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I. Introduction. In this paperwe considercomputationaltechniquesfor

the followingclass of inverseproblems: For the system

(I.I) p(X) a2v - a (E(x)av) t>O, O<x<l ,
at2 @x @x

(I.2) ___(@vt,O) + klV(t,O)= s(t;k)

By
(I.3) _t(t,l)+ k2-_-_(t,l)= 0

(I.4) v(O,x)= ¢(x) , vt(O,x)= ¢(x) ,

given observations{yij} for {v(ti,_)},choose,fromsome admissibleset,

"best"estimatesfor the parametersp, E, kl, k2, k. These problemsare

motivatedby certainversionsof the so-called"l-D SeismicInversionProblem"

(see,e.g. [l ], [8]). Roughlyspeaking,one has an elasticmedium (e.g.,

the earth)with densityp and elasticmodulus E. A perturbationof the system

(explosions,or vibratingloads from speciallydesignedtrucks)near

the surface(x=O)producesa sources for particledisturbancesv that travel

as elasticwaves, being partiallyreflecteddue to the inhomogeneousnature

of the medium. An importantbut difficultprobleminvolvesusing the observed

disturbancesat the surfaceor at points along a "bore hole" to determine

properties(representedby parametersin the system)of the medium. In the

highly idealizedl-D "surfaceseismic"problem,one assumesthat data are

collectedat the same point (x=O)where the originaldisturbanceor "source"

is located. In additionto this hypothesiswhich cannotbe true, other unreal-

istic specialassumptionsare made about the nature of the travelingand re-

flectedwaves. Althoughthe standardl-D formulationsare far from reality,



2

explorationseismologistshave developedtechniquesfor processingac%ualfield

data (performinga series of experimentsand "stacking"the data) so that the

l-D problemsare generallyacceptedas usefuland worthy subjectsof investi-

gation. Consequently,numerouspapers (forsome interestingreferences,see

the bibliographiesof [l ], [8 ]) on the l-D problemscan be found in the research

literature.

In many formulationsof the seismicinverseproblem,the medium is assumed

to be the half-linex>O (withx=O the surface)while in others (especially

some of those dealingwith computationalschemes)one finds the assumptionof an

artificialfiniteboundary (sayat x=l) at which no downgoingwaves are reflected

(an "absorbing"boundary). While there are severalways to approximatesuch a

conditionin 2 or 3 dimensionalproblems(see [12], [21]),for the l-D formulation

this conditionis embodiedin a simple boundaryconditionof the form (I.3);

here k2 : _ E(1)/p(1) and one can view this boundaryconditionas resulting

from factoringthe wave equation (l.l)at x=l and imposingthe conditionof

"no upgoingwaves" at x= I.

Equation(l.l) is a I'D versionof the equationsfor an isotropicelastic

mediumwhile (I.2) representsan "elastic"boundaryconditionat the surface

x= 0 (kI representsan elasticmodulusfor the restoringforce producedby the

medium).

As is the case in many inverseor "identification"problems,the problems

describedabove tend to be ill-posed(includinga computationallyundesirable

instability)unlesscarefulrestrictionsare imposedon the admissibleparameter

class (for some discussionsof these aspects,see [l ], [lO]). We shall not

focus on this aspecthere. Rather,the purposeof our presentationin this

paper is to demonstratethe feasibilityof a certaintheoreticalapproachand



certainapproximationsin developingcomputationalschemesfor problemsin

which there are i) unknownboundaryparametersand ii) unknownspatially

varyingcoefficientsin the systemequations.

We choose the "l-D seismicinverseproblem"involving(l.l)- (I.4) as

a test exampleto exhibitthe efficacyof our ideas. Howeverthe technical

featuresand notionswe presentare of importancein a number of other ap-

plications. There are rather easilymotivatedand fundamentalproblemsin

dealingwith large elasticstructures(largespacestructures- e.g. beam-

like structureswith tip bodies)that involveestimationof boundarycondition

parameters. In these cases the modelsare often hybridmodels with distributed

system (Euler-Bernoulli,Timoshenko)state equationsand ordinarydifferential

equation boundaryconditions(see,for example,[2 ], [9 ], [18], [20]). A

secondclass of problemsfor which the techniquesintroducedin this paper

have immediateuse are relatedto bioturbation[7], [13]. This is the mixing

of lake and deep-seasedimentsby burrowingactivitiesof organisms. Under-

standingof this phenomenonis fundamentalto geologistsin interpretinggeologic

recordscontainedin sedimentcore samples. The best models to date involve

parabolicstate equations(fora nonuniform"mixingchamber")with unknown

parametersin the boundaryconditionsdescribingthe flux into and out of the

chamber.

In our approachherewe employthe Trotter-Katotheoremto obtain theoretical

convergenceresults(assumingregularityof parametersets to guarantee

existenceof solutionsto the inverseproblems)for spline approximation

schemesfor the states. Boundaryparameterestimationis treateddirectly

via mappingsthat iterativelychange the parameter-dependentsplinebasis

elementsinto "conforming"elements(i.e.,elementswhich satisfythe appropriate

boundaryconditions). We deal onlywith estimationof regularspatially-
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varyingcoefficientsin (I,I);where again splinesare used for parameters

in a secondaryapproximation. Estimationof discontinuouscoefficients

(includinglocationof the discontinuities)in problemssuch as those that

are the focus of our attentionin this paper can be effectivelytreated

theoreticallyand numericallyin a frameworksimilarto that here using,

for example,tau-Legendrestate approximationschemes[4 ].

We turn then to the estimationproblemfor{l.l)-(l.4). It is theoretically

and numericallyadvantageousto deal with homogeneousboundaryconditionsby

transformingthe problemso that the source term s in (I.2) appearsin the

initialdata and in a term in the state equation. We make the transformation

u = v + G where {here "." representsdifferentiationwith respectto t)

and obtainthe system

ql(x_@2u - B x Bu- -- (q2()_-_)+ F(t,x;q)JBt'_ @x

Ux(t,O)+ q3u(t,O)= 0

(1.5)

ut(t,l)+ q4Ux(t,l)= 0

u(O,x): _(x;q) , ut(O,x) : _(x;q).

Here the forcingfunctionF is given by

_ _ {q2(X)(q3-3_--44)(Bx2-2x)_(t;k)}
BX
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where here and throughoutwe adopt the notationq : (ql'q2' q3' q4"_) with

ql --p' q2 - E, q3 = kl' and q4 = k2" The transformedinitialconditionshave

the form

We assume henceforththat we have observationsYi = il' ""_ im) '

i=l, 2, ..., n, correspondingto w(ti;q)= (u(ti,xl),.-.,u(ti,Xm))where ^

u is the solutionof (I.5). For a criterionin determininga best estimateq

of the parameterswe use a least-squaresfunction

n _ 2

(I.6) J(q)= i__SllYi- w(ti;q)l

which we seek to minimizeas q rangesover some admissibleparameterset Q.

