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1.0 SUMMARY

An analytical model for aircraft interior nolse prediction is
considered in this report. The model can be used to predict the
sound levels inside an airplane cablin caused by the rotation of
a propeller (of any design) alongside. The fuselage model is
that of a cylinder with a structurally integral floor. The
cabin sidewall and the floor are stiffened by ring frames and
stringers or floor beams of arbitrary configurations, The cabin
interior is covered with a trim (i.e., layers of insulation and
septa with a lining) to increase the sidewall sound isolation
and provide absorption in the cabin.

The results are the culmination of a three phase program
sponsored by NASA Langley Research Center. In Phase I the basic
analytical modeling of the transmission problem (interaction of
the structure with the exterior and interior acoustic fields)
was undertaken and preliminary validation studies were completed
using an unpressurized, unstiffened cylinder as a test article.
Results of that work are presented in Reference [3]. 1In Phase
IT, the general aircraft interior noise model was developed and
preliminary work on the laying out of the basic master computer
program began. Validation studies were conducted using more
advanced test articles (one being a stiffened cylinder with a
floor partition and interior trim). Results of that work are
found in References [4] and [7]. 1In Phase III, the analytical
models and the software were completed (including the propeller
excitation work). Validation studies using a scale model fuse-
lage excited by a propeller were undertaken and the documenta-
tion of the finalized model and software package was completed.

The present model is believed to be the only one in existence
that can be used to calculate the interior sound levels using as
input data, the pqecise propeller noise signature over the
fuselage.



2.0 INTRODUCTION

This report presents the details of a basic airplane interior
noise model. The elements of this model include a fuselage and
a propeller (Figures 1 and 2). The fuselage consists of a cy-
linder stiffened by ring frames and stringers, and a floor that
is structurally an integral part of the fuselage. The cabin
space is the volume above the floor. The interior surface of
the cabin (sidewall) is finished out with a trim consisting of
insulation covered with a lining. The propeller rotates about an
axis parallel to the centerline of the fuselage. The model can
be used to predict the sound levels in the cabin space for each
of the various harmonics of the propeller.

The excitation of the exterior of the fuselage 1s obtained using
a propeller noise prediction model developed by NASA Langley.
The present model works with the pressure time histories (signa-
tures) as defined over the fuselage at a number of closely
spaced points on a grid that lies in the fuselage skin. The
pressure signatures are Fourier analyzed to define the ampli-
tudes and phases of each of the harmonics of the propeller tones
(at each location on the grid). The cross power spectral den-.
sity function for each harmonic, for all grid point pairs (a
delta function in the frequency domain) 1is used to c&mpute the
values of the generalized forces for each structural mode of the
fuselage.

The fuselage structural modes are developed for the case of a-
stiffened cylinder with a floor partition. The structural modes
are described by their eigenvalues (resonance frequencies),
eigenvectors (mode shapes), and loss factors. The mode shapes
include not only the cylinder wall normal displacement (w com-
ponent) but also the normal displacement of the floor, and the
in-plane axial and circumferential displacements (u and v
components) of cylinder and floor as well. The loss factors of
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the bare fuselage are input and must come from measurements.

When trim is installed on the sideWall, the structural losses
increase due to the trim's presence against the sidewall and

this is computed for the particular trim installation.

The displacement of the trim lining induced by the fuselage skin
vibration is determined using a transfer matrix which relates
the pressures on the inside of the skin and the inside of the
lining to the displacement of the skin and of the lining. The
transfer matrix contains all of the physical properties of the
insulation and lining required for the calculation. The wave
impedance of the insulation and complex acoustic wavenumber are

input as physical parameters to describe the insulation.

The coupling of the lining to the interior acoustic field is
calculated for each acoustic and structurai mode. The acoustic
modes are defined by their resonance frequencies, mode shapes,
and loss factors. The acoustic loss factors must be input for a
vare fuselage but are calculated when a cabin trim is installed,
from elements of the trim transfer matrix.

The model aliows for the calculation of the space average mean
square pressure in the cabin for each propeller harmonic. (up to

a maximum of ten (10) harmonics).

2.1 Report Organization

This report considers the analytical derivations, experimental
tests, and validation studies. The analytical derivations are
presented in Section 3 and Appendices A through D. Appendix E
is devoted to test comparisons and to the determination of the
quality of the predictions. Appendix F is a list of symbols
used.

Early in Section 3, general solutions are given for the basic

sound transmission problems of concern. Problems of tone



transmission (propeller) and noise transmission (reverberant
exterior field) are considered. 'Solutions that are to be used
in the low and high frequency regimes are presented (the low
frequency formulations apply until the acoustic modal density of
the cabin space is equivalent to 10 to 15 modes in every one-
third octave band). Beginning with Section 3.4, the various
terms appearing in the general solutions are evaluated, literal-
ly specialized to create the desired interior noise model.

These terms include the generalized forces for propeller noise
excitation, interior coupling factors, Jjoint acceptances,
resonance frequencies and loss factors. Information needed to
complete these calculations are derived in the first four

appendices.

The model validation undertaken in Phase III is considered in
Appendix E. The experiment and the data acquired are discussed
and a statistical comparison of predictions and measurements is

presented.

2.2 Program Management

The work was accomplished in Jjoint effort by BBN/Los Angeles and
NASA Langley Research Center. The experimental work was done at
NASA Langley by C. M. Willis and W. H. Mayes. Mr. Mayes acted
as LaRC technical representative of the contracting officer
(TRCO). L. D. Pope served as BBN program manager.



3.0 ELEMENTS OF THE PROPELLER AIRCRAFT INTERIOR
NOISE MODEL

A detailed description of the propeller aircraft interior
nolise prediction model is given in the following paragraphs.
It is the intention of the authors to present all of the
background needed to understand the equations and their
origins. This 1s done partly through the use of a series of
Appendices that summarize the primary results from two
previous phases and the now concluding phase of work that
have led to the present model. References to some published

papers and books are also required.

A concern in this report is to define a reasonable level at
which to begin the technical presentation. This model is
based on the general solutions of sound transmission prob-
lems for cases of tonal and broadband noise excitations.
Parts of the report deal with the theory of fluid-structure
interaction problems with direction at the development of a
sufficiently general solution as needed for the present
purpose. DBecause the propeller is an 1lntegral part of the
model the field of "aeroacoustics" is inherently involved.
Due to the complexity of the fuselage models and the geomet-
ry of the cabin space, the structural dynamics of stiffened
shell structures must be considered and numerical procedures
for calculation of the acoustic characteristics of complex
spaces devised. The presence of sidewall trim (insulation
and lining) leads to the use of the properties of porous

materials.

The ultimate user of this model will not necessarily be
knowledgeable in all of these areas. For instance, one well
versed in the fluid-structure intraction problem may have
little or no experience in propeller noise. Keeping this inv



mind, an effort has been made to ease the transition between
the various disciplines and the introduction to each topic
is kept at what might be considered an intermediate level.

3.1 General Solution for the Sound Transmission Problem

The fundamental goal of this model is the prediction of the
sound level inside an airplane cabin due to noise on the
exterior caused by the rotation of a propeller. The
propeller noise of concern 1is at discrete frequencies and is
not really a noise at all, rather a series of tones. The
lowest frequency tone 1s at the blade passage frequency
(BPF) and the other tones are 1its harmonics, that is, they
occur at frequencies that are integral multiples of the BPF.
As a secondary goal of this model, predictions for the cases
of an arbitrary exterior harmonic (tonal)'field and for a
reverberant exterior (noise) field are sought. Sound
transmission through the fuselage sidewall and the trim
insulation and 1lining is of concern.

The basic method used herein to solve the sound transmission
problem is that of a power balance.

W. =W (1)

in diss

The band-limited net time-averaged power, W flowing into

2 3
the cabin must equal the net time-averaged nger, wdiés’
dissipated on the cabin walls. By expressing the inflowing
power 1in terms of the exterior exciting pressure and the
dissipated power'in terms of the interior response pressure
and equating the expressions according to Eq.(1l), one can

solve for the interior pressure.



A primary feature of the power flow approach adopted is that
integration of spectral components has been performed

analytically to achieve band-limited levels, i.e.,

- ”int
win ‘&w Re[ﬂrad(w)] do

W =f Re[WiEZ(w)] da

diss Aw

(2)

int
Wrag(w) is the complex spectral density of the power. radlated by

abs(w) is
the spectral density of power absorbed on the inner wall of the

the structure into the interior acoustic space and W

space from the interior acoustic field. 1In the case of tone
transmission, these quantities contain delta functions in the
frequency domain. Egs. (2) have applicability at all frequen-
cles and can be applied in discrete modal representations even
when there are no acoustiec or structural modes resonant in the
band Aw. |

Power flow into each individual acoustic mode 1s computed,
whether the mode is resonant in the band or not. If the mode is
resonant in the band, one can speak of the "resonant response"
of the mode; if the mode is resonant outside the band, the
"nonresonant response" of the mode imn the band Aw. Similarly
power flowing out of the acoustic field to the inside wall is
computed mode-by-mode. By equating the power into a mode to the
power out, the space-average mean-square modal pressure for mode
n, limited to band Aw, is obtained, i.e., <p;>s’t, where s and t
indicate the space and time averages, respectively. The band-
limited, space-average mean-square pressure in the interior is

the sum

<1st Zp ) ' (3)



Here n is the complete set of acoustic modes, i.e., those
resonant inside Aw (denoted by the symbolism, nsAw ), as well as
those resonant above (n>Aw ) and below Aw (n<iAw ). It is noted
here that the letter "n" always denotes acoustic modes and the
letter "r" structural modes, usually being used as subscripts,
superscripts, or indexes.

Power Flow

The concern is with a closed volume V, into which sound energy
is propagating. The excitation of the space occurs at its
boundary with the enclosing structure which vibrates due to an
exterior source. For the present, the excitation can be consi-
dered to be a broadband random acoustic field. For the specific
case where the nolse reduction is desired, the exterior field is
taken to be diffuse (reverberant).

The fundamental equation for the inflowing power comes from
results developed in Refs. [1] and [2]. Specifically, use is
made of Eq.(3) of Ref. [2]:

pc2A*

v < P (w) €."n f'z(n r)
in =TV Spoale Z M2t Z

wadw
Xf{[l (w?/w2)12+n2}{ 2/ ©2)1%+n2} )
Y R S " Fl—(m / wr)] e

win is the band-limited time averaged power which 1is being
accepted by the acoustic field inside the enclosure, that is,
the power received over frequencies lying in bandAw . The band
has a width Aw = C Y where o is the center frequency of the

band. Cy is a constant percentage which defines the bandwidth

10



(cm = 0.232 for one-third octaves). The quantity Spbl(w)

= <p§1>/cmm is the power spectral density of the average
exciting "blocked pressure" which acts on the transmitting
structure. <pé1> is the average mean-square pressure as would
be measured in band Aw obtained with a microphone sampling the
surface pressure on the (hypothetical) immobilized (blocked)
structure. The transmitting structure has an area A exposed to
volume V. The average surface mass of the structure is m. The
structure has a mass law sound transmission coefficient Ty; =
(EOco/wm)z, where p and c, are the density and sound speed of
air.

The normalization of structural modes is taken such that the
modal mass is

o= o mGEWT (ax

where wr(i) is the structural mode shape (mode r) at location X.
X ranges over the entire structure, both transmitting and
non-transmitting surfaces. Thus, 1f the rth mode of the
transmitting structure (fuselage) is restrained in any way; say
perhaps by the cabin floor, Mr will take on a large value that
will suppress transmission by that particular mode. The
normalization of the acoustic modes is such that

_['¢;d$ =L,
Vv n

where %55) is the value of the cabin acoustic mode shape (mode
n) at location E.

The coupling of the exterior field to the rth mode of the
transmitting structure is given in terms of the joint acceptance
j;(w). In the case where the exterior field is a noise it 1is
assumed that j;(w) changes little across 4w, i.e. by evaluating
j;(w) at the center frequency of the band, a good approximation
is obtained all across Aw. For this reason Aw must not be too

wide, typically one-third octave or less. If the exterior field

11



is reverberant, j;(a) takes the appropriate form for that field.
The same would be true for a progressive wave field.

The coupling of a structural mode to an acoustic mode of the

volume is given by the term

f'(n,r) = %\- [cbn(i)wr(i)di
A

In the above, X represents a point on the surface of the
transmitting structure. Note that f'(n,r) is non-dimensional
(hence the prime as a reminder) and that f'(n,r) is always
squared. f'?(n,r) is a positive number less than unity. The
power flow depends on the location of the resonance frequencies
w, and w,, i.e. relative to each other and to the band Aw, and

upon the acoustic and structural loss factors N, and N.,.

Consider now the right-hand side of Eq. (l). Wy554 1s the
band-limited, time;averaged power that flows out of the interior
acoustic field to the inner wall of the enclosure. This power
flow is given by Egs. (6) and (8) of Section III of [2] which

reduce to
2
. _ v nnwn
wdiSS - pe 2: W <p1?1>s,t s (5)

2
o n

2 .
where <pn>S is the interior space-average mean-square pressure

t
in band Aw éttributable to the nth acoustic mode. The develop-
ment of Eq. (5) is presented in the appendix of [2].

In the case of a random exterior field, in which S (w) varies

Pbl
slowly in frequency, j;(w) can be brought outside the integral
as done in Eq. (4). However, for the general circumstance where
tones are present, j;(w) must be included under the integral

sign, and replaced by its defining relation
—_ 1 r,— r 1! _— 1
//Cpbl(xlx )Y (XY (x )dxdx

AZSpbl(w)

j;(m) =

12



where C bl(i[i‘y@ is the cospectral density function of the
blocked exterior pressure field.

Also, in order to get Eq. (4) in the desired form for the
present model it must be modified in two other respects. First,
to include fuselage sidewall trim, Eq.(4) is modified to include
factor Tt, i.e. the trim transmission coefficient, to account
for transmission through the trim, and the structural loss
factor . is replaced by n; to account for the added

damping of the sidewall when trim is present. Second, proper
account of the influence of the internal radiation damping of
structural modes leads to the introduction of another term, n;.
The analytical developments for Ty and n; are given in Appendix
A;_”; will be discussed in a subsequent section. After some
rearrangement and the inclusion of the above results, Eq. (4)

can be written in the following general form

n

W = 27 (mA z 2 225 ennn
in oV T) wz
f

ML =
ff;(f; Cpbl(xlx WP (X)pT (X1)axax’

_ w3dw
2\2 2 \2 2
1-2-) + n? LY+ (nl4nlh)
wz n (_,_)2 r r
n r

A bar over f'(n,r) indicates trim factor T, has been introduced.
Eq. (6) 1is basically the same as Eq. (21) of Ref. [3], except

modified to include trim and the proper influence of the
internal radiation damping of resonant structural modes closely

(6)

coupled in frequency to resonant acoustic modes.

13



The solution of a sound transmission problem is obtained by
setting the nth term of Eq. (5) equal to the nth term of Eq. (6),

solving for the individual modal pressures <pr21>S one-by-one,

t
and by adding the results according to Eq. (3), to obtain the

interior level.

3.2 Transmission of a Tone

The fundamental model of concern here is one having to do with
tone transmission. The propeller noise 1is, as stated, at
discrete frequencies, each tone being a harmonic of the BPF.
Let the various harmonics be Wys Woy eees WY where

21 x BPF
w o = 2(1.’1

e
[
1

where H 1s the harmonic index. For a tone at frequency wy,
the co-spectral density function is defined by

Cpbl(xlx') §(w-wy) = Cpbl(xlx‘;w) ,

Cpbl(§|§'§w) = 2 prl(ili';m) ; O

IA
e
A
8

(o]

- - - 1 - - .
Cpbl(xlx';w) = Re [5? erprl(Xlx';T) eindT] ,

where prl(fli‘;T) is the average cross correlation of the
pressure over the blocked (immobile) fuselage, given by

T

_ F) .
- = lim 1 = =
prl (x|x';1) = Toe T —[I‘ Re[pbl(x,t)] Re[pbl(x',t+T)] dat.
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Inserting the first of the relations into Eq. (6) leads to the

expression for the inflowing power to the cabin for the
propeller tone at frequency wg.

_ 2n[(mA H 2 2  nn
Yin pv(T) TMLT ¢ 2

H w?2
Zf"(“ r)ff Cpy 1 (X1 XV (X)W (X" )axax"
Q\av
H
v v 5 - (D
AT

In this result TﬁLand TE (in F'(n,r)) are evaluated at Wy«
The space average mean square modal pressure is computed on a
mode-by-mode basis using Egs. (1), (5),

and (7) (where w = wH):

_”Cé ma)\? H “H ®n Zf' B (n,x)
b T TML ot
-/:/. bl(x]x )¢ (X)w (x')daxdx'

X

The interior space average level is then obtained from Eq
Note that since

(3).
2 H

H <p.> _
2 = 2
<pn>s,t v ¢ndv >

15



where <péy is the mean square modal amplitude, the modal ampli-
tude is determinable from

H

H
<p?>" = ¢ <pr21>s ¢ s
3

n n

and theoretically, the mean square pressure at every interior

point can be obtained with

]

<p2(E,0)>} = Zn:en<p;>§ 2D (9)

It is emphasized here that a good point-by-point prediction may
require better input data than can ever be generated, but the
point-by-point prediction might be quite informative neverthe-
less.

