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ABSTRACT
We consider semi-discrete Galerkin approximation schemes in connection
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1. Introduction. In this paper we consider computational techniques for

~ the following class of inverse problems: For the system

(1) o) 5= 2 (e(x) 2 t>0, 0<x<l,

a2
ot X X

(1.2)  2%t,0) + k;v(t,0) = s(t;k)

(1.3) - %(t,l) + kz%(t,l) =0

(1.4) v(0,x) = ¢(x) , v, (0,x) = w(x) ,

given observations {9ij} for {v(ti,th choose, from some admissible set,
"best" estimates for the parameters p, E, kl’ k2, k. These problems are
motivated by certain versions of the so-called "1-D Seismic Inversion Problem"
(see, e.g. [ 1], [8]). Roughly speaking, one has an elastic medium (e.g.,
the earth) with density p and elastic modulus E. A perturbation of the system
(explosions, or vibrating loads from specially designed trucks) near
the surface (x=0) produces a source s for particle disturbances v that travel
as elastic waves, being partially reflected due to the inhomogeneous nature
of the medium. An important but difficu]t problem involves using the observed
disturbances at the surface or at points along a "bore hole" to determine
properties (represented by parameters in the system) of the medium. In the
highly idealized 1-D "surface seismic" problem, one assumeslthat data are
collected at the same point (x=0) where the original disturbance or "source"
is located. In addition to this hypothesis which cannot be true, other unreal-

istic special assumptions are made about the nature of the traveling and re-

flected waves. Although the standard 1-D formulations are far from reality,




exploration seismologists have developed techniques for processing actual field
data (performing a series of experiments and "stacking" the data) so that the

1-D problems are generally accepted as useful and worthy subjects of jnvesti-
gation. Consequently, numerous papers (for some interesting references, see

the bibliographies of [1], [8]) on the 1-D problems can be found in the research
literature.

In many formulations of the seismic inverse problem, the medium is assumed
to be the half-Tine x>0 (with x=0 the surface) while in others (especially
some of those dealingwith computational schemes) one finds the assumption of an
artificial finite boundary (say at x=1) at which no downgoing waves are reflected
(an "absorbing" boundary). While there are several ways to approximate such a
condition in 2 or 3 dimensional problems (see [12], [21]), for the 1-D formulation
this condition is embodied in a simple boundary condition of the form (1.3);
here k2 % /—E(777ETTS-Aand one can view this boundary condition as resulting
from factoring the wave equation (1.1) at x=1 and imposing the condition of
~"no upgoing waves" at x=1.

Equation (1.1) is a 1-D version of the equations for an isotropic elastic
medium while (1.2) represents an "elastic" boundary condition at the surface
x=0 (k] represents an elastic modulus for the restoring force produced by the
medium).

As is the case in many inverse or "identification" problems, the problems
described above tend to be i11-posed (including a computationally undesirable
instability) unless careful restrictions are imposed on the admissible parameter
class (for some discussions of these aspects, see [1], [10]). We shall not
focus on this aspect here. Rather, the purpose of our presentation in this

paper is to demonstrate the feasibility of a certain theoretical approach and




certain approximations in developing computational schemes for prob}ems in
which there are i) unknown boundary parameters and ii) unknown spatially
varying coefficients in the system equations.

We choose the "1-D seismic inverse problem" involving (1.1) - (1.4) as
a test example to exhibit the efficacy of our ideas. However the technical
features and notions we present are of importance in a number of other ap-
plications. There are rather easily motivated and fundamental problems in
dealing with large elastic structures (large spaée structures - e.g. beam-
like structures with tip bodies) that invo]Ve estimation of boundary condition
parameters. In these cases the models are often hybrid models with distributed
system (Euler-Bernoulli, Timoshenko) state equations and ordinary differential
‘equation boundary conditions (see, for example, [2], [9], [18], [20]). A
second class of. problems for which the techniques introduced in this paper
have immediate use are related to bioturbation [ 7], [13]. This is the mixing
of lake and deep-sea sediments by burrowing activities of organisms. Under-
standing of this phenomenon is fundamental to geologists in interpretinag geologic
records contained in sediment core samples. The best models to date involve
parabolic state equations (for a nonuniform "mixing chamber") with unknown
parameters in the boundary conditions describing the flux into and out of the
chamber.

In our approach here we employ the Trotter-Kato theorem to obtain theoretical
convergence results (assumiﬁg regularity of parameter sets to guarantee
existence of solutions to the inverse problems) for spline approximation:
schemes for the states. Boundary parameter estimation is treated directly
via mappings that iteratively change the parameter-dependent spline basis
elements into "conforming" elements (i.e., elements which satisfy the appropriate

boundary conditions). We deal only with estimation of regular spatially-




varying coefficients in (1.1), where again splines are used for parameters
in a secondary approximation. Estimation of discontinuous coefficients
(including location of the discontinuities) in problems such as those that
are the focus of our attention in this paper can be effectively treated
theoretically and numerically in a framework similar to that here using,
for example, tau-Legendre state approximation schemes [4 ].

We turn then to the estimationprob]ewyfor (1.1)-(1.4). It is theoretically
and numerically advantageous tb deal with homogeneous boundary conditions by
transforming the problem so that the source term s in (1.2) appears in the
initial data and in a term in the state equation. We make the transformation

u=v + G where (here "+" represents differentiation with respect to t)
6(t,x30) = = (gF)s(t3k) + (r—)x2(x=1)5(t;K)
’ 9q k] s HE'Z' s
and obtain the system

2

qﬁn§§= (a,(x)23) +F(t,x;9)

kN
X
ux(t,O) + q3u(t,0) = 0
ut(t,l) * qqu (t,1) = 0
u(0,x) = (x3a) 5 uy(0,x) = ¥(x3q).

Here the forcing function F is given by

F(t,x;q) = qp(x) {- (J—3)’s'<t;12) + (ﬁ)xz(xfn'?(t;i)}

1 2 Ve (tek
- é% {qz(x)(agaz)(3x -2x)s(t;k)1 ,




where here and throughout we adopt the notation q = (q], SPYRLEY q41-§) with
qy 205 Qp = E, q5 = k], and qq = k2. The transformed initial conditions have

the form

1
(q3q4

)x%(x-1)5(0:k)

§(x3q) = o(x) - (J—s)s(o;i) +

)x2(x-1)5 (03K) .

Wsa) = 3 - @ISR + (g

We assume henceforth that we have observations &i = (§il’ ""gim) ,
i=1, 2, ..., n, corresponding to w(ti;q) = (u(ti,x1), ceey u(ti.xm)) where
u is the solution of (1.5). For a criterion in determining a best estimate a
of the parameters we use a least-squares function

(1.6) (@) = I ly; - wltgsa)l?