We remark that in the event our observationsni = ( il' ""' im) are for the

originalsystem (l.l)-(l.4),we may apply directlythe theoryand techniques

of this paper by consideringin place of (I.6)the criterion

n

(1.7) J(q) = Z Ini + G(ti;q)- w(ti;q)l2
i=l

where G(ti;q)_ (G(ti,xl;q),...,G(ti,Xmlq))•

We make some standingassumptionsto facilitateconsiderationof our

problemin subsequentdiscussions. We shall searchfor q in a set

Q:C(O,I) x Hl(o,l)x R x R x Rk (we shall sometimeswriteQ as Ql x Q2 ×

Q3 × Q4 × Q5)" we furtherassume that Q is compactin the C x Hl x R2+k

topology,and that there exist positiveconstants



qi ' qi ' i=l, 2, 3, 4 such thatu

qi _qi {X) _qi for qieQi ' i=l, 2,

q3 < "q3 < q3 for q3e Q3 ' and

q4 _q4 _q4 for q4eQ4 "

Finally,we assume@eHl(o,l) , _eHO(o,l) , and s(.;k)eH3(O,T) for each

eQs, where tie[O,T], T<_, and that k . s(.;k) is a continuousmappingfrom

Q5 to H3(O,T)"

We turn next to the theoreticalfoundationsof the approximationschemes

we proposeto use in solvingour inverseproblemof minimizingJ over Q,

subjectto (I.5).



2. AbstractFormulation.

The object in this sectionis to lay the theoreticalfoundationfor the

problem. First,we shallwrite our partialdifferentialequationas an abstract

ordinarydifferentialequationin a Hilbertspace,then determinea set of

approximatingordinarydifferentialequations. Each of these abstractequations

will have an associatedidentificationproblem;the originalwill be referred

to as (ID),the Nth approximatingproblemwill be referredto as (IDN). We

shall use the theoryof semigroupsto obtain existenceand uniquenessof

solutionsto the differentialequations. We can then fit our probleminto the

theoreticalframeworkdevelopedin [ 5 ], and deducethat, under conditions

statedthere (reiteratedbelow for clarity),one can solve (IDN) for each N,

and these parameterestimatesthus obtainedwill "lead to" a solutionof (ID).

The equation(I.5) can be rewrittenas a first order system,motivating

the use of a product(V(q)x L2(q)) of two spacesto be our Hilbertspace X(q).

DefineV(q) to be Hl(o,l)with inner productdefinedby <v,W>v(q)=

_l q2DvDwdx- q2(O)q3v(O)w(O). (D denotesthe spatialdifferentiationoperator

) It can be readilyshown that for any q_Q V(q) is a Hilbertspace,and
_X "

moreover,the assumptionsmade about Q imply that the V(q) norm is uniformly

equivalentto the Hl norm as q ranges over Q. Let VB(q) containthose elements

of V(q) which satisfythe elasticboundarycondition,i.e., VB(q) =

{veV(q)nH2(O,l)IDv(O)+ q3v(O)= 0}.

We define L2(q) to be HO(o,l)with inner productgiven by <v,W>o,q =

_l qlVWdx , and note for q_Q, L2(q) a space norm
that each is Hilbert and its

is uniformlyequivalentto the standardH0 norm as q rangesover Q.

As describedearlier,we take X(q) = V(q) x L2(q) with inner product

given by <x,y>q = <Xl,Yl>V(q)+ <x2,Y2>o,q(wherex = (Xl,X2)Tand y = (yl,Y2)T).

It is clear from our remarksabove that for q_Q, X(q) is a Hilbertspace, and the
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X norm is uniformlyequivalentto the HI× H0 norm as q rangesover Q. We can

formallywrite (I.5) as an abstractequationin ×(q):

z(t) : A(q)z(t)+ G(t;q)

(2.1)

z(O) : ZO(q)

where we have identifiedz(t)e X(q) with . The boundaryconditions

\ut(t, )

are incorporatedinto the domainof A(q) by definingdomA(q)= {(u)e VB(q) x

Hl(o,l)Iv(1)+ q4Du(1)= 0}, and A is the unboundedlinearoperatorgiven by

A(q) =

• (I/ql)D(q2D) 0

The functionG and the initialconditionare given by

and ZO(q) =
G(t;q) = F(t,-;q) _(.;q)

It can be shown that for each qe Q, A(q) is the infinitesimalgeneratorof

a Co-semigroup,T(t;q) on X(q), so that we have the existenceof mild solutions

to {2.1),given by

t

(2.2) z(t;q)= T(t;q)zo(q)+ f T(t-s;q)G(s;q)ds
0

with z(-;q){C(O,T;X(q)).In this context,the inverseproblemcan be stated as:

^ ^ ^
n

(ID) Given observationsy = {Yi}i=l, minimizeJ(z(.;q),y)over qeQ

subjectto z(.;q)satisfying(2.2).



Here, J(q) _ J(z(.;q),y) : 1_llYi.: - {(ti,q)l 2 where _(ti,q) :

(zl(ti,xl;q) , ..., zl(ti,Xm;q) ) and zI denotes the first component of z.

To prove that for each q, A(q) generates a Co-semigroup, one can use the

Lumer-Phillips Theorem ([15], p.16). To employ this theorem, one must show the

operator is dissipative, densely defined, and satisfies a certain range statement.

To demonstrate the dissipativity of A(q), we take f{ domA(q), q e Q, and compute

(with an integration by parts)

<A(q)f,f>q=

(I/ql)D(q2Dfl) f2

: <f2,fl>V(q)+ <(llql)D(q2Dfl),f2>O,q

l l

:/oq2DflDf2dx-q2(°)q3fl(°)f2(°)+ D(q2Dfl)f2

: _ q2(O)q3fl(O)f2(O)- q2(O)Dfl(O)f2(O)+ q2(1)Dfl(1)f2(1)

= - q2(1)q4(Dfl(1))2 <_0 .

ByrelatingdomA(q)to other subsets (see[l_.Fo,rdetails)which are known to

be dense in HIxH_ one can easilyargue that for each q eQ, domA(q)is dense

= X(q) for some _>0, by demon-canin X(q). One also argue that R(_-A(q))

stratingthat given f2 _X(q)' there exists edomA(q) such that

 u_v) fl);(I/ql)D(q2Du)+ _v f2

This is equivalent to solving the following two point boundary value problem:



lO

- (I/ql)D(q2Du)+ _2u : _fl + f2

Du(O)+ q3u(O) = 0

_u(1) + q4Du(1)= fl(1)

for ue H2_O,l),and settingv(x) = _u(x) - fl(x).

If we let y = u - (I/q4)x2(x-l)fl(1)the above problemis transformed

to an equivalentone with homogeneousboundaryconditions:

(_i/ql)D(q2DY)+ _2y = F

Dy(O) + q3_(O) = 0

q4Dy(1)+ _y(1) = 0

where F_ L2(q). One can then use the theoryof self-adjointoperators(again

see[l_)to argue that a solutionexistsfor any F_ L2(q).

