
NASA Contractor Report 172388

ICASE REPORT NO. 84-23 NASA-CR-172388
19840021586

ICA'SE
A NUMERICAL SCHEME FOR THE IDENTIFICATION

OF HYBRID SYSTEMS DESCRIBING THE VIBRATION

OF FLEXIBLE BEAMS WITH TIP BODIES

I. Gary Rosen

Contract No. NASI-17070

June 1984

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

[I  AI'I 80PY
National Aeronautics and L',; i:'_ 'i 5. lg84
Space Administration

Langley Research Center LANGLEYRESEARCHCENTER
Hampton,Virginia 23665 LIBRARY,NASA

HAMPTON,.VIRGINIA





A Numerical Scheme for the Identification
of Hybrid Systems Describing the Vibration

of Flexible Beams with Tip Bodies*

I.G. Rosen%
The Charles Stark Draper Laboratory, Inc.

Cambridge, Massachusetts 02139

Abstract

A cubic spline based Galerkin-like method is developed for the identifi-
cation of a class of hybrid systems which describe the transverse vibration of
flexible beams with attached tip bodies. The identification problem is formu-
lated as a least squares fit to data subject to the system dynamics given by a
coupled system of ordinary and partial differential equations recast as an ab-
stract evolution equation (AEE) in an appropriate infinite dimensional Hilbert
space. Projecting the AEE into spline-based subspaces leads naturally to a
sequence of approximating finite dimensional identification problems. The
solutions to these problems are shown to exist, are relatively easily computed,
and are shown to, in some sense, converge to solutions to the original
identification problem. Numerical results for a variety of examples are
discussed.
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I. INTRODUCTION

In this paper we develop an approximation scheme for the identification of

systems describing the planar transverse vibration of beams with attached tip

bodies. Standard models from the theory of elasticity for the vibration of

structures of this type involve hybrid systems of coupled partial and ordinary

differential equations which describe the motion of the beam and tip bodies

respectively. The approximation scheme is based upon the formulation of the

identification problem as a least squares fit to data subject to the dynamical

equations recast as an abstract evolution equation in an infinite dimensional

Hilbert space. Using a cubic spline based Galerkin method, a sequence of suc-

cessively higher (but finite) dimensional state approximations are construct-

ed. This leads naturally to a sequence of approximating identification prob-

lems, each of which is shown to have a solution that can readily be computed

using standard numerical techniques. Results from linear semigroup theory and

the theory of evolution operators are used to demonstrate convergence of the

state approximation. _nis in turn is used to argue that solutions to the fi-

nite dimensional identification problems, in some sense, approximate solutions

to the original identification problem. Our effort here is similar in spirit

to the approach taken in [I], [2], [3], [7], and [11] wherein approximation

schemes for the estimation of parameters in beam equations with standard boun-

dary conditions (i.e., clamped, simply supported, free, etc.) are developed.

Our work is based to a large extent on the ideas suggested in the short note by

Burns and Cliff [5].

Although our general approach is applicable to a broad class of problems

(see Section 4), to illustrate our method we consider a beam, clamped at one

end and cantilevered at the other with an attached tip body. In Section 2 the

derivation of the equations of motion for the beam/tip body system is outlined,

the equivalent abstract evolution equation is derived and the identification

problem is formulated. In Section 3 the approximation scheme is constructed

and convergence results are discussed. Numerical results for several examples

are presented in Section 4.

Our notation is, for the most part, standard. The usual Sobolev spaces of

real-valued functions on the interval [a, b] whose kth derivatives are L2

are denoted by Hk(a, b). These spaces are assumed to be endowed with the
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usual Sobolev inner products <., °>k and their induced norms l°Ik. For Z a

normed linear space with norm I-IZ and f : [0, T] . Z we say that f E

T If(t)l_ dt < _ Similarly f will be said to be an elementL2([0, T], Z) if f0

of C ([0, T],Z) if the map t . f(t) from [0, T] into Z is £ time continuously

differentiable on (0, T). Finally for a function of one or more real varia-

bles, the symbol Dsf (D_f) will be used to denote the Ist (kth) derivative of

f with respect to the independent variable 8. If f is a function of a single

variable only, the subscript may be omitted. On occasion, the short-hand nota-

tion D@f(@0) or Df(@0) will be used in place of D@fl@0 or Dfl@0 to denote the
derivative of f evaluated at 80.

2. THE PARTIAL DIFFERENTIAL EQUATION AND BOUNDARY CONDITIONS, THEIR
ABSTRACT FORMULATION, AND THE IDENTIFICATION PROBLEM

We consider (see Fig. 2.1) an inextensible beam of length £, having spa-

tially dependent linear mass density p and flexural stiffness EI. The tip body

is assumed to be of mass m, have mass center at a distance c from the end of

the beam directed at an angle _ measured from the extension of the longitudinal

axis of the beam and having moment of inertia J about its center of mass.

£ _1

Figure 2.1.
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Assuming small deformations (lu(t, X)I<<'£), using the standard Euler-
i i

Bernoulli theory (neglecting rotatory inertia and shear deformations) and ele-

mentary Newtonian mechanics the equation describing the verticle displacement

u(t, x) of the beam at position x £[0, £] at time t > 0

OD2u = -D2EID2u + D TD u + f (2.1)X X X X

is obtained where T(t, x) is the internal tension resulting from loads directed

parallel to the beam's longitudinal axis and f(t, x) describes effects due to

lateral or transverse loading and/or rigid-body rotations (see [6], [14],

[17]).