1

™3
—

which we seek to minimize as g ranges over some admissible parameter set Q.
We remark that in the event our observations ;i = (311, cees aim) are for the
original system (1.1)-(1.4), we may apply directly the theory and techniques
of this paper by considering in place of (1.6) the criterion

1.7 @) =z lng * Blega) - witgsa)]®

([ o b1
—

1

where é(ti;q) = (6(t;5%730)s «-es G(t;.x3a)) .

We make some standing assumptions to facilitate consideration of our
problem in subsequent discussions. We shall search for q in a set
Q = ¢(0,1) x H'(0,1) x R x R x RK (we shall sometimeswrite Q as Q, x 02 x
Qg x Qy X QS)‘ We further assume that Q is compact in the C x H! « REYK

topology, and that there exist positive constants




a > 61. , i=1, 2, 3, 4 such that

9 2 9;(x) < q, for q;eQ; , i=1, 2,
Q3 < =05 < 53 for q;eQ; , and
9 29 29 for a4 eqq

Finally, we assume ¢eH](0,'I) R weHO(_O,l) , and s(-;E)eH3(0,T) for each
Eer,_ where ti e [0,T], T<w, and that k - s(-;l~<) is a continuous mapping from
05 to H3(0,T).

We turn next to the theoretical foundations of the approximation schemes
we propose to use in solving our inverse problem of minimizing J over Q,

subject to (1.5).




2. Abstract Formulation.

The object in this sectibn is to lay the theoretical foundation for the
problem. First, we shall write our partial differential equation as an abstract
ordinary differential equation in a Hilbert space, then determine a set of
approximating ordinary differential equations. Each of these abstract equations
will have an associated identification problem; the original will be referred

th approximating problem will be referred to as (IDN). We

to as (ID), the N
shall use the theory of semigroups to obtain existence and uniqueness of
solutions to the differenfia] equations. We can then fit our problem into the
theoretical framework developed in [ 5 .], and deduce that, under conditions
s*ated there (reiterated below for clarity), one can solve (IDN) for each N,
and these parameter estimates thus obtained will "lead to" a solution of (ID).
The equation (1.5) can be rewritten as a first order system, motivating
the use of a product (V(q) x Lz(q)) of two spaces to be our Hilbert space X(q).
Define V(q) to be H](O,l) with inner product dgfined by <V’W>V(q) =
{; q2Dvadx - q2(0)q3v(0)w(0). (D denotes the spatial differentiation operator
é% ). It can be readily shown that for any qeQ, V(q) is a Hilbert space, and
moreover, the assumptions made about Q imply that the V(q) norm is uniformly
equivalent to the H] norm as q ranges over Q. Let VB(q) contain those elements
of V(q) which satisfy the elastic boundary condition, i.e., VB(q) =
{veV(a)AH?(0,1)[0v(0) + agv(0) = 0.
We define L2(q) to be HO(0,1) with inner product given by <v,w>0,q =
&; q]vwdx , and note that for each qeQ, Lz(q) is a Hilbert space and its norm
is uniformly equivalent to the standard H0 norm as q ranges over Q.
As described earlier, we take X(q) = V(q) x Lz(q) with inner product
given by Xa¥rg = <x1,y]>v(q) + %2:¥5%0,q (where x = (x],xz)T and y = (y],yz)T).

It is clear from our remarks above that for qeQ, X(q) is a Hilbert space, and the




X norm is uniformly equivalent to the H]x H0 norm as q ranges over Q. We can

formally write (1.5) as an abstract equation in X(g):

z(t) = A(g)z(t) + G(t;q)
(2.1)

z(0)

z4(q)
U(t,‘)

where we have identified z(t) e X(q) with ( ()
t,.

> . The boundary conditions
u

t

are incorporated into the domain of A(q) by defining domA(q) = {(e)e VB(q) x
H](0,1)|v(1) + q4Du(1) = 0}, and A is the unbounded linear operator given by

0 |

Aq) =
(1/9;)D(g,0) 0O

The function G and the initial condition are given by

0 6(+3q)
G(t;q) = (tes) and z4(q) = YA
»*3q *s

It can be shown that for each qeQ, A(q) is the infinitesimal generator of
a Co-semigroup, T(t;q) on X(q), so that we have the existence of mild solutions

to (2.1), given by
t
(2.2)  z(t3q) = T(t;q)zp(q) + 6 T(t-s39)G(s3q)ds
with z(+;q)eC(0,T;X(q)). In this context, the inverse problem can be stated as:

(ID) Given observations y = {y.}"_., minimize J(z(-39),y) over gqeqQ

i%i=1
subject to z(-;q) satisfying (2.2).




- n .
Here, J(q) = J(z(+3q),y) = .Z]Iyi - z(ti,q)l2 where £(t;,q) =
]=

(z](ti,x];q), cees z](ti ,xm;q)) and z, denotes the first component of z.

To prove that for each g, A(q) generates a Co-semigroup, one can use the
Lumer-Phi1lips Theorem ([15], p.16). To employ this theorem, one must show the
operator is dissipative, densely defined, and satisfies a certain range statement.
To demonstrate the dissipativity of A(q), we take fe domA(q), g€ Q, and compute

(with an integration by parts)

) f

q 3
(]/q])D(QZDf]) f2 q

<A(q)f,F>

= <f2’f]>V(Q) + <(1/q])D(quf]),f2>0’q

1 1
é q,Df D pdx - q,(0)a5f; (0)F,(0) + é D(q,Dfy)f,dx

= qz(O)Q3f](0)f2(0) = qz(O)Df](o)fz(o) + qZ(])Df](l)f2(1)

- q,(1)a,(0F, (1% < 0.

By relating domA(q) to other subsets (see [14]} fordetails) which are known to

be dense in H1x HO, one can easily argue that for each qeQ, domA(q) is dense

in X(g). One can also argue that R(r-A(q)) = X(q) for some A>0, by demon-
f

strating that given (%)e X(q), there exists 3 e domA(q) such that

Au - v ~ f]
(-(Vq])D(quu) + Av) (fz)

This i$ equivalent to solving the following two point boundary value problem:
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2, -
= (Vq])D(qZDu) + 2y -= )‘f] + f2

Du(0) + q3u(0) =0
au(l) + q4Du(1) = f1(1)

for ue Hz(O,l), and setting v(x) = au(x) - f](x).
If we lety =u - (1/q4)x2(x~])f](1) the above problem is transformed

to an equivalent one with homogeneous boundary conditions:
(~1/a7)D(a,0y) + 2y = F
Dy(0) + q4v(0) = 0
q40y(1) +ay(1) =

where Fe L2(q). One can then use the theory of self-adjoint operators (again
see [14) to argue that a solution exists for any Fe L2(q).