We now turn to the approximationof our equation (2.1). We shall obtain

a solutionzN to an approximatingequation (to be discussedin detail below)

in a finitedimensionalsubspaceof X(q), denotedxN(q). Specifically,let

S3(AN) representthe standardsubspaceof C2 cubic splinescorrespondingto

the partition_N =£xi_ , xi = i/N (seepp. 78-81 of [16]);then,=0

given q e Q, we take xN(q) to be that subspaceof s3(AN)x $3(_N) whose elements

satisfythe boundaryconditionscorrespondingto q (i.e.,XN(q)C domA(q) ).

Let B_ j = -l ,N+l,.be the B-splinebasis elementsfor $3(_N) Thenj ' _,oo •

xN(.q)is the (2N+ 3)-dimensionalsubspacespannedby the followingset of basis

functions:
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l _ I- 4q3 )
,_= , ,;= ,

o o /

13_: , • • - , 6_i : ,
0

(B -I1 I 1B_ : _N : N :' N+I ' 8N+2 '

3Nq4 3Nq4 BN
TB_ 0 T N

(-II 3Nq4'B  I)(-II'3N 4'B  I1N N
6N+3 = , , 8N+4 : ,

N BN
BN+l N-l

(0) (0)N = N
_5 ' " " " ' 62N+I : '

N B_BN-2

N N
62N+2 : , 62N+3 = .

Let pN(q):X(q).xN(q)denotethe orthogonalprojectionof X(q) onto

xN(q), i.e., given feX(q), pN(q)fis that elementin xN(q) which satisfies

IpN(q)f-f]q _ [g- fiq for all g e xN(q). For each qeQ, we definean operator
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AN(q)onX(q) givenby AN(q)= pN(q)A(q)pNcq),and thentheapproximating

equationto (2.1)is writtenas:

_N(t) : AN(q)zN(t)+ pN(q)G{t;q)
(2.3)

zN(o) : pN(q)zo(q)

where zN(t)e xN(q). Using the fact thatA(q) is closed,pN(q) is bounded,

and the _osed Graph Theorem,one finds thatAN(q) is bounded. The operator

AN(q) inheritsthe dissipativityof A(q), and thereforeit followsthat for

each qs Q, AN(q) is the infinitesimalgeneratorof a Co-semigroup of contractions

TN(t;q)on X(q). It is readilyseen that TN(t;q)leavesxN(q) invariant. Thus,

for each qsQ and each N=l,2, ...,there existsa uniquemild solution

zN(';q)e C(O,T;XN(q))of (2.3),which can be expressedas

(2.4) zN(t;q): TN(t;q)pN(q)Zo(q.) + _otTN(t_s;q)pN(q)G(s;q)ds.

The associatedapproximateidentificationproblemis given by

(IDN) Given observationsy = _ _i=l' minimizeJ(zN(.;q),y)over qeQ
subjectto zN(.;q)satisfying(2.4).

Here, jN(q) _ j(zN(.;q),_)= i_l.i_i _ {N(ti,q)12where {N(ti,q)=

(z_(ti,xl;q),...,z_(ti,Xm;q))and z_ denotesthe first componentof zN.

Since xN(q) is finite dimensional,(2.3)is in fact a systemof 2N+3

ordinarydifferentialequations,which can be solvedusing standardnumerical

packages. Similarly,there are numericalpackagesavailableto solve (IDN),

providedsolutionsexist and we have some computationallyfeasiblerepresentation

for ql and q2" A detaileddescriptionof our numericalimplementation,

includinga discussionof possiblerepresentationsof ql and q2' will be deferred



13

to subsequentsections. First,our concernis to determineunderwhat conditions

solutionsof (IDN) exist and how they relateto a Solutionof (ID). This is

the subjectof the next theorem, a slightmodificationof that given in [5 , p. 820].

• R2+kTheorem2.1 Assume Q is compactin the C x Hl x topology. If

q.zo(q), q.pN(q)f, q.TN(t;q)f, fe X = X(q) are continuousin this same

Q-topology,with the latteruniformlyin te [O,T],then

(i) There exists for each N a solutionGN of (IDN) and the
1 ^Nk ^

sequence{qN} possessesa convergentsubsequenceq -.q.

(ii) If we furtherassume that,for any sequence{qJ} in Q with

zj _ lqjqJ.q, we have [ (t;qj) - z(t;q) .0 as j._,uniformly in
^

te[O,T], then q is a solutionof (ID).

The readermay, at first glance,find the convergencestatementof (ii)

suspectin that zJ(t;qj)e XJ(qj) and z(t;_)eX(_) , but this statementis

meaningfulin view of the followingobservation. In definingthe spaces

V(q), L2(q), and X(q), it was noted that V(q), L2(q),and X(q) are uniformly

equivalentto Hl, HO, and HI×HO, respectively,as q rangesover Q. This

impliesthat the X(q) are setwiseequal as q rangesover Q. To be technically

precise,we shoulduse the canonicalisomorphismwhen relatingan elementof

X(qj) to its counterpartin X(q), but to simplifyour presentation,we shall

throughoutabuse notationand omit the isomorphism.

It is easily seen from the form of ZO(q) that q . ZO(q) is continuous.

It is also true that for our pN(q),TN(t;q)we have q . pN(q)f and q . TN(t;q)f

continuous;thiswill be readilyseen from the matrix representationsfor our

approximatingscheme,and so furtherdiscussionis postponeduntil Section5.
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The next theoremgives sufficientconditionsfor the hypothesis..of(ii)
from Theorem2.1 to hold.

Theorem2.2 Let qN, _ be arbitraryin Q such that qN . q as N . _ (recall

convergenceis in the C x Hlx R2+ktopology). Supposethat the projections

pN(q) are such that I(pN(qN)-l)fJ N.O as N . _ for all feX(_), that
f_ X(_) JTN(t;qN)f-

T(t; ) lqN+Oas uniformlyin and
implies

that Jzo(qN) - Zo(_)j N . 0 as N . _. Then the mild solutionszN(t;qN)of
q

(2.3)convergeto the mild solutionz(t;_) of (2.1) uniformlyin te[O,T].

The proof of this theorem,which is based on a standard"variation-of-

constants"representationfor solutionsz and zN in terms of the semigroups

T and TN, essentiallyfollowsimmediatelyfrom Theorem3.1 of [5, p. 823].

One only needs to verify that our spaces,operators,etc. satisfythe conditions

requiredin [ 5 ].

Zo(qN) qN._It is clear from the continuity of q . ZO(q) that I -Zo!_) I .0 as q.:
qN

It remains only to show the convergence of the projections and the semigroups.

The main result of the next section is the convergence of the semigroups; the

convergence of the projections is obtained as an intermediate proposition.

In summary then, at the end of the next section, we will be able to deduce

zN(t;q N) qNfrom Theorem 2.2 that converges to z(t;_) whenever . q, and hence

by Theorem 2.1 we are assured that the sequence of iterates {GN} we obtain

(iD N ^by solving ), has a subsequence which converges to a solution, q, of (ID).
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3. ConvergenceArquments.

This sectionwill be devotedto establishingthe result: For each convergent

sequenceqN . q in Q, and for any feX(_), ITN{t;qN)f- T(t;_)flqN. 0 as

N . _, uniformlyin t_ [O,T]. As explainedin the previoussection,this

convergenceresult is crucialin arguingthat zN(t;qN) . z(t;_)whenever

qN . q, which in turn is necessaryto ensure that our candidate(.thelimit of

our approximatingsubsequence)is indeeda solutionto our inverseproblem.