If we let S denote the shear force and M the bending moment then using

the standard moment equilibrium equation for a beam under tension

S = TD u - D M,x x

the basic bending moment-curvature relationship from the Euler-Bernoulli theory

M = EID2U,x

and the equations for the translational motion of the tip body we obtain the

first boundary condition at x = £

mD_u(t, £) + me cos _ D_DxU(t, £) = g1(t) + DxEI(£)D2u(t,x£)

- T(t, £)D u(t, £), (2.2)x

where gl describes the net translational effects on the tip body's center of

mass which result from externally applied lateral loads and moments (see

[18]). Tne second boundary conditon at x = £, derived from the equations for

the rotational motion of the tip body is given by

JD_DxU(t,_£) = - c cos 6 D EI(£)D2u(t, £) - EI(£)D2u(t, £)x x x

- c sin _ T(t, £), + g2(t), (2.3)

where g2 is defined analogously to gl with regard to rotational effects

(see [18]).
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The boundary condtions at the clamped end, x = 0, are of course, given by

u(t, 0) = 0 DxU(t, 0) = 0, (2.4)

while the temporal boundary conditions (initial conditions) are of the form

u(0, x) = _(x) Dtu(0, x) = _(x). (2.5)

The equations (2.1) and (2.2) as they are written above are, in fact, non-

linear. Indeed, the internal tension T(t, x) is the sum of any externally ap-

plied loads _(t, x) which are directed parallel to the longitudinal axis and

the axially directed force mc sin 6 D_DxU(t,_£) which results from the angular

acceleration of the tip body (see [18]). Discarding the nonlinear terms in

(2.1) and (2.2) as second order effects and choosing w1(t ) = Dtu(t, £),

w2(t) = DtDxU(t, £), w3(t, x) = D2u(t'xx), and w4(t , x) = Dtu(t , x) we rewrite

(2.1), (2.2), (2.3), and (2.5) in state space form as

m

_ 1 S(t, £) f£0w3(t' e)d8aDxEI(£)w3(t' £) + 8EI(£)w3(t' £) m

Dtw(t,+x) = -SDxEI(£)w3(t' £) -yEI(£)w3(t' £)

D2w4 (t, x)\

_ 1 D2EIw3(t' x) +1 D _(t, x) ;X W3(t ' 8)d8P p x 0
m

I
uo(t, £) + --mg1(t) - 8g2(t)

lo(t, £) + xg2(t)

+ (2.6)
0

I
f(t, x)
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Dx_ (£)+

w(0, x) = (2.7)

D-_ (x)

where

2
J +mc

2 2 2 '
mJ + m c sin 6

c cos
8 = 2 2 '

J + mc sin

I
= 2 2 '

J + mc sin

2
mc cos 6 sin 6

2 2 '
J + mc sin 6

c sin 6
= -

2 2 'J + mc sin 6

and

+

w(t, x) = lw1(t), w2(t) , w3(t , x), w4(t, x))T.

Recalling (2.4) displacement, u(t, x) is recovered from w(t, x) by

xfeu(t, x) = f0 0 w3(t' T) dr d@.

The identification problem which we shall consider involves the estimation

of the flexural stiffness EI, the mass density p, the externally applied forces



- 6 -

and moments in the form of _, f, gl, g2, and the initial conditions @ and

_. Although (laying identifiability questions aside) our approximation and

convergence results would be applicable to inverse problems involving the esti-

mation of any or all of the parameters in (2.6) and (2.7), for ease of exposi-

tion, we assume that the rigid-body mass properties m, J, c, and 6 of the tip

body are known a priori. The identification problem is formulated as a least-

squares fit to data. Our approach is based upon recasting (2.6) and (2.7) in

terms of an abstract evolution equation.

Let Q be a subset of RL and assume that the unknown temporally and/or

spatially varying functions EI, p, s, f, gl, g2, _, and _ appearing in

(2.6) and (2.7) which are to be identified have been parameterized by q£Q

(i.e., EI(x) = EI(x; q), p(x) = p(x; q), a(t, x) = _(t, x; q), etc.). We

require and assume throughout that the following assumptions hold:

At: Q is a compact subset of RL.

A2: The mappings q + EI(q) and q . p(q) are continuous from Q into

H2(0, £) and Q into HI(0, £), respectively, and there exist posi-

tive constants mEi , rap,MEI , Mp such that mEi _< EI(q) _< MEI,
m < p(q) < M for all qEQ.
P P

A3: The mappings q . @(q) and q . _(q) are continuous from Q into

H2(0, £) and Q into H0(0, £), respectively.

A4: There exists a T > 0 such that the mapping t . _(t, "; q) is an

element of CI([0, T], HI(0, £)) and the mapping q . _(t, o; q) is

continuous from Q into HI(0, £) for each t£[0, T].

A5: The function f satisfies:

(i) The mapping t + f(t, °; q) is an element of L2([0, T],

H0(0, £)) for each qcQ.

(ii) The mapping q . f(t, o; q) is continuous from Q into

H0(0, £) for each tE[0, T].

(iii) There exists Kf£L2(0, T) independent of q£Q for which
i

if(t, .; q) J0 _ Kf(t) for all qcQ and t£[0, T].



- 7 -

A6: The functionsgi, i = I, 2 satisfy

(i) gi£L2(0,T) for each qcQ.

(ii) The mappings q + gi(t; q) are continuousfrom Q into R for

each t£[0, T].

(iii) There exist Kgi£L2(0,T) independentof q£Q for which

Igi(t" q)l--<Kgi(t) for all qcQ and tc[0, T].

Let Z = R2 x H0(0, £) x H0(0, £) and for each q£Q let Zqdenote

the Bilbert space {Z, <', .>q}where

T £
<(rl' Ul Vl)' (r2' u2 v2)> = riWr2 + f0 EI(q) ulu2 + f0£ P(q)vlv2r w q

with

i mc COS 1

m

W =

c cos _ J + mc2

The definitionof <., .>q is motivatedby an energy expression. Indeed the

sum of the kineticand strain energies for the systemdescribedby (2.6)and

(2.7) is given by

x)2 , 2[Wl(t)' w2(t)]W 2(t U + _ f0 Pw4(t' dx +-_ f0 EIw3(t' x) dx

(see [18]).