We now turn to the approximation of our equation (2.1). We shall obtain
a solution zN to an approximating equation (to be discussed in detail below)
in a finite dimensional subspace of X(q), denoted XN(q). Specifically, let
S (A ) represent the standard subspace of 02 cubic splines correspond1ng to

the partition aN {: :} i = 1/N (see pp. 78-81 of [161); then,
i= 0

g1ven qeQ, we take XN (q) to be that subspace of S (A ) x S3(AN) whose elements

satisfy the boundary conditions corresponding to q (i.e., XN(q) Cc domA(q) ).

Let B? > J =-1,...,N+1, be the B-spline basis elements for S3(AN). Then
XN(q) is the (2N+ 3)-dimensional subspace spanned by the following set of basis

functions:
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4 q
3 N 93, N _ M3 N 93, N
NB]+(3 N)B0 NBI+(3+N)BO
N _ N _
B'I - s 82 = ’
0 0
N N
By By-2
N _ N
33 - ’ ’ BN_'I - ’
0 0
N N N
By-1 By By
N _ N N
BN ’ BN+] = ] BN+2 9
3Ng 3Nq
4 N 4 N
7 B 0 -5 By
/(38 N
“1/(3Nay By, - [ 71/ (3Nay By,
N N _
Pres S ’
N N
B+ Br-1
0 0
N N
BN’,'.S = 9 o o o 9 82N+] = ’
N N
By-2 52
0 0
N N
Bon+2 ~ o Bones T
-4q q 4q q
3 N 3, oN 3 N 3, oN
Bt B B w Bt (G- B

Let PN(q):X(q)+XN(q) denote the orthogonal projection of X(q) onto
XN(q), i.e., given feX(q), PN(q)f is that element in XN(q) which satisfies

IPN(q)f- flq < |g- flq for all g € XN(q). For each qeQ, we define an operator
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AN(q) on X(g) given by AN(q) = PN(q)A(,q)PN(q), and then the approximating

equation to (2.1) is written as:

M) = aMq)N(t) + P(q)actsa)

(2.3)

24(0) = PN(q)zy(q)

where zN(t)eXN(q). Using the fact that A(q) is closed, PN(q) is bounded,

and the Closed Graph Theorem, one finds that A (q) is bounded. The operator
AN(q) inherits the dissipativity of A(q), and therefore it follows that for

each qeQ, A (q) is the infinitesimal generator of a Co-semigroup of contractions
TN(t;q) on X(q). It is readily seen that TN(t;q) leaves XN(q) invariant. Thus,
for each geQ and each N=1,2, ..., there exists a unique mild solution

zN(-;q)eC(O,T;XN(q)) of (2.3), which can be expressed as
Nppo v = oNpo ol t N N
(2.4)  27(t;q) = T'(t;0)P"(q)zp(a) + %‘T (t-5:q)P"(q)6(s3q)ds.
The associated approximate identification problem is given by

(IDN) Given observations y = { } » minimize J(z (- ,q),y) over geQ
'l_
subject to z ( +3q) satisfying (2.4).

Here, 3N(q) = 9(2M(-3q9),5) = .fo§i - £'(t;,0) % where £M(¢,,q) =
i=

(z';'(ti ,,x];q), cees z]N(ti,xm;q)) and z'{l denotes the first component of 2N,

Since XN(_q) is finite dimensional, (2.3) is in fact a system of 2N+ 3
ordinary differential equations, which can be solved using standard numerical
packages. Similarly, there are numerical packages available to solve (IDN),
provided solutions exist and we have some computationally feasible representation
for 9, and 9y. A detailed description of our numerical implementation,

including a discussion of possible representations of 9 and 995 will be deferred




13

to subsequent sections. First, our concern is to determine under what conditions
solutions of (IDN) exist and how they relate to a solution of (ID). This is
the subject of the next theorem, a slight modification of that given in [5, p. 820].

1 2+K

Theorem 2.1. Assume Q is compact in the C x H x R topology. If

q-+zo(q), q-+PN(q)f, q-+TN(t;q)f, fe X = X(q) are continuous in this same
Q-topology, with the latter uniformly in te[0,T], then
(i) There exists for each N a solution aN of (IDN) and the
sequence'{a } possesses a convergent subsequence aNk_*a.
(ii) If we further assume that,.for any sequence {qj} in Q with
qj-+a, we have Izj(t;qj) - z(t;a)lqj-+0 as j—+e,uniformly in
te[0,T], then a is a solution of (ID).

The reader may, at first glance, find the convergence statement of (ii)
suspect in that zj(t;qj) exj(qj) and z(t;a')ex(a') , but this statement is
meaningful in view of the following observation. In defining the spaces
V(q), L2(q), and X(q), it was noted that V(q), Lz(q), and X(q) are uniformly

equivalent to H], HO, and H1xH0

, respectively, as q ranges over Q. This
implies that the X(q) are setwise equal as q ranges over Q. To be technically
precise, we should use the canonical isomorphism when relating an element of
X(qj) to its counterpart in x(&), but to simplify our presentation, we shall
throughout abuse notation and omit the isomorphism.

It is easily seen from the form of zo(q) that q - zo(q) is continuous.
It is also true that for our PN(q), TN(t;q) we have q » PN(q)f and q » TN(t;q)f
continuous; this will be readily seen from the matrix representations for our

approximating scheme, and so further discussion is postponed until Section 5.
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The next theorem gives sufficient conditions for the hypothesis_of (i)

from Theorem 2.1 to hold.

Theorem 2.2. Let qN, 3 be arbitrary in Q such that qN - a as N » = (recall
convergence is in the C x H]x R2+k topology). Suppose that the projections
PN(q) are such that |(PN(qN) -1)f| N-+0 as N+« for all feX(q), that
feX(d) implies ITN(t'qN)f T(t;'&')?’l N~ 0 as N-w, uniformly in te [0,T], and
that |zo(q ) - zo(q l N +~0as N~ mq Then the mild solutions zN(t;qN) of
(2.3) converge to the mild solution z(t;q) of (2.1) uniformly in te [0,T].

The proof of this theorem, which is based on a standard "variation-of-
constants” representation for solutions z and zN in terms of the semigroups
T and TN, essentially follows immediately from Theorem 3.1 of [5, p. 823].
One only needs to verify that our spaces, operators, etc. satisfy the conditions
required in [ 5 ].

It is clear from the continuity of q - zo(q) that |z o)l -+0 as qN-+a.
It remains only to show the convergence of the projections and the sem1groups.
The main result of the next section is the convergence of the semigroups; the
convergence of the projections is obtained as an intermediate proposition.
In summary then, at the end of the next section, we will be able to deduge
from Theorem 2.2 that zN(t;qN) converges to z(t;q) whenever qN - 3, and hence
by Theorem 2.1 we are assured that the sequence of iterates {aN} we obtain

by solving (IDN), has a subsequence which converges to a solution, a, of (ID).
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3. Convergence Arguments.