We shall first prove a slightlydifferentform of convergenceof the semi-

groupsusing the followingversionof the Trotter-KatoTheorem[3 ].

Theorem3.1. Let (B,{.{)and (BN,I.IN), N : I, 2, ...,be Banach spacesand

let fIN.•B.B N be boundedlinearoperators. Furtherassumethat T(t) and TN(t)

are Co-semigroupson B and BN with infinitesimalgeneratorsA and _N, respectively.

If

(i) lim { Nf{N= Ifl for all feB,
N_

(ii) there exist constantsM, m independentof N such that

ITN(t)IN_Me mt, for t _0,

(iii) there exists a set DCB, PC dom(A),with (_o-A)D= B for

some _0>0' such that for all feP we have

I_NRNf- RNAf{N. 0 as N . _ ,

then ITN(t)_Nf-RNT(t)fIN. 0 as N . _, for all feB, uniformlyin t on compact

intervalsin [0,_).

It will be a standingassumptionthroughoutthis sectionthat qN . q

R2+k X _in Q with this convergencein the C x Hl x topology. Let B = (q) with

norm denotedby {'l_,BN = X(qN) with norm l'l for N = l, 2, ...,A = A(q)
q qN
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With correspondingsemigroupT(t) : T(t;_),and _N = AN(qN) = pN(qN)A(qN)pN(qN)

with correspondingsemigroupTN(t) = TN_t;qN) {as describedin Section2). For

each N, fIN:X(_) . X(qN) will be a boundedlinearoperatorwhich will map elements

of domA(_)into elementsof domA(qN). Define

= -cx/

The functions gN are defined so that as N . _, gN(x) . I, and DJ(gN(x)).O

for any positive integer j, where in each case the convergence is uniform

in x_[O,l].

A simple computation demonstrates that if fe dom A(_), then fiNfe dom A(qN).

For each N, fin is a bounded linear operator from X(_) to x(qN), but moreover,

the set of operators {IIN} is uniformly bounded. This statement can be proved

using the assumptions on Q and the properties of gN mentioned above. Similar

comments apply to the proof of our first proposition.

Proposition3.1. For any feX(_), IfiNf-flaN . 0 as N . _.

In order to argue the convergence of the infinitesimal generators, we

shall need error estimates for the spline approximations and their derivatives.

These will be variations of estimates such as those found in [19], modified

to take into account our q-dependent norm, and the presence of the operator
fiN.
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The followingnotationwill be used throughoutthis section. Given a

vectorfunctionf, we Shall use fi or (f)ito denote the ith componentof f.

Given the scalarfunctionh, INh will denotethe standardcubic spline

interpolantof h (thus INh e S3(AN)). For a vector functionf = f2 ' INf

will be the vectorwhose componentsare the splineinterpolantsof the

INfl )
componentsof f, i.e., INf = and INf e S3(AN) x S3(AN). The

INf2

interpolantof f which satisfiesthe bounda_ conditionscorrespondingto

q will be writtenas I_(q)f. While INf interpolatesfl and f2 at the values

_i/N)_=O and the derivativesof fl and f2 at O and l, I_(q)fwill interpolate

fl and f2 at the values_/_=0, andwill additionallysatisfy

[D(l_(q)f)i](O) + q_{I_(q)f)i](O)= O, or equivalently,

[D(l_(q)f)i](O) =- q3fi(O) for i = l, 2,
and

[{l_(q)f)2](l) + q4[D(l_(q)f)l](1)= O, or equivalently,

[D(I_(q)f)l](l) =_ (I/q4)f2(1).

We note that if f satisfiesthe boundaryconditionsinvolvingq, then

IN(q)f : INf.

The first estimates involve cubic interpolants for scalar functions.

Lamina3.1. If h e H2, then

ID2(h-INh)lo. 0 as N . _ ,

< N-IID2(h_INh){o_<N"IID2h{oID(h-INh)lo_

{h - INhlo< N-21D2(h-INh)lo<__ N-21D2h{o

The convergencestatementof this lemma followsimmediatelyfrom the

densityof H3 in H2, the estimatesof Theorem6.9 of [19], and the first
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integralrelation(4.15)of [19]. The estimatesfollowfrom (4.24)and (4.25),

respectively,of [19] and the first integralrelation.

One can use the resultsof Lemma 3.1 and the equivalenceofthe X(q)

and Hl x H0 norms to derive similarstatementsfor the interpolantsin the

X(q) norm.

Lemma 3.2. If f e H2xH 2 and q e QCCxHI×R 2+k, then

IINf-flq_< KiN-l!ID2(fl- INfl)l2 + ID2(f2-INf2)l_)I/2

<_K1N-I(ID2fll+ ID2f21 )1/2

IO(INf-f)lq< K2(lo2(fI - INfl)l2 + ID2(f2-INf2)l_)I/2

where Kl, K2 are constantswhich are independentof f, q, and N.

Again, due to the equivalenceof norms, the Schmidtinequalityof [l_, Thm. 1.5]

can be modifiedand used component-wiseto give a Schmidttype inequalityin

the X(q) norm.

Lemma3.3. If feS3(A N) x S3(AN) and q eQ, then IDflq < K3Nlflq , where

K3 is a constant independent of f, N, and q.

The precedingestimatescan be used to establishconvergenceproperties

for the canonicalprojectionspN(qN)where qN . _ in Q.

Proposition3.2. If fe X(_), then

IpN(qN)f- flqN . 0 as N +

Proof. Firsz considerf_domA(_)N(H2×H2). For such f, RNfedomA(qN)n(H2xH 2)
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and l_(qN)_Nf = IN_Nf. Weuse Lemma3.2 in the triangle inequalities below

to deri ve

IpN(qN) f-fl_ _ IpN(qN)[ f - _Nf]lqN + IpN(qN)_Nf - _NflqN + {_Nf_ flqN

2{_Nf-f{qN + ll_ (qN)_Nf - _NflqN

: 21_Nf- flqN + {IN_Nf - RNflqN

21RNf-flqN + KIN-I(ID2(RNf)I{_ + {D2(RNf)21_)I/2 "

Thus we have IpN(qN)f - flqN bounded by terms which we can show converge to
N

zero using Proposition 3.1 and the properties of g

The pN(qN) areuniformlybounded, and the set domA(_)n(H2xH 2) is dense in

X(_), hence one can use standard arguments to conclude that the statement of

the proposition holds for all feX_).

Proposition 3.3. For each feX(_), l(pN(q N) - l)_NflqN . 0 as N +-, and

for each fedomA(_)n(H2xH2), ID[(pN(qN) - l)RNf]{qN . 0 as N .-.

