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1.0 SUMMARY

An analytical model for aircraft interior noise prediction is

considered in this report. The model can be used to predict the

sound levels inside an airplane cabin caused by the rotation of

a propeller (of any design) alongside. The fuselage model is

that of a cylinder with a structurally integral floor. The

cabin sidewall and the floor are stiffened by ring frames and

stringers or floor beams of arbitrary configurations. The cabin

interior is covered with a trim (i.e., layers of insulation and

septa with a lining) to increase the sidewall sound isolation

and provide absorption in the cabin.

The results are the culmination of a three phase program

sponsored by NASA Langley Research Center. In Phase I the basic

analytical modeling of the transmission problem (interaction of

the structure with the exterior and interior acoustic fields)

was undertaken and preliminary validation studies were completed

using an unpressurized, unstiffened cylinder as a test article.

Results of that work are presented in Reference [3]. In Phase

II, the general aircraft interior noise model was developed and

preliminary work on the laying out of the basic master computer

program began. Validation studies were conducted using more

advanced test articles (one being a stiffened cylinder with a

floor partition and interior trim). Results of that work are

found in References [4] and [7]. In Phase III, the analytical

models and the software were completed (including the propeller

excitation work). Validation studies using a scale model fuse-

lage excited by a propeller were undertaken and the documenta-

tion of the finalized model and software package was completed.

The present model is believed to be the only one in existence

that can be used to calculate the interior sound levels using as

input data, the precise propeller noise signature over the

fuselage.



2.0 INTRODUCTION

This report presents the details of a basic airplane interior

noise model. The elements of this model include a fuselage and

a propeller (Figures 1 and 2). The fuselage consists of a cy-

linder stiffened by ring frames and stringers, and a floor that

is structurally an integral part of the fuselage. The cabin

space is the volume above the floor. The interior surface of

the cabin (sidewall) is finished out with a trim consisting of

insulation covered with a lining. The propeller rotates about an

axis parallel to the centerline of the fuselage. The model can

be used to predict the sound levels in the cabin space for each

of the various harmonics of the propeller.

The excitation of the exterior of the fuselage is obtained using

a propeller noise prediction model developed by NASA Langley.

The present model works with the pressure time histories (signa-

tures) as defined over the fuselage at a number of closely

spaced points on a grid that lies in the fuselage skin. The

pressure signatures are Fourier analyzed to define the ampli-

tudes and phases of each of the harmonics of the propeller tones

(at each location on the grid). The cross power spectral den-

sity function for each harmonic, for all grid point pairs (a
\

delta function in the frequency domain) is used to compute the

values of the generalized forces for each structural mode of the

fuselage.

The fuselage structural modes are developed for the case of a

stiffened cylinder with a floor partition. The structural modes

are described by their eigenvalues (resonance frequencies),

eigenvectors (mode shapes), and loss factors. The mode shapes

include not only the cylinder wall normal displacement (w com-

ponent) but also the normal displacement of the floor, and the

in-plane axial and circumferential displacements (u and v

components) of cylinder and floor as well. The loss factors of



FIGURE 1. PROPELLER A IRCRAFT INTERIOR NOISE MODEL 
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the bare fuselage are input and must come from measurements.

When trim is installed on the sidewall, the structural losses

increase due to the trim's presence against the sidewall and

this is computed for the particular trim installation.

The displacement of the trim lining induced by the fuselage skin

vibration is determined using a transfer matrix which relates

the pressures on the inside of the skin and the inside of the

lining to the displacement of the skin and of the lining. The

transfer matrix contains all of the physical properties of the

insulation and lining required for the calculation. The wave

impedance of the insulation and complex acoustic wavenumber are

input as physical parameters to describe the insulation.

The coupling of the lining to the interior acoustic field is

calculated for each acoustic and structural mode. The acoustic

modes are defined by their resonance frequencies, mode shapes,

and loss factors. The acoustic loss factors must be input for a

bare fuselage but are calculated when a cabin trim is installed,

from elements of the trim transfer matrix.

The model allows for the calculation of the space average mean

square pressure in the cabin for each propeller harmonic, (up to

a maximum of ten (10) harmonics).

2.1 Report Organization

This report considers the analytical derivations, experimental

tests, and validation studies. The analytical derivations are

presented in Section 3 and Appendices A through D. Appendix E

is devoted to test comparisons and to the determination of the

quality of the predictions. Appendix F is a list of symbols

used.

Early in Section 3, general solutions are given for the basic

sound transmission problems of concern. Problems of tone



transmission (propeller) and noise transmission (reverberant

exterior field) are considered. Solutions that are to be used

in the low and high frequency regimes are presented (the low

frequency formulations apply until the acoustic modal density of

the cabin space is equivalent to 10 to 15 modes in every one-

third octave band). Beginning with Section 3.4, the various

terms appearing in the general solutions are evaluated, literal-

ly specialized to create the desired interior noise model.

These terms include the generalized forces for propeller noise

excitation, interior coupling factors, joint acceptances,

resonance frequencies and loss factors. Information needed to

complete these calculations are derived in the first four

appendices.

The model validation undertaken in Phase III is considered in

Appendix E. The experiment and the data acquired are discussed

and a statistical comparison of predictions and measurements is

presented.

2.2 Program Management

The work was accomplished in joint effort by BBN/Los Angeles and

NASA Langley Research Center. The experimental work was done at

NASA Langley by C. M. Willis and W. H. Mayes. Mr. Mayes acted

as LaRC technical representative of the contracting officer

(TRCO). L. D. Pope served as BBN program manager.



3.0 ELEMENTS OP THE PROPELLER AIRCRAFT INTERIOR

NOISE MODEL

A detailed description of the propeller aircraft interior

noise prediction model is given in the following paragraphs.

It is the intention of the authors to present all of the

background needed to understand the equations and their

origins. This is done partly through the use of a series of

Appendices that summarize the primary results from two

previous phases and the now concluding phase of work that

have led to the present model. References to some published

papers and books are also required.

A concern in this report is to define a reasonable level at

which to begin the technical presentation. This model is

based on the general solutions of sound transmission prob-

lems for cases of tonal and broadband noise excitations.

Parts of the report deal with the theory of fluid-structure

interaction problems with direction at the development of a

sufficiently general solution as needed for the present

purpose. Because the propeller is an integral part of the

model the field of "aeroacoustics" is inherently involved.

Due to the complexity of the fuselage models and the geomet-

ry of the cabin space, the structural dynamics of stiffened

shell structures must be considered and numerical procedures

for calculation of the acoustic characteristics of complex

spaces devised. The presence of sidewall trim (insulation

and lining) leads to the use of the properties of porous

materials.

The ultimate user of this model will not necessarily be

knowledgeable in all of these areas. For instance, one well

versed in the fluid-structure intraction problem may have

little or no experience in propeller noise. Keeping this in



mind, an effort has been made to ease the transition between

the various disciplines and the introduction to each topic

is kept at what might be considered an intermediate level.

3.1 General Solution for the Sound Transmission Problem

The fundamental goal of this model is the prediction of the

sound level inside an airplane cabin due to noise on the

exterior caused by the 'rotation of a propeller. The

propeller noise of concern is at discrete frequencies and is

not really a noise at all, rather a series of tones. The

lowest frequency tone is at the blade passage frequency

(BPP) and the other tones are its harmonics, that is, they

occur at frequencies that are integral multiples of the BPF.

As a secondary goal of this model, predictions for the cases

of an arbitrary exterior harmonic (tonal) field and for a

reverberant exterior (noise) field are sought. Sound

transmission through the fuselage sidewall and the trim

insulation and lining is of concern.

The basic method used herein to solve the sound transmission

problem is that of a power balance.

Win ' Wdiss • (1)

The band-limited net time-averaged power, W,.n, flowing into

the cabin must equal the net time-averaged power, W,. - ,
Q. J. & S

dissipated on the cabin walls. By expressing the inflowing

power in terms of the exterior exciting pressure and the

dissipated power in terms of the interior response pressure

and equating the expressions according to Eq.(l), one can

solve for the interior pressure.



A primary feature of the power flow approach adopted is that

integration of spectral components has been performed

analytically to achieve band-limited levels, i.e.,

(2)

W.. = f Reftf1"^^! dcodiss J. L abs 'J

int
Wracj(co) is the complex spectral density of the power radiated by

the structure into the interior acoustic space and W , (w) is

the spectral density of power absorbed on the inner wall o-f the

space from the interior acoustic field. In the case of tone

transmission, these quantities contain delta functions in the

frequency domain. Eqs. (2) have applicability at all frequen-

cies and can be applied- in discrete modal representations even

when there are no acoustic or structural modes resonant in the

band Aco.