Define A0(q): D0C_Zq . Zq by

T

DO = {(r, u, v)_Z- u, v_B2(0, £), v(0) = Dv(0) = 0, r = (v(£),Dv(£)) },

A0(q)I(v(£),Dv(£))T u, v) = I(eDEI(£;q)u(£) + BEI(£;q)u(£)P •

- 8DEI(£;q)u(£) - yEI(£;q)u(£))T, D2v,

I D2EI(q)u). (2.8)p(q)
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For each tc[0, T] define B(t; q): Zq + Zq by

1 £ I Dxc(q)f0u)B(t; q)(r, u, v) = I(-m G(t, £: q) f0 u, 0)T, 0, p(q)

and A(t- q): D0_Z q . Zq by

A(t; q) --A0(q) + B(t; q).

For each qsQ it can be argued that the operator A0(q) is densely defined

and dissipative(in factconservative,i.e. < A0(q) z,z > q = 0, z£D0).

Moreover, it can be shown that it is skew self adjoint (i.e.,A0(q)* =

-A0(q)) and thereforethat it is closed and maximaldissipative. This in

turn impliesthat A0(q) is the infinitesimalgeneratorof a CO semigroupof

contractions{S0(t; q):t > 0} on Zq (see [10],Theorems 4.4 and 4.5). It

is in fact the case that Stone's theorem ([20],pg. 345) impliesthat S0(t;

q) is defined for t < 0 and that {S0(t;q):-= < t < =} is a C0 group of

unitaryoperatorson Zq.

The operatorsB(t; q) are bounded (uniformlyin t and q for tE(0, T) and

qsQ) from which it followsthat {A(t; q)}ts[0,T]is a stable family of infin-

itesimalgeneratorsof C0 semigroups{St(T;q):T> 0} on Zq with stabil-

ity constantsI and K --sup IB(t_ q)lq (see [12], Section5.2). Since D0
tC[O,T]
q_Q

is independentof t and t . _(t, -, q)£CI((0,T), HI(O, £)) for each q£Q,

the homogeneousinitialvalue problem

Dtz(t) = A(t; q)z(t) 0 _<<s < t _<<T (2.9)

z(s) = z0 (2.10)

with z0sZ has a unique evolution system {U(t, s; q):0 < s < t < T} associated

with it which satisfies

(i) IU(t, s; q)lq < eK(t-s)

(ii) U(t, s; q)DoC.D0
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(iii) U(t, s; q)z is strongly continuously differentiable in Zq for all

z£D0 with

DtU(t, s; q)z = A(t; q)U(t, s; q)z

and

DsU(t, s; q)z =-U(t, s; q)A(s; q)z

for 0 < s < t < T.

If z0ED0, z(t) = U(t, s; q)z0 is the unique solution to (2.9) and (2.10).

For each t£[0, T] and q£Q let F(t; q)£Z and z0(q)£Z be given by

F(t; q) = I(_o(t, £; q) + I g1(t; q) -8g2(t; q), lo(t, £; q)

I f(t, •; q)l+ _g2(t; q))T, 0, p(q----_

and

z0(q) = Ir(q), D2@(q), $(q))

respectively where r(q)£R2 and consider

Dtz(t) = A(t;q)z(t) + F(t; q) (2.11)

z(0) = z (q). (2.12)0

Writing formally

t U(t, T; q)F(T; q) dT (2.13)z(t; q) = U(t, 0; q)z0(q) + f0

assumptions A3-A6 imply that the function t . z(t; q) is well defined and con-

tinuous from [0, T] into Zq. If, in addition, t . F(t; q)£CI([0, T], Zq),

_(q)£H2(0, £), _(0; q) = D_(0, q) = 0 and r(q) = (_(£; q), D_(£; q))T

(i.e., z0(q)£D0) then z(t; q) as given by (2.13) is the unique classical

solution to (2.11), (2.12) in the sense that z(o; q) cC1([0, T], Zq),

z(t; q)_D0, 0 < t < T and (2.11), (2.12) is satisfied in Zq (see [12], Sec-

tion 5.5). Under assumptions A3-A6 only, however, a classical solution to

(2.11), (2.12) does not, in general, exist. In this case, z(t; q) as given by

(2.13) is known as a mild or generalized solution to (2.11), (2.12) in that it
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is the limit of classical solutions to sequences of problems of the form

(2.11), (2.12) for which a unique classical solution does exist. (See [12]).

In light of the above remarks we use (2.13) to formulate the identifi-

cation problem. For each x£[0, £] define the operators C(x):Z . R by

x fT0 u(o) do dT. (2.14)C(x)(r, u, v) = f0

We assume that we have been provided with displacement measurements,

{u(ti, _xj)}i=1,v't.E[0,1T], i = 1, 2.... v, xj£[0, £] j = 1,2, ... p, taken
j=l,p

from the actual system and state the identification problem as

(ID) Find qcQ which minimizes

v 1J 2

J(q) = z z Ic(xj)z(ti; q) -u(t i, xj) I
i=1 j=1

where z(t; q) is given by (2.13).

%_neinfinitedimensionalityof the constraints,(2.13),of course necessi-

tates the use of some form of approximationin solvingproblem (ID). We devel-

op one such scheme in the next section.

3. APPROXIMATION AND CONVERGENCE RESULTS

Our approximation scheme is based upon the formulation of a sequence of

approximating identification problems in which the underlying state equations

are finite dimensional semi-discrete approximations to (2.13). The approxi-

mating evolution equations are constructed using a standard cubic spline based

Galerkin approach to effect the spatial discretization. It will be shown that

each of the approximating identification problems has a solution, and via con-

vergence of the states, that the resulting sequence of solutions admits a sub-

sequence which converges to a solution to problem (ID).
N

Working abstractly at first, for each N = 1, 2, ... and each q£Q let z
qN

be a finite dimensional subspace of Zq which is contained in DO . Let Pq denote
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the orthogonal projection of Z onto ZN with respect to the <., .> inner prod-
q q q

A_ ZN N, BY(t; q):ZN . ZN anduct. Define the linear operators (q): .
q Zq q q

AN(t; q):ZNq. ZNqby A_(q) = P_A0(q), BY(t; q) = pNB(t;qq), and AN(t; q) =

pNA(t; q) = A_(q) + BY(t; q) respectively. The finite dimensionality of ZNq ' q
implies of course, that each of these operators is bounded, although not neces-

sarily uniformly in N.