Eq.(8) is the fundamental result for calculating the interior
sound pressure level. The modal forcing functions are given by

the term

¥Yg(r,H) = j[cpbl(ili')wr(i)wr(i')didi' , (10)
x X'
and must be evaluated for the propeller noise excitation. Once
a particular harmonic H is chosen, the function ¥g(r,H) must be
computed for all structural modes r. The calculation of VYn(r,H)
using the output from the ANOPP program [Ref.5] is considered in
Section 3.4,

High Frequencies

When the acoustic and structural modal densities are large
enough, the transmission can be expected to be dominated by
modal response close to the excitation frequency. Only the
modes lying in a narrow band Aw containing wy need be of

concern. Thus at sufficiently high frequencies the space

16



average mean interior pressure for harmonic H is {(assuning

that only the sidewall contributes)

Ye? 2 H H
H o (mA
<p§>s’t = <% (W) TMLTth E

nebw

SARK

% Z L (n r) jfpbl(xlx )IP (X)w (X )dXdX'

reAw

(11)

To facilitate the calculation of Eq.(11), it first is rearranged
(keeping in mind that WG(P,H) is computed for high frequencies
for each structural mode as it is for low frequencies, but the
calculation 1s limited to those modes whose resonance frequen-
cies lie close to wH). Define average loss factors for the

modes near w i.e., let

H’

no=mn ;0! +nl'=nq

n n r r r
ﬁr is the average loss factor for the structural modes.
Also, let
2 ., -1
_ I/, %8 -2
g, (oy/o,) = -0z ) % ",
| n
- w;{ 2 -1
= ——— -2
g.(wy/w,) L(l w;) + o0, ]

17



Then Eq.(11) can be written as

2
q n8n f'(n,r)g WG(r,H)
<pi>g ¢ = 2) =2 > £ - (12)
15 HneAw “n reRw M;w;

The interior response is sought for the case where w, and wp

are given equal probabilities of lying anywhere in the band Aw.

Eq.(12) can be simplified somewhat by noting.that the resonance
frequencies are approximately equal to the harmonic frequency

wH of concern.

. 11 U 2
<pi> = .
i's,t Z: €hén 2 : f (n,r}ngG(r,H) . (13)

8 =
Wy nedw reiw Mr

The expected value of the above 1is now calculated given w, and

W, as independent random variables uniformly distributed across

Aw,

- f'(nzr)g ¥ (r,H)
Wy nebow relAw M2

]

[ |
o)
N
\4
o
o+

| WSS |

fl
=1
D]
o

™

S
Jq

=

b Nl_ ;NeE[n] %r ENf'(nr)Eg]‘P (r,H)

ﬁ redw

(14)

In Eq.(14) Np is the number of structural modes in Aw and N

is the number of acoustic modes in Aw.

18



Now

E[gn] = ] g, (oy/0,) Plo)) deg ;
' Aw
where p(w,) is the probability density function for w  in Aw.

The probability distribution function is taken to be simply

®_ -
n H

Aw

- i
P(mn) - t3

The probability density function is therefore simply

dP(mn) 1
p(.mn) = d = AQ) s
®n
S0
S
E[gn:| - Am./. gAwH/wn)dwn >
Aw
that is Elgp] is Jjust the average
Aw
wyty
1
dw
E = — n
[gn] ACU 5 A(L) \ \ , ]
_kw ) -
H 2 (l-wH /wn) + N

which becomes

w
S : can-1 < Aw )__ can=l (-Am )
2n_A n =
n,o0 np%y N, ey
Assuming that the product ﬁan
taking the sampling band wide enough), the term in the brackets,

<< Aw (this can be assured by

[ ]J,above reduces to m, giving
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Similarly, it can be shown that

TT(L)H

2nrAw

E[gr] =

Substituting into Eq.(14) gives

QH 1 Nn Wy
8 N_ Z En ZZ)- -
Wy n 2n

2 H _
E <pi>s,t] =

1 Nr Ty
X N E f'%n,r}‘PG(r,H) 3o N
r - M2 2n
rebwe M, r
But n_ = Nn/Am {s the modal density of the acoustic modes, and
n, = Nr/Am is the modal density of the structural modes.
Therefore
, H ﬂzcé Ny fma\? HE O H | v (r,H) 2
. [T A S 1.1 - r
£ <pi>s,t] VR (ﬁ) ™MLt W z SG 2 ke frin,r)>, (15)
r'n r w2
redw M,
where
' 7 1 2
<e f'{n,r)>, o= = Z e, f'(n,r)
n
neaw
t can be shown that
2 mﬁV ,rev
< ' > [
n_ e f (n,r) Aw e jr(mH)

O
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Substituting this result gives

2
2 H .
w n.T T, mA\| 1 v (r,H) rev
2 H _ _H r ML "t g\isn 12 (@.0) 16
E[fpi>s,t] oV A7 (u)EE' z = " Jo(ey (16)

rrede M

In (16), Aw is taken just wide enough to assure smoothness of
the average calculated in the brackets.

3.3 Calculation of the Noise Reduction

In addition to the calculation of transmission of propeller
noise, there may be occasions where the noise reduction of the
fuselage is of interest, that is, for a condition where the
exterior is bathed in a reverberant (diffuse) acoustic field.
For such a case, the expression for the inflowing power is again
obtained from Eq.(6). However, in .this instance, the joint
acceptance can be reinserted and brought outside the integral as
in Eq.(2). Then after the integration is performed, it is found
that [2]

<p2 > -2 2
_ bl™ 271A mA .
win C 0 pV (TT) TML 2; n"n

J;(w)?'z(n,r) 5 wielfre —c
Z, “m D (q>lnn

™

2
T Mr nr
2c_(b_-b_)-b (c_-c ) ¢ -cC
+ ( n_r n n_r n ) arctan_+ ( n_r lnr
In w? n I
nn
2¢_(b_=b_)=b_(c_-c_)
+ ( r n r r ney ) arctan,, ) (17)

'+ v'wZ
U(nr n, ) -

where A is the c&linder surface area and A is the couvling area.
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For n or r = j,

where when j

Also

b, b 2,2, i
_ |(1+cw/2) w +bj(l+cw/2) w’tc, ]|
1nj—ln . 2,2 ?
[(l—cw/2) ® +bj(l—cw/2) w +Cj|

(2+c )2w?-Lw? ] (2-c Y2w2-ly?
arctanj = tan~? @ - ~-tan 1 Mm - J
bn . w? LW
N35%3 M5%;
= = 1 i = =
r, Ny above =n, + n;', and when J n, nj N,
D = (c_=-c_)?2 - -
nr pCn)’ + (bn br)(bncr b.c.) ,
= - 2, - 2
bn 2(‘Un’ br__z().)r 3
e @ s e e er 1 o s ]
n n n 4 r r - nl” T]r

The above is identical to Eq.(5) of Reference [2] except that

T'(n,r) replaces f'(n,r) and n,tn} replaces n,,.

Noise Reduction Calculation

The interior pressure 1s obtained by setting Wirl = wdiss (using
Eqs.(17) and (5)) solving for the mean square modal pressures

2
< >
pn

s,t

one-by-one, and adding according to Eg.(3).

The result is found to be

2
<p;>s,t - B A (méf T c? w?
c, w y? 4 ML o
<pe>s,t ® .
rev _
iz (w) f'%n,r) c.~c,
'Zenz M2 D 4 lnn
n r r nr

arctann (18)

Un w2

2¢, (b =b_) -b_(c_-c)
+
nn

c -Cc 2¢c (b -b ) =b_(c_=-c.)
+ n r lnr + ( r n r r “n-r arctanr ,

L ' 4+ 1 2.
(nr n.' el
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where the exterior space average mean square pressure <p?2> is

e s,t
(for the reverberant field) related to the mean square blocked

pressure by

2 = 2
<pe>s,t <pb1>/2

High Frequencies

When the acoustic modal density is greater than, say, ten or
more modes in a third octave band, a high frequency model is
needed, developed along the lines of [1,2, and 3]. In the case
of an added trim, there are three surface areas of concern:

1) the transmitting area with trim, which will be called At’

2) the absorbing surface area S, and, 3) the transmitting area

without trim A'. The total transmitting area is At+A' and

the inflowing power takes the form (assuming that only the side-
wall contributes)

AT 8AA 2
T L R E 1
+n bpc mm? o r t Ye's,t
o) r<Aw
A't 2
R BAA' p revy:
+ + — 2 2
Upe 2 C E: Jr(w) Pe’s.t
Tm ° Lihw >
- 2
n_A't n rev.
- J T : * 8AA; Ep_ [j;?(‘*’)] Pis ¢, (9
2
knrad(upco) m © r<nw

where A denotes the surface area of the complete cylinder.

n. 1s the sum of the average external radiation loss factor,
r
i.e., nizg; and the average structural loss factors nl+nll.
Ty is the trim transmission coefficient, and TR is the resonance

transmission coefficient for the diffuse field case,
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- 2 ext 1int = . =
'R (2nrTT conradT]rad/pownr) 4o co/A

In this expression n, is the modal density of the fuselage
structure (modes/rad/sec). The summation r<Aw in Eq.(19)
implies a sum over all structural modes w, that are resonant
below the frequency band of concern. Py
density. The radiation loss factors are

is the exterior air

2p wA

ext = (o] .2 rev.
nrad ﬂmco <Jr(m)>r ’
and
int _ 2pwh ., rev.
rad mme Jplw)>) 5

rev.
where <j;>r is the joint acceptance averaged over the structural

modes resonant in the band.

Let Te = field incidence transmission coefficient for mass

controlled panels as defined in [3].
2
= rev
= 32 ;2 A 52 20
Tp 2 =507 5 z: [Jr(m)] . (20)

Then Eq.(19) becomes

- 1 2
= + '
win HQCO [Tt(TR Tf) At + (TR+Tf)A ] <pe>s,t

Al nl" 2
~ Tpc ext 'R T Tr| Pi”s,t . (21)
© rad
The power absorbed on the wall is again given by Eq.(5). Since

at these high frequencies the response is resonant acoustic, @,

can be considered to lie in Aw and Eq.(5) reduces to

24



Further, noting that for this case w_ = ® for any n, and letting

n
the group of acoustic modes have an average loss factor ng,, this

reduces to

\' - 2 V - 2
= — < > =
Waiss pcd “Nn :E: Pn’s,t pcd “Th “Pi’s,t

nelAw ?

which is Eq.(7), Section III of [2]. Finally, setting

ac_S
cO

nn = _WBV )

where a is the band average absorption coefficient and S the
absorbing surface area, the above reduces to the familiar form
_ _aS 2
wdiss EpcO <pi>s,t . (22)
S includes the area A covered with trim and any other absorbing
surface area. Equating W;, to W4qiss Blves the desired high
frequency result [4]:

2 - - ext
<pe>s,t aS + [Tf * TR(nr/nrad)]A' ‘
) A ; ; ’ (23)
<pi>s,t T, T t TA
wbere T= Tp + Tg.

This is the fundamental result with trim present. Note that if
all transmitting surface is covered with trim, A' = 0, and

2
<pe>s,t _ _aS

TtTAt

2
<pi>s,t
On the other hand, if trim does not exist, T, = 1, A

- - ext
> asS +[Tf+TR(nr/nrad)]A'

> TA"
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which is the result in [3] without trim.

Finally, @ is estimated with the relation

=~
<

|

a = & ﬁn ) (24)
(0]

Q
wn

When trim is present ﬁn is calculated with results developed in
Appendix A.

3.4 Calculation of the Generalized Forces for Propeller
Noise Excitation

Consideration is now given to the various terms that appear in
the equations representing the solutions of the sound trans-
mission problem. In this particular section, the calculation of
the generalized (or modal) forces for propeller noise excitation
is discussed. Specifically, consideration here is given to the
term WG(r,H) as defined in Eq.(10) and that appears in Egs.(8)
and {16).

ANOPP Computer Program Output

In the present case, the fluctuating pressure field acting on
the fuselage due to the rotation of a propeller is determined
with the NASA Langley computer program ANOPP [5]. This particu-
lar program 1s one of a number of such programs to exist in the
aircraft industry. It was especially developed to allow pre-
dictions of noise from propellers that have advanced blade
geometries. In the present case, the concern is more with the
standard type of general aviation propeller. The ANOPP program
easily handles the typical general aviation aircraft propeller
blade.

For purposes of the present model, the primary concern is with
the form of the output data from ANOPP. Referring to Fig. 1,
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on the fuselage structure, there will be a finite number of grid
pocints at which the pressure time histories will be available.

At each point, the modal deflection will also be available,

say wr(im). Associated with each grid point is the area AA where
(Fig.1l) AA = A% with A being the grid spacing. Now in Eg.(10)

dX is an element of area, so in discrete form (10) becomes

¥o(r,H) = A'), § Cppy (R 1X VTG W (E ),

m

where

VIR = 0 (20000 5 W) = 0T (s 0,0)

and m identifies each grid point (k,%),k being the axial index
and 2 the circumferential one. In the present model, the grid
1s confined to the side of the fuselage where the propeller is
located. '

To compute ¥,(r,H), the .form of cpbl(imlim,) that will result
from the use of the data output by ANOPP is first needed. At
each point m, there will be a pressure time history that will
repeat itself over a period TO = BPF_1 as shown in Figure 1.
Naturally from point-to-point on the grid, this pressure signa-
ture will be different. Note that Ty is 1/B of the period T

of rotation: T = 60/N, where B is the number of propeller blades.

Now C,  (X,|X ) is defined in terms of the pressure time
histories for the point pair (m,m'). To calculate Cpbl(imlim,)
the equations appearing in Section 3.2 are considered in

sequence. First

T/2
- = . _ lim 1 'jﬁ - _
Rpp1 XplXp15 D = Thw T _T/2Re[pbl(xm,t)]Re[pbl(xm.,t+T)]dt (25)
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Since pbl(im,t) and pbl(im,,t) are periodic with period T,,
the time average can be performed over one period, yielding

T
o

-t - . _ 1 - -
prl(xmlxm,,r) = T;/ Re[pbl(xm,t)JRe[pbl(xm,,t+r)]dt
o

In the present case pbl(im,t) is real so

TO
N ! - -
o1 370 = Tc:f Py (Xps ©IPpy Xy B4TIAE . (26)
0]

Also since pbl(im,t) is composed of discrete frequencies, a
Fourier series representation can be used

(X _,t) = ég- + 55 Meosw, t + blsinw,t (2
Pp1VEp? > ] {COSWy pSiney . D)
By definition Oy = 2an = H(2nf1)
where fl = l/T1 and T1 = TO = 1/BPF ,
m 2 ! = (28)
ag = T, -/. D ,q (X, st)dt s
(o)
T1 _
2 - 2 .]‘ pbl(xm’t)costt dt s (29)
H T ‘
1
(o}
m 2 "1 - '
bH = TI pbl(xm’t) 51ant dt s (30)
o}
Let /ﬁ -
m _ m, 2 my 2
AH (aH) + (bH) - (31)
and
m -1by (32)
¢H = tan

5 |
e
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Then

m
a [ea]
- _ o m _am
Py (Xpst) = —— + 2: Ay cos (wpt-dp) (33)
H=1
and .
= _ alg — m' m'
pbl‘xm"t+T) = = + E:lﬁicos[wH(t+T) —¢H ] . (34)
H=1

Substituting these into Eg.(26) (using TO = Tl) gives

1
Tl am ®
1 o m' m'
S HCHR S—
=1
o
1 am? o
1 0 m ~¢y) dt
o (T)Z: Ageos{uyt=0y)
1 =1
(o
T

1l 5 . 1
i [ By ot
(35)

There are four terms appearing in Eq.(35). It is easy to show
that the second and third terms are identically zero. The

| 1
remaining two terms give upon setting A¢gm = ¢§ - ¢g R

mm' m,m'

a _a fod ACA mm"

.0 E ( H2H > cos[éHT+ Aoy (36)
H=1

prl(xmlxm'sT) ) 4
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It can be seen that the mean.square pressure at im is

- = 2 et
prl(xmlxm’o) <pbl(xm’t)>t

- ). oW
), ) (am) + (o8)
n = 5

Continuing now, with prl(imlim,;T) defined, the next step is to
compute the two-sided cross spectrum using

Cpp1 (Xl Xppsw) = Re [5117 prbl(;‘m‘;‘m';T)ede] ©(37)
From Egs.(36) and (37), it is found that

m_m'
a a

= - - _ %%
Cpbl(xmlxm,;w) = =5 §(w)

= Ar}?Ag‘ mm ' (’28)
+ Z N coshéy, [6(w+wH) + G(w-mH) . 3
H=1

The one-sided cross spectrum is therefore

m.m @ m,m'
a a AA .
H'H mm
020 §(w) + HE_:I cosbey 8(w-wy) . (39)

Cpbl(xmlxm’;w) = 2

Finally using Cpbl(fm|§m.;m) = Cpbl(imlim,)a(w-mH), it follows
that

Cpbl(xmlxm') = = cosA¢gm . (40)
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Note that each harmonic wH corresponds to the tone frequency
in Eq.(8). To compute Eq.(8), a harmonic is first selected.