Power flow into each individual acoustic mode is computed,

whether the mode is resonant in the band or not. If the mode is

resonant in the band, one can speak of the "resonant response"

of the mode; if the mode is resonant outside the band, the

"nonresonant response" of the mode in the band Au. Similarly

power flowing out of the acoustic field to the inside wall is

computed mode-by-mode. By equating the power into a mode to the

power out, the space-average mean-square modal pressure for mode

n, limited to band Aco, is obtained, i.e., < p^> , , where s and t
n s $ \j

indicate the space and time averages, respectively. The band-

limited, space-average mean-square pressure in the interior is

the sum

, p2> . ' (3)s,t 4 n s,t



Here n is the complete set of acoustic modes, i.e., those

resonant inside Aco (denoted by the symbolism, nsAw ), as well as

those resonant above (n>Aio ) and below Ato (n<Aw ). It is noted

here that the letter "n" always denotes acoustic modes and the

letter "r" structural modes, usually being used as subscripts,

superscripts, or indexes.

Power Plow

The concern is with a closed volume V, into which sound energy

is propagating. The excitation of the space occurs at its

boundary with the enclosing structure which vibrates due to an

exterior source. For the present, the excitation can be consi-

dered to be a broadband random acoustic field. For the specific

case where the noise reduction is desired, the exterior field is

taken to be diffuse (reverberant).

The fundamental equation for the inflowing power comes from

results developed in Refs. [1] and [2]. Specifically, use is

made of Eq.(3) of Ref. [2]:

W - P o * c , Jr(">Win V S

/

r r n n

W. is the band-limited time averaged power which is being

accepted by the acoustic field inside the enclosure, that is,

the power received over frequencies lying in band Aw . The band

has a width Au = c cu where co is the center frequency of the
CO

band. c is a constant percentage which defines the bandwidth

10



(cw = 0.232 for one-third octaves). The quantity Spbl(co)

= <p^>/c co is the power spectral density of the average

exciting "blocked pressure" which acts on the transmitting

structure. <Pbl> is the average mean-square pressure as would

be measured in band Aco obtained with a microphone sampling the

surface pressure on the (hypothetical) immobilized (blocked)

structure. The transmitting structure has an area A exposed to

volume V. The average surface mass of the structure is m. The

structure has a mass law sound transmission coefficient T^ =

(2pcQ/com)
2, where p and CQ are the density and sound speed of

air.

The normalization of structural modes is taken such that the

modal mass is
f _ r

2 _ _
M = J- m(x)4> (x)dx ,

3? ~ —
where ty (x) is the structural mode shape (mode r) at location x.

x ranges over the entire structure, both transmitting and

non-transmitting surfaces. Thus, if the rth mode of the

transmitting structure (fuselage) is restrained in any way, say

perhaps by the cabin floor, Mr will take on a large value that

will suppress transmission by that particular mode. The

normalization of the acoustic modes is such that

f 4>£dv = ̂ L
Jv n n

where <)>(£) is the value of the cabin acoustic mode shape (mode

n) at location f.

The coupling of the exterior field to the rth mode of the

transmitting structure is given in terms of the joint acceptance
o

jr(
co). In the case where the exterior field is a noise it is

assumed that jr(
w) changes little across Aco, i.e. by evaluating

j2(co) at the center frequency of the band, a good approximation

is obtained all across Aco. For this reason Aco must not be too

wide, typically one-third octave or less. If the exterior field

11



is reverberant, Jr(oO takes the appropriate form for that field.

The same would be true for a progressive wave field.

The coupling of a structural mode to an acoustic mode of the

volume is given by the term

•'A
In the above, x represents a point on the surface of the

transmitting structure. Note that f'(n,r) is non-dimensional

(hence the prime as a reminder) and that f'(n,r) is always

squared. f'2(n,r) is a positive number less than unity. The

power flow depends on the location of the resonance frequencies

^n and for, i.e. relative to each other and to the band Aw, and

upon the acoustic and structural loss factors nn and nr.

Consider now the right-hand side of Eq. (1). W^gg is the

band-limited, time-averaged power that flows out of the interior

acoustic field to the inner wall of the enclosure. This power

flow is given by Eqs. (6) and (8) of Section III of [2] which

reduce to
2

Wdiss ~ ~7 2-r uT <pn>s,t ' (5)

o n
2

where <p > is the interior space-average mean-square pressure
n s ̂  u

in band Aco attributable to the nth acoustic mode. The develop-

ment of Eq. (5) is presented in the appendix of [2].

In the case of a random exterior field, in which Sp (03) varies

slowly in frequency, jr(
w) can be brought outside the integral

as done in Eq. (4). However, for the general circumstance where

tones are present, j£((o) must be included under the integral

sign, and replaced by its defining relation

'pb -.(xlx ;<jo)^r(x)^r(x )dxdx
_L

A«SpM<»>

12



where C (xlx'uu) is the cospectral density function of the
pbl

blocked exterior pressure field.

Also, in order to get Eq. (H) in the desired form for the

present model it must be modified in two other respects. First,

to include fuselage sidewall trim, Eq.(4) is modified to include

factor T , i.e. the trim transmission coefficient, to account
U

for transmission through the trim, and the structural loss

factor ri is replaced by ri' to account for the added

damping of the sidewall when trim is present. Second, proper

account of the influence of the internal radiation damping of

structural modes leads to the introduction of another term, H".

The analytical developments for T, and n' are given in Appendix
ii

A; ^p will be discussed in a subsequent section. After some

rearrangement and the inclusion of the above results, Eq. (4)

can be written in the following general form

Win
_ 2TT /mAV
~ PV ITT)

V II
// IV

?n,r)

"

to-n

(x |xlo))ij;r(x)^r(x')dxdx'

(6).

A bar over f'(n,r) indicates trim factor T, has been introduced.
t

Eq. (6) is basically the same as Eq. (21) of Ref. [3], except

modified to include trim and the proper influence of the

internal radiation damping of resonant structural modes closely

coupled in frequency to resonant acoustic modes.

13



The solution of a sound transmission problem is obtained by

setting the nth term of Eq . (5) equal to the nth term of Eq.(6),

solving for the individual modal pressures <p,?> . one-by-one,n s $ u
and by adding the results according to Eq. (3), to obtain the

interior level.

3.2 Transmission of a Tone

The fundamental model of concern here is one having to do with

tone transmission. The propeller noise is, as stated, at

discrete frequencies, each tone being a harmonic of the BPP.

Let the various harmonics be u u . . . , to H where

w 1 = 2 ir x BPF

a) 2 = 2(x)]_

o>H = H"! ,

where H is the harmonic index. For a tone at frequency WH>

the co-spectral density function is defined by

Cpbl(x|x
f) 6(co-uH) = Cpbl(x|x' ;u) ,

Cpbl(x|x
f ;u>) = 2 Cpbl(x|x

f ;co) ; 0 < co < » ,

oo

Cpbl(x|x';co) = Re f

where Rpbl(5c |x' ; T) is the average cross correlation of the

pressure over the blocked (immobile) fuselage, given by

R"

u_

^ / Re[pbl(x,t)] Re[pbl(x',t+T)J dt



Inserting the first of the relations into Eq . (6) leads to the

expression for the inflowing power to the cabin for the

propeller tone at frequency WH-

w = —in pV
2 , en%

n

.y- f"(n.r) f f

V« JJ
^ T* ^ — •—

'xH (x1 )dxdx'

x x

(7)

H H —
In this result, T M T and T f (in f ' ( n , r ) ) are evaluated at o>T T .ML t

The space average mean square modal pressure is computed on a

mode-by-mode basis using Eqs. (1), (5), and (7) (where u= U

2 > H
<Vs,t

H "H £n f ' 2 ( n , r )

11 j. J. j.

i f C p b l (x j l ' ) / (x ) i ) ; r (x ' )d ldx '

X X '

0)
2 \2

n

2 \2
H \

. (8)

The interior space average level is then obtained from Eq. (3)

Note that since

<P
<P 4.n s,t

2>H
_n
V

15



where <P^> is the mean square modal amplitude, the modal ampli-

tude is determinable from

<P2>H = e <p2>H ,Fn n pn s,t '

and theoretically, the mean square pressure at every interior

point can be obtained with

n

It is emphasized here that a good point-by-point prediction may

require better input data than can ever be generated, but the

point-by-point prediction might be quite informative neverthe-

less .