This section will be devoted to establishing the result: For each convergent
sequence qN + g in Q, and for any feX(q), ITN(t;qN)f - T(t;?q')fl N~ 0 as
N + », uniformly in te [0,T]. As explained in the previous sect?on, this
convergence result is crucial in arguing that zN(t;qN) + z(t;q) whenever
qN > a', which in turn is necessary to ensure that our candidate (the Timit of
our approximating subsequence) is indeed a solution to our inverse problem.

We shall first prove a slightly different form of convergence of the semi-

groups using the following version of the Trotter-Kato Theorem [3].

Theorem 3.1. Let (B,|:]|) and (BN,I-]N), N=1, 2, ..., be Banach spaces and

let IIN 3 B+BN be bounded linear operators. Further assume that T(t) and TN(t)

n, 4"
are Co-semigroups on B and BN with infinitesimal generators A and AN

If

, respectively.

(i) tim [nNf|y = |f] for all feB,

N>

(ii) there exist constants M, w independent of N such that

ITN(t)IN < Me“t, for t > 0,

N —
(iii) there exists a set DCB, DC dom(A), with (AO-K)D = B for

some A0> 0, such that for all feD we have
IRNHNf - IIN'I\\"F[N +0 asN+>=,

then ITN(t)HNf- nNT(t)le +0 as N+~ «, for all feB, uniformly in t on compact

intervals in [0,=).

It will be a standing assumption throughout this section that qN +?1'

in Q with this convergence in the C x H] X R2+k

Y
norm denoted by ||, B\ = X(qN) with norm [-|  for N =1, 2, ..., A= A(a')
q

q

topology. Let B = X(q) with
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n
with corresponding semigroup T(t) = T(t;q), and AN - AN(qN) = PN(qN)A(,qN)PN(qN)
with corresponding semigroup TN(t) = TN(t;qN) (as described in Section 2). For

N

each N, 1" : X(q) + X(qN) will be a bounded linear operator which will map elements

of domA(d) into elements of domA(qN). Define

¢"(x) = exp([d,- qb1x) - (x2/ 2)[¥;- q3lexp[d, - q1;

B N
given f = » et I be defined by
f
o,
N
Ifs=
(qz/a4)ng2

The functions gN are defined so that as N + =, gN(x) + 1, and D‘j(gN(x))*O
for any positive integer j, where in each case the convergence is uniform
in xe [0,1].

A simple computation demonstrates that if fe dom A(q), then I{Nfe dom A(qN).
For each N, " is a bounded Tinear operator from X(q) to X(qN), but moreover,
the set of operators {HN} is uniformly bounded. This statement can be proved
using the assumptions on Q and the properties of gN mentioned above. Similar

comments apply to the proof of our first proposition.

Proposition 3.1. For any feX(q), IHNf- flaN +0as N> o,

In order to argue the convergence of the infinitesimal generators, we
shall need error estimates for the spline approximations and their derivatives.
These will be variations of estimates such as those found in [19], modified
to take into account our g-dependent norm, and the presence of the operator

.
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The following notation will be used throughout this section. Given a

vector function f, we.Sha11 use f or (f). to denote the ith

component of f.
Given the scalar function h, INh will dentite the standard cubic sp11ne
interpolant of h (thus INh es (AN)) For a vector function f = (1, ) , Vs

will be the vector whose components are the spline interpolants of the

N
I'f
components of f, i.e., I'f = ( - ) and 1% € s3(aM) x s3(aN). The

I'f

2

interpolant of f which satisfies the boundary conditions corresponding to
q will be written as IN(q)f. While Ne interpolates f, and f, at the values
{}/@}?=0 and the derivatives of f1 and f2 at 0and 1, g(q)f will interpolate

f1 and f2 at the values {3/@} =0 ° and will additionally satisfy

[0(1§(a));1(0) + q411§<q)f>13(0) = 0, or equivalently,

. (18(@)$),1(0) = - ag;(0)  for =1, 2,
[(Ig(Q)f)Z](1) + q4[D(Ig(Q)f)1](1) = 0, or equivalently,

[0(1§(a)F){1(1) = - (1/a5)F,(1).

We note that if f satisfies the boundary conditions involving q, then
N)f = 1.

The first estimates involve cubic interpolants for scalar functions.

2

Lemma 3.1. If h € H~, then

02 (h-1") [, >0 asNae
o(h-1Mn) | < N1 0% (h-1M)] o < NTodhl,
Ih - 1|, < NER%(-T") g < N2i0%h

The convergence statement of this lemma follows immediately from the

3 .

density of H” in H the estimates of Theorem'6.9 of [19], and the first
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integral relation (4.15) of [19]. The estimates follow from (4.24)_and (4.25),
respectively, of [19] and the first integral relation.

One can use the results of Lemma 3.1 and the equivalence of the X(q)
and H] X H0 norms to derive similar statements for the interpolants in the

X(q) norm.
Lemma 3.2. If fe H2x H2 and q € QchH] xR2+k, then
- £l < kN 0Rr - )12 4 (05,100 1212
< KN (0% + (0%, 181/
o )1 < k(0207 = 1) 18+ 0%, - 1) 12)1/2

where K], K2 are constants which are independent of f, q, and N.

Again, due to the equivalence of norms, the Schmidt inequality of [13, Thm. 1.5]
can be modified and used component-wise to give a Schmidt type inequality in

the X(q) norm.

Lenma 3.3.  If fesS(aM) « s3(aN) and qeq, then [0Flq < KgNIFl, » where

K3 is a constant independent of f, N, and q.

The preceding estimates can be used to establish convergence properties

for the canonical projections PN(qN) where qN >q in Q.

Proposition 3.2. If feX(d), then

PN QM- ] >0 as Now.
q

N 22)

Proof. First consider fedomA(a')n(Hszz). For such f, n'fe domA(qN)n(H x H
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and Ig(qN)an = 1ViNf.  We use Lemma 3.2 in the triangie inequalities below

to derive

N, N
PN (") F - f
|P7(q™) lcﬁ

N N¢ Ny N N
2|n f-fqu + [Ig(@)n'f - 1 f|qN

< 1PNaMEF - el gy ¢ (pN Mt - ey ¢ Inte- Fl g

| A

2nF - fl gy + 11 f-rrfl

N SV 2iNey 12 4 (n2eeNey 124172
202 - fl gy + KN (105() [+ [D5(EE), 1) /

| A

Thus we have IPN(qN)f- fqu bounded by terms which we can show converge to

zero using Proposition 3.1 and the properties of gN.

The PN(qN) are unitormly bounded, and the set domA(a)n(H2><H2) is dense in
X(a), hence one can use standard arguments to conclude that the statement of

the proposition holds for all fe x(ﬁ).