For that particular harmonic, from Egs.(10) and (40)

Au - ! - '
vo(r,H) = & zm:A’H” wr(xm); AT xpl("xm,)cosmgm . (41)

One of the things to note about this result is that ail of the
information that can be garnered from the propeller noise signa-
tures is used. However, a disturbing feature of Eq.(41) is that
for a big grid, the total number of numerical summations re-
quired can be extremely large. Since WG(r,H) must be computed
for each structural mode, the computations could be very time
consuming. Fortunately Eq.(41) can be reduced to a more effi-
cient result using the trigonometric identity

1 1 1
cosA¢§m = cos¢gcos¢g + sin¢g sin¢$ s

to yield
. _ AY r_ 2 - 2
‘}'G(r',H) = ?[<;Agw(xm)cos¢g) + (;Agwfxm)simg)] - (42)

In Eq.(42), (2m + 1) summations are required as opposed to the

me summations needed using Eq.(41).

Geometrical Considerations and Reflecting Surface Effects

The ANOPP program computes the acoustic pressure for the case
df a propeller in a free-field. Here the presence ofvthe fuse-
lage structure needs to be taken into account since acoustic
waves will be reflected by the surface. In this model, the am-
plitudes of the various harmonlics are increased in proportion to
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the incidence angle. The phases computed with the ANOPP

m .
g in Eq. (42)

have been considered to be the ANOPP results. However, hence-

program are not modified. Until now the amplitudes A

forth, they shall represent the blocked pressure amplitudes. To
distinguish between the blocked amplitudes and‘the free field
amplitudes, the free field values from ANOPP will be redefined by
placing a bar over Ag . The blocked amplitudes are calculated

from the free field values using

: 0.08y
m 10[0.3 - 0.00022149 ] Km . (Ll3)

AH H

This empirically fitted curve corresponds to that found by
Magliozzi [6]. Y is the "incidence angle", that is, the angle
between a line running from the propeller hub to the point‘im
on the fuselage and the normal to the surface at that point.
The angle 1s calculated using (refer to Figure 2):

-1 (r_cos¢-acos6)(cosd) + (r_siné- asin®)(sinb)
Yy = cos P D

(4h)

V?rpcos¢—acose)2 + (rpsin¢ -asind)? + (zp-z)2

3.5 Interior Coupling Factor f'(n,r)

This term determines the spatial coupling occurring between a
fuselage structural mode and a cabin acoustic mode and is
defined in Section 3.1 as

£'(n,r) = l[¢n(i)¢f<i)d§, (45)
AJ
where X represents a point on the transmitting structure. ¢n(§)
is the eigenvectof for the nth cabin mode which is obtained
using a finite-difference technique as detailed in Appendix C.
pT(X) is the structural mode shape and its calculation for the
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present fuselage model, a cylinder with a structurally integral
floor, is considered in Appendix D.

Calculation of f£'(n,r) for Cylinder with Floor

The modes of the fuselage are given by Eqs.(D.22)-(D.26) in
Appendix D. For the symmetric modes of the shell, these are

Mmz

w‘;(z,e) = +s:Ln——— z C cosné (L6)

and for the antisymmetric modes

n¥

wg(z,e) —-51n&£—z E Cﬁg(—l)nsinne (47)
n=1

Cﬁg are the generalized coordinates defined by Peterson [13], as
tabulated for an example case in Table D.l of Appendix D. Also
as shown in Figure 1, 8 = 0 at the bottom centeriine, 6 =7 at

the top centerline. ws is positive along the outward normal.

For the floor (plate), the symmetric modes are

n¥
vi(z,x) = 31nM%Z— E Cﬁi cosn—Lﬂ—X , (48)
b n=0 p
and the antisymmetric modes are
r M n¥
- 2z pr nmx
l[)p(Z,X) sin—— Z Crn 51n——Lp R (49)

n=1
where (Figure 1), x 1s measured from the center of the floor,
wp is positive in the upward (inward) vertical direction, and
Lp is the width of the floor plate,

Lp = 2a sin 9 .

The acoustic mode eigenvector calculated with the finite differ-
ence technique takes on discrete values on the bounding surfaces

of the cabin. Consider the boundary point j = (m,n) of Fig.C-Q.
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From Appendix C, Eq.(C.9), the nth acoustic mode evaluated at any
point £ in the cabin is

$,(E) = 64 (E) = cosifZ ¢, (3) . (50)

On the cabin bounding surfaces, i.e., £ =X the eigenvector takes

the values

6, (X) = 0, (X) = (51)

where ¢i(ej) is the same as ¢i(j) when j is a boundary point.

To include trim on the sidewall (with a bare cabin floor) the

fransmission coefficient Tt is introduced with the result

L
oy = . 1 nZ Mnz
f'(n,r) = £'(qi,r) = il/. cosgi— s1n—Isz
0

1 — 2n—80 . L /2
/B aTe)e, (e)ae - ./‘p VI (26, (x)ax
Lp+2a(n-80)‘ 5 -L,/2

o)

(52)
A bar is placed over f'(n,r) to indicate inclusion of sidewall
trim. Eg. (52) is an approximation and not an exact result. It
should be sufficiently accurate for the present needs. It is
noted that the ¢.(6) are the boundary values of the acoustic
eigenvector, i.e., the same as the ¢, (6 ) in Eq.(51) and w (8)
and w (x) are given by the summatlons 1n Egs. (46 )-(49). Slnce
¢1(6) is known only at discrete points 6 = Bj, J =1, ..., Ny s
the last two integrals in Eq.(52) are approximated numerically.
Let 61. and ng define the points on the circumference of the
cabin cavity half-way between boundary point (m,n) and the two
adjacent boundary p01nts.b The eigenvector ¢i(6j) is then assumed
to apply over the range elj to 6,.. TFor the shell, the second

) 2J
integral in Eq.(52) becomes
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Ty
sr

n

n¥*
+ _11’1 sr ) ) . & . 0. - . ]
ggi( ) Cyn ;g; ¢l(eJ) 2 [31nn 23 51nnela]} , (53)

that is, if both the acoustic and structural modes are symmetric.
If both modes are antisymmetric, it is found that the integral

evaluates to
n¥ Z
2: (-1)" C : ¢4 (6 ) e % [cosne2j - cosnelj] . (5

n=1

The integral is zero if one mode is symmetric and the other

antisymmetric.

Next consider L /2

p r
] wp(x)cbi(e)dx

-L /2
p/
For two symmetric modes, this becomes

ny
Cpr 2 s (6 )(X )
j=1
'
n¥ Ny
nwx nrx._ .
_R 11 . 2 . 1)
+ Z C Z ¢i(ej) . H[s:m T d . sin T, ] s (55)
= p p
and for two antisymmetric modes
L& b nmx
pr p 1 17 nmx.,.
‘_TTE Z: CMn Z ¢1(9J) " n cos T Jo_ cos —ng- . (56)
n=1 J=1 p p



The integral is zero if one mode is symmetric and the other
antisymmetric. In this case ng ié the number of boundary points
at which the acoustic mode has been computed on the floor.
Finally, let

L
- qnz Mmz
qu ./. cos < sin T dz

(o}

had R

For the case considered (shell length L = cavity length L.),

1 1-cos(Mtq)m | 1-cos(M-q)nJ s M#q

r = 2n M+q M-q (57)

aM
0 ; M =aq

If L # Lc’ qu is given by the relations in Reference [3].

3.6 Joint Acceptances for Cylinder with Structurally Integral

Floor

The joint acceptance function appearing in Egs. (16), (18), (19},
etc,, describes the coupling between the excitation field and the

structure, and 1s defined by the relation

J2(0) = —2  [[Spp RIF 500" GOv" (X )a%ax ", (58)
Azsobl(w)

where A is the excited structural area, Spbl(w) is the blocked
pressure power spectral density, and Spbl(ili';m) is the blocked
pressure cross power spectral density.

It has been general practice, when representing random pressure
fields with spatially decaying correlation, to use a correlation
function of the form

Re{S_(x|Xx';w)}
D (59)

C_(x]|x';w)
b S_(w)

36



It is assumed in the present analysis that this function is

separable in the longitudinal and transverse directions, i.e.,

CoRIX3e) = 0, (£,0)C (2,0) ,
where

€ = x=x' ;3 [ = y-y'
The representation for a diffuse (reverberant) excitation field
is well known and is given by

_ sin(k¢&)
Cx<€,w) - —'—‘_‘_E‘—

sin(kz) , ' .(60)

Cy(C’w) =

_where k is the acoustic wavenumber.

Consider the structural mode shapes for a freely supported
(ideal) cylinder:
MN

ro=y _ Mnz cos N 6 ]

W (X) = w(Z,e) = Sin L ,sin N 6 (61)
The Jjoint acceptances for this simple modal system have long been
available [17]. Now for the case of the reverberant field, the
Joint acceptance functions for the cylinder must consider both

sines and cosines of the circumferential wavenumber. One can
write jé(w) = j;(w)rev'= j&N(w)reV' in the form

rev rev rey - evr.,rev 6V ]
Jrf'IN?“’)= jfm?w,w) + 32y To,0) = Jlgl?w¥[JN(w,w) + 3R tw,0 ], (62)
where V¥ represents the cosine and ¢ the sine of the wavenumber.

The joint acceptance for the axial component of the cylinder
rey
modes, j& (w), is given by [17]:

.2Yev

Iy (0) = I, (0 + ) + 1,00, (63)
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1 {Cin(kL +Mn)-Cin|Mn-kL |}

her = .4
wnere Il(M) T 2TMKL
I, = 5?%—{Si(kL +M7)=S1 (Mr-kL )}
o) 1-(-1)McoskL
I.(M) =
3 (Mn)2-(kL )?2

Si and Cin are the sine and cosine integrals [18].

The joint acceptances for the circumferential modes are [17],

¢ 1 1sinana(yl—y2)
Je(w,yp) = cos 2Nmy.,cos 2N7ny.dy.dy
N b Jo 2nka(yl—y2) 1 2771772

\ lsin2nka(yl-y2) .
JN(w,¢) = sin 2Nnyl sin 2Nny2dy1dy2 ,
o "o

2nka(yl-y2)

where y = y/2ma, yp, = y'/2ra, y and y' being circumferential
coordinates of the two correlated points, and k the acoustic

wavenumber. It follows that

s3Y = 2180w + 320G, e)

1 .1
=[ f sin2nka(yl—y2) cos ZNTT(y -y,)dy.dy
2nka(yl-y2) 1 2) 1772
o “o _

This reduces to

1

rev 2 =

. sin2nkan - -

J,fl(w) 2[ —2—## (l—n) cos 2nNndn
(o)

and

1 -
- [ et g
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where 0 = ¥y1-¥p. Performing the integration results in

j§f3¥ = 5#%5 ‘ sifen(n+ka)] - Si[én(m-ka{]]

, 1 1-cos(amka)
)7 o () | (64)

and

szgg =[Si(2nka)_ l-cos(2vk§)].

© mka 2n2(xa )? (65)

The cylinder structural model in the present case is much more
complicated and the cylinder modes are given by Egs. (46) and
(47) of Section 3.5. However, the joint acceptances for the
modes of the cylinder with the structurally integral floor can
almost be expressed in terms of the joint acceptances for the
simple cylinder because the mode shapes given in Egs. (46) and
(47) are in a form similar to that of Eq.(61), that is, they are
given in terms of sine and cosine functions. The joint accept-
ance for the axial component of the cylinder modes, jﬁrer) is
thus the same as for the simple cylinder and is given by Eq.(63),

.2reY

and the desired joint acceptance Jn w) is given by

rev rev

32700 = ah (@) - 3k (@), (66)
wherevfor symmetric modes,
33 - io(cii)z JZ(ay) (67)
n=
and for anti-symmetric modes, -
35 W) = 55 (Cn)” 350059 (68)

n=1

Note here that N is a counter and is defined only in the sense of
the duo (r,M), that is, for each r, there is an M and a sequence
of Cyy that are identified with index N.
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It is fairly straightforward to show that

Si(27ka) l-cos(2n1ka) .

nka - 2m? (ka)? ?

jilw,p) = (69)
Iz(n) + 13(n) - Il(n) ; n>0

n=0

and
Ji(e,8) = I.(n) + I, (n) + I5(n) , (70)

where
I;(n) = HFHE%EFET ‘Cin[2n(n+ka)]—Cin[|2n(n—ka)ij } (71)
I,(n) = ;o {Si[2n(n+ka)]-Si[2ﬂ(n—ka)]} {72)
I,(n) = ey H:i;jx?} (73)

3.7 Resonance Frequencies

The frequencies wp and wy of concern pertain to cabin and struc-
tural modes PeSpectively. The cabin resonance frequencies, op
are determined with Eq.(C.7) or (C.11) of Appendix C using the
eigenvalues from a two-dimensional finite difference calculation
as detailed in that appendix. The structural resonance frequen-
cies, wy, are obtained from the analysis considered in Appendix D
leading to the associated program output as shown (for an example
case) in Table D-1. »

3.8 Loss Factors

There are a number of different loss factors that must be
considered. Referring to Egs.(8) and (18) of Sections 3.2 and
3.3, there are the loss faftors Ny s Ny n;, and n%'- In
Eq.(16), the loss factors n, and n, appear. _Figiély, in Egs.(19)

int
and (23), there are the loss factors N..q and Nrad *
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" 3.8.1 Acoustic Loss Factors N, and ﬁn

Bare Fuselage (Cabin)

The acoustic loss factor n, of a bare cabin is defined herein to
be a measurement for a particular acoustic mode and ﬁn the
average acoustic loss factor measured for a group of modes

whose resonance frequencies lie in a narrow band Aw.

Calculation of n, when sidewall trim is present

The calculation of the acoustic loss factor at any frequency o
has been discussed in Appendix A (resulting in Eq.(A.12)). That
result has to be formatted properly for the case where the floor
is present. Also, the absorption of the ends of the cabin has to
be considered. 1In cases where the sidewall and the surfaces at
each end of the cabin are covered with a trim, the loss factor

for the interior is calculated with

wC _ € ’ :
o n | - -
L A 12 %/. $pAdx + 253[ $AdX . (74)
n curved ends
. surface

Here £ is the sidewall conductance and ge-is the conductance of
the end surfaces. The first integral in Eq.(74) is

n
b
s L
620% = 3 e.a ), $2(6.) [e -9 ] (
2 : s 75)
'/;urved d J=1 ; J 2J "1

surface

where np is the number of boundary points. The second integral

is n

J
f ¢pdx = 2 03 (3)n*c(y) , (76)
ends j=1

where n, is the number of interior and boundary points. There-
fore at low frequencies, the loss factor is found to be
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n
b
wC _ €
n. _ O n L 23 _
" (77
+ 2gea2 ¢>G(i)} ,

where ®G(i) is the generalized'mass for the two-dimensional mode
indexed i (1 = 0, 1, ..., 1i') of Appendix C and e, 1s the
normalization constant given by Eq.(C.10) of that appendix.

Also aq =2 forq=20; 1 for q > 0.

At high frequencies, the average loss factor is used and is

8c
T Toy (85t 2Se] o (78)

S and Se belng the sidewall and ends' surface areas.

In casés where the average absorption coefficient & is available
for the various frequency bands, ﬁn can be calculated with
Eq.(24). However, in general it is o that is to be calculated
from ﬁn and ﬁn is to be analytically derived using Eq.(74) where
the conductances & and Ee are based on the trim admittance calcu-

lations made with Eq.(A.16) of Appendix A.
3.8.2 Structural Loss Factors
The structural loss factor n., is defined as the sum of two com-.

ponents, one due to dissipation in the structure (in vacuo) and
the other due to radiation losses, i.e.,

_ _struc rad
n, = n. +n. . (79)
struc .,
r is either a measured value or an estimate based upon

measurements for, say, similar structures. In the absence of any
actual measured data, it is recommended that one use [19]
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struc C
n =7 ’ (80)
r fr
where f, is the resonance frequency and the constant C typically

ranges between 2 and 4.