Eq.(8) is the fundamental result for calculating the interior

sound pressure level. The modal forcing functions are given by

the term

yG(r,H) = J J Cpbl(x|x')4;
r(x)4;r(x')dxdxI , (10)

X X '

and must be evaluated for the propeller noise excitation. Once

a particular harmonic H is chosen, the function 'fG(r,H) must be

computed for all structural modes r. The calculation of yp7(r,H)

using the output from the ANOPP program [Ref.5] is considered in

Section 3.4.

High Frequencies

When the acoustic and structural modal densities are large

enough, the transmission can be expected to be dominated by

modal response close to the excitation frequency. Only the

modes lying in a narrow band Aw containing co^ need be of

concern. Thus at sufficiently high frequencies the space

16



average mean interior pressure for harmonic H is (assuming

that only the sidewall contributes)

2 v**
<n^>" = il I ""' I TnnTT.&Ju /Pi s,t "2 ITTJ ML twH L*,

(11)

To facilitate the calculation of Eq.(ll), it first is rearranged

(keeping in mind that ̂ G(r,H) is computed for high frequencies

for each structural mode as it is for low frequencies, but the

calculation is limited to those modes whose resonance frequen-

cies lie close to co,,) . Define average loss factors for the

modes near co.,, i.e., let

nr is the average loss factor for the structural modes.

Also, let

-l

1-1

Q _^ \j i luji i __ ri n. 6
H - -71 IT] TMLTtwH

17



Then Eq.(ll) can be written as

neAo) n

f'(n,r)grYG(r,H)
(12)

0)
r r

The interior response is sought for the case where con and cor

are given equal probabilities of lying anywhere in the band AGO.

Eq.(12) can be simplified somewhat by noting that the resonance

frequencies are approximately equal to the harmonic frequency

o)IT of concern,
n

IT"s,t
Q

(13)

The expected value of the above is now calculated given &Jn and

wr as independent random variables uniformly distributed across

Aco.

= E
Q

QH_

'H
N

In Eq.(lM)5Nr is the number of structural modes in AOJ and N

is the number of acoustic modes in Aw.

18



Now

Aco
where is the probability density function for con in Aco.

The probability distribution function is taken to be simply

Aw

1-

The probability density function is therefore simply

1dP(wn)

do)
Aco

n

so

Aco
that is E[gn] is just the average

, Aco

n
Aco

H n

which becomes

0)H
tan" tan-l

Assuming that the product n cou « Aco (this can be assured by
n n

taking the sampling band wide enough), the term in the brackets ,

[ ], above reduces to IT, giving

{0 • -L nJ On
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S i m i l a r l y ,  it can be shown t h a t  

TO, 

S u b s t i t u t i n g  i n t o  ~ q . ( 1 4 )  g i v e s  

~~t nn = N,/~Y i s  t h e  modal d e n s i t y  of t h e  a c o u s t i c  modes*  and 

n~ = N r / A o  i s  t h e  modal d e n s i t y  af  t h e  s t r u c t u r a l  modes. 

T h e r e f o r e  

where 

I t  can  be shown t h a t  

2 u ;Iv r e v  
M n  < c n f q  (n,r)>nw - -  jp,) . 

n  n2c; 



Substituting this result gives

n f-^
r ML 1,1 11 -v' - ( i ^ - 3*- * *'i r.. \\ ( I f , }

In (16), AOJ is taken just wide enough to assure smoothness of

the average calculated in the brackets.

3-3 Calculation of the Noise Reduction

In addition to the calculation of transmission of propeller

noise, there may be occasions where the noise reduction of the

fuselage is of interest, that is, for a condition where the

exterior is bathed in a reverberant (diffuse) acoustic field.

For such a case, the expression for the inflowing power is again

obtained from Eq.(6). However, in -this instance, the joint

acceptance can be reinserted and brought outside the integral as

in Eq.(2). Then after the integration is performed, it is found

that [2]

2 -j. 2
p b l 2 T T A 2 / m A \

in " c^ pV \~$~ ) TML ' n

(
M*

2c (b -b )-b (c -c ) \n r n n r n \I arctan

2cr(bn-br)~br(cn-cr)r n i i _LL.——± i ^-^^-t-^^ \ (~\ 7}

+ n ' ' )w2• N 'P 'j» ' j>

where A is the cylinder surface area and A is the coupling area

21



/ 2 ) * a 3 " + b . ( l + c
For n or r = j,

In. = In

arctan. = tan
J

where when j = r, n . above = n^, + n'' , and when j = n, n . = n

Also

(1-c /2 ) l t o) ' '+b<( l - c / 2 ) 2 o > 2 + c . | (
0) J 0) J '

r1 (2+c ) 2 co 2 - i Jo ) 2

OT J

^.O)2

-tan
•(2-Ca))

2a)2-S

. ^^i

Dnr <b ,Tbr> ( bn cr ' brcn}

bn = -2< J br = -2< ,

cn = c =

The above is identical to Eq.(5) of Reference [2] except that

f'(n,r) replaces f'(n,r) and n'+n^l replaces nr-

Noise Reduction Calculation

The interior pressure is obtained by setting Win (using

Eqs.(17) and (5)) solving for the mean square modal pressures

<p2> one-by-one, and adding according to Eq.(3).n s $ u

The result is found to be

<P2>
<P

is,t = 8 P_ /mA
?>„ " V V2 \ He s,t

TML °o

revev _ 2
«) f'fn.r)

n
M2 D
r nr

-bn(cr-cn)

—/->
r cn

• Iarctan

Inn

/c -c
+ / n r In +

r

n

2cr(bn-br) -br(cn-cr) \

(18)

/
arctan
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where the exterior space average mean square pressure <p2> is
G S j U

(for the reverberant field) related to the mean square blocked

pressure by

High Frequencies

<P2> 4.pe s,t

When the acoustic modal density is greater than, say, ten or

more modes in a third octave band, a high frequency model is

needed, developed along the lines of [1,2, and 3]. In the case

of an added trim, there are three surface areas of concern:

1) the transmitting area with trim, which will be called Afc,

2) the absorbing surface area S, and, 3) the transmitting area

without trim A1. The total transmitting area is A.+A' and

the inflowing power takes the form (assuming that only the side-

wall contributes)

win
t P

rrm2 o [tfS*J )*,<Dp s,t

A ' TA T
R + 8AA'

ext
rad

r<Aco

8AA

,revTl
J£(«> I

irm 2 C! 2̂
r<Ao>

rev
i s,t , (19)

where A denotes the surface area of the complete cylinder.
n is the sum of the average external radiation loss factor,

extr

i.e., n"",, and the average structural loss factors
rs-d

T, is the trim transmission coefficient, and i
t j^

transmission coefficient for the diffuse field case,

r r
is the resonance

23



In this expression n is the modal density of the fuselage

structure (modes/rad/sec). The summation r<Aco in Eq.(19)

implies a sum over all structural modes 03 that are resonant
below the frequency band of concern, p is the exterior air

density. The radiation loss factors are

and

* 4-ext =
rad -rrmc

Int = 2pq)A
rad ~ Time

o)A
o — <2 >rev.

r

rev.
where <J 2> is the joint acceptance averaged over the structural

modes resonant in the band.

Let Tf = field incidence transmission coefficient for mass

controlled panels as defined in [3].

32
r<Aco

rev
(20)

Then Eq.(19) becomes

Win "

next R
rad

A

+ T. <Pl> s,t

,,t

(21)

The power absorbed on the wall is again given by Eq.(5). Since
at these high frequencies the response is resonant acoustic, <on
can be considered to lie in Aco and Eq.(5) reduces to

Wdiss
p o neAu)



Further, noting that for this case wn ~ w for any n, and letting

the group of acoustic modes have an average loss factor nn, this

reduces to

w = —— Lin s <p2> >. = . urn <D2>
diss pc2 n ^ Hn s,t pc^ w 'n pi s,t ,

which is Eq.(7), Section III of [2]. Finally, setting

where a is the band average absorption coefficient and S the

absorbing surface area, the above reduces to the familiar form

Wdiss • nff̂  <Pi>,.t • (22>

S includes the area A covered with trim and any other absorbing

surface area. Equating Wln to Wdiss gives the desired high

frequency result

e s,t L
Tf-I. 11 J. J. o.v_l | / „ _ \

^^s.t TtT At + TA'

where T = Tf + TR.

This is the fundamental result with trim present. Note that if

all transmitting surface is covered with trim, A' = 0, and

<pe>s,t _ aS

On the other hand, if trim does not exist, Tfc = 1, Afc = 0, and

<P2> 4. aS •pe s,t _



which is the result in [3] without trim.

Finally, 5 is estimated with the relation

o

When trim is present nn is calculated with results developed in

Appendix A.