Proposition 3.3. For each fe X(q), |(PN(qN) - I)anqu +~0 as N+ », and
for each e domA(&)n(H” x H2), PLOM(a") - D'F1|y > 0 as N > =,

Proof. The first statement is proved within the proof of Proposition 3.2;
specifically, it was shown that |PN(qN)an - an|qN < K]N-](]DZ(HNf)]|S
+ 0P, 1)1/, |
The proof of the second statement is obtained from the following triangle

inequality (here we also use Lemmas 3.3, 3.2):
PPN (@rtr-nagy < 1o @t - e gu + ot - atel
< KNPV (g - IN(an)qu + o1 ae) - an)]q:N

N, N N N N N N, N N
_<_.K3N|(P (g )-I)n fqu + KgN|If - I'n f|qN + |D[1(n'f) - 1 f]IqN
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<2KN|IIIf nfl ID[Inf Hf]lN

< (2KKy K ([0PLF), - TNy 212+ 0P (), - 1Mt ,1213)/2

Thus the conclusion |D[(PN(qN)- I)an]IqN + 0 as N+ = follows from the

observation that for i = 1,2
2r.N, N N 2r-N N
DI - ()11 < [0°[T ('), - £)1],
2r-N 2 N
+ ID [I f’i - f-i:llo + ID [f‘i = (I'[ f)-i]lo

2
< 20%L(he), - 3 + 0% - R D),

with the latter terms approaching zero because of the properties of gN

and Lemma 3.1, respectively.

In later arguments, it will be helpful to have bounds (in the H] and }P
norms) on one component of an element of X in terms of a bound (in the X(q) norm)
on the entire element. Thus, we consider for fe X(q), | f | = |f |V +
|f [g which is equivalent to |Df, ]g |f]|O | f |0 » SO that there exist
constants k, and k, such that [Df]l0 < Kk lfl2 and f@lo < k lf{ . Similarly,

2 2
lDf| = |Df IV( ) IDfZIO,q wh1§h is equivalent to ID f]'O IDf lg + IDf ]0

so we infer the existence of constants k3 and k4 such that IDZf] < k IDf

o<
“and [szlg §_k4|Dfl§. For future reference, we combine and label these
observations as

|0F;15 < Ky |f|

6=
(3.1) |0%f |0 < k IDf|
2 2 2

It is now possible to state and prove the following convergence theorem.
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1 L2+k

Theorem 3.2,  Suppose qN > g in Q (convergence is in the CxH xR topology).

Then
| (t5qM) s - nNT(t;H)fqu +0 as N+,
for a11 feX(_?]'), uniformly in t on compact intervals in [0,=)-

Proof. The result is an immediate consequence of Theorem 3.1, once the
hypotheses of that theorem have been shown to hold. Part (i) follows from
Proposition 3.1, while part (ii) holds since TN(t;q) and T(t;q) are
contraction semigroups for each N and qu. It remains only to verify (iii),

for which we take D to be the set domA(a)ﬂ(H2><H2). Let feD. Then
N, N
%M - @)Ly = 1P aMAMP e - mac e gy

< 1P I - MA@y + PN TR - T gy

Ia

"M - M@ el gy + 1PN Q") - DA el gy
= e](N) + ez(N).

It follows directly from Proposition 3.3 that ez(N) ~0as N+ o . We must
work harder to establish that a](N) + 0. We begin by breaking the norm into

its two components and treat each separately. Thus

0 1 0 AVAE
(PNa"yae) - o ’

N N o o :
(1/97)D(q,0) O (1/4{)0(q,0) 0/ \ 2 qV

[, (1)1
f

|(PN(qN)HNf)2 - ngzls(qN)

+ 1(1/a)nLaloee" (q")ae) 1 - (aly/Ay)e" (178, D0L,08 T1E
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= [5,(N)T% + [5,(N)72

We first observe that

63 ()

| A

[PY@E), - (g gty ly gy + 1L, - 136, by o)

[PY@), - (), gy + K/ - g%, 1yt

It is more convenient, and due to the equivalence of the norms, it is sufficient,
to establish the convergence in the H1 norm. This can easily be done for the
first term by invoking Proposition 3.3 and the inequalities (3.1). An argument
can be made for the second term based on the properties of the gN and the
convergence qN -> a.

We turn now to the estimation of GZ(N). Using the equivalence of the

L2(qN) and HO norms, and the inequalities (3.1), we establish the following

chain of inequalities:

N

94 gNy

$(N) = |5 Dlay p(PN(a")nf);1- 2 ") - 9(E,0f) g o
q] 34 9
which is equivalent to
, . q" q"
1N p2 NnoN/ N o4 N1 o2 4 N 1
I 92 p?(pN(qM)n" f)1+—NDq20(P (@OIF)y - = 97 - 4D Fy - = g o D4,Df, |
N N

Ch a Dq D3, g

2 4

< I 0PN (a"yn'), - 22 R gMnlr |+ I =20(pM(qMte), - 2 £ g1, [,
9 % 4 N -9 Y
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- N qN . qN N—
22 02N (qMyae), -2 p2(Me) |+ -2 D2 (af), - 2(—)9 D%f, | o +
N 1 N 10 N 1° 110
q] q] q] q] Q4
N N " N
Dq Dq Dq Dq
—2 (e, - =2 oo, I+ 1= Z2p(ate), -2 (3 g, |
q1 4 1 Q9 9
N
|2 N¢ 1n((PMaY)-1)ne) | +
< /&5l IDL(P(q M)-I f]qu+ l——l (PVigM-)a'e), |,
a4 1
N N N N
q D4, ap |
D (m f)] 2(%)9N sz]lo+ | 2 D(H f)] ,\‘2 (,\'_4 g )Df]‘o
q1 9y Ay 1 97 9

We thus see that 62(N) can be bounded by four terms which go to zero as N-«;
the convergence of the first two terms is the result of Proposition 3.3 and
the convergence of qN to a, while the convergence of the second two can be

argued using the properties of gN and qN-+3.

We can use this theorem, the convergence properties of the operators HN
(Proposition 3.1), and the semigroup properties of ™ and T, to establish the

final result we need, as a corollary.

Corollary 3.1.  Suppose qN-+a. Then

Tt F - T(EsE)Fl gy > 0 as N > =

for all feX(§), uniformly in t on compact intervals in [0,<)-
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We can now invoke the results (see Theorems 2.1 and 2.2) stated in Section 2
to conclude that a (obtained there as the limit of an approximating subsequence,

{aNk}) is a solution to the identification problem.
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4. Parameter Approximation.

In Section 2,. we pose the protlem of minihizﬁng JN(q) over Q. The
arguments underlying Theorem 2.1vyie1d that (under certain assumptions)
each Nth (approximate) problem has a solution aN, and for any convergent
subsequence {aNk}, with aNk - a, we have a is a solution of the original
identification problem. Recall, however, that 9, and q, are functional
coefficients, and hence each of the approximate optimization problems is in
fact infinite dimensional in nature. In this section, we discuss some
methods for apprbximating these infinite dimensional optimization prob]ems
by finite dimensional ones, thus providing numerically tractable problems.
This, of course, results in a second, or parameter, approximation that must
be considered.