Since Ao(q) is conservative, the B(t; q) are bounded uniformly for
N

t_[0, T] and qcQ and the P are orthogonal projections, it follows that the
q

N(q) are conservative and that the BY(t; q) are bounded uniformly in N asAo

well. Indeed for zNEzN we have
q

N N N<A0(q)zN, zN> = <P (q)zN, z > = <A0(q)zN, z > = 0q 0 q q

and

This in turn implies that the AO(q) are infinitestimal generators of CO semi-

of contractions, _sN(t; q):t > 0} on ZN and that the initial valuegroups
L U -- q

problems

DtzN(t) = AN(t; q)zN(t) (3.1)

N N
z (0) = z0 (3.2)

have unique evolution systems {uN(t, s; q):0 5.s _ t _ T} associated with them

which satisfy

(i) IuN(t,s,q)lq-<j(ts)

(ii) Dt_(t, s; q)zN = AN(t; q)uN(t, s; q)zN for all zN£zN,

0 < s < t < T.
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The two parameter families uN(t, s; q) are the solution operators for

the initial value problems (3.1) and (3.2). We note that since for each N,

ZN is finite dimensional, once a suitable basis has been chosen, the initialq

value problem (3.1) and (3.2) can be written in matrix form with uN(t, s; q)

then being represetned by the corresponding principal fundamental matrix solu-
tion.

For each q£Q and N = 1, 2, ... we define the function zN(.; q):[0, T] . ZN
by q

t uN(t, T; q)P_F(T; q) dT (3 3)zN(t; q) = uN(t, 0; q)P z0(q) + f0

and state the approximating identification problem as

(IDN) Find q£Q which minimizes

jN(q) = Z Z IC(xj)zN(t ; q) - u(t. xj)12i=I j=1 1 1'

where zN(t; q) is given by (3.3) and the operators C(x) are as they were de-
fined in (2.14)o

Once a basis for ZN has been chosen, problem (IDN) takes the form of aq

least squares minimization problem subject to a linear non-autonomous, non-

homogeneous matrix ordinary differential equation which can be solved (assuming

for the moment that a solution exists) using standard techniques and readily
available software.

In terms of the abstract formulation above, our general convergence re-

sults are summarized in the following two theorems.

Theorem 3.1

Suppose {qN} is a sequence in Q with qN . q,£Q as N . =. Suppose
further that
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(I) pN . I stronglyin Z uniformly in q for qcQ as N . _.
q q

(2) lim ',fuN(t,s; Wq')PNNz- PNNU(t, s, q*)zl'.N = 0 uniformly in t, sN+_ q q q
for 0 < s < t < T.

_nen lim }zN(t; qN) _ z(t; q*)l + 0 for each t£[0, T].
N+_ _ iqN

Proof

+ I(PNN - I)U(t, 0, q*)z0(q*) I N
q q

qNlq q

i N,pN _ N q*)IF(T; q* I dT+ fO IuN(t, T; q ) N P NU(t, T; ) N
q q q

q q

The properties of _U"(t,s; q), the fact that pN is an orthogonal projectionq
and assumption A3 imply that the first term above tends to zero as N . _.

Hypotheses (I) and (2) in the statement of the theorem imply that the third and

second terms respectively tend to zero as N . =. Similar arguments and the

Lebesgue dominated convergence theorem can be used to argue that the last three

terms tend to zero as well and the theorem is proven.

Theorem 3.2

Supposethat hypotheses (I) and (2) of Theorem 3.1 hold. Suppose further
--N

that for each N = I, 2, ... problem (IDN) has a solutiondenoted by q . Then



-14-

Nk _Nk _
the sequence {_} has a convergent subsequence, {q } with q + q£Q k . -.

Moreover, q is a solution to problem (ID).

Proof

Nk
qhe existence of the convergent subsequence {q } is an immediate con-

_Nk
sequence of Assumption At. Theorem 3.1, therefore, implies that IzN(t; q ) -

-I !

z(t; q) --Nk+ 0 as k * = for each t_[0, T]. This in turn implies that
q

Nk (t; Nk) _) IC(x)z - C(x)z(t; . 0 as k . = for each x_[0, £] and each

t£[0, T]. It then follows that for any q£Q

N
J(q) = lim j _(_k)--< lira J _(q) = J(q)

k._ k.=

b

and consequently that q is a solution to problem (ID). The final equality in

the expression above follows from an application of Theorem 3.1 with the con-

stant sequence {q}.

Remark

In the identification problem (ID) as stated in the previous section, the

fit is based upon spatially sampled displacement measurements. We note, how-

ever, that the convergence results given in Theorems 3.1 and 3.2 remain valid

for identification based upon spatially sampled slope measurements, spatially

distributed displacement, slope or velocity observations, velocity data at

x = £ or any combination thereof.