The acoustic loss factor n;ad is the external radiation loss
factor for mode r. It is calculated using
rad _ 2P WA rey

r mme jﬁ(wﬁ ’ (81) .

rev ‘
where j; (w) is given by Eq.(66) of Section 3.6.

. Influence of trim on structural damping

If trim is present on the sidewall, the loss factor n} is given
by Eq.(A.7) of Appendix A, i.e.,

jc 12 2ciy c
r m2et 2 N T (82)
ma
r r .

Cy 1s a (complex) parameter dependent on the values of the
coefficients of the trim transfer matrix and it is given by
Eq.(A.8) of Appendix A.

Influence of internal radiation: closely coupled structural and

acoustic modes

The loss factor n;' modifies the damping level of a structural
mode when its resonance frequency lies very close to a resonance
-frequency of an acoustic mode. The increased damping is due to
power flow from the structural mode to that particular highly

receptive acoustic mode. It is given by [7]

2,2 t2 )
. pc A%e £7%(n,r) 0, _ }
T ©2M_V [(1 2 1,2} 24 2 ) (83)
nr —mr wn nn
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The mode r is typically a structural mode lying within a

bandwidth Awn = n, @, centered on @ .

Average radiation loss factors

. : ext int
The radiation loss factors Nn.z3 and N,,4 are given by the
relations in Section 3.3, namely

2p whA
ext _ .2 rev ‘
Npad e <Jr(w)>r , (84)
int _ 2pwhd ., rev
Nrad ~ Tme <Jr(m)>r : (85)

rev
Again <j;(w)>r is the joint acceptance averagggvover the
structural modes resonant in the band. Each j; (w) is calculated
with Eg.(66) of Section 3.6.

‘3.9 Validation Studies

Comparisons of analytical model predictions with measurements
taken in a model validation experiment are considered in

Appendix E.

by
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APPENDIX A

SIDEWALL TRIM: TRANSMISSION AND ABSORPTION MODELS



APPENDIX A -~ SIDEWALL TRIM

Transmission

In Section 3, the basic power flow and dissipation expressions
used to solve the sound transmission problems are presented.

The relations include a transmission coefficient Ty and a
structural loss factor‘né that appear once fuselage sidewall
trim is assumed to be present. In this appendix, the analyses
that lead to these terms are briefly reviewed. Most of this
material can be found in greater detail in the Phase II report,
Ref.[7]. As stated in (7], to incorporate the effects of side-
wall trim in the transmission analysis, the interactions of the
exterior pressure field, fuselage structure, insulation and
lining, and interior field must be considered. To integrate the
trim dynamics into the analysis, the basic expressions that
describe the response, transmission, and absorption characteris-
tics of the various components of the sidewall system must be
considered. To this end, the trim 1s assumed to be represent-
able by a transfer matrix:

1 A
Pal_ %11 22|fP1| | (A.1)
w
2 821 @ppd v,
where referring to Figure A-1: wy 1s the displacement of the
fuselage skin at ;, pi is the pressure on the inner surface of
the skin at x, W, is the displacement of the trim panel at X,

i -

and Po i1s the pressure on the trim inside surface at x (cavity

side). Reference [7] should be consulted for more discussion of
this trim model.

In addition to the trim equations there is the basic expression
for the response of the sidewall. For harmonic excitation it
is



Exterior Interior (Cabin)

! !

Skin Lining
Insulation

FIGURE A-1. A BASIC SIDEWALL TRIM:
INSULATION AND LINING



W (5 = [exR;e®Gn - pyGDlax (A2

where G(X|X';w) is the structure's Green's function, and pO(X')
1s the exciting exterior pressure field. The integral is per-

formed over the excited structural area.

Also, the interior acoustic field acting on the trim lining is
i(ir) = 2fe (X153 (X s
o8 - pw p(xlx ;o) wy(Xx) dx , (A.3)

where Gp(ili';w) is the Green's function for the cavity and o is
the density in the cabin.

Finally, the exterior field is
PO(R') = pp (X') + p 0t [GI(X]X'0)w) (X)dX
bl o] P ? 1
= Py {x") + p (x") , (A.4)

Py 1s the exterior air density,
GE(QIE';w) is the exterior space Green's function,
pr(§') is the radiated pressure field on the exterior surface,

pr(;') is the blocked pressure field on the exterior surface.

Equations (A.2), (A.3) and (A.4) and the trim transfer matrix.
(A,l) form a system of five equations in five unknowns: pi, p;,
w1, Wp, and p, (or p®); the blocked pressure field is assumed to
be determinable once the geometry of the structure is fixed and
the excitation defined. The solution of this system of equa-

- tions determines the effects introduced by the presence of the
trim. Note that if the trim is removed p% = p% and w, = W,
reducing Eqs.(A.2), (A.3), and (A.4) to the set solved in

References [1] and [2].
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In Reference [7] it is shown that the trim panel displacement is
very nearly given by the result

W, (%) = cwwl(}) , (A.5)

where c% = a'1 and a comes from the trim transfer matrix. The

acoustic powéi radia%id into the cabin is computed with the
theory presented in Ref.[1] and [2], and it is shown in Ref.[7]
that the inflowing power is given by Eq.(6) of Section 3.1 of
this report, where c¥ appears in the form of its magnitude

squared; which 1s defined to be

. W f-2

ty = [C"]? = Jay] (A.6)

Since this term multiplies a power flow expression that basical-
. 2

ly remains the same whether trim is present or not, |CWI is

easily interpreted as a transmission coefficient for the trim.

It is also found that when trim is present, the structural loss
factor n, is augmented. Thus if n, is defined to be that due to

dissipation in the structure when trim is absent and n% is the
total structural loss factor when trim is present, then accord-

ing to the analysis in [7]

- I .
c |? 2C
nt? = ' Wl _tw e + n2 : (A.T)
r 2 4 m 2 r 2
m°w ®
r r
where
- AR . I
CW - CW + 1 CW s

and is obtained from the remaining three elements of the trim

transfer matrix from the result

-a- 54
o = _12%22

- (A.8)
W ltajsans,
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Trim Transfer Matrix

The transfer matrix for a layer of insulation is the following
(Appendix A of Ref.[7]):

(A.9)

where C = cosh YL ; S = sinh YL ; Y = a-ik = o -i2n/Am

Y is the propagation constant of the insulation (complex). W is
the wave impedance of the insulation (refer to Pig.A.2). It is
noted here that Eq.(A.9) is not in the form of Eq.(A.1). The
matrix of concern, given in Eq.(A.1l) relates pressures and

displacements, rather than pressures and velocities. Since

. = =iow, :
Vl i D

Eq.(A.9) is more properly written as.

by '= C +ioWS Py
~-1iS

is A.10
W on C Wy ( )

In the case where the trim is nothing more than a layer of in-
sulation, the trim transfer matrix would be given by Eg.(A.10).

If there is a lining consisting of a limp mass, the transfer
matrix across it is the following:
Py 1 w?m +im2ntmt D

t 1

wol 0 1 wq ? (A.11)

where the index 2 is the output terminal of the four-pole and 1

is the input. my 1s the mass per unit of area of the lining and
Ny is some assumed loss factor that arises because of flexure of
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FIGURE A-2. ACOUSTICAL PROPERTIES OF OWENS-CORNING
PF-105 FIBERGLAS: DENSITY 9.6 kg/m3
(0.6 Ib/ft3), [21].
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the lining (the stiffness being ignored). For a multielement

trim the transfer matrix across all elements of the trim is
i i
Po 2118121 | 2122812 411212 {%11%12] (P2

W 4218221 L8080 8518224 L821%02]) WYy
n n-1 2 1

i
a,.,a p
11712 1 (A.12)

8518501 | Y1

where 1 1is trim element in contact with the skin and n is the
finishing element in the cabin. The transfer matrix for the
trim of Figure C-1 can be determined using Egs. (A.10), (A.1l1),
and (A.12)

i S Sy . . i
P (C—iwth+mntth)(1wWS+w2th+1w2ntth) Ipi
= . (A.13)
| is ' ' I |
W2 ToW c Wq

According to the definition of the trim transmission coeffi-

cient, see Eq.(A.6), for this case

_ -2
Ty = |2, >

where

_ Sy _ 4y S
ajq (C + wntmtw) - 1wth R (A.14)

Note that C, S, and W are complex.

Eq. (A.12) can be used to as high a frequency as 1is found
(through experimental comparison) to be valid. In practi-
cal trims, the mechanical vibration transmission from fuselage
skin to trim panel will become significant at high frequencies
and eventually the errors involved with (A.l1) may require that
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some alternate approach be considered to obtain the correct
input data for the trim. Because of the result in Eq.(A.5) one
can always take the ratio of say the measured mean square dis-
placements (or velocities or accelerations) of the fuselage skin
and the trim panel, average the results over the transmitting
surface and estimate ]CW[é (and thus 7.). Also by measuring the
actual dampihg of the fuselage wall with trim installed, n; can
be determined and basically all of the pertinent information
required from the terms of the trim transfer matrix is obtained.
This.allows a fairly elementary approach to the use of any
available experimental data or of any analyses that have focused
on the vibration transmission (or shorting) problem.

Sound Absorption

In addition to the transmission and damping effects, the trim

installation will be a sound absorbing system, that is, it will
take energy from the cabin space. It is shown in [7] that this
absorption capability is also describable from the terms of the
trim transfer matrix. In fact, the loss factors for the cabin

acoustic modes can be determined with the relation

n

we € _ o
n =. ;:1— 7 fE(XN);](X)dx > (A.15)
X

where £(X) 1is the conductance looking from the cabin into the
sidewall treatment. For a case where & is independent of E, we

can use
& = Re(B] ,
where B is the admittance given by [7]

— 2 i
6 = o —wfay 2y + dwa,,
0 . (A.16)




It is seen that the transfer matrix (A.1) describes the trim

absorption, except for the presence of the term Zi which is the

structural impedance. In [7], a simple model
Z7 = PyCo-lem ' (A.17)
is recommended, and this is used in the present program.

Vibration Transmission to Trim

As stated previously, the mechanical vibration from fuselage
skin to trim panel can become significant at high frequencies.
According to the results found in Ref.[7] and summarized by Egs.
(A.5) and (A.6), the trim transmission coefficient T, is simply

= [c"]? = , 5 (A.18)
: <w:2L>

that is, it is the ratio of the mean square trim panel ‘displace-

Tg

ment upon the mean square skin displacement. As long as trans-
mission through the insulation is dominant, T, = la11]_2; but
once the mechanical vibration transmission is dominant,'<w§>
will be larger than that estimated with Eq.(A.6) and instead,
<w§>/<wf> must be a measurement or an analytical prediction for
the mechanical vibration transmission. At high frequencies, a
simple expression for this ratio can be derived using statisti-
cal energy analysis procedures. The transmission coefficient
for the mechanical path is [20]: ‘

oo Tefe o Non (3.19)
t mAnr n21 + ”t ’

where mg is the trim lining mass per unit area, Ay is the trim

area and n,  the trim modal density. m, A, -and n, are the same

t
quantities for the fuselage sidewall. N is the trim loss factor

(in flexure) and N5y is a coupling loss factor for transmission
from trim to skin.
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For N point connections between skin (frames) and trim [20]:

e (htct>(mh02)(mthtct) (A.20)

2
/§At (mhcg + mthtct)

oy
w

where ht and ct are the trim lining's mass per unit area and

dilatational (longitudinal) wavespeed; *h and c, are the

L
corresponding skin properties. PFor a line support, the coupling

loss factor per unit length is [20]

1
X

i X % ]
_ [(2)\% 1 h e, (mh CQ)(mtht c
21 3 Ag \ o (mh%c} %

2
g t mh

%
t )
T (A.21)

c,2)2

It is emphasized here that the finding in Ref.[7], namely
Eq.(A.5), forms the theoretical basis and justification for this
approach to trim transmission. Using these results, it can be
stated that for any trim, the Te
and (23) is given by

|72+ (A.22)

to be used in Egs. (8), (16), (18)
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APPENDIX B ~ PROPELLER NOISE

The goal here is to develop the basic equation used for
propeller noise prediction in the ANOPP program. There 1is no
attempt to discuss its mechanization, although appropriate
references for further study are included. Consideration is
limited to propellers with subsonic tip speeds and to the thick-

ness and 1ifting noise components of the sound generation.

As stated earlier, there is always a problem determining Jjust
what level to begin a technical presentation when there are a
number of different disciplines involved. 1In this particular
case, since propeller noise is not an easy subject to under-
stand, the authors have taken what might be considered the path
of least resistance by utilizing a result by Goldstein that has
been described as the fundamental equation of sound generation
in the presence of solid boundaries [Eq.(3.6) of Ref.8], namely

£ :
2
p'(r,t) = -12— Ty 5 96 4v_at
cZ J 3y.3y. o
- Vo(to) 1%
&t
1 oG
+ - —
Cé[ f n, (p-p) 3 : ds_dt
- T8, (t)
£+
1 3G
+ = —
czf f rlipovsi ot dSodto (B-1)
¢ o)
- S ()



In Eq.(B.1), p'(r,t) is the fluctuating fluid density at the
observer location r at time t. The equation applies to any
region Vo(to) which 1s bounded by surface So(to) in arbitrary
motion. -So(to) can be an inner bound as in the case of a
propeller blade. There are three terms in (B.1l). The first
involves Lighthill's stress tensor Tij' This term ultimately
leads to sound of the gquadrupole type being radiation emitted
from the volume of fluid around the blade and is important only
when the tip speeds are in the transonic region. The remaining
two terms are the 1lifting and displacement noise components
respectively. p-pgy is the difference between the pressure on
the blade and the ambient pressure, ni is the ith component of
the unit normal to the blade surface, Vi is the ith component of

the blade surface velocity, and G is the free space Green's
function.

G(Eo,to)lF,t) = 75 O(t -t + R/c) (B.2)

Here % is the source location and R is the distance between
source and receiver locations

Note that the normal gradient is
3 ' )
n A ——
Bno i ayl
where Vi is the ith source coordinate and a sum over the index 1
is implied. The normal surface velocity is

e A =5
= n°*V

where N1 is the unit normal vector.



One reason for beginning with this result, is that it is de-
veloped carefully, unambiguously, and ingeniously by Goldstein
[8]. A reader can easily wade through the algebra that leads to
Eq.(B.1). The remainder of this appendix is concerned with the
manipulation of this result to obtain the ANOPP equation, what
shall be called here as the propeller noise formula.

To begin, it is noted that the relation between the fluid den-
sity fluctuation and the fluid pressure fluctuation, (neglecting

heat conduction in the fluid) is simply

For convenience, the prime on the p is dropped on the left hand
slde, and on the right hand side, we repiace the airfoll pres-

sure (p-pp) by &#. Now p is understood to be the fluctuating
pressure and it follows that Eq.(B.1l) can be rewritten as

§(t -t + R/c_)
) 0
5 ]dSOdto

n
\
(—'-
+
\
1
o
=
@
|
[
r—

brp(r,t)
so IS (t,)
t+
+-/. -I- nipovi Bio [ 6(to—t ; R/CO):'dSodto
- 8 (%) - (5.3)

In the above R 1s 1ndependent of time.

Consider first the evaluation of

0 é(to-t + R/co)
: iayi R



- ny g () st + R -

S
3y 4 R

ayi [S(to—t + R/coﬁ

Now

Ny o3 (

<

A

n - (F-;O) n -« q

]
1
3

R3 '~ R2

where ﬁp 1s the so-called unit radiation vector

Also

_n.

i 3 74 a8 (1) 9t
R ayi (S(to—t +. R/CO) = ? —_—

where T = to—t + R/cO

ar o1 ar _ Z3aYy) L U
Byi cO ayi cOR’ cO
and
38 (1) 2 48 (1)
9T dT_
Note that

38(t) _ 38(1) 31 _ d8(1)

Bto 0T -Bto dr

This latter result follows because R is indepéndent of tg.
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Following the general approach used 1in propéller noise predic-
tion, it is now convenient to introduce a Lagrangian coordinate
system (so-called N system [9,10]) that rides in the body and in
which S (t,) remains fixed (see Figure B-1).

The velocity V and acceleration a of any point n in this coordi-
nate system 1is

_ aEO _

V= 5?; (n’to)ﬁ = fixed

_ 3T - |

a = 3t_ (M5t0)5 = rixeg -

Since S'(t ) = SO is fixed in this system, i. e., S

o is a rigiad

surface; every point has velocity
V = Vo(to) + w(to)Xn-

where Vb is the velocity of the origin of the A system and @ 1is
the angular velocity of So(or the § system). Since n and y are
Carteslan, the Jacobian of this transformation, i.e.,

(For P~
is unity.