In Section 5, we shall present the results of several numerical test
examples. To reduce ill-posedness (see the comments in Section 1) we set
4 =0 = 1 and search for q, = E, 3s Gy E, with qzbthe only functional
unknown. We therefore restrict our theoretical discussions here to this
case. (Wenote however that in principle, our methdds and ideas can be applied
to the estimation of both p and E.)

An approach that one might take would be to assume ana priori parameter-
ization for qp- Thus the estimation of the unknown function‘becomes the esti-
mation of a set of unknown constants appearing in the parameterization. The
convergence theory developed thus far is directly applicable to this method.

However, it would only yield results for best approximates (through the cri-

terion on state observations) to d, within the fixed a priori parameterization
class. Little can be said about convergence to a "best fit parameter"-q2 from

the original parameter set Q.
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An alternate approach, which doés not require. qualitative (e.gf, shape)
assumptions about the parameter class, is to search for the unknown parameter
in a sequence of sets QM which are finite dimensional approximations to the
set Q. For example, one might search for the unknown parameter in sequences
of classes of linear combinations of spline (or members of any other suitably
chosen approximation family) basis elements.

We shall consider here two cases: QM as a set of linear spline inter-
polants, and QM as a set of cubic spline interpolants. For both cases we need
to generalize the theory developed in Section 2, since we now have a "double
index" (reflecting approximations for both the parameter and the state space)
sequence of iterates, which we would like to argue converges to a solution of

the original identification problem.

1 2+k

To be specific, let Q = Qz x Q3 X Q4 x 05 =H x R™ ™, and assume we

M 1

have a mapping i : Q2 + H'. For I the identity map, define M. iM x (I)2+k,

i.e., for qeQ, we have IM(q) = (iM(qz), 35 s qs)-
Let QM = IM(Q). We assume

(4.1) The set (QM)2 = iM(Qz) is compact in H].

(4.2) For q2¢5Q2, iM(qz) > 4, in H1 as M+ » , and this convergence is
uniform in 9, € 02'
The original set Q is assumed to

1, p2+k

be compact in H » so it follows from (4.1), the definition of IM, and’

Theorem 2.1 that for each N and M, a solution aa exists to the problem of

N over QM. From the definition QM = IM(Q), we see that there exists

minimizing J
-N M,-N ~N
9y €Q such that I (qM) = gy for each N and M. But the compactness of the

. s . . -Nj
original set Q then implies the existence of some subsequence {qMJ} and an
k
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~ -N' -~

element q €Q such that qMJ + q in Q; moreover, this subsequence may be

k <

chosen so that both Nj + = and Mk + », The limit q 1is in fact a solution to
the problem of minimizing J over Q; this claim is verified as follows: From

AN'
the definition qMJ we have
k

. ANi .
JNJ(qMJ) <M, forqeq.
k
This implies
Nj N Ni, M
(.3) 3@y <900 “@) .  forqeq.

Nj - M, Nse o oNg o Ng - N§ o~
But lin -q | <1 k(qM'J() - inl + lin -q |, and thus in ~q inQas

Mg Nyoo»
Nj > o, Mk + = follows from (4.2), the definition of I k, and in +q . If we
take the 1imit in (4.3) as Nj, M, > =, we see that J(a ) < d(q) for qeQ.

Here we have used Theorem 2.2 with the observation that the convergence

N

statement zN(t;qN) + z(t;q) for any g +'a js still valid if replaced by

J

ZN(t;qJ) + 2z(t;4) as j, N » =, for any q) + g; this can be seen using a re-

indexing argument. These remarks are summarized in the following. theorem.

Theorem 4.1. Let QM = IM(Q) where (4.1) and (4.2) are satisfied. Let ag be

N

a solution to the problem of minimizing J° over QM. Then for any convergent
AN! "N' PS ~
subsequence {qMJ} with Nj’ Mk + « and qMJ - q , the Timit q is a solution to
k k

the problem of minimizing J over Q.

We first consider the above results applied to the case where the QM are

sets of linear spline interpolants. Let S](AM) represent the subspace of

piecewise linear splines corresponding to the partition AM ='{Xi}?=0"xi

i
M’
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M 1

and Tet i : H - S](AM) denote the standard linear spline interpolating
operator. If, in addition to assuming 02 is compact in H1, we assume Q2
satisfies Q, C {qzc-:H2 | lquZIO < K} , then it is not difficult to show

that (4.1) and (4.2) are true for QM and iM as defined above. From a standard
representation result for linear interpolating splines [19, p.12], we infer the

M as a mapping from H] to Hl, and the compactness

continuity of the operator i
of (q"), = iM(g,) in H!

standard estimates such as (2.17) and (2.18) in [19]. Having verified (4.1)

follows immediately. To establish (4.2) we appeal to
and (4.2), we now state

Theorem 4.2. Suppose Q = 02 X 03 X 04 X 05 is a compact subset of H] X R2+k

with Q, additionally satisfying Q, C {g,eH” | [0%,|y < k1. Let 0" = 1"(Q)

where IM = iM x (I)2+k, and iM,is the linear spline interpolating operator.
If aa répresents a solution obtained from minimizing JN over QM, ‘then for

N3 . Ny oA
any subsequence {q J} of {qN} such that as N;, M, +> =, qyJ +q 1in Q, we have
Mk M J k ”k

that q 1is a minimizer for J over Q.

Under slightly stronger assumptions on the set Q, we can develop a similar
convergence result using cubic spline approximations to 9. Let 33(AM) be
the subspace of C2 cubic splines corresponding to the partition AM, and let
M C] -> S3(AM) denote the standard cubic spline interpolating operator
(see Sections 2 and 3 for details). We assume 02 is a compact subset of C]
satisfying also Q2 = {qzeH2 Iquzl0 < K}. We again may use standard
interpolating spline representations (see [13, p. 45j) to conclude thatiM is a

1

continuous operator from C' to H!, from whence it follows that (QM)2 is

compact in H]. To verify (4.2), we again refer to (4.19) and (4.20) in
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[19]. Thus we have

Suppose Q = 02 x 03 X Q4 X 05 is a campact subset of C1 X R2+|<

Theorem 4. 3.
M . (I)2+k,

with Q, C {q, e H° ‘ 0%,y < k. Let Q" = 1"(Q) where 1" =

and iM is the cubic spline interpolating operator. If au represents a solution

obtained from minimizing JN over QM, then there exists a € Q which minimizes dJ

AN ~ "N‘ A
over Q, and a subsequence {qni} of {qg} such that as Nj ,Mk. > o, in + q

In the next section we present mumerical findings for double (state and

parameter) approximationschemes such as those described here.
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5. Numerical Implementation and Examples. Recall from Section 2 that the

approximating identification problem is:

- n .
Given y, minimize JN(q) ) Iyi - EN(ti,q)l2 over qeQ (where ¢
i=1

N

involves point evaluations, in space, of the first component of zN) subject

to zN(-;q) satisfying the following ordinary differential equation:

Nty = ANq)N(t) + PN(q)a(tsq)

2N(0)

PM(a)zy(a).