We next describe a particular realization involving cubic spline functions

of the abstract ideas presented above and show that the resulting approximation

system satisfies the hypotheses of Theorems 3.1 and 3.2

For each N = 1, 2, ... let j=-1 denote the standard cubic B-splines
£ 2£

on the interval [0, £] corresponding to the partition AN _ {0, N' N--' "'" £}
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{B3}N+I(see [13]) and let j=I denote the modified cubic B-splines which satisfy
f^NIN+I

%(0) = DB](0)= 0, j = 1, 2, ... N+I. The iBj_j=1 are given by

N(x) - 2 BNI (x)^N(x) = BN(x) - 2 BIBI

ANB (x) = (x) j = 2, 3, ... N+I.3 3

Let S3(AN) SPAN { N,N+I _3 _}j=I, = {(s(£),Ds(£))T= B9_9=_I, (AN) = SPAN {B N+I ZN ^ , s,

s)£Z:s£S3(AN),s££3(AN)} and ZN {ZN, <-, .>q}. Defining' q =

#N3 = ((0, 0)T, Bj,N0) j =-I, 2, ..., N+I (3.4)

^ ^

= T, o, j = 1, 2, ..., N+I3 ] 3

have that ZN SPAN _jJj=-1 + SPAN {_ N+I N+I • M_N+I= 9=I, {_ j=_lU_j[j= 1,
we

is a basis for ZN and since S3(&N)cs3(&N_.H2(0, £), that ZN is a 2N + 48 q

dimensional subspace of Z which is contained in DO.q

The vector representation N with respect to the basis (3.4) for PNz,q

where z is an arbitrary element in Zq can be computed using the standard

normal equation characterization for pN:q

<PNz - z, zN> = 0 zNczN. (3.5)
q q q

For z = (r, u, v)E Zq we find that

N = [MN]-I piN(z)
q q
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where

and

Vu:
L!!

with

[ # ""C i+2,j+2 = 0 EI(q)B.B. i,j :-1, 0, I, ..., N+Iz ]

[D i,j = [B (£), DB (£)] W + 10 o(q)B.B, i,j = I 2, ... N+Ii 3 ' '

[UN]qi+2 I£ N= EI(q)uB. i = -1, 0, 1, ... N+I0 1

and

[<] : rTw (£) £ )vBN i = 1 2, .. N+I.i ^ N + 10 p(q Z ' "'

Bi(£

The matrix representation A--_(q) for the operator A_(q) can be computed using

(3.5) with z = A0(q)zN, zN an arbitary element in ZN. We findq

A_(q) = [MN] -I KNq
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where

q [_]_q

with

i+2,j 0 EI(q)B.DI B.3 i = -I, 0, I, 2, ..., N+I, j = I, 2, ..., N+I

Similarly the matrix representation B--N(t;q) for the operator BN(t; q) is

found to be

B-N(t; q) = [MN] -1 LN(t)q

where

0 0
N

Lq(t) = (t) 0

with

t) i,j+2 = - 0 3 j =-I, 0, I, .... N+I

It then immediately follows that the matrix representtion for AN(t; q) is

given by

N -1 N

0 [Cq]_q
A---N(t;q) = A_(q) + B---N(t;q) =

[oN]-I[-C NIT+GN¢t ] oq_ q q
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If for each t£[0, T] and qeQ we set FN(t; q) = [M_]_14, HN(F(t; q)) and
N ]-I
w0(q) = [MN HN(z0(q)) with respect to the cubic splines the evolutionq '
equation (3.3), in differentiated form, is given by the following 2N + 4 dimen-

sional initial value problem

DtwN(t) = AN(t; q)wN(t) + FN(t; q) (3.6)

wN(0) = wNo(q). (3.7)

The approximating identification problems take the form

Find qeQ which minimizes

_ N+I

jN(q) = _ _ Ik_ I w_.2 (ti, q)s (xj) -u(ti, xj) 2i=1 j=1 =-

where wN(t; q) is the solution to (3.6), (3.7) corresponding to qeQ and

N N fX fXs.(x) = C(x) _ = (o) do dT j = -1, 0, 1, N+I
3 3 0 0 "''' "

In order to demonstrate that the scheme described above satisfies the

hypotheses of Theorems 3.1 and 3.2 the following approximation theoretic re-

sults for cubic splines will be required (see [15], Chapter 4). Let IN de-

note the standard cubic spline interpolation operator on [0, £] corresponding

to the partition AN. That is, for # a function defined on the interval

[0, £], IN_ is defined to be that element in S3(AN) which satisfies

(IN_)(_) = _(_), j = 0, 1, 2, ..., N and D(IN_)(_)= D# (_)j = 0 and N.

Proposition 3.1 For _H2(0, £)

IDk(IN_- *)I0 _ iN-2+klD2_I 0 k = 0, 1

1 is independent of _ and N.where Ck

Proposition 3.2 For @£H4(0, £)
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2 is independent of 4 and N.where Ck

Let

V = R2 x H0 (0, £) and let Vq = {V, <<., ->>q},

T

<<(rI, Vl), (r2, v2) >>q = riWr2 + <v1, V2>p(q)

where

<4, $>p(q) = f_ P(q)4$.

Let

VN = {(n, 4)cV:4£S3(AN), q = (_(£), D@(£))T}

and

VN = {VN, <<., ->> }.q q

Let P_(q) denote the orthogonal projection of H0(0, £) onto S3(AN) with respect

£ EI(q)4$ and P_(q) denote the orothogo-to the inner product <4, $>EI(q) = f0

hal projection of V on to _. Adopting the convention that for z =
q q

N = pNz will be denoted by (rN, uN, vN), it is easily seen
(r, u, v)_Zq, z q

that uN N(q)u and (rN, vN) N= PI = P2(q)(r, v).

Lemma I Let z = (r, u, v)£D0. Then

(I) IuN - u21 + 0 as N + = uniformlyin q for qEQ.

(2) IvN - v21 . 0 as N + - uniformlyin q for qEe.

Proof

TO verify (I) we show that '_ID_(uN - U)10'. 0 as N + --,k = O, I, 2

uniformly in q. Recalling assumption A2, the fact that z_D0 implies

ucH2(0, £) and Proposition 3.1 above we have
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IuN I0 I N Ul0-- _EI- U = P1 (q)u - < I Ipl(q)u _ UlEi(q )

M

I E1 _ ul0<- fINn- UlEl(q) < --IINu--mEi --mEi

M

< --C N-2 D2u 0
--mEi

_ne convergence of the first derivative is argued using the Schmidt inequality

([15] _eorem 1.5),

ID(uN - u) 10 -< ID(uN - INulo + ID(INu - u) 10

_ 1N-IID2ul0< _lu N - INuI0 + CI

<_Iu_ul0._l_uulo.c_lo_ulo

INlo2ul°<_i lo2ul._CoNiio2ui0+ci ._ mEI C01N I 0 + 0 as N .