Proof. The first statement is proved within the proof of Proposition 3.2;

specifically, it was shown that IpN(qN)RNf - RNf{qN £ KIN-I(ID2(RNf)II _

+ ID2( Nf)21 )I/2.
The proof of the second statement is obtained from the following triangle

inequality (here we also use Lemmas3.8, 3.2):

{D(pN(qN)RNT-RNf_N_{D(pN(qN)_Nf - IN(_Nf))lq N+ID(IN(RNf)-RNf)IqN

K3N{pN(qN)_Nf - IN(RNf)IqN + I D(IN(_Nf) - nNf)l_N

K3Nl(pN(qN)-l)_NflqN + K3NIRNf - INRNflq N + ID[IN(RNf) - _Nf]IqN
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<__2K3NIINIINf-.IINflqN +.ID[IN_Nf-IINf]lqN

< (2KIK3+ K2)(ID2[oINf)I- IN(_Nf)l]l_+ JD2[(RNf)2-IN(HNf)2]il_)I/2

Thusthe conclusionID[(pN(qN) I)IINf]lqN. 0 as N . _ followsfromthe

observationthatfor i = 1,2

ID2[IN(IINf)i- (IINf)i]l0 < ID2[IN((IINf)i-fi)]lO

+ ID2[INfi - fi]{O + ID2[fi- (IINf)i]l0

<__21D2[(IINf)i - fi]Io+ {D2[INfi - fi]Io ,

with the latterterms approachingzero becauseof the propertiesof gN

and Lemma 3.1, respectively.

In later arguments,it will be helpfulto have bounds (in the Hl and H0

norms) on one componentof an elementof X in terms of a bound (in the X(q) norm)

on the entireelement. Thus, we considerfor faX(q), Ifl_= Ifll_(q) +

If21_,q which is equivalentto IDfiI_+ Ifll_+ {f21_ , so that there exist

2andI_I_<k21fI_Similarly,constantskIand k2 such that IDfII__ kIIflq _ •
2

IDfl_= IDfiI_(q)+ {Df210,qwhich is equivalentto ID2fl{_+ !Dfll_+ {Df21_

so we infer the existenceof constantsk3 and k4 such that ID2fII__ k31Dfi_

and{Dr21__k4IDfI_.Forfuturereference,we combineandlabelthese
observationsas

IDfII_ < kIIf{2- q

2

(3.1) ID2flI__ k31Dflq

{f2J2<k21fl+k41Dfll-

It is now possibleto state and prove the followingconvergencetheorem.
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Theor_ 3.2, SupposeqN . q in Q (convergenceis in the Cx H1× R2+k topology).

Then

ITN(t;qN)_Nf - _NT_t;_)flqN . 0 as N . _ ,

for all feX(_), unifo_ly in t on c_pact intervals in [0,_).

Proof. The result is an i_ediate consequence of Theorem 3.1, once the

hypotheses of that theorem have been shown to hold. Part (i) follows from

Proposition 3.1, while pant (ii) holds since TN(t;q) and T(t;q) are

contraction semigroups for each N and qeQ. It remains only to veri_ (iii),

for which we take D to be the set do_(_)N(H2xH2). Let feD. Then

IAN(qN)_Nf - _Na(_)flq N = Ipm(qN)m(qN)pN(qN)_Nf- _Na(_)flq N

IpN(qN)[A(qN)pN(qN)_Nf - _NA(_)f]IqN + IpN(qN)RNA(_)f - _NA(_)flqN

_ IA(qN)pN(qN)_Nf-_NA(_)flqN+I_N(qN)-I)RNA(_)f[qN

_ el(N) + c2(N).

It followsdirectlyfrom Proposition3.3 that c2(N). 0 as N . _ . We must

work harder to establishthat _l(N). O. We begin by breakingthe norm into

its two componentsand treat each separately. Thus

[_I(N)]2 = (pN(qN)_Nf) _ _N

i/q )o(qo) qN

: l(pN(qN)_Nf)2 - gNf21_(qN)

N_ NI_ _ 2
+ I(I/q_)D[q_D(pN(qN)RNf)I ] - Cq4/q4)g ( /ql)D[q2Dfl]iO,qN
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- [a:l(N)]2+ [a2_N)]2 ..

We firstobservethat

N tb

al(N) < [(pN(qN)_Nf)2-(q_/_4)gNf2lv(qN)+ ][(q4/q4)- l]gNf2]V(qN)

= {(pN(qN)IINf)2-(IINf)2]V(qN)+ ]((q_/_4)-l)gNf2[V(qN) •

It is more convenient,and due to the equivalenceof the norms, it is sufficient,

to establishthe convergencein the Hl norm. This can easily be done for the

first term by invokingProposition3.3 and the inequalities(3.1). An argument

can be made for the second term based on the propertiesof the gN and the

qNconvergence . q.

We turn now to the estimationof a2(N). Using the equivalenceof the

L2(qN) and H0 norms,and the inequalities(3.1),we establishthe following

chain of inequalities:

a2(N) = l_]__D[q_ D(pN(qN)_Nf)I]- "q4Cq_ gN) _--qlD(q2Dfl)IO'qrl

which is equivalentto

+-- - L-- _-- -L-- _-- 01 q4 ql q4 ql

qN L qN DqN _, N

+ _ Dq2(q4 N,<_lq_2D2(pN(qN)IINf)l_ _lq2(__44gN)D2flq4lO l D(pN(qN)IINf)I-_'--ql7gq4jDfl[0
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__ (q._4)gNDZfl iO +

- ql qlq4

Dq_ .
< =ID[(pNcqNI-IIRNf]IqN+i_-_ioJD(CpN(qN)-ll_Nflli=+ql

q2,q4, N Dq2

'q_ D2(IINf)l-_--t_--)gqlq4 D2fliO+i_ D(IINf)l'-_-iq4(_ gN)Dfll0

We thus see that a2(N) can be boundedby four terms which go to zero as N._;

the convergenceof the first two terms is the resultof Proposition3.3 and

the convergenceof qN to q, while the convergenceof the second two can be
N N

arguedusing the propertiesof g and q .q.

We can use this theorem,the convergencepropertiesof the operatorsRN

(Proposition3.1), and the semigroup properties of TN and T, to establishthe

final resultwe need, as a corollary.

Corollary3.1. SupposeqN._. Then

ITN(t;qN)f T( _- t;q)flqN. 0 as N .

X _for all f_ (q), uniformlyin t on compactintervalsin [0,_)



24

We can now invokethe results(seeTheorems2.1 and 2.2) stated in Section2

to concludethat q (obtainedthere as the limit of an approximatingsubsequence,
A

{qNk})is a solutionto the identificationproblem.
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4. ParameterApproximation.

In Section2,_we pose the problemof minimiz_ingjN(q) over Q. The

argumentsunderlyingTheorem2.1 yield that (undercertainassumptions)

each Nth (approximate)problemhas a solutionGN, and for any convergent

{qNk}, G ^ ^subsequence with Nk . q, we have q is a solutionof the original

identificationproblem. Recall,however,that ql and q2 are functional

coefficients,and hence each of the approximateoptimizationproblemsis in

fact infinitedimensionalin nature. In this section,we discusssome

methodsfor approximatingthese infinitedimensionaloptimizationproblems

by finitedimensionalones, thus providingnumericallytractableproblems.

This, of course,resultsin a second,or parameter,approximationthat must

be considered.