(We continue our discussions in terms of the transformed system (1.5) and
criterion (1.6) even though the numerical examples summarized in this section

involve “data" for the original system (1.1)-(1.4) used in conjunction with

the criterion (1.7).) Since N € XN(q), N has a representation in terms of
N N N+ N N
the basis elements of X"(q), z (t;q) = J wi(t;Q)Bi(x;q)' If we let [A'(q)]
i=1

and [fN] be the matrix and vector representations, respectively of AN(q) and
PN(q)f (where f is an arbitrary function in X(q)) with respect to the basis
elements of XN(q), and let wN(t;Q) Eco1(wﬂ(t;q), cees ng+3(t;q)), then wN(t;q)

solves the following system of ordinary differential equations:

Witsq) = (A WM (tsq) + [6V(t:5q)]

W'(05q) = [z)(a)1.

As in [5 ], this can be written more explicitly as: -
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QW (tsq) = KWN(tsq) + RVa(tsq)
(5.1)
o"(0sq) = RNzo(q)
where QN and KN are matrices, with elements described by (QN)i i
NN Ny = LN N Ney - _aN
By Bj>q’ (K )i,j <Bys A(q)sj>q, and (R f)i <Bs 1’>q for fe X(q).

Due to the form of the B-spline basis elements we have chosen (see Section 2),
QN can be stored as a banded symmetric matrix;'this banded, symmetric
structure permits morevef?icient computations and requires less storage space.
The matrix KN has a similar sparse (although not symmetric) structure.

N, and of the vector RNf depends

Each element of the matrices QN and K
continuously on q, therefore the representations [AN(q)] and [fN] are
continuous in q. The basis elements for XN(q) depend linearly on g, and hence
are continuous in q, which implies q » PN(q)f and q > TN(t;q)f (we note
TN(t;q) = exp(AN(q)t) since AN(q) is a bounded operator) are continuous mappings
(recall this was a necessary condition in Theorem 2.1).

We note that in the case where 9 and q, are assumed to be constant, or
to have a representation as, for example, a linear combination of spline
elements, then the computations can be done more efficiently; in such cases,
the numerical quadratures required to compute the inner products which form
QN and KN need be performed only once for each N. Then, to construct QN and K\
the appropriate multiples or linear combinations of these stored values are
computed.

Many of the computations in the software package used to generate the

following examples were done with IMSL subroutines (for example, the optimization,
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and the solutioﬁ of the differential equation in (5.1)). Although much
modification was necessary for the present application, the core of the
package was developed by James Crowley [11]. The examples were computed
either on an IBM VM/370, or a CDC 6600.

The optimization is done using a Levenberg-Marquardt algorithm. For
fixed N, each iteration in the optimization is performed as follows. Given
Qs beginning‘at time zero (t]=0), a Cholesky decomposition method is used to
solve (5.1) for QN(t;q) and wN(tI;Q); this is then integrated using Gear's
method to obtain wN(tz;q). We use the components of the vector wN(tz;q) to
recover z?(tz;q) as the linear combination of the first components of the
basis elements. The vector gN(tz,q) is z?(tz;q) evaluated at each of the
spatial observation points. Using wN(tz;q) as the initial value, (5.1) is
solved again for te [t2,t3], sN(t3,q) is obtained, and this procedure is
repeated until gN(ti,q) has been evaluated at all times ts then JN(q) can be
computed as the sum of the residuals, l&i' EN(ti,q)lz. The data {§i} is
read in and stored at the beginning.

In the selection of examples to follow, the "data" has been generated
with an independent finite difference scheme (an implicit method [17] was
modified for our boundary conditions and the variable coefficient, qz(x))
applied to the model with a priori chosen "true" values q?'of the parameters.
In all examples, q](x) is taken to be identically one (this is done to reduce
il1-posedness, as mentioned in Section 1). We begin each example with an

initial guess, and a value of N; we solve (IDN), to get converged values, aN

(these are numerical approximations (to aN) that result from the Levenberg-
Marquardt algorithm), which we then use as starting values for the next value of N.

So, in Example 5.1 (below) we begin with N=4 and a guess qo, and generate 64. We
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then start with 64 at N=8, and generate 68.

We remind the reader that the computations reported on below were
carried out using "data" for the system (1.1)-(1.4) with criterion (1.7) and
an appropriate approximate criterion for the Nth problem. (We have also
successfully tested the methods on similar examples with the transformed
system (1.5) and criterion (1.6), althbugh,_of course, this is not the typical

formulation of the inverse problem for which data will be available.)

Example 5.1. For our first exampie we used "data" consisting of observations

at x=0 and times t = .25, .5, .75, ..., 2.0. This is meant to simulate the
situation in "surface seismic" experiments where only data at the surface are

'St)eqst » a function

available. The source term was chosen as s(t;E) = qs(l-e
which rises to a peak quickly and then gradually diminishes to zero; again

this attempts to mimic the situation in sefsmic experiments. We assume van-
ishing initial conditions and seek to estimate a constant elastic modulus 9,

as well as the boundary parqmgters 43> Gy and the source parameters k= (q5,q6).
True values along with our estimates are given in the results summarized in
Table 5.1. Graphs comparing the true solution at the surface u(t,O;q*)'with

the approximate,so]ution'uN(t,O;aN) are shown in Figure 5.1. We also tested

the method on this example using "data" for more spatial observations (data

at x=0, .5, 1.0 and at t = .5, 1.0, 1.5) with our findings given in Table 5.2.
Based on these computations and a number of other tests, we suggest that

there appears to be 1ittle difficulty with our method in the casé where only one

spatial observation is available as long as a sufficient number of time

observations are available.
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TABLE 5.1
Initial Converged Values True
Guess N=4 N=8 Values
09 = 2.0 Gy = 2.96001 g = 3.0001 gy = 3.0
Q9 = -1.0 Gy = -1.98861 &S = -1.99012 ay = -2.0
a = 2.0 G = 0.97428 g8 = 1.00683 gy = 1.0
9= 1.5 Gg = 1.97135 Gg = 1.9%809 | qr = 2.0
Q) = -0.5 G¢ = -0.98500 38 = -1.00506 g = -1.0
No. of 1
Iterations 1 2
R.S.S.°2 0.659 x 1072 0.119 x 1075
cpu’ 125.363 84. 688

]Number of iterations in the optimization algorithm.