In the 1 system, the limits of integration of the surface inte-
grals are 1ndependent of t, and the order of integration 1in
Eq.(B.3) can be reversed to yield

Ll-np(r t) f f G(t -t + R/C )dt dS (n)
1 fie ne
E‘fj R "R -

C)
z<>
O
o
(¢}
o
<\
n
e
Q
Q>

8(t =t + R/ )dt dS,(n)

(B .4)
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FIGURE B-1. LAGRANGIAN COORDINATE (17) SYSTEM
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where now R is a function of time, i.e.,

and
R= |F-F | = % - 7 - E(c )]

To evaluate the integrals in (B.4) the following identities from
generalized function theory are used [9]

® | r(rl)
f f(t)s[eg(1)]ar = z: —_— s (B.5)
i dg .1
% IdTe(Te)l
where Ti is the ith root of g(Ti) = 0.

Also

f (1) == 5[g(T)]dT= j[ai 5;)2)] s[g(t)]ar

-—00 3T (B.6)

The first identity (B.5) is used on the first term in (B. N) to
obtain

_ﬁoar‘z . N . -
= —_— . = - +
f(to) =2 . H g(to) ; tO € R/Co ’
o)
and
g _ 1+ 1 B8R _ 1 ( 1 -3y,
ot . =1+ = ——> (x,=y.) P
o o o o s 2R ivJi ato
=1 - === (x V, =1- 4 +fi=1-
COR ( i yi) i 1 ur M 1 Mr



Therefore,

<o A A

-n°ur2
——g;—— 6(to—t + R/Co)dto

where t e = t-R/c,. .
The second identity (B.6) is used on
and then the first identity (B.5) 1s

the second term. Using

L}
»
~~
o
-
S

the second term in (B.4)
applied to- further reduce

gives
i n-u 2 +p c AevS
,-j © a'ac a[t -t + R/c ]dt
R o © © o)
(e} . A A N =8
- . + .
_ _./ 5 (1 Mr_) (n url PN v
J |, [1-M_|? R
Since 1-M_ = |l-Mr]

Now using (B.5), setting

3 neu_f + p_C nev

for Mr<l’ the above

oS
O
:at }é(to—t t R/c)dt;

£(ty) = 3%
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gives the above “as

[T-M ] 3t R[1-1_] ' (B.8)
r o r t = t-R/c
0 o
Substituting (B.7) and (B.8) into (B.4) gives, after changing

the sign so that the normal points out of the blade,

p c V. + 20 ‘n
brp(r,t) = El../— 1 d o o'n r as (n)
o 1-M - 0
5o | rl 2% R|1 My t-R/c
o
Lu °ﬁ
+ _/. ———— | as_(n) : (B.9)
S Rzll—MrI o ’
: 0 t-—R/co

Eq.(B.9) can be written in an alternative form which is faster
to execute on a computer and more accurate [12]. First, the
acoustic pressure is separated into loading, pL(r,t) and thick-
ness pT(r,t) contributions, such that

p(r,t) = pp(r,t) + po(r,t)

Then the two components can be written in the forms

o V. (RM,0 *n + ¢ M - ¢ M?
bmpg(r,t) = j o'n i‘p or o

2 3
5, R (1-Mr)

dSo(n)
t-R/ ¢,

(B.10)
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and

waL(r,t) = L Jr —r - - dS_(n)
C 2 (0]
° Js R(l_Mr) y
o t-R/,
‘0
(20_+n - 2M17
+ ' dSq(n)
j; Rz(l—Mr>2J
o = -
t-R/c,,
(00 A(RM,0_ A + ¢ M_ - ¢ M?)
+ Ci ] r i“r 3 or 0 dSo ()
o Jg L R2(1-M,,)
o
(B.11)
Mach number terms M, and M? are given by
= 2 _ 2
Mi Vi/co and M Vivi/co
where V., = 2 (a -ﬁ). Furthermore, the dot on M, and %
i ato r i

denotes the rate of variation of these parameters with respect

to time t .
e}

Equations (B.10) and (B.11l) have been coded at NASA Langley for
use in ANOPP. The reader should consult references such as [11]
and [12] for details concerning the mechanization of these

result§. Also, an alternative derivation of the present results

is provided by Farassat in References [10] and [12].
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APPENDIX C - CABIN ACOUSTIC MODES

The acoustic modal characteristics of the cabin are defined by
the mode shapes ¢ _(E), & being an interior point, resonance fre-
gquencies W s and the mode normalizatien given by the constant
€ In the present case, consideration must be given to the
determination of these gquantities for the case of a cylinder
with a floor partition defined by the'angle'6 as shown in
Figure C-1. In the ideal complete cyllnder the modal properties
can be determined in closed form by an analytical solution of
the wave equation, subJect to the appropriate boundary condi- '
tions. This 1is possible because the wave equation 1s separable
in cylindrical coordinates and the boundary conditions can be
expressed in these coordinates. When the floor is present, it
is no longer possible,tb derive the modevshapes analytically
since the boundary conditions are irregular. Thus it 1s neces-.
sary to resort to numerical methods. There are two possibili-
f.ies, either finite differences or finite elements. Since in
the present case, the modal characteristics in the axial direc-
tion are known, a two-dimenéional'problem remains, and the
finite difference technique; which is the .simpler of the two, is
chosen. First, the two-dimensioénal problem is solved. Then the
axlal modal information is factored in. Next the normalization
of the data is defined. ‘

Finite Difference in Two-bimensions

In the cavity (cabin), the Helmholtz equation applies. In the

two-dimensional problem, using central differences, it is found
that for the grld of Figure C-2, the pressure P obeys the relation

- - - - = Lk2n2
4 Pm,n Pm+l,n Pm-l,n_Pm,n+1 Pm,n-l k,h Pm,n > (C.1)

where h is the grid spacing, and k = w/cg



Fuselage

FIGURE C-1. CABIN ACOUSTIC SPACE



(m,n) = (NX,NY)

FIGURE C-2. FINITE DIFFERENCE GRID NOMENCLATURE
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Boundary Conditions

The boundary condition is that the outward normal gradient is
zero (the wall admittance B 1s assumed to be sufficiently small
to allow this assumption). Thus, referring to Figure C-2, in
the region 90<9<2ﬂ—60:

(P ) cos = (P

m,n+1""m,n-1 n m+1,n7Pm-1,n) sinf - (C.2)
If —60<e<60, the boundary condition is obtained from Eq.(C.2) by

simply setting 6 = 0 whenever emn< 6, -

mn

Solution

Let the column vector Py = {PI}njxl be the pressure at interior
and boundary points. Also let Py = {PE}nexl be the pressure at
the exterior points, adjacent to boundary points only. Using
the recurrence relationship for &l1ll interior and boundary
points, i.e., Eq.(C.1), gives (in matrix notation, with

A = k2nh?) '

RiP1 + RgPp = AP; > (C.3)

where Ry has dimensions njxnj; and Rg has dimenslions NyXNg,

where nj is the number of interior and boundary pbints and Ng is
the number of exterior polnts. The matrices Ry and Rp will be

different for symmetric and antisymmetric modes.

The boundary conditions (Eq.(C.2)) give (n,-2) equations. The
tangential gradient is assumed zero at two boundary points close
- to © = m/l4 and 3n/4, giving né equations. = When combined, these
-take the form

BIFI + BEPE =0 > (C.U)



where By has dimensions ngxnj and B has dimensions ngxng.

Since the matrix Bg is non-singular

= _p-1
Pp = -B."B;P; . (C.5)

Substituting this gives
[R; - R.BZ1B_] B = AP (C.6)
I E'E "I I I° y

The eigenvalues and eigenvectors are calculated for symmetric
and antisymmetric modes, separately. The modes are then com-
bined, and ranked in ascending order of frequency and the first
20 modes only are used. The vector‘FI corresponding to Ai is
the mode shape {¢i(J)}, where 1 is the 2-D mode counter, and j
defines the position in the fuselage cross section. The nodes,

n represent only half the cylinder (i.e., X 2 0). - The values

J’ -
of the eigenvectors (on the boundary) will differ for symmetric
and antisymmetric modes for X < 0. For symmetric modes,

$4(3) = 6;(X,Y),

I}

d)i(X’Y) ) ¢i(—X,Y) .

For antisymmetric modes,

¢5 (X,¥) = ¢, (-X,¥)

Each mode must therefore be identified as symmetric or anti-
symmetric when the boundary values of the'eigenvéctors are used.
Apart from the boundary values of the eigenvectors, there is no
need to distinguish between symmetric and antisymmeétric modes in
the ;ylinder response program. In addition, it should be noted

that the first symmetric mode represents uniform translation with
zero frequency.
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The eigenvalues, Ai’ are used to calculate the resonance
frequencies for the (three dimensional) cabin with

_ _ Co - 2 f\_l !5
£, = £y = 22 (9L—) + 3 , (C.7)

where h is the grid spacing ( =Ga), and L and a are the cylinder
length and radius respectively. The frequencies output by the
program are

O

_ (]
£y =55 1 (C.8)

i.e., the frequencies for q = 0 modes and. a = 1 meter.

Normalization

The acoustic modes ¢ for the three dimensional cabin are
= = ceosdNZ =cosITZ¢ . (3
¢n(§)—¢n(X,Y,z)—¢qi(X,Y,z)—cos—E—¢i(X,Y)—cos ¢ (3) 5 (c.9)

where ¢i(X,Y) is the eigenvector for the two-dimensional mode
ranked i (1 = 0,1,2,...) as calculated with the finite differ-
“ence technique; i.e., ¢i(X,Y) is a finite dimension column |
vector, which contains the values of ¢; at all coordinate
positions J within and on the boundary of the cabin space. The
normalization of the modes is arbitrary. The maximum value
achieved at any coordinate positon has been chosen to be unity
and the other values adjusted to retain the computed ratios from
point-to-point. The normalization 1is carried into the trans-
mission prediction with the parameter.en. In the case where the

floor is present the integral required to determine~sn is

oy

n.
2 = R L 2 . N
[(bqi(a)dv = €q i:¢i(J)h2C(J) s



where J counts over all interior locations. C(j) =1 for
boundary points and denterline locations, C(j) = 2 for interior
points. Also & = 2 for g =0; 1 for q > 0. The generalized
mass for mode i as defined in the finite difference program with
unit radius is

n.
. J .
. - . 2 .
| @G(l) = ;g; ¢§(J)G c(j) . (C.10)

The volume enclosed is
= 52 - ing
A% a‘L [n eo + cos8051n60]
Thus

2|lm-6_ + cos6 _sinéd ]
o ° o (C.11).

€, = eqi =
@G(l)eq

Sample Results

Figure C-3 shows examples of the finite difference calculation

for a case where the floor 6, is 56.6°. The first twenty modes are
shown and are ranked according to the Ail The resonance fre-
quencies are for a = 1 meter. The 1 meter results given in

Figure C.3 are simply the fi in Eq.(C.8). The resonance fre-
quencies for arbitrary radius. a (in meters) is obtained from
Eq.(C.T7). Eq.(C.7) can also be written in the form

o [fan V 2mf, \2 %
T, = fqi s on (7?) + (coa ) > (C.12)

where f3 is the 1 meter result. Note that for g = 0,

£y
fo:1 = =2

Table C-1 gives the computed generalized masses, @G(i) for the
1 meter (unit) radius. ' ' :
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TABLE C-1. EXAMPLE PROGRAM OUTPUT
Phase 11T Test Article

Angle subtended by floor edge with
vertical, 90 = 56.6 degrees

MCDE FREJUENCY GENJMASS
0 0.0 SYMm  2,.59631
1 39,501 ANTI 1403531
2 123.374 SYMM « 72535
R} 175.889 ANTI «e68099
4 137.927 SYmM4 e 72400
5 220,381 SYnM « %9815
6 253.1062 ANTI «54535
7 2599.176 SYMH « 50751
8 23%.674 ANTI «91521
9 300.184 SYma « 36571

10 324.597 ANTI 42606
11 343,723 SYMA e 45440
12 3564949 ANTI « 45005
13 366,051 SYMN «36319
l4 381.030 SYmM « 39341
15 393.310 ANT I « 23994
16 413.374 SYMA «34405
17 424,029 . ANTI +«37055
18 434,109 SY#M «40244
13 447,337 ANTI «45499



APPENDIX D

FUSELAGE STRUCTURAL MODEL:
CYLINDER WITH INTEGRAL FLOOR



APPENDIX D - FUSELAGE STRUCTURAL MODEL

The fuselage modal characteristics are defined by the eigen-
vectors wr(i), resonance frequencies @ s and the mode normaliza-
tion given by the constant M, (the modal mass). In the present
model, these quantities are computed for a ring-stringer
stiffened cylinder with a floor partition that is structurally
an integral part of the fuselage.

The basis of the structural model 1is an analysis of the free
vibrations of a circular cylindrical shell with a 1ongitudinal
interior plate (Fig.D-1) by Peterson and Boyd [13,14]. A review
of their analytical approach is presented in this appendix and
then the generalization of their results to enable calculations
for thé ring-stringer stiffened shell is considered.

Displacement Functions

The displacement functions are assumed to be finite series. For
the shell: '

M* n*
S
u = (
s &g% ;g% UMnXuM(X)wun‘e)
M* n*
vS
Ve T <x>w () (D.1)
s 7 fTh A= e
M* n*
Ys T ﬁn wM(X)w () .
M=0 n=0

The plate functions Up, Vp, Wp are similarly expanded.

The longitudinal functions X(x) are the same for the plate and
the shell. These functions are expressed in terms of a single

function ¢M(x), in the following manner:



s'"s
4/vx,u
s
~
v ”
s
]
01-2 ;W
a°p’ " p
e — - . — x,uA
N / P
- L ,V
Y-Vp

FIGURE D-1. CIRCULAR CYLINDRICAL SHELL WITH A
LONGITUDINAL PARTITION
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XuM = ¢M(X)

Xom = by (x) (D.2)

The functions ¢M(x) are the mode shapes of a uniform beam.

The boundary conditions used in this model are those of a
supported beam, so ¢M(x) = sinMrx/L. Note here that the shell
axial coordinate is x. In the cylindrical coordinate system
used in the body of this report, the axial coordinate is z. No
confusion should result from this temporary change in nomencla-
ture.

The circumferential functions for the symmetric modes of the

shell are
wun = cos nb
wvn = sin n®
wwn = cos nb
For the antisymmetric modes, . | (D.3)
wun = sin nb
wvn = -coS nb
wwn = sin n®o

A similar set 1s used for the symmetric and antisymmetric modes
of the plate (floor). '

Constraint Equations

The floor partition can be. taken to be fixed or pinned (hinged)
along the line of attachment to the shell. -For & rigid
attachment, the shéll and plate displacements obey the following
relations '



S p
w 51n61 + v cos_e1 = vp
w_ cosfb, - v_ sinb. = w.
1 S 1 b (D.4)
v 1 oW owW_
S _-_5 4+ P 9
r T 6 dy

In the case of a hinged connection the last equation is droppgd.

Equations of Motion

Peterson [13] used Hamilton's principle to derivé the equations
of motion. He assumed that the cylindér was of uniform thick-
ness t and allowed for different modulii Eyx and Eg, but no
stiffeners. Following [13], the displacement functions are
written in the matrix form ' 4 '

u
S

vee = [Ng1 lagd (D.5).

“7
S

where [NS] is a matrix of size 3 x 3M¥n¥ and_{q} is a vector ol
the generalized coordinates of the shell given by

S
{a} =4qvg , | (D.6)
W
S
where
- r
W
) () [t )
ol ol ol
U v W o
wy = .o 5= (. o™ b (514 on* { (D.7)
s U > s 1 \ ’ W W, % .
.1ln¥ - .1n¥* , .1n :
\UM*nﬂ - Viw*n¥) \wm*nﬂ
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The displacements of the plate are expressed in the matrix form

u
p

= D.8
vp [Np] {qp} , , ( )

w
b

where the elements of {qp} are the generalized coordinates of
the plate, arranged in the same manner as the elements of {qs}.
For either the shell or plate the strain energy can be expressed
as

1 1T
U = § 1; {o}" {elas , (D.9)

where {0} is a vector of stress resultants and {e} is a vector

of strains and curvatures for the plate or shell.