In Section5, we shall presentthe resultsof severalnumericaltest

examples. To reduce ill-posedness(see the commentsin Sectionl) we set

ql = p _ l and search for q2 _ E, q3' q4' _' with q2 the only functional

unknown. We thereforerestrictour theoreticaldiscussionshere to this

case. (Wenotehoweverthat in principle,our methodsand ideas can be applied

to the estimationof both p and E.)

An approachthat one might takewould be to assumeana priori parameter-

izationfor q2" Thus the estimationof the unknownfunctionbecomesthe esti-

mation of a set of unknownConstantsappearingin the parameterization.The

convergencetheorydevelopedthus far is directlyapplicableto thismethod.

However,it would onlyyield resultsfor best approximates(throughthe cri-

terionon state observations)to q2 withinthefixe_____dd_prioriparameterization

class. Little can be said about convergenceto a "best fit parameter"q2 from

the originalparameterset Q.
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An alternateapproach,which does not require,qualitative(e.g_,shape)

assumptionsabouttheparameterclass, is to searchfor the unknownparameter

in a sequenceof sets QM which are finitedimensionalapproximationsto the

set Q. For example,one might searchfor the unknownparameterin sequences

of classesof linear combinationsof spline (or membersof any other suitably

chosenapproximationfamily)basiselements.

We shall considerhere two cases: QM as a set of linear spline inter-

polants,and QM as a set of cubic spline interpolants. For both cases we need

to generalizethe theorydevelopedin Section2, since we now have a "double

index"(reflectingapproximationsfor both the parameterand the state space)

sequenceof iterates,which we would like to argue convergesto a solutionof

the originalidentificationproblem.

To be specific,let Q = Q2 x Q3 × Q4 × Q5 _ HI × R2+k' and assumewe

have a mapping iM : Q2 . HI" For I the identitymap, define IM = iM x (I)2+k,

i.e.,for qeQ, we have IM(q)= (iM(q2), q3' q4' q5)"

Let QM = IM(Q). We assume

(4.1) The set (QM)2_ iM(Q2)is compactin HI.

(4.2) For q2eQ2' iM(q2). q2 in Hl as M . _ , and this convergenceis

uniformin q2_ Q2"
The originalset Q is assumedto

be compactin Hl x R2+k, so it followsfrom (4.1),the definitionof IM, and

Theorem2.1 that for each N and M, a solutionq existsto the problemof

minimizingjN over QM. From the definitionQM = IM(Q),we see that there exists

-"qM e Q such that IM( ) = for each N and M. But the compactnessof the

originalset Q then impliesthe existenceof some subsequence{_J} and an
M R
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A ^

elementq e Q such that _Nj
qMk . q in Q;.moreover,this_subsequencemay be

chosenso that both Nj . = and Mk . =. The limit q is in fact a solutionto

the problemof minimizingJ over Q; this claim is verifiedas follows: From

the definition_Nj we have
4Mk

jNj(G j)_ jNj(q) , for qe QMk.
"k

This implies

(4.3) jNj(-_Nj)< jNj(IMk(q)) , for qeQ .
4Mk -

But {q q { IMk(_Nj) _Nj{ + {_Nj- < - - q { , and thus ^Nj . q in Q as
- -Mk qMk qMk qMk

Nj . _, Mk . _ followsfrom (4.2),the definitionof IMk, and -NjqMk . q . If we^

take the limit in (4.3)as Nj, Mk . =, we see that J(q ) _J(q) for q_Q.

Here we have used Theorem2.2 with the observationthat the convergence

statementzN(t;q N) z(t;_) for any qN '_. . q is still valid if replacedby

zN(t;q3) . z(t;q)as j, N . =, for any qJ ._; this can be seen using a re-

indexingargument. These remarksare summarizedin the followingtheorem.

Theorem4.1. Let QM = IM(Q) where (4.1)and (4.2)are satisfied. Let q be

a solutionto the problemof minimizingjN over QM. Then for any convergent

^Nj ^Nj ^

subsequence{qMk} with Nj, Mk . = and qMk . q , the limit q is a solutionto
the problemof minimizingJ over Q.

We first considerthe above resultsappliedto the case where the QM are

sets of linearsplineinterpolants. Let SI(AM) representthe subspaceof

piecewiselinear splinescorrespondingto the partitionAM ={x i}i=O,xiM = !M,
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and let iM : H1 . SI(AM) denotethe standardlinearspline interpolating

operator. If, in additionto assumingQ2 is compactin Hl, we assumeQ2

satisfiesQ2 c {q2eH 2 I ID2q210_ K} , then it is not difficultto show

that (4.1)and (4.2)are true for QM and iM as definedabove. From a standard

representationresultfor linear interpolatingsplines[19, p.12],we infer the

continuityof the operatoriM as a mappingfrom Hl to Hl, and the compactness

of (QM)2 = iM(Q2) in Hl followsimmediately. To establish(4.2)we appeal
to

standardestimatessuch as (2.17)and (2.18)in [19]. Havingverified (4.1)

and (4.2),we now state

Theorem4.2. SupposeQ = Q2 x Q3 x Q4 × Q5 is a compactsubsetof Hl × R2+k

with Q2 additionallysatisfyingQ2 C{q2eH 2 I ID2q210!K}. Let QM : IM(Q)

where IM _ iM x (1)2+k, and iM is the linearspline interpolatingoperator.

^N
If qM representsa solutionobtainedfrom minimizingjN over QM, then for

any subsequence{ } of { } such that as Nj, Mk + _, qF1k q in Q, we have^

that q is a minimizerfor J over Q.

Under slightlystrongerassumptionson the set Q, we can developa similar

convergenceresultusing cubic splineapproximationsto q2" Let S3(AM) be

the subspaceof C2 cubic splinescorrespondingto the partitionAM, and let

iM : Cl + S3(AM) denote the standardcubic splineinterpolatingoperator

(see Sections2 and 3 for details). We assume Q2 is a compactsubsetof Cl

satisfyingalso Q2 = {q2eH 2 ID2q210! K}. We again may use standard

interpolatingsplinerepresentations(see [19, p. 45])toconcludethatiM is a

continuousoperatorfrom Cl to Hl, from whence it followsthat (QM)2 is

compactin HI. To verify (4.2),we again refer to (4.19)and (4,20)in
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[19]. Thus we have

Theorem4.3. SupposeQ = Q2 x Q3 x Q4 × Q5 is a compactsubsetof Cl × R2+k

with Q2 C{q2eH 2 I ID2q210£ K}. Let QM = IM(Q) where IM _ iM × (i)2+k,
^N

and iM is the cubic splineinterpolatingoperator. If qM representsa solution

obtainedfrom minimizingjN over QM, then there existsq eQ which minimizesJ

("^Nd ;Nj q
over Q, and a subsequence£qMk of q such that as Nj,Mk . _, _Mk .

In the next sectionwe presentmumericalfindingsfor double (stateand

parameter)approximationschemessuch as thosedescribedhere.
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5. NumericalImplementationand Examples. Recall from Section2 that the

approximatingidentificationproblemis:

^ n 12Giveny, minimizejN(q) = X lYi - _N(ti,q) over qe Q (where{Ni=l

invo}ves point evaluations,in space,of the first componentof zN) subject

to zN(.;q)satisfyingthe followingordinarydifferentialequation:

_N(t) : AN(q)zN(t)+ pN(q)G(t;q)

zN(o) = pN(q)zo(q).