2
3

Residual sum of squares = JN(

The CPU time given in seconds.
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(/U(t,O;q*)
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-

(t,0;3%)
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FIGURE 5.1
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TABLE 5.2

Converged Values

Initial True

Guess N=4 N=8 Values

ap = 2.0 G, = 2.98515 Gy = 2.99378 | qy= 3.0
- - *

q) = -1.0 Gy = -1.92304 G5 = -2.01999 | qf = -2.0

qg = 2.0 G = 1.01302 ag = 1.00285 gy = 1.0

Q= 1.5 Gg = 1.97120 G5 = 2.00578 g5 = 2.0
- - - *

q9 = -0.5 3¢ = -1.03296 g8 = -0.99172 ag = -1.0

No. of

Iterations 12 5

R.S.S. 0.235 x 1072 0.441 x 10°°

CPU 117.597 147.323
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Example 5.2. In this.example we compared the performance of our method on

problems with "noisy data" with that on those without noise in the data. We

used the same source term as that in Example 5.1, zero initial conditions,

but a "true" parameterized elastic modulus E(x) = 3/2 + 1/n Arctan [q21(x'q22)]‘
Data for observations at x = 0.0, 0.5, 1.0 and t = .416, .832, 1.248, 1.664,
2.08, 2.496 were used. Results for the case of data without noise are summarized
in Table 5.3, while findings employing data with a noise level of approximately
3% are given in Table 5.4. In both cases, the method converges nicely but as

one might expect, the converged values of the parameters do not agree with the
true parameters in the case of noisy data. In Figures 5.2, 5.3, 5.4 and 5.5,

*
we graphically depicted the curves for EN and E in several cases.

Example 5.3. In this example we illustrate the ideas discussed in Section 4

regarding parameter approximation in the set of linear and cubic splines. We
do not assume an a priori shape for the elastic modulus E(x), the "true" value
of which is given by E*(x) = 3/2 + tanh [6(x-.5)]. Rather we first search
for E in the class of linear spline-approximations to E*. We then carry out
the search using cubic splines. Initial conditions are u(0,x) = €,

ut(O,x) = -3¢* and no source term was assumed (i.e., s=0). Data for observations
at 3 spatial points (x=0.0, 0.5, 1.0) and 6 time points (t=.16, .32, ..., 1.0)
were used. Figure 5.6 depicts graphs of the true modulus E*, the initial guess

EO 4

, and the converged estimate E' where we used linear splines (with 4 basis
elements --M=3 in the notation of Section 4) to approximate E and cubic spiines
(N=4) to approximate the state. At the same time we searched for the boundary

*
parameters qq, G, (true values q; =-1.0, q, = 3.0) and obtained converged
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TABLE 5.3

Initial Converged Values True
Guess N=4 N=8 Values
Gy = 1.0 | a5 = 2.97352 | G5 = 2.99994 | qp = 3.0
a9, = 1.0 | af, = o.s1m1s | 38 = 0.50053 Gpp = 0.5
¢ =-2.0 | a3 =-0.00892| & = -1.00026 q =-1.0
ag = 2.0 | G = 3.05138 [ g = 3.01070 q = 2.0
9 = 1.0 Ge = 2.00322 G = 2.0005 | gz = 2.0
g =-2.0 | § =-1.01163| & =-1.00217| q; =-1.0
No. of
Iterations 13 3
R.S.S. 0.1025 x 1073 0.82859 x 1072
cPU 269.696 196.335
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TABLE 5.4
(NOISY DATA)

Initial Converged Values True
Guess N=4 N=8 Values
Goy = 1.0 | Gy = 3.30836| gy = 3.29222 | gy = 3.0
qu = 1.0 | §,= 0.53802 agz = 0.53115 q;2 - 0.5
g9 =-2.0 | G =-0.86648 | G5 = -0.86017 | qy = -1.0
ag = 2.0 | G, = 2.9%10| & = 2.96002| q, = 3.0
@ = 1.0 | @ = 2.00207| 3§ = 2.005| q = 2.0

0 _ -4 .
9% =20 | 9 = _1.15602 G = -1.15871| qg = -1.0
No. of
Iterations 13 2
R.5.S. 0.6509 x 107 0.476 x 1073
CPU 270.11 136.87
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ai = 3.3576 with a CPU time of 38 seconds and

estimates ag = -1.05425,
R.S.S. = 0.255 x 10-2. Figure 5.7 contains graphs similar to those in
Fig. 5.6 except N=16 was used in the state approximations. Boundary

parameter estimates corresponding to E]G were 6;6 = -1.10063, 626 = 3.07049

with CPU time of 118 seconds and R.S.S. = 0.472 x 1074, The error (in
the HO norm) in estimating E' in each case was calculated to be [E* - E4| = 081
and |E" - E18| = .030.

We carried out similar calculations for the Same example in which we
employed cubic splines (M=1 in the notation of Section 4, i.e. 4 basis elements)

0 and E]s

for the parameter approximations. The graphs of E*, E are compared

in Figure 5.8. In this second test we did not search on the boundary

parameters d3s G4 but rather held them fixed at their "true" values. The

error at the converged parameter was IE* - E]6| = .109, with R.S.S. = 0.293 x 10°

and a CPU time of 178 seconds.
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6. Concluding Remarks.

We have presented in this paper both theoretical and numerical results
using some of our ideas involving spline approximations for inverse or
parameter estimation problems for hyperbolic systems. Among the novel features
is the capability of estimating variable coefficients and boundary parameters
with methods that are both theoretically sound and readily implementable.
Our techniques (reported on earlier, [6]) involve the use of parameter dependent
basis elements for the approximation subspaces in a Galerkin type semi-discrete
scheme.

While we have focused on 1-dimensional space domain problems here, our
ideas are in principle applicable to problems in 2 and 3 dimensional domains.
We have devoted some thought to such problems in connection with use of basis
elements that are tensor products of 1-D elements. These ideas offer some
promise, given the parallelism that would be inhefent in the resulting algo-
rithms and given the emerging technology related to supercomputers and array
processors. However, there are other ideas that also offer great promise; in
particular, there are those involving spectral methods such as the tau-Legendre for
which we have reported preliminary findings in [4]. A fundamental -difference
between these techniques and those proposed in this paper is that in the tau-
Legendre one does not require the approximation subspace basis elements to
satisfy the boundary conditions. Instead the boundary conditions are essen-
tia]iy imposed as side constraints adjoined to the Galerkin type differential
equations. This can offer significant computational advantages, especially
in higher dimensional domain problems. We are currently pursuing investigations

of these ijdeas.
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In closing we remark that the theoretical results presented above only
guarantee convergence of subsequences {;N%} to a minimizer a for J. But for
the class of problems investigated here and for a number of other types of
inverse problems we have studied, we have in practice only observed (numerically)
convergence of the original sequence ag} . This has beén our experience even
in examples with noisy data and may be due in many cases to the fact that the
original problem of minimizing J over Q has a unique solution & . In this
situation, elementary and quite standard arguménts can be employed to actually

establish convergence of {&N} itself to c] .
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