3.M Calculation of the Generalized Forces for Propeller

Noise Excitation

Consideration is now given to the various terms that appear in

the equations representing the solutions of the sound trans-

mission problem. In this particular section, the calculation of

the generalized (or modal) forces for propeller noise excitation

is discussed. Specifically, consideration here is given to the

term ^G(r,H) as defined in Eq.(lO) and that appears in Eqs.(8)

and (16).

ANOPP Computer Program Output

In the present case, the fluctuating pressure field acting on

the fuselage due to the rotation of a propeller is determined

with the NASA Langley computer program ANOPP [5]. This particu-

lar program is one of a number of such programs to exist in the

aircraft industry. It was especially developed to allow pre-

dictions of noise from propellers that have advanced blade

geometries. In the present case, the concern is more with the

standard type of general aviation propeller. The ANOPP program

easily handles the typical general aviation aircraft propeller

blade.

For purposes of the present model, the primary concern is with

the form of the output data from ANOPP. Referring to Fig. 1,
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on the fuselage structure, there will be a finite number of grid

points at which the pressure time histories will be available.

At each point, the modal deflection will also be available,

say ^r(x ). Associated with each grid point is the area AA where

(Fig.l) AA = A2 with A being the grid spacing. Now in Eq.(lO)

dx is an element of area, so in discrete form (10) becomes

where

= *r(zkl,e£f)

and m identifies each grid point (k,£),k being the axial index

and I the circumferential one. In the present model, the grid

is confined to the side of the fuselage where the propeller is

located.

To compute y_ (r,H), the .form of CD, , (x I x .) that will resultu ^bl m1 m' ,
from the use of the data output by ANOPP is first needed. At

each point m, there will be a pressure time history that will

repeat itself over a period TQ = BPF as shown in Figure 1.

Naturally from point-to-point on the grid, this pressure signa-

ture will be different. Note that To is 1/B of the period T

of rotation: T = 60/N, where B is the number of propeller blades.

Now C (x"m|x ,) is defined in terms of the pressure time

histories for the point pair (m,mr). To calculate Cp,,(x |x ,)

the equations appearing in Section 3.2 are considered in

sequence. First
T/2

(25)
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Since P^i^^t) and Pb-,(x , ,t) are periodic with period To,

the time average can be performed over one period, yielding

r
RPbl ( xJV ; T > = 5^ J

O

In the present case u (x »t) is real so

i ^°
R Pbl ( x i J x m' ; T ) = T p bl ( x m' t ) p bl ( x m" t + T ) d t • (26 )

Also since p, , (x ,t) is composed of discrete frequencies, a

Fourier series representation can be used

am °°
*~^ 3™ 1- + hm ' 1- ( ? 7 \
H=l H H H H

By definition OJH = 2 f r f H = H ( 2 f r f ; L )

where f-j^ = 1/1̂  and T = T = 1/BPP ,

T

JT.

Let

and

28

T
m = 2 f1 Pb l(xm , t)cosa)H t dt , (29)

,t) sinwut dt , (30)
i n

A H = ( a ) 2 + ( b ) 2 ( 3D



Then
ma

H = l

and
am' -

P f \r 4- J.t- \ — O I X "^ A 1ft r / j . \ ITl ' - i ^ -, I xbl m' ~ ~~?— / H cosl-k>H ( t + t ) -<j> ] . (3*0
H=l

Substituting these into E q . ( 2 6 ) (using T = T ) gives

/

-L / - H l v

(^^ E
. V 2 / H - 1

:1 ao ao

o
00

H

/

/ m1

fe

+
1 o" H=l H'=l

(35)

There are four terms appearing in Eq.(35). It is easy to show

that the second and third terms are identically zero. The
mm' m m'remaining two terms give upon setting £<!>„ = ij> - (J> ,
n n n

mm' „ nmnm' _
\ ,mm 'I

P (v Iv -Tl = - -• ."— -f- 7 I ^ 1 COS |WUT+ AcpH I (36)
PblUm' m 1 ' * h ^4 H=l
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It can be seen that the mean.square pressure at xm is

/ m\2 °° /.m \2

(ao) • y ( A H )
~T *-» IT

H=l ^

/ m\2 °° / m \2 . /, m \2

(aoj . Y ( a
H ) + ( b H )

~ ~ + - -
H=l

Continuing now, with Rp ,(x lx ,;T) defined, the next step is to

compute the two-sided cross spectrum using

= Re I — | iw, tx_| x^, j-i ;e QT j . ^7)

Prom Eqs.(36) and (37), it is found that

SPbl(xrJxm''w) =

a a '

,mnm'<

m m 1

30

(38)

The one-sided cross spectrum is therefore

'
'6(̂ ) . (39)

Finally using cpbi(xmlxm'; w^ = CPbl^xmlxm' ̂ <S(CO-WH) , it follows
that



Note that each harmonic w corresponds to the tone frequency
n

in Eq.(8). To compute Eq.(8), a harmonic is first selected.

For that particular harmonic, from Eqs.(lO) and (40)

Vr>H) = T- X>S m̂'X!

One of the things to note about this result is that all of the

information that can be garnered from the propeller noise signa-

tures is used. However, a disturbing feature of Eq.(4l) is that

for a big grid, the total number of numerical summations re-

quired can be extremely large. Since ^G(r,H) must be computed

for each structural mode, the computations could be very time

consuming. Fortunately Eq. (41) can be reduced to a more effi-

cient result using the trigonometric identity

cosAt))™"' = cosmos*™' + sin<t>m s in<t>m 'n n n n n

to yield

In Eq.(42), (2m + 1) summations are required as opposed to the

m2 summations needed using Eq.(4l).

Geometrical Considerations and Reflecting Surface Effects

The ANOPP program computes the acoustic pressure for the case

of a propeller in a free-field. Here the presence of the fuse-

lage structure needs to be taken into account since acoustic

waves will be reflected by the surface. In this model, the am-

plitudes of the various harmonics are increased in proportion to
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the incidence angle. The phases computed with the ANOPP

program are not modified. Until now the amplitudes AH in Eq.(
iJ2)

have been considered to be the ANOPP results. However, hence-

forth, they shall represent the blocked pressure amplitudes. To

distinguish between the blocked amplitudes and the free field

amplitudes, the free field values from ANOPP will be redefined by

placing a bar over A™ . The blocked amplitudes are calculated

from the free field values using

This empirically fitted curve corresponds to that found by

Magliozzi [6]. Y is the "incidence angle", that is, the angle
between a line running from the propeller hub to the point xm
on the fuselage and the normal to the surface at that point.

The angle is calculated using (refer to Figure 2):

_, I (r cos4>-acos6) (cos9) + (r sin<J>- asin6)(sin9)
Y = cos" ' —P- . B_

/(r cos<}>-acos6)2 + (r sin<J> -asin8)2 + (z -z) 2

3.5 Interior Coupling Factor f*(ntr)

This term determines the spatial coupling occurring between a

fuselage structural mode and a cabin acoustic mode and is

defined in Section 3.1 as

f «(n,f) = - fc}>n(x)4>
r(x)dx, (115)

A / nRJ A

where x represents a point on the transmitting structure. 4>n(:

is the eigenvector for the nth cabin mode which is obtained

using a finite-difference technique as detailed in Appendix C.

i|;r(x) is the structural mode shape and its calculation for the
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present fuselage model, a cylinder with a structurally integral

floor, is considered in Appendix D.

Calculation of f*(ntr) for Cylinder with Floor

The modes of the fuselage are given by Eqs. (D.22)-(D.26) in

Appendix D. For the symmetric modes of the shell, these are
n*

<(z,6) = +sin^ D Cj£(-l)n cosne (i,6)
5 L n=0

and for the antisymmetric modes

n=l

O TO

CMn are the generalized coordinates defined by Peterson [13], as

tabulated for an example case in Table D.I of Appendix D. Also

as shown in Figure 1,9 = 0 at the bottom centerline, 0 = TT at

the top centerline. ^ is positive along the outward normal.
5

For the f loor (pla te) , the symmetric modes are
n*

. r, N . MTTZ^ p ( z , x ) = sin—-

and the antisymmetric modes are

n*

n=l P

where (Figure 1), x is measured from the center of the floor,

ty is positive in the upward (inward) vertical direction, and

Lp is the width of the floor plate,

Lp = 2a sin 9Q .