For the second derivative, we first note _at for u£H2(0, £), the Schmidt

inequality _d the first integral relation ([15] _. 52) imply

2 < 21D2(pN(q)u _ INu)I_ + 2 ID2INuI_lo_ulo_
2+_l_?_,u-I_ulo_lo_ul_-_lo_ui_u_l_
+ _ 2 D2uI22 2_N41INu ul0 + 21 0_°I__u ulo

II__2 D2u 0 (3.8)

where K is independent of u, N, and qcQ. Now for wcH4(0, £) with wN N
= P1(q)w,
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Proposition 3.2 together with the Schmidt inequality imply that JDk(wN -w) J0 =

O(N-4+k), k = 0, I, 2. Therefore

JD2(uN - u) J0 < ID2(uN - wN)J0 + JD2(wN- w) J0 + JD2(w - u) j0

< wl.+ lo wul0
oc_,.€._lo_wu_J0

where we have used (3.8) to bound D2(uN - w ) 0" Since H4(0, £) is dense in

H2(0, £) we can choose w and then N (since the O(N-2) term depends upon JD4wJ0)
to make the right hand side of the last inequality above arbitrarily small.

Turning next to statement (2) and recalling that zeD0 implies that

vEH2(0, £), v(0) = Dv(0) = 0 and r = (v(£), Dv(£))T we have

IvN - v12 < ? JJ(rN, vN)- (r, v)JJq
P

^ ^<m!lC IvY. vll
p

î 12 II 12I INv - v = -- INv - v
- m p(q) m p(q)

P P

M M

i I _ 1120P INv v 2 < P (C)2 N-4 D2v 0-<_-- - 0 -_-- +
p p

as N . - where for % a function defined on [o,£], IN% denotes that element in

S3 (AN ) which satisfies I% ( ) = _ ( ), j = I, 2..N and DIN% (£)= D@ (£).

The convergence of the derivatives is verified in essentially the same

manner as it was in the proof of Statement I.

Theorem 3.3

For the cubic spline based scheme described above, hypothesis (I) of

Theorem 3.1 is satisfied.
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Proof

(rN N vN)z = (r, u, v)_D0 and let zN = =z = , u , . Then r = (v(£),
Let

q

Dv(£))T, rN = (vN(£),DvN(£))T, and

I¢ :iz.

2.MIv"v12..Eilu"ul0 _ 0

-<_,!u"- ul_. _1""- "i_

whereI1"112is the_.uolideanmatri,normof. andK1andK2areconstants
which are independentof N, z, and qeQ. Lemma 3.1 impliesthat the right

hand side of the final inequalityabove tends toward zero as N . _ and

consequentlyPqZ + z as N + _ for all zeD0. _owever,DO dense in Zq (uniform-

ly with respectto qeQ) and the pN uniformlyboundedin N (beingorthogonalq

projections)imply that PNz + z as N + m for all zeZ uniformlyin q for
q q

qeQ and the theoremis proven.

In order to verify hypothesis (2) of Theorem 3.1 we requirethe following
lemma.

Lemma 3.2

Let {qN}CQ with qN + q*cQ as N + -. Let ZN be the cubic spline based
q

subsDacesof Zq definedabove, pNqthe orthogonalprojectionsof Zq onto Zq,N

A_(q) = P_AO(q), and {_0(t;q ):t _ 0} the C0 semigroupsof contractionsgen-

erated by the A_(q). Then
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IsN(t; qN)PNNZ - PNNS0(t; q*)z I . 0
q q qN

as N . _ for each zEZ, uniformly in t for t£[0, T].

Proof

Using a variation of the well known Trotter approximation theorem (see

[4], Theorem 6.2) the desired conclusion will follow if we can show that

N

IR(_'A0CqN))PNNz-PNNRC_'A0Cq*_zlN.0
q q q

as N . = for each z£Z for some _ > 0 where R(I, A) = (_ - A)-I. However

IsN(t; q) lq < I implies (see [9])

N

IR(_'A0CqN_PNNz-PNNR(_'A0Cq*_zlN
q q q

N (Ao(qN)pNN )R, A0 (q*)lq
= IR(_, A0(qN)) - PNNA0(q*) (_ )z N

q q

I (A0 PNNA0 )z-<_I CqN_PNNq- q Cq*_RCX,AOCq*)lqN

I N N _ PNNA0(q.))y I= (A0 (q)PN N
q q qN

where we have chosen _ = I and y = R(A, A0(q*)z£D0. Now

N N N
l(A0(q )P N - PNNA0(q*))Yl

q q qN

= I(pN(Ao(qN)PNN - PNNA0(q*))Yl N
N - q q qq

q q q q

N N
= TI + T2•

Recalling the definition of the operator A0(q), (2.8), the fact that y_D0

N + 0 as N + _
and the estimates given in Lemma 3.1, standard estimates yield T2
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while qN . q. as N . _ and assumption A2 imply TN . 0 as N . _.

Theorem 3.4

Hypothesis (2) of Theorem 3.1 is satisfied by the cubic spline scheme.

Proof

Since for zcZ and 0 < s < t < T we have

DtU(t, s; q)z = A(t; q)U(t, s; q)z

= A0(q)U(t, s; q)z + B(t; q)U(t, s; q)z

it follows that

t S0(t _ T; q)B(T; q)U(T, s; q)z d_.U(t, s; q)z = S0(t - s; q)z + fs

Similarly

uN(t, s; q)pNqz = s0N(t - s; q)P_z + fsts0N(t - T; q)BN(T;q)uN(T, s; q)pNzqdT.