For a linearly elastic material,
{c} = [D] {e} , (D.10)

where [D] is a matrix of elastic constants. The strain-
displacement relations, obtained from Love's shell theory and
classical plate theory, have the form

“{e} = [G] {u}, where {0} = {v . (D.11)

W

Substituting Eqs.(D.10) and (D.11) into (D.9), and using

Eq. (D.5) or (D.8) leads to

v=2 L (re1 [N1 {aH)T [Dp1 [6] [N] {q} a2 . (D.12)

For either the shell or the plate the kinetic energy is (in

terms of the generalized coordinates)

v =3 {q)7[K]{q) , (D.13)

where

(K] = j; [tctmi]™ tpiteltnl as . (p.ab)
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Writing the strain energies for the shell and plate as

1 T 1 Tr
= = = = K_1{q_}
U, = 5la 3 [k Ia ) and U 2{qp} ( pl a,t
gives the total strain energy:
fa T [K_ O q
- _ 1 s s s{_ 1 T
. US ' Up 2 {qp} {O Kp]lqp}- 2 tal txrita) . (D-15)

The kinetic energy of the plate or shell is
T=1 | oti1Tii) as.
S

In terms of the generalized coordinates

-1 J ot Tt as
The mass matrix is defined as

_ T
m= | otniT M1 as
S

giving for either shell or plate

m =
S

(T

o

The total kinetic energy for the system is the sum of the
kinetic energies of the shell and plate, T = Tg + Tp, yielding

[ T M O .
1 {qs} [ s ] {qs} 1 ,°4T .
T=351: . = 5 {a} " [M¥]{q} >
2 0O M 2
9p pd 9p
o]
{q} = {qs} R
p
is the combined vector of all the generalized coordinates of the
shell and plate.

where

The components of the coordinate vector {q} are not independent
because the conspraint equations must be introduced to insure

displacement compatibility at the interface between the plate
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and shell. The equations expressing this compatibility can be
written in terms of the generalized coordinates in the following
matrix form:

[c]{q} = {0} . (D.17)

Applying Hamilton's Principle and adjoining the constraint
equations by introducing a vector of Lagrange multipliers in the
standard way leads to the equations of motion and constraint for
the system.

If {q} is partitioned into a set of independent coordinates {ql}
and dependent coordinates {qZ}’ the constraint equations can be
manipulated and the dependent coordinates and Lagrange multi-
pliers can be algebraically eliminated. The equations of motion
then take the form:

[M] {g;} + [kI{qy} = (0} (D.18)
in which
M1 = [E1T[M*I(E], [K] = [E]T[K*1[E] , (D.19)
where
I
[E]=|-==q1--| , (D.20)
rc,17e, ]

and Cq and C, are obtained from the partitioned constraint

. a4
EH;C2]{Q2} = {0} : (D.21)

The eigenvalue problem is obtained by letting {q,} vary harmoni-
cally with time to yield finally

equations

[X]{q )} = w®[M]{q } : (D.22)

. D—7



Now, the primary concern in this appendix is to modify the Peterson

results to enable calculations for a stiffened shell.

(D.10) and (D.11),

{c}
s

= [D]{es} = [D][GI{u}

From Egs.

Peterson's results for the above (Appendix A of Ref.{13]) can

be written in the modified form

(N ) 1 3 1
X kxs%; r kaeae r 9xke
P} 1 0 1
N = - =
y VeKiax T Ker 39 r ¥oR
1 ) d
4 Xy x0'58 Geob 3% 0
=. % 2
M r 13 _p - 1
X 0 vxDerz 28 st3x2 vxDe
1 3 ¥ 52 1
M £ o - g -
y 0 Dy %2 38 VePy 3%z = 72Dy
M 6 o 11 * o t) 2 32
L X?J X8 12 r 93x x06 12 »r 3x3e
In Eq.(D.23), Peterson's k,» kg» D, and Dy

various points in the matrix by the augmented terms

The result may be compared to Egs.

and McElman [15].

k
Xs

kgg =

XS

Dgr

EA
+{== :
kx <c1> stringer

EA
+(==
kg (2 > ring

==
Dx <<i> stringer

v > (D.23)

have been replaced at

(D.2h)

(25)=-(27) on Page 10 of Mikulas

If the assumption 1is made that the stiffeners

used by Mikulas and McElman are symmetric about the skin (i.e.,

z and z
s r

the terms with the asterisks do not appear.

D-8
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The strain energy term 1is obtained from Eq.(D.12). The result

of concern is [G]l[D][G] and 1s given by

The equations of motion that result for the. sh
matrix (D.25) 1s used are almost identical to
(15], p. 8, or Leissa [16], p. 191. The diffe
assumptions made in the analyses, but the impo
al terms are very similar in form.

32 1 52 [ 32 1 52 1 3 |
i + = 2+ = A— = 0 __
“vs 3x2 T 77 Cxot 387 r V<0 3538 T T %xet 3358 2 VKo 5| -
B F . n T
1 52 1 52 1 52 2 F 1 d 1 93
= g ___ 4+ = o o9 _ 2 L
v VoXx 3x38 T T Oxel axae] 7 Kor 387 * Oyet 552 r2X9R 35 ~ 72 Vo Dy3x738
1 a2 t3 1 42 1 53 t3 53
+n . 9% 128 3 1__+L 8 _ Lt 2
Do 7v 367 * Gxe 12 r? axzd b DeR 363 Gxe 12 r2 3x?96
1 3 1 3 1 3¢ 1 ' n U 142 ]
vk <= = 9 _ _ L 9 £ A -
[r' Voky ax] r ¥or 36 ~ VxPo T2 383%2 72 ¥or'Dys a3 P ViPg 125377352
1.3 2 t® 32 1 9" 1 "
|~ 7 P 387 ~ 17 %k 12 5x750)|"r7 VePxax7me2t +¥ Dor 387
+-£—G Ei-—%:—r
r?2 "x6 12 3x<36
- 4
(D.25)

ell when the
those of Mikulas
rences are due to

rtant main diagon-

To incorporate the effects of the stiffeners in the Peterson

analysis, the properties of the stiffeners are
i.e., averaged over the shell surface as done
equivalent skin thickness, t, is defined by

A A

S R
ts* 3t

L

where ts is the actual skin thickness, AS and
stringer and ring frame cross-sectional areas,

"smeared-out",
in Ref.[15]. An

Ar

and d and £ are

are the



the stringer and ring spacings. Using this thickness, the skin
stiffnesses are computed from

_ _ Et
kx = ke = 1.2 s
and the skin rigidities with
Et3
D, =Dy = ——/mm.
X O 12(1-v?)

In (D.25), k,g and kgy revert back to k, and kg (as originally
used by Peterson) but are computed with the equivalent skin
thickness. DXs and DeR revert back to DX and De everywhere
except in the third diagonal term and are also computed using
the equivalent thickness as above. In the third diagonal term DXs
and DeR are computed from the results in (D.24) where D, and
De are computed for the actual skin thickness.

When these modifications are incorporated, it can be seen that
reasonable approximations are found for the first two diagonal
terms and for the off-diagonal terms but the skin stiffnesses
will be somewhat higher than they would have been had kXS and
keR been used (i.e., the results in (D.24)).

The Mode Shapes (Eigenvectors)

The eigenvectors for the fuselage model are the displacements u,
v, and w for each eigenvalue, w . The w component is the
desired mode shape wr(i); This mode shape encompasses both the
plate and shell normal displacements. The maximum normal dis-
placement computed on either plate or shell is assigned the
value of 1.0, and all other values of u, v, and w at other

positions are divided by that maximum value for normalization
purposes.
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The mode shapes for the symmetric modes of the shell are

n¥
r . Mmz sr
ws(z,e) = sin—= ;g% CMn(-l)nCOSHS, (D.26)
and for antisymmetric modes
n¥
r _ Mmz sr n_.
¥ (z,08) =-sin 5 n};l cMn(—l) sinné . (D.27)

In these two equations, z is again the axial coordinate and 0 is
measured from the bottom of the cylinder. The Cﬁi are the
generalized coordinates for the shell (the same as the an of
Eq.(D.7)) .

The symmetric modes of the floor are

n¥*
r = ain Mz pr nnx
wp(z,x) sin == 2; (%hlcos T , (D.28)
n=0 D
and the antisymmetric modes are
n¥
r = s, MTZ pr .. nmx
Wp(z,x) sin == 5;% Cyy 5in —f; - (D.29)

Again, z 1s the axial coordinate measured from the forward end
- of the cylinder and x 1s the distance measured horizontally in

the floor plane from the centerline of the fuselage to the
position of concern on the floor. Lp is the width of the

floor and is given by

where 6, 1s the floor angle as shown in Fig. 1. The Cﬁi are the

generalized coordinates for the floor plate. Note that (%) 1s
the combined set for cylinder and floor, that is,

TG = {v(z,0), v ] (D.30)
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Generallzed Mass

The generalized mass must include all energy in both the
cylinder and floor and therefore is defined by

2T 2 2 2
M=L-j (T + vE + W' ) m_ade
S S S )
5

(D.31)
L 2 2 2
L|"™P r r . r
¥ _jo <up * p ¥ "p ) r-npdx >

where mg and m, are the masses per unit of area of shell and

plate respectively, a is the cylinder radius, and L is the
cylinder length. Note that there are two components of -the
modal mass, one for the shell and one for the plate. 1If a
particular mode r is, say, predominately a floor mode, Mr will
be dominated by the second term and the shell contribution will
then be small. For such a mode, the floor can be seen to re-
strain the motion induced by fuselage sidewall excitation.

Sample Output

Modes. are ranked according to the occurrence of their resonance
frequencies and the values of the generalized coordinates

Cﬁi and Cﬁg for each mode are output. For each value of r,

there is a single value of M that defines the axial mode shape,
and a sequence of n's that defines the circumferential mode

shape. Table D-1 gives the results for the first 32 modes of the
1.83m (72 in.) long cylinder used in the present validation study.
The values of n given in the table are those that contribute most
to the determination of the mode shape. Ohly 5 terms are retained
for the shell and 3 for the floor. Fig.D-2 shows an example of a
typical mode shape, in particular, for the first mode of Table D-1.
It is apparent from the figure and also from the computed gener-

ized mass, that the mode shown is basically a floor mode.
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stiffened.0.0008m (0.0324in) skin, 0.508m (20 in.) radius with floor

L1 1013
NU

1

TABLE D-1.

EXAMPLE PROGRAM OUTPUT

Phase III Test Article: 1.803m (71 in.) long cylinder,

FREQ
(HZ)

188.52

208,24

217.88

231.01

293,25

301.93

303.67

318.73

MODE
TYPE

SYNM

SYKNM

SYMNM

SYMAM

SYmmM

SYHMN

SYNM

ANTI

=

W wwww [l Wi Wwiww NINNNN NNV Lo ol o it ot pus pua

bt Do o s ot

SHELL

N

~NN® S VMW N - =N ~N® NS> W NS - WwWuonae N N> WN

W wN

CHN

-« 06640
-.03362
« 02042
«01776
-.00589

-« 07694

« 060646
-«03793
-.02065
~e01360

«01270
-.01001

-. 00550

«00391
-« 00293

«04328
~.03088
-e01367
-.00803

«00740

«00824
~. 00455
-+00386

«00195

«00119

« 60434
«39210

- 02343

«01026
« 00956

«03058
-.02783
~+00764
-+00758

«00698

- 69794
«33122
-e17597
-.10995
«03684

-

W W [l o w W w NN NN

-

PLATE
N CHN
0 .41496
2  «33940
1 23432
1 1.42371
2 =.34033
0 -.30912
0 44544
2 41198
1 «14239
1 1.08434
3 .20954
2 -.13739
0 .46520
2 +43756
1 .10293
2 <34208
1 .24271
3 L.11650
1 1.00245
3 .19801
2 -,08872
1 -.71809
2 —e37744
3 -.13196

GENERALIZED MASS

TOTAL

1.13889

1.12644

1.06241

1.05432

1.05532

3.35573

1.04019

5.33569

SHELL W

«02830

« 05670

«00143

«01444

«00050

2.32876

«00869

2.87324

at 56.6°

(KG)
PLATE W

1.10253

1.05950

1.06071

1.03897

1.05476

247468

1.031056

1.56559



STIFFENED 032 IN CYLINDERs 20 IN RADIUS, WITH FLOOR AT 56.6 DEGREES

MOUE
NO

9

10

11

12

13

14

15

1o

FREQ
(HZ)

346.71

434,31

441.78

470.53

502.23

528,78

555.05

558443

400E
TYPE

ANT ]

Synm

SYMM

ANTI

SYMM

ANT 1

SYMAM

ANTI

[l o ] = gt i gt [ N NNNNN I R N R > rrrr [l o

NNNNN

SHELL

N

Ve N WS ~N VN~ [« 20 JVERS S oCVeENW N~ W ~N NNV e NWw

~N O N W

CHaN

«65759
«29630
.08228
«06592
~.02470

«00568
~.00383
~.00218

«00130

«00106

~e 02558
«02362
~-.00753
«00695

042411
~. 05284
~.03870
-.01810

«01552

~+76763
~e12362
-.11395
«01293
«01078

~e66794
«31690
-.22781
«05974
-.02769

«61552
«37347
~.18507
~«09309

+07360

«30944
«10406
«02332
«01193

L]

- - "~y NN > ra e e

NNV

PLATE
N CHN
2 =.37430
1 -.10529
3 ~.02409
0 47682
2  .45133
1 .08093
1 «96440
3 .19308
2 -.,06599
2 -.48203
1 -.46964
3 ~.24148
2 .66675
0 -.17384
4 .05223
1 1.12932
2-1.02632
3 .92727
3 -.26052
1 -.08745
1 1.00231
3 .96170
2 -.46528

D-14

GENERALIZED MASS (KG)

TOTAL

3.07613

1.05268

1.03311

2.27504

6.31376

3.71841

3.02626

1.65729

SHELL W

2438329

«00025

«00632

«82788

2076903

2.70485

2455327

«48102

PLATE W

«30019

1.05241

1.02654

1.34321

76399

023627

« 18097

1.10579



STIFFENED
MUDE FREQ
NO  (HZ)
17 560.65
18 572.86
19 591.88
20 607.50
21 626401
22 632.02
23 636.15
24 641.20

«032 IN CYLINOER,

MODE
TYPE

ANTI

ANTI

SYMM

ANTI

ANTI

ANTI

SYMNM

SYmMnm

LS U RN (Sl o o W W ww NNNNN NN W Wwwwiw o i Pt pad

[C A C R RN ]

SHELL

N

~N=NO S SNWN NV W [V N N VERP J COVeENW oCWnN S W VN WS -

Ny s W

CHN

-e25827
«19682
« 11259

-.05185
« 02207

-.08551
«03125
«02289
«01994

~:01569

«42559
«28611
«27539
«03191
-.02568

«44272
«32362
«29967
«06404
-«05875

-e29317
«20494
-.09539
«08096
« 04894

222426
-+13579
«12769
«12610
« 09665

« 00462
-.00363
-.00161

«00102

«00100

-. 02553
«02158
-.00763
«00715
-+ 00591

W - [N NNN NN wWwWw ~

LSRR

20 IN RADIUS,

PLATE

N CHN

3 «55091
1 .53220
2 14949
1 .55890
3 L46354
2 21649
2 +06831
3 -.05649
0 -.02208
2 84374
4 425752
3 -.05258
2 1.58856
3 ~.54749
4  L.44915
2  «64039
4 23344
3 .20029
0 .48042
2 45601
1 .07378
1 .95366
3 .19080
2 ~.05895

WITH FLOOR AT 56.6 DEGREES

GENERALIZED MASS (KG)

TOTAL

2.00966

1.22949

1L.73996

2.88669

1.95333

1.99704

1.05173

1.03218

SHELL W

«54454

« 04255

1.52659

l.78872

«66669

«51331

+00018

«00591

PLATE W

1.11528

1.18227

« 00197

« 88336

1.23632

1.07277

1.05154

1.02608



STIFFENED
MUOE FREQ
NO  (#HZ)
25 648.70
26 663,30
27 716.23
28 717.33
29 738.44
30 761.91
31 779.76
32 8l1l.04

«032 IN CYLINDER,

HO0E
TYPE

SYmn

ANTI

ANT I

ANTI

ANT1

SYMM

ANTI

ANT]

x

wWwwww wWwwww P g s NNNNNNN F I B N ) PR B N N NNNNN

NNNNN

SHELL

N

NV W NOWwd VO rwe SCwnmpPbwN SN we NOW,»wW oINS

W= nowm e

CHN

+54137
-0“5167
«01850
«01384
-.00425

-.03615
«01914
«01472

-.01272
«01226

«11594
~e.11451
-.07550

«05392

«03384

-.42010
«16269
-.15887
«11998
-e07240

-e59228

14987
-e12843
-.09905
—e07457

-+.63950
-+35980
-+00670

«00615
-+ 00485

-.60810
-e29025
-+10698
-.08652

e 04237

« 44856
«28040
-e25218
-e14779
-.09074

w W W [WRWY NI L NN > > rea NN

NN

20 IN RADIUS,

PLATE

N

- N ON W w N weN wesnN N W o OoONW

wWas N

CHN

-+31842
-e31722
«11216

«60174
« 53040
«13228

1.12205
«34731
-« 19925

«55423
«29992
«25016

«81512
«50058
-.13113

«31731
«15446
-4 05975

-+25398
-+16348
-«16054

=+33993
e 28072
«05882

WITH FLOOR AT 56.6 DEGREES

GENERALIZED MASS (KG)

ToTaL

3.12167

l.17010

1.33482

2.32071

3.63204

2.90922

2.59160

2410595

SHELL W

222892

+00997

«16827

1.,11855

1.85287

2.41279

2.12986

1.69469

PLATE W

«58061

1.15917

1.15854

»98835

«93833

e31644

«26505

20392



MODE NUMBER 1
FREQUENCY = 188.51
SYMMETRIC MODE
M=1

TOP C/L
*.