The acoustic mode eigenvector calculated with the finite differ-

ence technique takes on discrete values on the bounding surfaces

of the cabin. Consider the boundary point j = (m,n) of Fig.C-2.
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From Appendix C, Eq.(C.9), the nth acoustic mode evaluated at any

point £ in the cabin is

*(J) . (50)

On the cabin bounding surfaces, i.e., C=x the eigenvector takes

the values

4>n(x) = 4>q±(x) = c o s . <|.1(eJ) t (51)

where $.(8.) is the same as <J>.(j) when j is a boundary point.
-*- J -L

To include trim on the sidewall (with a bare cabin floor) the

transmission coefficient T. is introduced with the result
L>

f ' ( n , r ) = f ' ( q i , r ) = £ f COS^1T sln^dZ

/•2TT-8

/~H / ° r/ C/T I a\j> ( 8 ) < b . ( 6 ) d 6 — Itj s i /
Q •/_

2ir-8 _ _k /2

a. >f v . v j y > f ' V v - ' / * - l v J — I '

9
O P

(52 )

A bar is placed over f ' ( n , r ) to indicate inclusion of sidewall

trim. Eq. (52) is an approximation and not an exact result. It -

should be sufficiently accurate for the present needs. It is

noted that the < J > j ( 8 ) are the boundary values of the acoustic
T"*

eigenvector, i.e., the same as the <j>.(6.) in Eq.(51) and fy (8)
r "*" ^and i|> (x) are given by the summations in Eqs. (46 )-(̂ 9 ) . Since

4>.(6) is known only at discrete points 8 = 6., j = 1, ..., n,,

the last two integrals in Eq.(52) are approximated numerically.

Let 6-, . and 8_. define the points on the circumference of the

cabin cavity half-way between boundary point (m,n) and the two

adjacent boundary points. The eigenvector <J>.(6.) is then assumed
_L J

to apply over the range 8 to 8?.. For the shell, the second
-L J ^-J

integral in Eq.(52) becomes



n* nb

(53)

that is, if both the acoustic and structural modes are symmetric,

If both modes are antisymmetric, it is found that the integral

evaluates to
nb

n=l

The integral is zero if one mode is symmetric and the other

antisymmetric.

Next consider T
P r

-LP/2
For two symmetric modes, this becomes

»

pr ^ n T mrx9, mrx
-j-̂ - - sin -L^IJ , (55)
P P

and for two antisymmetric modes

mrx., . mrx0 ,~
(56)

nb

^i( 1; ' n" I Cos —^~ ~ cos
n=l ''"' j=l J
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The integral is zero if one mode is symmetric and the other

antisymmetric. In this case n/ is the number of boundary points

at which the acoustic mode has been computed on the floor.

Finally, let

-L• i f-P j. i QTTZ
f M = T~ / COS ^T~qM L JQ L L,

For the case considered (shell length L = cavity length L c ) ,

l -cos(M+q)TT l-cos(M-q)Tr"| .
M+q + M-q J •

0 ; M = q

If L ^ L , f M is given by the relations in Reference [3].

3.6 Joint Acceptances for Cylinder with Structurally Integral

Floor

The joint acceptance function appearing in Eqs. (16), (18), (19),

etc., describes the coupling between the excitation field and the

structure, and is defined by the relation

J 2 ( o > ) = _ l | | S p b l (x |x ' ; a )H r (xH r (x ' )dxc ix ' , (58)~
where A is the excited structural area, 2,^(03) is the blocked

pressure power spectral density, and S , , (x| x' ;o>) is the blocked

pressure cross power spectral density.

It has been general practice, when representing random pressure

fields with spatially decaying correlation, to use a correlation

function of the form

Re(S (x|x';oi)}
C (x|x';&)) = - 2 - . (59)p
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It is assumed in the present analysis that this function is

separable in the longitudinal and transverse directions, i.e.,

Cp(x|x';ec) = GX (£ , u)Cy ( ? ,<u)

where

£ = x-x' ; £ = y-y'

The representation for a diffuse (reverberant) excitation field

is well known and is given by

Cy(?,co) =
 Sg , "(60)

^where k is the acoustic wavenumber.

Consider the structural mode shapes for a freely supported

(ideal) cylinder:

, MTTZ Jcos N 6|
sin — (sin N e|

The joint acceptances for this simple modal system have long been

available [17]. Now for the case of the reverberant field, the

joint acceptance functions for the cylinder must consider both

sines and cosines of the circumferential wavenumber. One can •

write jj(co) = jjU)rev'= J^NU)
rev' in the form

where ^ represents the cosine and <(> the sine of the wavenumber.

The joint acceptance for the axial component of the cylinder
2rev

modes, jM (eo)f is given by [17]:

+ I2(M) + I3(M) , (63)

37



where I (M) = J1 {Cin(kL +MTr) -Cin |MTT-kL

I (M) = {Si(kL +M7r) -S i (MTT-kL )}

M

l-(-l) coskL

3"" (M7i)2-(kL )2

Si and Gin are the sine and cosine integrals [18].

The joint acceptances for the circumferential modes are [17],

'l~y2)^ _ * ' c o s 2NTry1cos
V" 1 2J

r~ r sin27rka(y,-y2)
j 2 ( u » 4 > ) ~ I I T~;—7 \ sin 2NTiy, sinN I I ^TTka /y , -y 0 \ 1

«^ <J \ I S I
o o v '

where y-^ = y/2-rra, y2 = yf/2ira, y and y' being circumferential

coordinates of the two correlated points, and k the acoustic

wavenumber. It follows that

,rev
o) ,^ ) + J j ( u ) j

f1 f
-\ J

O O

This reduces to

sin2TTka(y -y )

l
•*- '-'

••/»<-> s in27Tkan ,
cos

'o
and

Jo'^ • f
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where n = y-^-y^. Performing the integration results in

- Si[2ir(N-ka)] I

N

and

1-cos(ZTrka^) I
J' (65)

The cylinder structural model in the present case is much more

complicated and the cylinder modes are given by Eqs. (46) and

(47) of Section 3-5. However, the joint acceptances for the

modes of the cylinder with the structurally integral floor can

almost be expressed in terms of the joint acceptances for the

simple cylinder because the mode shapes given in Eqs. (46) and

(47) are in a form similar to that of Eq.(6l), that is, they are

given in terms of sine and cosine functions. The joint accept-
9 rey

ance for the axial component of the cylinder modes, j* (co) is

thus the same as for the simple cylinder and is given by Eq.(63)j
-rev

and the desired joint acceptance j* (o>) is given by

rev rev rev .,,.
jfu) = j* (oO - J£_(a0 , <66)

where for symmetric modes,

^?X)= f:o(cE)' JiC.,+ > . (67)

and for anti-symmetric modes,

(C«n)2 Jn<-*> (68)

Note here that N is a counter and is defined only in the sense of

the duo (r,M), that is, for each r, there is an M and a sequence
sr*

of C that are identified with index N.
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It is fairly straightforward to show that

Si(2-rrka) l-cos(2Trka) . n
~ 2Tr2(ka)2 '

; n>0, I2(n) + I3(n) -

(69)

and

, I2(n) + I3(n) (70)

where

zi(n) =

I2(n) =

T fn) =I3(n)

Cin[2ir(n+ka)]-Cin[| 27r(n-ka) (71)

Si[2Tr(n+ka)]-Si[2ir(n-ka)]

1-c°s2Trka
1_(ka/n)2

(73)

3.7 Resonance Frequencies

The frequencies con and wr of concern pertain to cabin and struc-

tural modes respectively. The cabin resonance frequencies, cor

are determined with Eq.(C.7) or (C.ll) of Appendix C using the

eigenvalues from a two-dimensional finite difference calculation

as detailed in that appendix. The structural resonance frequen-

cies, «rj a^e obtained from the analysis considered in Appendix D

leading to the associated program output as shown (for an example

case) in Table D-l.

3.8 Loss Factors

There are a number of different loss factors that must be

considered. Referring to Eqs.(8) and (18) of Sections 3.2 and

3.3, there are the lossfactorsn ,n ,n', and n ' ' .

Eq.(l6), the loss factors nn and nr appear. Finally,
i n i" ^ x 1~

and (23), there are the loss factors rirad and
 rirad •

In

in Eqs.(19)
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3.8.1 Acoustic Loss Factors nn and nn

Bare Fuselage (Cabin)

The acoustic loss factor ^n of a bare cabin is defined herein to

be a measurement for a particular acoustic mode and n the

average acoustic loss factor measured for a group of modes

whose resonance frequencies lie in a narrow band Aw.