(We continueour discussionsin termsof the transformedsystem (I.5)and

criterion(I.6)even though the numericalexamplessummarizedin this section

involve"data"for the originalsystem (l.l)-(l.4)used in conjunctionwith

the criterion(I.7),) Since zN e xN(q), zN has a representationin terms of

2N+3

the basis elementsof xN(q), zN(t;q)= X w_(t;q)B_(x;q). If we let JAN(q)]i=l

and [fN] be the matrixand vector representations,respectivelyof AN(q) and

pN(q)f (wheref is an arbitraryfunctionin X(q)) with respectto the basis

elementsof xN(q) and let wN(t;q)_col(w_(t;q) N (t;q)) then wN(t;q)• , ...,W2N+3 ,

solvesthe followingsystemof ordinarydifferentialequations:

_N(t;q)= [AN(q)]wN(t;q)+ [GN(t;q)]

wN(o;q) : [z_(q)].

As in [5 ], this can be writtenmore explicitlyas:
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qNwN(t;q)= KNwN(t;q)+ RNG(t;q)

(5.1)

QNwN(o;q)= RNzo(q)

where QN and KN are matrices,with elementsdescribedby (QN)i,j =

_, B_>q, (KN)i,j : <Bl,_A(q)_, and (RNf)i: <B_,f>>q q for feX(q).

Due to the form of the B-splinebasis elementswe have chosen (see Section2),

QN can be storedas a bandedsymmetricmatrix;this banded,symmetric

structurepermitsmore efficientcomputationsand requiresless storagespace.

The matrix KN has a similarsparse (althoughnot symmetric)structure.

Each elementof the matricesQN and KN, and of the vectorRNf depends

continuouslyon q, thereforethe representations[AN(q)]and [fN] are

continuousin q. The basis elementsfor xN(q) dependlinearlyon q, and hence

are continuousin q, which impliesq . pN(q)f and q . TN(t;q)f (we note

TN(t;q)= exp(AN(q)t)since AN(q) is a boundedoperator)are continuousmappings

(recallthiswas a necessaryconditionin Theorem2.1).

We note that in the case where ql and q2 are assumedto be constant,or

to have a representationas, for example,a linearcombinationof spline

elements,then the computationscan be done more efficiently;in such cases,

the numericalquadraturesrequiredto computethe inner productswhich form

QN and KN need be performedonly once for each N. Then, to constructQN and KN

the appropriatemultiplesor linearcombinationsof these stored valuesare

computed.

Many of the computationsin the softwarepackageused to generatethe

followingexampleswere done with IMSL subroutines(forexample,the optimization,
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and the solutionof the differentialequationin (5.1)). Althoughmuch

modificationwas necessaryfor the presentapplication,the core of the

packagewas developedby James Crowley[ll]. The exampleswere computed

either on an IBM VM/370,or a CDC 6600.

The optimizationis done using a Levenberg-Marquardtalgorithm. For

fixed N, each iterationin the optimizationis performedas follows. Given

q, beginningat time zero (tl=O),a Choleskydecompositionmethod is used to

solve (5.1) for _N(t;q)and wN(tl;q);this is then integratedusing Gear's

method to obtainwN(t2;q). We use the componentsof the vectorwN(t2;q)to

recoverz_(t2;q)as the linearcombinationof the first componentsof the

basis elements. The vector _N(t2,q)is z_(t2;q)evaluatedat each of the

spatialobservationpoints. Using wN(t2;q)as the initialvalue, (5.1) is

solvedagain for te[t2,t3], {N(t3,q)is obtained,and this procedureis

repeateduntil {N(ti,q)has been evaluatedat all times ti; then jN(q) can be

computedas the sum of the residuals,lyi-_N(ti,q)12. The data {yi} is

read in and storedat the beginning.

In the selectionof examplesto follow,the "data" has been generated

with an independentfinitedifferencescheme (an implicitmethod [17]was

modifiedfor our boundaryconditionsand the variablecoefficient,q2(x))

appliedto the model with a priorichosen "true"valuesq of the parameters.

In all examples,ql(x) is taken to be identicallyone (this is done to reduce

ill-posedness,as mentionedin Sectionl). We begin each examplewith an

initialguess,and a value of N; we solve (IDN),to get convergedvalues,_N

(theseare numericalapproximations(to GN) that result from the Levenberg-

Marquardtalgorithm),which we then use as startingvaluesfor the next value of N.

qO -_So, in Example 5.1 (below) we begin with N=4 and a guess , and generate q' We
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then start with _4 at N: 8, and generate_8.

We remind the reader that the computationsreportedon belowwere

carriedout using "data" for the system (l.l)-(l.4)with criterion(I.7)and

an appropriateapproximatecriterionfor the Nth problem. (We have also

successfullytestedthe methodson similarexampleswith the transformed

system (I.5)and criterion(I.6),although,of course,this is not the typical

formulationof the inverseproblemfor which data will be available.)

Example5.1. For our first examplewe used "data"consistingof observations

at x=O and times t = .25, .5, .75, ...,2.0. This is meant to simulatethe

situationin "surfaceseismic"experimentswhere only data at the surfaceare

available. The sourceterm was chosenas s(t;k)= q5(l-e-St)eq6t, a function

which rises to a peak quicklyand then graduallydiminishesto zero; again

this attemptsto mimic the situationin seismicexperiments. We assumevan-

ishinginitialconditionsand seek to estimatea constantelasticmodulusq2

as well as the boundaryparametersq3' q4 and the sourceparametersk= (qs,q6).

True valuesalong with our estimatesare given in the resultssummarizedin

Table 5.1. Graphs comparingthe true solutionat the surfaceu(t,O;q)with

the approximatesolutionuN(t,O;qN) are shown in Figure5.1. We also tested

the methodon this exampleusing "data"for more spatialobservations(data

at x=O, .5, l.O and at t = .5, l.O, 1.5)with our findingsgiven in Table 5.2.

Based on these computationsand a numberof other tests,we suggestthat

there appearsto be littledifficultywith our method in the case where only one

spatialobservationis availableas long as a sufficientnumber of time

observationsare available.
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TABLE5.1

Initial ConvergedValues True
Guess N =4 N=8 Values

ii

q = 2.0 = 2.96001 = 3.0001 q2 = 3.0

q = -l.O = -I.98861 = -I.99012 q3 = -2.0

q = 2.0 = 0.97428 = 1.00683 q4 = l.O

q = 1.5 = 1.97135 = 1.99809 q5 = 2.0

q = -0.5 = -0.98500 = -I.00506 q6 = -l.O

No. of
IterationsI II 2

R.S.S.2 0.659 × lO-5 O.ll9 x lO-5

CPU3 125.363 84.688

INumberof iterationsin the optimizationalgorithm.

2Residualsum of squares= jN(_N).

