

We give the number of work units requiredto attain the convergencecriterion,

and the asymptotic convergencefactor k for various values of m and n.

Similar information is furnished in Table II for the @ calculation. In

Table III we give norms of the errors in the velocities u and v for

various values of m and n. We have used the notation a.b - c for

a.b x i0-c.

It can be seen that the method exhibits the usual multlgrld behavlourby

examining the asymptotic convergencefactors obtained. The accuracy of the

discrete approximationto the third problem decreasesas m and n increase

as one might expect since the number of mesh points per wavelength of the

solutiondecreases.
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Table I. Details of the _ Calculation

m n WU k

1 2 21.41 0.56

2 I 21.41 0.56

3 i 17.88 0.52

I 5 17.25 0.49

Table II. Details of the _ Calculatlon

m n WU

i 2 18.13 0.55

2 i 18.13 0.55

3 i 17.81 0.52

i 5 17.50 0.49

Table III. Error Norms of the Solutlon

m n I1u II_ 11uItI liu112 11v11_ 11vfli flvII2

i 2 0.46-2 0.18-2 0.23-2 0.81-3 0.31-3 0.39-3

2 i 0.46-2 0.18-2 0.22-2 0.81-3 0.31-3 0.39-3

3 I 0.I0-i 0.40-2 0.50-2 0.27-2 0.11-2 0.13-2

i 5 0.12-1 O. 46-2 O. 58-2 0.27-1 0. i0-I O. 13-1
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5. CONCLUDING REMARKS

An application of the least squares method to a system of first-order

equations has led to a formulation in terms of second-order equations. The

process has also determined the additional boundary conditions necessary for

the higher order equations. The duality of problems in which either the

normal or the tangential components of velocity are specified on the boundary

has been indicated. Also, a modified least squares approach has been

outlined. This approach avoids the need to differentiate the source or

vorticity functions. Numerical examples demonstrate the effectiveness of the

method.

Future work will concentrate on treatment of the nonlinear problem, i.e.,

when p = p(u). Possible extensions of this technique to three dimensions

using either two or three stream functions are under examination.
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