Calculation of_nn, when sidewall trim is present

The calculation of the acoustic loss factor at any frequency co

has been discussed in Appendix A (resulting in Eq.(A.12)). That

result has to be formatted properly for the case where the floor

is present. Also, the absorption of the ends of the cabin has to

be considered. In cases where the sidewall and the surfaces at

each end of the cabin are covered with a trim, the loss factor

for the interior is calculated with

nn - ZPf" T U 4>£dx + 2£j <J>£
Jcurved J ,

( 7 4 )

L surface ends

Here E, is the sidewall conductance and r is the conductance of
e

the end surfaces. The first integral in Eq.(?4) is
nvr b

J *n** -\ V E *j(e ) [
•'curved J--L L

-e , (75,
curved J--L L U

surface
where nb is the number of boundary points. The second integral

is n

L'endsn

J

4>2(j)h2C(j) , (76)

where n. is the number of interior and boundary points. There-
J

fore at low frequencies, the loss factor is found to be



nb
we E I Tnn = o _n I, L

n w2 V r 2 q ,_-,
n l j ~J-

(77)

where *g(i) is the generalized mass for the two-dimensional mode

indexed i (i = 0, 1, . . . , i ' ) of Appendix C and en is the

normalization constant given by Eq.(C.lO) of that appendix.

Also e = 2 for q = 0; 1 for q > 0.
4.

At high frequencies, the average loss factor is used and is

S and Se being the sidewall and ends' surface areas.

In cases where the average absorption coefficient a is available

for the various frequency bands, n can be calculated with

Eq.(2U). However, in general it is a that is to be calculated

from f) and f\ is to be analytically derived using Eq.(7^) where

the conductances C and £ are based on the trim admittance calcu-

lations made with Eq.(A.16) of Appendix A.

3.8.2 Structural Loss Factors

The structural loss factor nr is defined as the sum of two com-.

ponents, one due to dissipation in the structure (in vacuo) and

the other due to radiation losses, i.e.,

nr. = nf
 ruc + n . (79)

S t TMJ C*
n is either a measured value or an estimate based upon

measurements for, say, similar structures. In the absence of any

actual measured data, it is recommended that one use [19]



struc C
nr = — ' (80)

where fr is the resonance frequency and the constant C typically

ranges between 2 and 4 .

The acoustic loss factor nr is the external radiation loss

factor for mode r. It is calculated using

rad
nr

.rev

,
Jr w

r ' (81)

where jr (u) is given by Eq.(66) of Section 3.6.

Influence of trim on structural damping

If trim is present on the sidewall, the loss factor il'r is given

by Eq.(A.7) of Appendix A, i.e., . -

, |> Cwl 2 2C^r 2\
h

nr -j-TT- - ~^ + M • - (82) '(m2^ mo>* | .

Cw is a (complex) parameter dependent on the values of the

coefficients of the trim transfer matrix and it is given by

Eq.(A.8) of Appendix A.

Influence of Internal radiation: closely coupled structural and

acoustic modes

The loss factor n^' modifies the damping level of a structural

mode when its resonance frequency lies very close to a resonance

frequency of an acoustic mode. The increased damping is due to

power flow from the structural mode to that particular highly

receptive acoustic mode. It is given by [7] " -

nr' = ~̂ 7T — T^- , . \n2 .-r • ' (83) "



The mode r is typically a structural mode lying within a

bandwidth Aco^ = nn«n centered on o> .

Average radiation loss factors

ext int
The radiation loss factors rirad and ̂ ra^ are given by the

relations in Section 3-3, namely

-̂•"•" _ O ^ • 2 / \.reVnrad - ̂— <Jr^)
>
ro

int 2pwA ^ . 2 t w^evn = — < i ( w)>'rad Trmco
 Jr^ ' r

2 rev
Again <jr,(&)>r, is the joint acceptance averaged over the1 •"• ,rev
structural modes resonant in the band. Each jr (o>) is calculated

with Eq.(66) of Section 3-6.

3.9 Validation Studies

Comparisons of analytical model predictions with measurements

taken in a model validation experiment are considered in

Appendix E.
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APPENDIX A

SIDEWALL TRIM: TRANSMISSION AND ABSORPTION MODELS



APPENDIX A - SIDEWALL TRIM

Transmission

In Section 3, the basic power flow and dissipation expressions

used to solve the sound transmission problems are presented.

The relations include a transmission coefficient T and a
tv

structural loss factor n^, that appear once fuselage sidewall

trim is assumed to be present. In this appendix, the analyses

that lead to these terms are briefly reviewed. Most of this

material can be found in greater detail in the Phase II report,

Ref.[7]. As stated in [?], to incorporate the effects of side-

wall trim in the transmission analysis, the interactions of the

exterior pressure field, fuselage structure, insulation and

lining, and interior field must be considered. To integrate the

trim dynamics into the analysis, the basic expressions that

describe the response, transmission, and absorption characteris-

tics of the various components of the sidewall system must be

considered. To this end, the trim is assumed to be represent-

able by a transfer matrix:

Iw2
a
12

La21

(A.I)

w1

where referring to Figure A-l: w-^ is the displacement of the

fuselage skin at x, p^ is the pressure on the inner surface of

the skin at x, w0 is the displacement of the trim panel at x,
i d

and P2 is the pressure on the trim inside surface at x (cavity

side). Reference [7] should be consulted for more discussion of

this trim model.

In addition to the trim equations there is the basic expression

for the response of the sidewall. For harmonic excitation it

is

A-l
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w-^x) = /G(x|x';co)[p°(x') - p̂ (x')] dx' , (A.2)

where G(x|x~';co) is the structure's Green's function, and p°(x"')

is the exciting exterior pressure field. The integral is per-

formed over the excited structural area.

Also, the interior acoustic field acting on the trim lining is

P^Cx 1) = - pco2J"Gp(x|x';u) w2(x) dx , (A.3)

where Gp(x|x';w) is the Green's function for the cavity and p is

the density in the cabin.

Finally, the exterior field is

p°(x') = Pbl(x') + pou)
2 j" G°(x|x' ;w)w1(x)dx

= pbl(x') + pr(x') , (A.4)

PQ is the exterior air density,

G°(x|x';co) is the exterior space Green's function,

pr(x') is the radiated pressure field on the exterior surface,

Pb-,(x') is the blocked pressure field on the exterior surface.

Equations (A.2-), (A.3) and (A.^0 and the trim transfer matrix

(A.I) form a system of five equations in five unknowns: p-^, p2,

W]_, W2, and pr (or p°) ; the blocked pressure field is assumed to

be determinable once the geometry of the structure is fixed and

the excitation defined. The solution of this system of equa-

tions determines the effects introduced by the presence of the

trim. Note that if the trim is removed p^ = p* and w = w

reducing Eqs.(A.2), (A.3), and (A.4) to the set solved in

References [1] and [2].
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In Reference [7] it is shown that the trim panel displacement is

very nearly given by the result

w2(x) * C
W
Wl(x) , (A.5)

where Cw = a~;r and a.... comes from- the trim transfer matrix. The

acoustic power radiated into the cabin is computed with the

theory presented in Ref.[l] and [2], and it is shown in Ref.[7]

that the inflowing power is given by Eq.(6) of Section 3.1 of

this report, where Cw appears in the form of its magnitude

squared,- which is defined to be

T, = |CW|2 = |ail|-
2 (A-6)

t> -L -*-

Since this term multiplies a power flow expression that basical-

ly remains the same whether trim is present or not, |CWI is

easily interpreted as a transmission coefficient for the trim.

It is also found that when trim is present, the structural loss

factor nr is augmented. Thus if nr is defined to be that due to

dissipation in the structure when trim is absent and r\^ is the

total structural loss factor when trim is "present, then accord-

ing to the analysis in [7]

_ + n2 (A.7)
r 2 i» m 2 rm co cor r

whe-re

Cw - cw + 1 C* .

and is obtained from the remaining three elements of the trim

transfer matrix from the result

Cw = l + a a • (A-8)

A-



Trim Transfer Matrix

The transfer matrix for a layer of insulation is the following

(Appendix A of Ref.[7]):

C -WS 1

_s c
W C (A.9)

where C = cosh YL ; S = sinh YL ; Y = a-ik = a -i2Tr/Am

Y is the propagation constant of the insulation (complex). W is

the wave impedance of the insulation (refer to Fig.A.2). It is

noted here that Eq.(A.9) is not in the form of Eq.(A.l). The

matrix of concern, given in Eq.(A.l) relates pressures and

displacements, rather than pressures and velocities. Since

v. = -icow. ,

E q . ( A . 9 ) is more properly wri t ten as

+icoWS

cL coW °
( A . 1 0 )

In the case where the trim is nothing more than a layer of in-

sulation, the trim transfer matrix would be given by Eq.(A.lO).

If there is a lining consisting of a limp mass, the transfer

matrix across it is the following:

, 2 „, j_ 3 , 2,P. 1 to m +ioo zr i+_nVt t i/

0 1 (A.11)

where the index 2 is the output terminal of the four-pole and 1

is the input. mt is the mass per unit of area of the lining and

r). is some assumed loss factor that arises because of flexure of

A-5
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the lining (the stiffness being ignored). For a multielement

trim the transfer matrix across all elements of the trim is

P2

W 2>

\. =
"alla!2"

.a2la22.