Therefore, letting

we have
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q q q

Sst I(PNN _ i)S0(t _ T; q*)B(T; q*))U(T, s; q*)zI N dT
+

q q

or

! !

= I I " Lemma 3.2 implies that the first term on the rightwhere K sup .B(t; q).q
hand side of (3.9) tends toward zero as N . = uniformly in s and t for 0 < s <

t < T, while Lemmas 3.1 and 3.2, qN . q, as N . _, assumption A2 and the

boundedness and strong continuity of the operators imply hN(T; t, s) . 0 as

N . = uniforming in T, t, s for 0 < s < T < t < T. Therefore (3.9) can be

written as

AN(t, N+K- jAN(z,s)dT

with €N . 0 as N . _ uniformly in t and s. An application of the Gronwall

inequality yields

AN(t, s) < ENeK(t - s)

from which the theorem immediately follows.

Finally, for the cubic spline scheme, under our general assumptions, using

either standard continuous dependence results for ordinary differential equa-

tions or the Trotter approximation theorem it can be argued that for each N =

I, 2, ... and t£[0, T], zN(t; q) given by (3.3) is continuous in q. Conse-

quently jN(q) is continuous in q, which together with assumption AI implies

that problem (IDN) has a solution.
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Having now demonstrated that the hypotheses of Theorems 3.1 and 3.2 are

satisfied by the cubic spline scheme, we turn next to a discussion of examples

and numerical results which provides an indication of how well the scheme per-

forms in practice.

4. NUMERICAL RESULTS AND CONCLUDING REMARKS

In this section we present numerical results that were obtained by apply-

ing variations of the cubic spline based scheme discussed in the previous sec-

tion to the identification of a variety of hybrid systems involving the vibra-

tion of beams with attached tip bodies. Since our primary objective was to

demonstrate the feasibility of our scheme, we considered only relatively simple

examples.

In the first example we consider a cantilevered beam with a tip (point)

mass. The second example involves a free-free beam with an attached tip body

at each end. A cantilevered beam with a tip body subject to an axially direct-

ed base acceleration is considered in the final example. Strictly speaking,

the theory developed in the previous two sections applies directly only to the

last example. However, the relatively minor modifications which are required

to make our general method and the corresponding convergence results applicable

to the other two examples should be immediately clear.

In general the observational data upon which the fits were based was ob-

tained by generating solutions using fixed (or so called "true") values of the

parameters with a Galerkin method and a finite number of the unforced system's

natural mode shapes. Computing the modal frequencies and corresponding mode

shapes for systems of the type considered here, in general requires the locat-

ing of zeros of transcendental equations involving the various beam and tip

body parameters which appear in the problem. The resulting modal equations

tend to be stiff and must be integrated using an appropriate method if a valid

solution is to be obtained.

The approximating identification problems (IDN) are solved using the IMSL

(see [8]) routine ZXSSQ. This routine is an interative Levenberg-Marquardt

Newton's Method/Steepest descent hybrid algorithm for the minimization of the

sum of squares of a system of functions of several variables. The required

gradients and entries in the Jacobian matrix are computed numerically using

finite difference approximations. The method required that we supply initial

start-up values for the unknown parameters and a subroutine which evaluates

jN(q) for a given value of q. The latter requirement necessitates the inte-

gration of the initial value problem (3.6) and (3.7). This is accomplished
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using the IMSL routine DGEAR, a variable order ADAMS predictor-correct0r meth-

od. It is interesting to note that uinlike the modal approximations, the

spline equations did not require the use of the stiff option. This of course

makes the spline schemes attractive from a computational point of view. We

note also that due to the narrow support of the B-splines, the matrices which

appear in the resulting Galerkin equations tend to be banded, thus facilitating

efficient integration of the system of differential equations. The inner prod-

ucts which determine the entries in the mass and stiffness matrices, as well as

the generalized Fourier coefficients required to project the non-homogeneous

term and the initial conditions were computed using a composite two point

Gauss-Legendre quadrature rule.

Example 4.1

We consider a cantileverd beam of lenth £, constant stiffness EI and mass

density p with a tip mass of mass m (see Figure 4.1). The differential

equations and boundary conditions which describe the system are given by

2
PDtU = -EID4Ux+ f

mD_u(t, £) = EID3u(t, £) + gx

u(t, 0) = D u(t, 0) = D2u(t, £) = 0x x

u(0, x) = _(x) Dtu(0, x) = _(x)

where we have assumed that no axially directed loading is present.

u

Figure 4.1.
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We set £ = 1.0, EI = 1.0, p = 3.0, m = 1.5, assumed that the system was

initially at rest (i.e., _ = $ = 0) and excited the structure with an implusive

lateral force at the end of the beam at time t = 0. _ne input disturbance was

modeled as f(t, x) = 20e-2te-20(1-x) and g(t) = 0. Using the first three

normal modes of the unforced system to generate observations in the form of

displacement measurements at positions xj = 0.125(j+3), j = I, 2, ..., 5, and

times tj = 0.2 j, j = I, 2, ..., 10 we identified EI and p. The start-up

values for the Levenberg-Marquardt routine were taken to be EI0 = 0.7

and p0 = 2.7. The final converged values for E-_NI,_ and the residual sum of

squares _ are given in Table 4.1 below.

Table 4.I.

2 0.9976 3.0262 0.39 x 10-5

3 0.9994 3.0382 0.46 x 10-5

4 0.9951 3.0544 0.48 x 10-5

5 0.9961 3.0409 0.40 x 10-5

6 0.9995 2.9976 0.35 x 10-5

True Values: 1.0 3.0

It is clear that relatively accurate estimates of the parameters can be

obtained using small values of N.

Based upon the scheme's performance on examples for which exact solutions

were available, we feel that the somewhat eratic convergence exhibited in Table

4.1 is most likely a consequence of using approximate solutions to generate
observations.
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Example 4.2

In this example we identify the stiffness and mass density of a free-free

beam of length £ which has a tip body (having different mass properties) at-

tached to each end (see Fig. 4.2). The system was assumed to be initially at

rest and then excited by a time varying, spatially distributed transverse load

given by f(t, x) = 10 sin (2_t)ex.