»

: SHELL

= DISPLACEMENT
(Cylinder Wall)

o ¥

o ¥

¥

« ¥

. ¥

. ¥

. ¥

. ¥

R *

. ¥

S ¥

* %— 1.0 oK

* Tk
¥* *
* *

FLOOR *F = FLOOR LOCATION
DISPLACEMENT __ . .
* x,
* *.
*.
* *,
* *,
C/LoooaonooootSIDE *
*o
* .
*,
BOTTOM C/L

FIGURE D-2. EXAMPLE SHELL MODE ( Z DEPENDENCY SUPPRESSED)




Fig.D-3 shows another mode, the sixth mode of Table D-1. It is
found to be basically a shell mode. '
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MODE NUMBER 6
FREQUENCY = 301,93
SYMMETRIC MODE
M=1

Top C/L

SHELL
DISPLACEMENT
(Cylinder Wall)
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APPENDIX E - VALIDATION STUDIES

The models of Section 3 are based on fairly precise solutions of
the sound transmission problems. Nevertheless, the models will
have limited prediction accuracy due to errors inherent in the
input data that is used to describe the various physical systems
involved, i.e., exterior field, fuselage structure, cabin acous-
tic space, sidewall trim, etc. The primary goal of the present
modeling effort has been to minimize these errors through
elaborate, though limited, system models. Although the overall
quality that has been achieved is not predictable, it 1is
measurable, and a test has been devised for that purpose.

Test Hardware

The test configuration is very similar to that represented in
Figure 1. The actual test rig and hardware are shown in Figures
E-1 through E-3. As seen in Figure E-1, the fuselage and the
propeller are located downstream of a nozzle that supplies air
to simulate airplane forward velocity. The fuselage model
itself is a cylinder 1.83m (72 in.) long and 1.02m (40 in.) in
diameter. The skin is 0.00081lm (0.032 in.) thick and is
stiffened by eighteen (18) stringers spaced on 20° centers. The
stringers are 90° angles having dimensions of approximately '
0.00953 x 0.0112 x 0.00051lm (3/8 x 7/16 x 0.020 in.). They are
riveted to the inside of the skin and pass through cut-outs in
eight (8) internal ring frames that are spaced along the
cylinder every 0.2m (8 in.) The frames are aluminum channels
with dimensions of approximately 0.017 x 0.038 x 0.00081m (5/8 x
1-1/2 x 0.032 in.).

The cylinder has a structurally integral floor consistihg of a
0.00081m (0.032 in.) plate stiffened by floor supports of the
same thickness spaced every 0.2m (8 in.). The supports extend
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0.00081 m (0.032 in.) skin
1.016 m (40 in.) diameter
x 1.83m (72 in.) long

0.046 m
(1.8 in.)
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(0.67 x 1.5 in.) channel,
0.2 m (8 in.) spacing.

8 req'd.
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downward from the floor to the bottom of the cylinder. There
are also two floor beams (channels of the same dimensions as the
cylinder ring frames) that run longitudinally, each located
approximately 0.13m (5.1 in.) from the center of the floor. The
width of the floor is 0.85m (33.4 in.) leading to a floor angle
6, of 56.6 degrees (see Fig.D.1l). The outer edge of the floor
is bolted to the cylinder wall. The cylinder is closed by
0.013m (1/2 in.) thick end caps that are used to support the
cylinder in the NASA Langley propeller test facility. The
entire fuselage assembly is constructed of 2024-~T3 aluminum.

Propeller

The propeller is a three-bladed, 0.3 scale Hartzell for a Twin
Otter aircraft with a diameter of 0.76m (30 in.). Iﬁ is driven
by a 30 kw (40 horsepower) variable speed electric motor capable
of turning it up to 8000 rpm. The propeller blades are _
Series 16 airfoils. The geometry of the blades is specified in
the input data to the ANOPP Propeller Noilse Prediction program.

" The data used to define the particular propeller used in the
present test are proprietary and thus are not included here. In
the present circumstance the angle-of-attack and local chord
are specified as a function of radial location. Airfoil coordi-
nates are specified for several locations and then interpolated
as required with a cubic spline to fix these variables at all
locations on the blade.

Figure E-4 shows the grid coordinates used for the calculations
required in the-present test. There are 160 points on the upper
quarter of the cylinder. 1In the present test rig, each position
on the grid, i.e., (k,%) lying in the fuselage surface, has

coordinates defined by the equivalence relation

. L 2 k
) (k,,Q,) i (xl, X2, X3) ’

where (in meters):



FIGURE E-4, GRID USED FOR PROPELLER NOISE PREDICTIONS




x% = 0.457 + 0.508 {1l-cos[(2-1)-1/18]}
xg = -0.508 sin[(8&-1)-7/18]

and
xz = 0.622 - 0.089 (k-1) .

This grid covers all of the upper quarter surface of the
cylinder forward of the propeller and a somewhat greater amount
behind it. Because of the lengthy calculations involved in the
ANOPP program, the data for the lower quarter of the cylinder
seen by the propeller are obtained from the data for the top
quarter with the relation (imagining an identical grid below the

centerline)

L 2 Kk 2 2k
p(xl,x2, x3, t) = p(xl,—x2,x3, t—TKQ) T

where Ty, 1s a time delay given in milliseconds by the result

~ 333.33

Tye N

kg

N is the propeller rpm and o,, 1is in degrees and is given by
the result

L L

The propeller harmonic amplitudes at corresponding points above

and below the centerline are given by

kx
H

'le

A = A
i ‘bottom

top

and the corresponding phases (in degrees) are related by

k&
¢H

k2| T
= ¢ ' + —%& x H x 360° R

bottom H | top 1
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-1
where Ty = BPF is in milliseconds and H is the harmonic index.
This can also be written as
k& k2 |
= ¢

¢
H bottom H top
where B is the number of propeller blades.

+ 2BHakZ

' Conversion to the coordinate system used in Figures 1 and 2 in

the body of this report is with the relations

z. =z - x&
k p 3 ’

and (using ¢ = 7/2 in Fig.2)
e = E + tan-l ___iz____ = ¢ + (R,_l) T
L2 - x* D 18
p 1
The coordinates of the grid point (k,%) are given by the
equivalence statement
(k,2) < (a,el,zk)

In the present test, rp = 0.965m (38 in.) and zp = 0.662m
(2%.5 in.). The resulting grid has spacing A of approximately

0.089m (3.5 in.). This spacing is sufficiently close to assure
a relatively smooth change in phase for each propeller harmonic

from grid point-to-point.

Test Description

The test program discussed in this appendix was conducted at
NASA Langley Research Center by NASA personnel. The main test
involved the transmission of propeller noise into the interior
of the model cylinder. For this test the cylinder and propeller
were mounted in an anechoic chamber in the configurationvshown
in Figure E-1. Additional tests were performed in a reverbera-
tion chamber to measure the noise reduction associated with a
reverberant sound field. Also, decay measurements were made on
the acoustic field in the cylinder and the structural vibration
of the cylinder td determine empirical loss factors.



The interior of the cylinder was treated with fiber glass blank-
ets with a density of 9.61 kg/m3 (0.6 1b/ft3). The blankets
were applied in layers which were nominally 1.3 cm (0.5 inch)
thick, four layers with a total nominal thickness of 5.1 cm (2
inch) being applied to the curved surfaces and one layer to the
end plates. One face of each layer had a vinyl facing with a
thickness of 0.005 (0.002 inch); the total surface density of
one layer plus facing was 0.22 kg/m2 (0.045 1b/ft2). On the
curved surface, three of the fiberglass layers were placed
between the frames and the fourth layer covered the frame caps.
The inner surface of the fiberglass treatment on the curved-
walls was covered with a trim septum consisting of a sheet of
epoxy/fiberglass NEMA G-10 (0.079 cm or 0.031 inch thick) from
floor to floor, and a sheet of vinyl (of the same thickness)
over the upper 120° of the cylinder. The installation is shown
diagrammatically in Figure E-5. The trim was hard-mounted to
the floor and attached to the frames by nine soft-mounted
screws. The total weight of the trim septum was 6.58 kg (1l4.51
1b).

During the propeller noise test, sound levels inside the cylin-
der were measured using an array of eleven microphones which
could be located at any selected station along the cylinder and
could be rotated about the cylinder axis. Measurements were
made at a total of 196 locations, consisting of 49 locations at
each of four axial stations. The stations were chosen so that
the interior of the cylinder was divided into four segments of
equal volume. Figure E-6 shows the microphone locations on the
rotating array. The array was positioned at angular locations

= 0°, + 51.5° and +103°. The radial positions of the micro-
phones were chosen such that all microphones were associlated
with approximately equal cross-sectional areas. The sound
levels measured at the different microphone locatlons were
averaged on an energy basis to obtaln space-average sound
pressure levels for each measurement axlal station and for the
cylinder as a whole.
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Measurements were made by NASA at several test conditions, but
results for only one condition are considered in this appendix.
The airflow speed into the propeller was 23.8 m/s (78 ft/sec)
and the propeller rotational speed was 4000 rpm. The resulting
fundamental, or first harmonic, of the blade passage frequency
is 200 Hz.

In the case of the noise reduction tests for reverberant excita-
tion, sound levels were measured at-only two axial stations, one
at the mid-point of the cylinder and the other at the one-sixth
point. Symmetry was then assumed about the mid-point of the
cylinder length in order to calculate space-average sound

pressure levels.

The bulk of the data reduction was performed in terms of one-

third octave band spectra. However, a small amount of narrow-

band analysis was performed in order to obtain a better under-
standing of the data.

Measured Interior Sound Levels

Typical narrowband sound pressure level spectra measured at two
locations in the cylinder are shown in Figure E-7. The two
selected locations are close to the plane of rotation of the
propeller (x3/D = 0.015 where D is the propeller diameter),
microphone #1 being near to the center of the cylinder and #8
near to the periphery (as shown in Figure E-6). Figure E-7
shows that the contributions associated with the three lowest-
order harmonics are easily identified but that contributions
from higher-order harmonics may be difficult to identify.' This
masking of the discrete frequency components by the broadband
signal limits the upper frequency bound on the useful propeller
noise data, particularly when, as in the present case, much of
the data presentation is in terms of one-third octave band
spectra.

-12
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Average one-third octave band sound pressure level spectra are
shown in Figure E-8 for each of the four axial stations of the
microphone array. Little variation in sound pressure level is
observed from station to station. The space-average spectrun
for the cylinder as a whole is plotted in Figure E-9, which
~also contains the range of measured sound pressure levels. The
space-average values are compared in Figure E-10 with associated
95% confidence limits. Because of the large number of samples,

the 95% confidence intervals are small.

‘The spectra show distinct peaks in the frequency bands centered
at 200, 400 and 630 Hz, the sound levels in these bands being
controlled by the contributions from the first, second and thirad
harmonics of the blade passage frequency. At higher frequen-
cies, the broadband contributions become important, as indicated
in Figure E-7, and the one-third octave band spectra ahe rela-
tively smooth. The harmonic components may be Significantly
lower in level than are the corresponding one-third octave band

ievels.

Propeller Noise Field

The analytical model to predict sound levels in the cylinder
uses, as data input, a description of the propeller noise field
(in terms of pressure amplitude and phase) computed for free-—
field conditions using the NASA ANOPP computer program. The
blocked pressures are then calculated within the present analy-

tical model using the relationship given in Eq. (43).

During the test program at NASA, sound pressure levels were
measured at several free-field locations surrounding the model
propeller, and at other locations on a rigid-wall cylinder
placed close to the propeller. A brief'comparison of the
measured and predicted sound levels has been performed to get an
indication of the:accuracy with which the predictions fit the
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test environment. This comparisbn was made for axial locations
associated with grid line & = 1 shown in Figure E-4. The com-

parison was restricted to pressure level, because no phase data
were available from-the test program.

The comparison of measured and predicted free-field pressure
-levels is shown in Figure E-11. In this case both the measure-
ments and the predictions were performed by NASA personnel. The
agreement is generally good except at large distances from the
plane of rotation where the pressure levels are relatively low
and could be affected by broadband flow noise.

Figure E-12 contains the corresponding comparison for the
pressure field on a rigid cylinder (i.e., the blocked pressure).
The test data were obtained directly from NASA measurements and
the predictions from the application of Eq.(43) to the output of
ANOPP. The equation provides an empirical relationship for '
calculating the effect of pressure reflections at the surfiace of
the cylinder. 1In general the predicted levels are higher than
the measured values, the differences being 0 to 5 dB at loca-
tions in the neighborhood of the plane of rotation where the
pressure levels are highest.

Acoustic Loss Factors

Acoustic reverberation decay measurements were made inside the
test cylinder using pink noise and sinusoidal excitations.
Acoustic absorption coefficients were computed from the

reverberation time TR using the relationship

17.6nV

a:
COSTR

where S and V are, respectively, the surface area and volume of
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the interior of the cylinder. Values of a, averaged over
approximate one-third octave bands, are given in Figure E-13.

The acoustic loss factor n, was computed from the equation

Resulting values for the acoustic loss factor are plotted in
Figure E-14,

Also contained in Figure E-14 are band-average values of the
acoustic loss factor calculated using the analytical model out-
lined in Appendix A. It is necessary in this analytical model
to assign a value to the structural loss factor N of the trim
septum. A’ value of 0.5 was assumed in [7] for the trim loss
factor, on the basis of the best fit with test data then avail-
able. The same value was assumed initially for the present -
analysis. At frequencies above 500 Hz, the measured data are
scattered about the predicted spectrum, but at lower frequencies
" the predicted values are significantly higher than the measure-
ments.

When the trim structural loss factor was increased by a factor
of 2 to a value of 1.0, the calculated acoustic loss factor
decreased in the 250 Hz band (which contains a predicted reson-
ance frequency of the trim) but the change at other frequencies
was small or negligible. The disagreement between measurements
and predictions in the lower frequency range was not affected to
any significant extent.

Structural Loss Factor

The damping of the cylinder structure was determined experi-
mentally from vibration decay measurements using sinusoidal
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excitation. The resulting empirical values are plotted in
Figure E.15, where they are compared with band-average values
predicted on the basis of the analytical model given in
Appendix A. The analytical model includes the influence of the
sidewall trim and requires, as an input, an assigned value for
the trim structural loss factor Np. The two calculated loss
‘factor spectra in Figure E-15 assumed trim loss factors of 0.5
and 1.0.

The comparison of measured and predicted values shows good
agreement at frequencies above 400 Hz, but the single experimen-
tal data point at lower frequencies is an order of magnitude
smaller than the cbrresponding predicted values. For diagnostic
purposes, an alternative analytical representation was construc-
ted whereby the structural loss factor was arbitrarily limited
to a maximum value of 0.15 in the frequency band below 400 Hz.

Predicted Interior Sound Levels

The model scale experiments discussed in the preceding sections
of this appendix were performed in order to obtain data for
comparison with sound levels predicted using the analytical
model described in this report. The predictions were made
using a computer program based on the analytical model outlined

in this report.

Initially, the interior sound levels were calculated without
placing any restraints on the structural loss factor for the
cylinder and with an assumed structural loss factor for the trim
of Np = 0.5. Space-average sound pressure levels were cdmputed
for the five lowest-order harmonics of the propeller blade
passage frequency. These levels are compared in Figures E-16
with the range of measured values and the associated space-
average levels, and in Figure E-17 with the average and 95%
confidence limits. The predicted sound levels refer to discrete
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frequencies whereas the measured levels are associated with
one-third octave bands. However the harmonic frequencies of
200, 400, 600, 800 and 1000 Hz are centered within the corre-
sponding one-third octave bands so that there should be no

filter cut-off problems.

‘The comparisons show that the predicted levels are generally
lower than the corresponding measured one-third octave band
space-average levels. The largest difference occurs in the
highest order harmonic considered (1000 Hz) where the measured
levels may be dominated by broadband noise rather than the dis-
crete frequency component associated with the propeller blade

passage sound.