"alla!2~

-a2la22.

• * •

~aliai2~

.a2la22.

~ a l l a i2~

.a2la22.
n n-1 2

=

^ 3alla!2

,a21S22_
{

iv
n i
1

}

"ll

w.

(A.12)

where i is trim element in contact with the skin and n is the

finishing element in the cabin. The transfer matrix for the

trim of Figure C-l can be determined using Eqs. (A.10), (A.11),

and (A.12)

•I
iW, IS

"fi»W C

i

• (A.13)

w.

According to the definition of the trim transmission coeffi-

cient, see Eq.(A.6), for this case

Tt =
-2

where

an = (c (A.

Note that C, S, and W are complex.

Eq. (A.12) can be used to as high a frequency as is found

(through experimental comparison) to be valid. In practi-

cal trims, the mechanical vibration transmission from fuselage

skin to trim panel will become significant at high frequencies

and eventually the errors involved with (A.I) may require that

A-7



some alternate approach be considered to obtain the correct

input data for the trim. Because of the result in Eq.(A.5) one
can always take the ratio of say the measured mean square dis-
placements (or velocities or accelerations) of the fuselage skin
and the trim panel, average the results over the transmitting
surface and estimate |CW| 2 (and thus T.). Also by measuring the

' - v

actual damping of the fuselage wall with trim installed, n^ can
be determined and basically all of the pertinent information

required from the terms of the trim transfer matrix is obtained.

This ..allows a fairly elementary approach to the use of any

available experimental data or of any analyses that have focused
on the vibration transmission (or shorting) problem.

Sound Absorption

In addition to the transmission and damping effects, the trim
installation, will be a sound absorbing system, that is, it will

take energy from the cabin .space. It is shown in [7] that this
absorption capability is also deseribable from the terms of the
trim transfer matrix. In fact, the loss factors for the cabin

acoustic modes can be determined with the relation

coc e f

n = ̂  -T /
n

(A. 15).

where £(x) is the conductance looking from the cabin into the

sidewall treatment. For a case where £ is independent of x, we

can use

5 = Re[6]

where 3 is the admittance given by [7]

-032a21Z1 +
< 7 a. • . ( A . 1 6 )i«a11Z1 + a12
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It is seen that the transfer matrix (A.I) describes the trim

absorption, except for the presence of the term Z,' which is the

structural impedance. In [7], a simple model

zl = poco-lam ' ('A. 17)

is recommended, and this is used in the present program.

Vibration Transmission to Trim

As stated previously, the mechanical vibration from fusel-a-ge

skin to trim panel can become significant at high frequencies.

According to the results found in Ref.[7] and summarized by Eqs.
(A. 5) and (A. 6), the trim transmission coefficient T, is simply

<wi>
, = cw2 = — L. f (A

that is, it is the ratio of the mean square trim panel displace-
ment upon the mean square skin displacement. As long as trans-

— Pmission through the insulation is dominant, T^ = I a-̂ -jJ ; but

once the mechanical vibration transmission is dominant, <w*>

will be larger than that estimated with Eq. (A. 6) and instead,

<Wp>/<wj*> must be a measurement or an analytical prediction for

the mechanical vibration transmission. At high frequencies, a
simple expression for this ratio can be derived using statisti-

cal energy analysis procedures. The transmission coefficient
for the mechanical path is [20]:

m _ mtAtnt "21 .
'

where m^. is the trim lining mass per unit area, At is the trim
area and n ' the trim modal density, m, A, -and n are the same

b J/

quantities for the fuselage sidewall. nt is the trim loss factor
(in flexure) and n?, is a coupling loss factor for transmission
from trim to skin.
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For N point connections between skin (frames) and trim [20]:

n ;htCty"""&/X"'t"t>'t/ (A.20)
n21

where h and c are the trim lining's mass per unit area and
U t/

dilatational (longitudinal) wavespeed; *h and c. are the

corresponding skin properties. For a line support, the coupling

loss factor per unit length is [20]

hc* (mh%C?)(mtht%Ct%) ,. „./2\% 1
~ m AT\ / t ,. HCp + m,h c 2

It is emphasized here that the finding in Ref.[7], namely

Eq.(A.5), forms the theoretical basis and justification for this

approach to trim transmission. Using these results, it can be

stated that for any trim, the T to be used in Eqs. (8), (16), (18)
U

and (23) is given by

Tt = 'alli~2 + Tt ' (A. 22)
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APPENDIX B - PROPELLER NOISE

The goal here is to develop the basic equation used for

propeller noise prediction in the ANOPP program. There is no

attempt to discuss its mechanization, although appropriate

references for further study are included. Consideration is

limited to propellers with subsonic tip speeds and to the thick-

ness and lifting noise components of the sound generation.

As stated earlier, there is always a problem determining just

what level to begin a technical presentation when there are a

number of different disciplines involved. In this particular

case, since propeller noise is not an easy subject to under-

stand, the authors have taken what might be considered the path

of least resistance by utilizing a result by Goldstein that has

been described as the fundamental equation of sound generation

in the presence of solid boundaries [Eq.(3.6) of Ref.8], namely

p 1

"kl I
-oo V

t+

t+

o> fyT

9 G
8 to

B-l



In Eq.(B.l), p'(r,t) is the fluctuating fluid density at the

observer location "r at time t. The equation applies to any

region V (tQ) which is bounded by surface S0(tQ) in arbitrary

motion. S (t ) can be an inner bound as in the case of a

propeller blade. There are three terms in (B.I). The first

involves Lighthill's stress tensor T. . . This term ultimately

leads to sound of the quadrupole type being radiation emitted

from the volume of fluid around the blade and is important only

when the tip speeds are in the transonic region. The remaining

two terms are the lifting and displacement noise components

respectively. p-po is the difference between the pressure on

the blade and the ambient pressure, n^ is the ith component of
o

the unit normal to the blade surface, V. is the ith component of

the blade surface velocity, and G is the free space Green's

function.

G(?0,to)|r,t) = 6(to-t + R/co) (B.2)

Here r is the source location and R is the distance between

source and receiver locations

R = i?-?oj = |x-y| .

Note that the normal gradient is

9 ._ ' 9

where y^ is the ith source coordinate and a sum over the index i

is implied. The normal surface velocity is

V = n.V? = n-Vs

n i l '

where n is the unit normal vector.
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One reason for beginning with this result, is that it is de-

veloped carefully, unambiguously, and ingeniously by Goldstein

[8], A reader can easily wade through the algebra that leads to

Eq.(B.l). The remainder of this appendix is concerned with the

manipulation of this result to obtain the ANOPP equation, what

shall be called here as the propeller noise formula.

To begin, it is noted that the relation between the fluid den-

sity fluctuation and the fluid pressure fluctuation, (neglecting

heat conduction in the fluid) is simply

p' =• c*p'

For convenience, the prime on the p is dropped on the left hand

side, and on the right hand side, we replace the airfoil pres-

sure (p-p0) by I. Now p is understood to be the fluctuating

pressure and it follows that Eq.(B.l) can be rewritten as

ri+ r f 6(t -t + R/c ) I
^p(r.t) = J J -n±a 3|- [ —-2 g 2_ JdSQdto

* r r vs
 3 f i(t°-t * R/c°'1+ J J Vovi —0 L s J|dsodto

(B.3)

In the above R is independent of time,

Consider first the evaluation of

6(t -t + R/c )o ~
R ^]-
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R/Co' - TT 3?I Î V* + R/Co>]

Now

= nni R* 9y i R;

n • (r-r ) n • G

R3 R2

/v

where ur is the so-called unit radiation vector
r_r

Also

) -~̂ .P±L
__ _ _

R ay. o - -R- 3T

where T = t -t + R/co o

9T J^ 9R = "
(xi"yi) ̂  "^

3y- c 9y. c R ci o i o o
and

36(T) i
9T dT

Note that

36(T) _ 36(t) 9T = d6(i)
3t ~ 9i 9t di
o o

This latter result follows because R is independent of to,
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Following the general approach used in propeller noise predic-

tion, it is now convenient to introduce a Lagrangian coordinate

system (so-called n system [9,10]) that rides in the body and in

which S0(tQ) remains fixed (see Figure B-l).

The velocity V and acceleration a of any point ri in this coordi-

nate system is

3?

V = *tT ̂ 'Vfi - fixed

3V /- x
. - n = fixed • *

Since S0(t0) = So is fixed in this system, i.e., SQ is a rigid

surface: every point has velocity

V = Vo(to)

where V is the velocity of the origin of the n system and w is

the angular velocity of S (or the n system). Since n and y are

Cartesian, the Jacobian of this transformation, i.e.,

( rQor y}-> n -

is unity.