3The CPU time given in seconds.
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TABLE5.2

Initial ConvergedValues True
Guess N = 4 N= 8 Values

q : 2.0 = 2.98515 : 2.99378 q2 = 3.0

q = -l.O = -I.92304 q_ = -2.01999 q3 = -2.0

q = 2.0 = 1.01302 = 1.00285 q4 = l.O

q = 1.5 = 1.97120 = 2.00578 q5 = 2.0

q = -0.5 = -i.03296 = -0.99172 q6 = -l.O

No. of
Iterations 12 5

R.S.S. 0.235 × lO-5 0.441 x lO"5

CPU I17.597 147.323
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Example5.2. In thisexample we comparedthe performanceof our method on

problemswith "noisydata" with that on those withoutnoise in the data. We

used the same source term as that in Example5.1, zero initialconditions,

but a "true"parameterizedelasticmodulusE(x) = 3/2 + I/_ Arctan [q21(x-q22)].

Data for observationsat x = 0.0, 0.5, l.O and t = .416, .832, 1.248, 1.664,

2.08, 2.496 were used. Resultsfor the case of data withoutnoise are summarized

in Table 5.3, while findingsemployingdata with a noise level of approximately

3% are given in Table 5.4. In both cases, the method convergesnicely but as

one might expect,the convergedvalues of the parametersdo not agree with the

true parametersin the case of noisy data. In Figures5.2, 5.3, 5.4 and 5.5,

we graphicallydepictedthe curvesfor _N and E in severalcases.

Example5.3. In this examplewe illustratethe ideasdiscussedin Section4

regardingparameterapproximationin the set of linearand cubic splines. We

do not assumean a priorishape for the elasticmodulus E(x), the "true"value

of which is given by E (x) = 3/2 + tanh [6(x-.5)]. Ratherwe first search
,

for E in the class of linearsplineapproximationsto E . We then carry out

the searchusing cubic splines. Initialconditionsare u(O,x) = ex,

ut(O,x)= -3ex and no source termwas assumed(i.e., s_O). Data for observations

at 3 spatialpoints (x=O.O, 0.5, l.O) and 6 time points (t= .16, .32, ..., l.O)

were used. Figure 5.6 depictsgraphs of the true modulusE , the initialguess

EO, and the convergedestimate_4 where We used linearsplines (with4 basis

elements--M= 3 in the notationof Section4) to approximateE and cubic splines

(N= 4) to approximatethe state. At the same time we searchedfor the boundary

parametersq3' q4 (truevaluesq3 = -l.O, q4 = 3.0) and obtainedconverged
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,TABLE5.3

Initial ConverqedValues True
Guess N = 4 N = 8 Values

q l = l.O l = 2.97352 l = :2.99994 q21 = 3.,0

q 2 = l.O 2 = 0.511_5 2 = 0.50053 q22 = 0,'5

q = -2.0 = -0.99892 = -1.00026 q3 = -l.O

_ _ * _oq = 2.0 = 3.05138 = 3.,01,070 q4 =

o _ _ .q5 = l.O = 2.00322 = 2,00056 q5 = 2.0

q = -2.0 = -I.01163 _8 = -I.00217 q6 = -l.O

No. of
Iterations 13 3

R.S.S. 0.I025 x lO-3 0.82859x lO-5

CPU 269.696 196.335
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TABLE5.4

(NOISYDATA)

Initial ConvergedValues True
Guess N = 4 N= 8 Values

l = l.O = 3.30536 q21 = 3.29222 q21 = 3.0

o Io _ = os38o2_ o o5311s*q22 = " 2 2 q22 = 0.5

q = -2.0 = -0.86648 = -0.86017 q3 = -l.O

q = 2.0 = 2.99610 = 2.96002 q4 = 3.0

q = l.O = 2.09207 = 2.09295 q5 = 2.0

q = -2.0 = -I.15602 = -I.15571 q6 = -l.O

No. of
Iterations 13 2

R.S.S. 0.6509× 10-3 0.476 x 10-3

CPU 270.II 136.87
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A
estimatesq_ = -I.05425,q_ = 3.3576with a CPU time of 38 secondsand

i

R.S.S.= 0.255 x lO-2. Figure 5.7 containsgraphs similarto those in

Fig. 5.6 exceptN= 16 was used in the state approximations. Boundary

parameterestimatescorrespondingto _16 were _6 = -I.I0063,_6 = 3.07049

with CPU time of ll8 secondsand R.S.S. = 0.472 × lO-4. The error (in

the H0 norm) in estimatingE in each case was calculatedto be IE* E41 = .081

and IE*-  161= .030.

We carriedout similarcalculationsfor the same examplein which we

employedcubic splines (M=lin the notationof Section4, i.e. 4 basis elements)

* E0 _16for the parameterapproximations. The graphsof E , and are compared

in Figure5.8. In this second test we did not searchon the boundary

parametersq3' q4 but rather held them fixed at their "true"values. The

error at the convergedparameterwas IE - El61 = .I09,with R.S.S.= 0.293 × lO-2

and a CPU time of 178 seconds.
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6. ConcludingRemarks.

We have presentedin this paper both theoreticaland numericalresults

using some of our ideas involvingspline approximationsfor inverseor

parameterestimationproblemsfor hyperbolicsystems. Among the novel features

is the capabilityof estimatingvariablecoefficientsand boundaryparameters

with methodsthat are both theoreticallysound and readilyimplementable.

Our techniques(reportedon earlier,[6]) involvethe use of parameterdependent

basis elementsfor the approximationsubspacesin a Galerkintype semi-discrete

scheme.

While we have focusedon l-dimensionalspace domainproblemshere, our

ideas.arein principleapplicableto problemsin 2 and 3 dimensionaldomains.

We have devotedsome thoughtto such problemsin connectionwith use of basis

elementsthat are tensor productsof l-D elements. These ideas offer some

promise,given the parallelismthat would be inherentin the resultingalgo-

rithmsand given the emergingtechnologyrelatedto supercomputersand array

processors. However,there are other ideas that also offer great promise;in

particular,there are those involvingspectralmethodssuch as the tau-Lege_drefor

which we have reportedpreliminaryfindingsin [4]. A fundamentaldifference

betweenthese techniquesand those proposedin this paper is that in the tau-

Legendreone does not requirethe approximationsubspacebasis elementsto

satisfythe boundaryconditions. Insteadthe boundaryconditionsare essen-

tially imposedas side constraintsadjoinedto the GalerRin type differential

equations. This can offer significantcomputationaladvantages,especially

in higherdimensionaldomain problems. We are currentlypursuinginvestigations

of these ideas.
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In closingwe remarkthat the theoreticalresultspresentedabove only

guaranteeconvergenceof subsequences to a minimizerq for d. But for

the class of problemsinvestigatedhere and for a numberof other types of

inverseproblemswe have studied,we have in practiceonly observed (numerically)

convergenceof the originalsequence£qN_. This has been our experienceeven

in exampleswith noisy data and may be due in many cases to the fact that the
^

originalproblemof minimizingJ over Q has a uniquesolutionq . In this

situation,elementaryand quite standardargumentscan be employedto actually

establishconvergenceof N itselfto q •
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