Figure 4.2.

The vibrations of the beam are described by the following partial

differential equation and boundary conditions (see [16])

pD_u = -EID4Ux+ f t >0 xE(0, £)

2
Dtu = -_IEID3ux+ 81EID2Ux t > 0 x = 0

D2tDxu = -81EID3u + YiEID2u t > 0 x = 0 (4.1)

2 x3 82EID2Dtu = a2EID u + u t > 0 x = £

D2DxU = -82EIDx3u " Y2EID2u t > 0 x = £
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u = 0 Dtu = 0 t = 0 x£ [0, £]

with

2
J. +m.c.
1 1 1

I 2 2 '
m. (Ji + m.c. sin 6 )i I I i

c. cos6.
i i8. =

i 2 2
J. + m.c. sin 6.
i 1 i i

and

I

7i = 2 2 i = I, 2
J. + m.c. sin 6.
i i i i

where the mass properties for the tip bodies, mi, Ji' ci' and 6. are as theyi
were defined for the single tip body problem in Section 2.

Settling EI = 1.0, p = 3.0,

m I = 0.75, J1 = 0.6, c I = 0.1, 61 = _/6,

m2 = 1.5, J2 = 0.4, c2 = 0.2, 62 = _/3,

and £ = 1.0 we based our fit on velocity data at the ends of the beam only gen-

erated at times tj = 0.2 j, j = I, 2, ..., 10 using the first six natural

modes including the two which correspond to rigid body translation and rotation

(see the remark following the proof of Theorem 3.2). We note that the system

in (4.1) is free with respect to the intertial frame in which displacement is

measured. A formula analogous to (2.14) therefore can not be used to recover

displacement from the solutions to either the abstract or the approximating

evolution equations.

The start-up values used were EI0 = 0.7 and P0 = 2.7. Our results are
summarized in Table 4.2
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Table 4.2

I

I 2 0,9957 3.0052 0.26 x lO-3

0.9963 3.0065 o.18 x lO-3

4 o.9982 3.oo37 O.lO x lO .3

i 5 1.0018 3.0008 0.71 x 10-4

True Value: 1.0 3.0

Example 4.3

For our final example, we consider a problem of the form discussed in
Sections 2 and 3. The parameters to be estimated are the spatially invariant
stiffness El and mass density p. We assume that the system is initially at
rest and is then acted upon by an impulsive lateral force at the end of the
beam at time t = 0 and a piecewise constant base acceleration described by

-2t -20(I-x)f(t, x) = 20 e e

and

1.0 0 <t<1.5

0 1.5<t<3.0

a0(t) = 1.0 3.0 < t < 4.0

0 4.0<t

respectively.

The externally applied axial load o(t, x) can be related to the base

acceleration a0(t) as follows. Recalling that T denotes the internal tension

in the beam, equilibrium in the x direction yields DxT = Pa0, or

T(t, x) = -p(£ - x) a0(t) + T(t, £). (4.2)

For the tip body we have

-T(t, £) = ma0(t) - mc sin 6 D2Dxu (tt _) (4.3)t
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Combining (4.2) and (4.3) we obtain

T(t, x) = -P(£ - x)a0(t) - ma0(t) + mc sin _ • D2DxU(t, £),

from which we immediat_.lyconclude that a(t, x) = -a0(t)(p(£ - x) + m).

Taking EI = 1.0, p = 2.0, m = 4.0, J = 0.4, c = 0.2, 6 = n/3 and £ = 1.0,

displacement data at positions xj = 0.75, 0.87, 1.0, at times tj = 4.0,

4.5, 5.0 was generated using the first 3 natural modes for the unforced, fixed

base beam/tip body system. The start-up values were chosen as EI0 = 0.7 and

P0 = 2.5. The results are given in Table 4.3.

Table 4.3.

P

2 1.0003 2.0635 0.35 x 10-3

3 1.0014 2.0668 0.22 x 10-3

4 1.0007 2.0404 0.26 x 10-3

5 .9994 2.0274 0.35 x 10-3

True Values: 1.0 2.0

Once again the eractic convergence is most probably attributable to using

an approximate solution to generate observations.

We note that strictly speaking, our theory requires that a0£CI. How-

ever, as is evidenced by the example above the scheme appears to perform satis-

factorily on problems involving a0 which are discontinuous.

Although it was not considered in the present effort, it is possible to

include terms which model viscous damping in the partial differential equations

and boundary conditions. Furthermore, it is possible to extend our approxima-

tion theory and corresponding convergence results to include the ability to

estimate parameters associated with the damping effects (see [I], [7], and

[11]).
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It is also possible to develop an approximation theory which is similar in

spirit to the one presented here for the identification of models based upon

the use of the higher-order Timoshenko theory to model the vibration of the

beam. The Timoshenko theory includes effects due to shear deformation and

rotatory inertia (see [2], [6], [7], and [19]).

Finally we note that while the scheme described in Section 3 is cubic

spline based, because of _]e choice of state variables, %t in fact relies upon

quintics to represent displacement. We are currently developing a method using

a somewhat more direct approach than the abstract operator formulation employed

here which does use cubic splines to represent displacement. Starting with a

weak/variational form of the underlying hybrid system, a cubic spline based

Galerkin approach is used to construct a sequence o_ approximating identifica-

tion problems wherein the constraints are given by a finite dimensional linear

second order ordinary differential equation in the approximate displacement.

Based upon preliminary results this scheme promises to be computationally more

efficient than and to perform as well as the one which was presented above.

Moreover, it will permit the identification o_ spatially varying EI and p under

for less stringent smoothness and continuity hypotheses than the ones given in

assumption A2. This work will be discussel in a forthcoming paper.
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