A small number of parametric studies have been performed in
order to assess the sensitivity of the analytical model 'to
various factors. These studies were limited to considerations
of the changes in trim and cylinder structural loss factors
discussed previously. In summary, the trim structural loss
factor was assigned a value of 1.0 and the cylinder structural
loss factor was limited to a maximum value of 0.15. The result-
ing predicted interior sound levels are shown in Figure E-18.
The effect of the changes of the loss factors was small except
for the first harmonic at 200 Hz. The predicted level at this
frequency now lies within 2 dB of the measured one-third octave
band space-average value, instead of being 10 dB lower as shown
in Figure E-17 for the initial calculations.

Further diagnostic analysis is highly desirable, particularly
with respect to the model for the sidewall treatment, but such

analysis was not possible in the present study.
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Noise Reduction

In addition to predicting the transmission of propeller noise
into an airplane fuselage, the analytical model also contains a
capability for calculating the noise reduction associated with
a reverberant incident sound field. This capability has been
‘the subject of validation studies in earlier phases of the
development of the analytical model [3,7]. Additional compari-

sons are discussed here.

Interior sound pressure levels were measured at two axial
stations inside the cylinder, and average noise reductions
computed for the two stations. The resulting noise reduction
spectra are plotted in Figures E-19 and E-20. At frequencies of
160 Hz and above the two average spectra have similar values, as
was the case in Figure E-8 for propeller noise excitation.

There are, however, large differences in noise reductions for
the two stations at frequencies of 80 and 100 Hz.

Space-average noise reductions for the cylinder as a whole were
computed assuming that the sound field in the cylinder was
symmetrical about the mid-point of the cylinder length. The
space-average spectrum is shown in Figure E-21 with the range of
measured values and in Figure E-22 with 95% confidence limits.

Figures E-21 and E-22 also contain the space-average noilse
reductions which were computed. It was assumed for these calcu-
lations that the trim structural loss factor was Np = 1.0 and
the structural loss factor n; was limited to a maximum value of
0.15. 1In addition, allowance was made for noise transmission
through the end plates; the method used was the same as that in
(7] and it was applied to the four lowest frequency bands, 80 to
160 Hz. Without this modification the analytical model would
predict significantly higher noise reductions at low frequen-
cies.
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The computer program assumes that no noise is transmitted
through the ends of the cylinder, since such contributions are
not usually important in aircraft. Furthermore, because of the
directivity characteristics of propeller noise, the noise levels
on the end plates of the test cylinder would be low when the
cylinder was exposed to the propeller excitation. Thus, noise
transmission through the end plates would be negligible in the
propeller noise test. The contribution becomes significant

only for reverberant field excitation.

The agreement between measured and predicted noise reductions is
not as good as was the case for propeller noise excitation. The
discrepancy between predicted and measured noise reductions at
high frequencies was observed in previous data [7] where it was
believed to be due to flanking paths through exposed stiffeners.
There are no flanking paths of this type in the present test:
model. Two possible explanations for the discrepancy are (a)
other flanking paths are present, and (b) the analytical model
over-estimates the influence of the sidewall treatment.

The noise transmission measurements were repeated with the
fiberglass treatment on the end plates increased from a thick-
ness of 1.3 cm (0.5 inch) to 3.1 ecm (2 inches). The resulting
change 1n measured space-average noise reduction is showr ir
Figure E-23 which contains spectra associated with the two
treatments. Figure E-23 contains corresponding predicted noise
reduction spectra. The two figures show somewhat different
trends with the predictions giving an increase 1n noise reduc-
tion in the frequency range 315 to 1250 Hz whereas the increase
in measured noise reduction occurs mainly at frequencies above
800 Hz.

The predicted spectra in Figure E-24 are influenced directly by
the analytical model for the fiber glass material on the end
plates. PFigure E-25 compares the acoustic loss factors computed
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for the interior of the cylinder for the two end plate treat-
ments. The results show that a resonance-type effect predicted
for the trim is shifted down in frequency from 1600 Hz for the
1.3 em treatment on the end plates to 500 Hz for the 5.1 cm

treatment.

General Comments

This brief discussion of validation studies for the analytical
model has shown fairly good agreement between predicted and
measured sound levels in a cylinder exposed to propeller noise
excitation. The discussion has also identified several items
for future study in order to improve the analytical model. For
the propeller noise pressure field, the procedure for estimating
pressure reflection effects should be reviewed. Also, the ana-
lytical model for relative phase between the upper and lower
grids should be validated.

The present analysis represents the first time that the sidewall
treatment has been incorprated as an integral part of the sound
transmission model. As such, the analysis makes a major step in
providing a comprehensive model for airplane interior noise.

The validation studies indicate that some improvements to the
sidewall treatment model are required in order to improve the
agreement between predictions and measurements. It is recom-
mended that these improvements be made.
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LIST OF SYMBOLS



or

Al

|

(A +A")

T 3

m
ao/2

arctan
r

rctan
a n}

B

BPF

LIST OF SYMBOLS
Cylinder surface area, used in Eq.(4).
Interior (cylinder & floor) surface area, used in
conjunction with structural/acoustic coupling
function f'(n,r)
Transmitting area of cylinder without trim
Exterior cylinder surface area
Transmitting area of cylinder with trim
Total transmitting area of cylinder, floor to floor
Amplitude of Fourier component of blocked propeller
pressure signature at propeller harmonic H and grid

location m = (k,%), see Eq.(43)

Amplitude of PFourier component of free field propel-
ler pressure at harmonic H and grid location m=(k, %)

Radius of cylinder

Fourier series coeffficient of propeller pressure,
for harmonic H at location m; see Egs.(27),29)

Mean propeller pressure amplitude at location m
(defined in Eq.(28))

Functions defined in Section 3.3, Eq.(l7), et seq
Number of propeller blades

Propeller blade passage frequency (Hz); BPF = 5
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LIST OF SYMBOLS

(Continued)
b, ,b, Functions defined in Section 3.3, Eq.(17) et seq
bg Fourier series coefficient of propeller pressure
for harmonic H at location m; see Egs.(27),(29)

c(J) Function defined in Eq. (76)

Z
Cin(z) Cosine integral; Cin(z) ﬁL(l-cost)dt/t
Cprcsr
Mn®Mn Floor and shell generalized coordinates for

structural mode r = (M,N); see Eqgs.(46)-(49)

Cpbl(ﬂ X';w) Cospectral density function of the blocked
exterior pressure field

Cp (X X';w) Cospectral density function of the exterior
pressure field

CuwsCiysCy Trim parameter, derived from the trim transfer
R
matrix, Eq.(A.8); C, = C, 1 iCi

CX(E,w)Cy(c,w) Cospectral density functions of the exterior
pressure field in the axial and transverse

directions respectively; see Eq.(60)

Co Speed of sound in air
ChsCp Functions defined in Section 3.3, Eq.(17) et seq
Cuw Constant percentage bandwidth parameter, where

Aw = c, W [Cw = 0.232 for one-third octave bands]



LIST OF SYMBOLS

(Continued)
Dnr Function defined in Section 3.3, Eq.(17) et seq
E[ ] Expected value of a function
f'(n,r) Interior structural/acoustic coupling factor; see

Eq. (45)

f'(n,r)=F'(qi,r) Interior structural/acoustic coupling factor

including effect of trim factor Tt, see
Eq.(52)
f1 Frequency of propeller lst harmonic; f, = l/TO =
BPF
fy Frequency of propeller harmonic H; fH = Hfl
fqm Acoustic/structural coupling factor in axial
' direction; see Eq.(57)
gns8p Functlons defined in Section 3.2, page 3-11
H Propeller harmonic order, used as superscript to
denote functions evaluated at frequency Wy
i Acoustic mode number counter for fuselage cross-
section modes, assoclated with mode n z(q,1)
111213 Integrals defined in Equations (63) and (70)-(73)
J Circumferential location on fuselage wall, ej, a

boundary point at which the acoustic eigenvector
is evaluated (see Fig.C-2)



2
JI\:I(w)
s 2
JN(w)

J;(w)
_Zrev(

w)

<32(w>>§ev

or

LIST OF SYMBOLS
(Continued)

Structural joint acceptance function in axial

direction

Structural Jjoint acceptance function in
circumferential direction

Structural Jjoint acceptance in axial and
circumferential directions; jé(w) = JﬁN(w)
(w) Jg(w); see Eq.(58)

2
Iy
Joint acceptance for reverberant/diffuse

excitation

Joint acceptance for reverberant excitation

averaged over structural modes resonant in band Aw
Acoustic wave number, k = 27/

Axial non-dimensional coordinate for grid point;

see Figure E-1
Fuselage structure length
Floor width (wall to wall)

Circumferential non-dimensional coordinate for
grid point; see Figure E-U4)

Functions defined in Section 3.3, Eq.17 et seq
Number of axial half-wavelengths for structural

mode r = (M,N)
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M
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m = (k,q)
or
m
N
or
N
NpsNp
n
or
n
n*
1
nn
nl"

LIST OF SYMBOLS
(Continued)

Generalized modal mass, for structure mode r

Grid point on surface of cylinder used for
propeller noise predictions; see Figure E-Y4

Average surface mass/unit area of cylinder

Structural mode counter, associated with mode
r = (M,N)

Propeller rpm

Number of acoustic modes or structural modes in

frequency band Aw

Symbolizes acoustic mode n = (q,1i)

Number of circumferential wavelengths (or
transverse half-wavelengths) in fuselage

shell (or floor); see Eqs.46-49,

Number of terms in displacement series for
fuselage shell (or floor)

Number of boundary points on the fuselage shell
(or floor) at which the acoustic eigenvectors are
defined

Modal density of acoustic modes

Modal density of structural modes



P(wp)
p(w,)

pbl(x,t)

<pé1>

<p}(E,w)>

<p2>
pn s,t

t

LIST OF SYMBOLS
(Continued)

Probability distribution function for W in Aw
Probability density function for W, in Aw

Exterior pressure over the blocked (immobile)

fuselage
Band-limited mean square blocked pressure
Interior mean square pressure at location f

Space-averaged band-limited mean square interior
pressure

Space-averaged band-limited mean square exterior
pressure for a reverberant field

Space-averaged band-limited mean square modal
pressure, for nth mode in interior volume V

Function defined in Section 3.2, Eq.(12)

Number of axial half-wavelengths for acoustic mode
n = (q,i)

Symbolizes structural mode r = (M,N)

Radial distance from center of fuselage cylinder
to the axis of rotation of the propeller.



LIST OF SYMBOLS
(Continued)

prl(ﬂ x';w) Average cross correlation of the exterior

blocked pressure over the fuselage

S Absorbing surface area of fuselage sidewall

Se Absorbing surface area on each end surface
(bulkhead)

Sp(w) Power spectral density of exterior pressure

Spbl(w) Power spectral density of exterior blocked
pressure

Spbl(ili';w) Cross spectral density of exterior blocked

pressure

Si(z) Sine integral; Si(z) = ﬁf sint.dt/t

t time

T Period of rotation of propeller; T = 60/N

To’Tl Period of propeller noise signature; TO= T1 =
(BPF)™1 = 7/B

u In-plane axial displacement of cylinder wall (or
floor) '

\' Volume of cavity

\ Circumferential (or transverse) displacement of
cylinder wall (or floor)

wdiss Power dissipated on the cabin walls
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LIST OF SYMBOLS

(Continued)
Net power inflow

Spectral density of power radiated by structure
into interior acoustic space

Spectral density of power absorbed on inner wall
of the space from interior acoustic field

Cylinder wall (or floor) normal displacement
Transverse coordinate; see Figure 1
Location on exterior surface of fuselage

Location of grid point on exterior surface of

fuselage

Local coordinate systems; see Figure E-U
Vertical coordinate, relative to fuselage
centerline (see Figure 1)

Axial coordinate, relative to forward end of the
fuselage structure (of length L); see Figure E-4

Axial coordinate for grid point k, see Figure E-U4
Location of propeller relative to the forward end

of the fuselage structure (of length L); see
Figure 1)
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LIST OF SYMBOLS
(Continued)

Band average absorption coefficient

Incidence angle between propeller and location im;

see Figure 2 (in degrees)
Grid spacing for propeller noise predictions

Area associated with each grid point; see Figure E-J

Aw(radians/sec) Frequency band of width Aw = wa

6 (

n{Aw symbolizes modes resonant below band
neAw symbolizes modes resonant inslde band
n>Aw symbolizes modes resonant above band

Delta function

= V/fv¢;d§ Acoustic mode normalization factor

Acoustic mode nérmalizing-factor in axial direction

. (see Eq.C.11)

Transverse coordinate; see Section 3.6
Acoustic mode loss factor
Structural mode loss factor

Structural loss factor, including damping due to
trim; Eq.(82)

Internal radiation loss factor, due to closely

coupléd structural and acoustic modes; Eq.(83)



LIST OF SYMBOLS

(Continued)

ﬁn Average one-third octave band acoustic mode loss
factor

iy = [ 1t ext _

N, nr+nr +nrad Average one-third octave band structural mode

loss factor

:truc Average one-third octave band structural loss
factor

rad R

N, Average one-third octave band radiation loss factor

n;gg,nigg Average one-third octave band internal and external
radiation loss factors defined after Eq.(19)

S Angular coordinate, relative to fuselage bottom
centerline; see Figure 1

6,y Angular coordinate for grid location (k,2)

IS Angle at which fuselage shell/floor joint is
located

ej Angle 6 for point j on fuselage wall, a boundary
point for the acoustic eigenvectors

61j62j Angles defining mid-points between boundary point j
and adJjacent boundary points

£ Axial coordinate; see Section 3.6

or
€ Conductance for trim on end surface of cylinder

interior



or

LIST OF SYMBOLS
(Continued)

Interior cavity location

Conductance for trim on cylinder (fuselage) sidewall
Density of air inside the cylinder

Density of air outside the cylinder

Time delay for cross-correlation

Acoustic transmission coefficient for diffuse field
excitation; t = Tet TR

Field incidence transmission coefficient for mass -
controlled panels; defined in Eq.(20)

) Mass law sound transmission coefficient

Trim transmission coefficient, defined in Eq.(A.22)

Resonance transmission coefficient for diffuse
field, defined in Eq. (19)

Generalized mass for two-~-dimensional acoustic mode
i, defined in Appendix C

Angular position of propeller hub relative to
fuselage bottom centerline; see Figure 2

Phase of Fourier component of propeller pressure

signature at propeller harmonic H and grid location
m = (k,2)
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LIST OF SYMBOLS

(Continued)
¢n(§) = ¢qi(§) Mode shape, or eigenfunction, of the nth mode
cf the cavity at location 3

9;(85) Mode shape of ith acoustic mode of the fuselage
cross-section evaluated on the fuselage wall at
location j, angle ej

WG(P,H) Generalized modal forcing function due to propel-
ler noise, mode r at propeller harmonic H; see
Section 3.4

wr(§) Mode shape, or eigenfunction, of the rth mode of the
structure, at location x

wg(Z,X) Floor displacement in structure mode r

wg(z,e) Fuselage shell displacement in structure mode r

® Angular frequency (rads/sec)

Wy Angular frequency of propeller harmonic H

W, Acoustic mode resonance angular frequency

w, Structure mode resonance angular frequency

< >S t Band-limited, space-averaged and time-averaged value

3

F-12



1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA CR-3813

4. Title and Subtitle

5. Report Date

July 1984
PROPELLER AIRCRAFT INTERIOR NOISE MODEL

6. Performing Organization Code

7. Author(s!} .| 8. Performing Organization Report No.
L. D. Pope, E. G. Wilby, and J. F. Wilby 5058
9. Performing Organization Name and Address 10. Work Unit No.

BOLT BERANEK AND NEWMAN INC.

21120 Vanowen Street - 11. Contract or Grant No.
Canoga Park, CA 91303 'NAS1-15782

13. Type of Report and Period Covered

12. Sponsorina Agency Name and Address

Contractor Report
National Aeronautics and Space Administration

Washington, DC 20546

14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor: William H. Mayes

16. Abstract

An analytical model has been developed to predict the interior noise of
propeller-driven aircraft. The fuselage model is that of a cylinder
with a structurally-integral floor. The cabin sidewall is stiffened by
stringers and ring frames, and the floor by longitudinal beams. The
cabin interior is covered with a sidewall treatmsnt consisting of layers
of porous material and an impervious trim septum. Representation of the
propeller pressure field is utilized as input data in the form of the
propeller noise signature at a series of locations on a grid over the
fuselage structure. Results obtained from the analytical model are

compared with test data measured by NASA in a scale model cylindrical
fuselage excited by a model propeller.

)

17. Key Words (Selected by Author(s)) 18. Distribution Statement

Aircraft Interior Noise
Propeller Noise

Cylinder Noise Reduction L
Acoustic Power Flow Subject Category 71

Unclassified - Unlimited

19. Security Classif. (of this report) | 20. Security Classif. (of this page) 21. No. of Pages | 22. Price®

Unclassified Unclassified 166 AO8

*For sale by the Nationa! Technical information Service, Springfield, Virginia 22161,

NASA-Langley, 1984