In the n system, the limits of integration of the surface inte-

grals are independent of t and the order of integration in

Eq.(B.3) can be reversed to yield

f (** n-G *
r,t) = I - -jrs*- «(t0-

t + R/co^dtodSo(n)
Jc! J—OD

r r r" ~
IT I I \~^

* r;s.
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where now R is a function of time, i.e.,

arid

y = r0 =

R = r-r

n = n * ?0(tQ) ,

-5(t0)|

To evaluate the integrals in (B.̂ ) the following identities from

generalized function theory are used [9]

r °° x-* f (T1)
/ f(T)6[g(T)]dT = 2^ ~ ' (B.5)

dTe e

where T is the ith root of g C t ) = 0

Also

(B.6)

The first identity (B.5) is used on the first term in (B.4) to

obtain

and

f(t0)

^K =

R
- t + R/C

r TT~ = 1 +O dtr,

= 1 -
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Therefore,

OO /^ /^

• -n-u J, n* u i
r ( B . 7 )

W

where t e = t-R/c0. .o

The second identity (B.6) is used on the second term in (B.4)

and then the first identity (B.5) is applied to-further reduce

the second term. Using

f(to) = | [n • u

gives

/

T n-u Si + p c n-V "1 a

_^_^_ <̂[t̂  + H/co]
— 00 U -1

at.

. -/•"/_»_ f_^v (^
1 K l^ri2 I

•TT ̂  «

i5(to-t + R/co)dt0

Since l-Mr = |l-MrJ for M <1, the above

o

n-u £ + p c n - V k

r o o

R|l-M Ii r i
6(t -t + R/c )dt-

° o o

Now using (B.5), setting

* * * — £n*u i + p c n*Vr o o

R|l-M r |
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gives the above

1 3
1 I-M 1 at1 r ' o

n*u £r
R

+ p c n
0 0

•Vs "

1-M |r '
(B.8)

t = t-R/co o

Substituting (B.7) and (B.8) into (B.I) gives, after changing

the sign so that the normal points out of the blade.

4Trp(r,t) = — f I i L
°o J \\I-H I 3t

poCoVn

R|l-M
dSo(n)
t-R/c.

R2|l-M
(B.9)

Eq.(B.9) can be written in an alternative form which is faster

to execute on a computer and more accurate [12]. First, the

acoustic pressure is separated into loading, pT(r,t) and thick-Li
ness PT(r,t) contributions, such that

p(r,t) = pL(r,t) + pT(r,t) - .- -

Then the two components can be written in the forms

_ TV/I _ T\ff 2poVn (RM.u^n

R2(l-Mr)
3

t-R/c,
dS0(n)

(B.10)
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and

4TrpT ( r , t ) =
iu *nr

R(l -M r )
2

d S Q ( n )

4- ID /

Lo

u -n - £M.'

R2(1-M )2
dS0(n)

t-R/f

• n ( R M . u •n + c M - c M2)i r o r o
R 2 ( l - M r ) 3

t-R/

dS 0 (n :

'B. l l

Mach number terms M. and M2 are given by

Mi = Vi/co and = ViVi/co2

where V. =
1

O
(u « n ) . Furthermore, the dot on M. and

denotes the rate of variation of these parameters with respect

to time t .
o

Equations (B.10) and (B.ll) have been coded at NASA Langley for

use in ANOPP. The reader should consult references such as [11]

and [12] for details concerning the mechanization of these

results. Also, an alternative derivation of the present results

is provided by Farassat in References [10] and [12].
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APPENDIX C - CABIN ACOUSTIC MODES

The acoustic modal characteristics of the cabin are defined by

the mode shapes 4> (£), £ being an interior point, resonance fre-

quencies <i> , and the mode normalization given by the constant

e . In the present case, consideration must be given to the

determination of these quantities for the case of a cylinder

with a floor partition defined by the angle 6Q as shown in

Figure C-l. In the ideal complete cylinder the modal properties

can be determined in closed form by an analytical solution of

the wave equation, subject to the appropriate boundary condi-

tions. This is possible because the wave equation is separable

in cylindrical coordinates and the boundary conditions can be

expressed in these coordinates. When the floor is present, it

is no longer possible to derive the mode shapes analytically

since the boundary conditions are irregular. Thus it is neces-

sary to resort to numerical methods. There are two possibili-

ties, either finite differences or finite elements. Since in

the present case, the modal characteristics in the axial direc-

tion are known, a two-dimensional problem remains, and the

finite difference technique, which is the simpler of the two, is

chosen. First, the two-dimensional problem is solved. Then the

axial modal information is factored in. Next the normalization

of the data is defined.

Finite Difference in Two Dimensions

In the cavity (cabin), the Helmholtz equation applies. In the

two-dimensional problem, using central differences, it is found

that for the grid of Figure C-2, the pressure P obeys the relation

4 Pm,n~Pm+l,n~Pm-l,n~Prn,n+l~Pm,n-l = k2.h Pm,n > (C.I)

where h is the grid spacing, and k = w/c0.
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4 Fuselage

FIGURE C-1. CABIN ACOUSTIC SPACE
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(m,n) = (NX,NY)

FIGURE C-2. FINITE DIFFERENCE GRID NOMENCLATURE
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Boundary Conditions

The boundary condition is that the outward normal gradient is

zero (the wall admittance 6 is assumed to be sufficiently small

to allow this assumption). Thus, referring to Figure C-2, in

the region 60<9<2ir-6o:

^m.n+l-Vn-l* Cos9mn = (Pm+l ,rTPm-l ,n} sin6mn ' (C-2)

If -60<e<90, the boundary condition is obtained from Eq.(C.2) by

simply setting Smn = 0 whenever
 e
mn<

 e
0 •

Solution

Let the column vector Pj = ^Pj^n-jxl be tne pressure at interior

and boundary points. Also let PP = fPF^ be the pressure at
& & nexl

the. exterior points, adjacent to boundary points only. Using

the recurrence relationship for a'll interior and boundary

points, i.e., Eq.(C.l), gives (in. matrix notation, with

X = k2h2).

Vl + REPE = XPI > (C.3)

where Rj has dimensions n.j xn.- and Rg has dimensions n-xne,

where n,- is the number of interior and boundary points and ng is

the number of exterior points. The matrices Rj and RE will be

different for symmetric and antisymmetric modes.

The boundary conditions (Eq.(C.2)) give (ne-2) equations.. The

tangential gradient is assumed zero at two boundary points close

to 6 = TT/II and 3'n/̂ , giving n equations. .When combined, these

•take the: form

BTPT + B...P., = 0J. _L t I!



where Bj has dimensions nexnj and Be has dimensions nexne.

Since the matrix BE is non-singular

PE = -BEVl ' (C'5)

Substituting this gives

The eigenvalues and eigenvectors are calculated for symmetric

and antisymmetric modes, separately. The modes are then com-

bined, and ranked in ascending order of frequency and the first

20 modes only are used. The vector F corresponding to A . is

the mode shape (<J>1(J)), where i is the 2-D mode counter, and j

defines the position in the fuselage cross section. The nodes,

n. , represent only half the cylinder (i.e., X > 0). -The values

of the eigenvectors (on the boundary) will differ for symmetric

and antisymmetric' modes for X < 0. For symmetric modes, :

4»1(J) = 4>±(X,Y),

4>i(X,Y) =

For antisymmetric modes,

Each mode must- therefore be identified as symmetric or anti-

symmetric when the boundary values of the' eigenvectors are used.

Apart from the boundary values of the eigenvectors, there is no

need to distinguish between symmetric and antisymmetric modes in
s

the cylinder response program. In addition, it should be noted

that the first symmetric mode represents uniform translation with

zero frequency.
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The eigenvalues, ^, are used to calculate the resonance

frequencies for the (three dimensional) cabin with

fn - f_, = *§im + v£ \ , (C.7)

where h is the grid spacing ( =Ga), and L and a are the cylinder

length and radius respectively. The frequencies output by the

program are

(c-8)

i.e., the frequencies for q = 0 modes and. a = 1 meter.

Normalization

The acoustic modes <|>n for the three dimensional cabin are

1(j) , (c>9)

where <j>.(X,Y) is the eigenvector for the two-dimensional mode

ranked i (i = 0,1,2,...) as calculated with the finite differ-

ence technique; i.e., <j>.(X,Y) is a finite dimension column

vector, which contains the values of 4>4 at all coordinate

positions j within and on the boundary of the cabin space. The

normalization of the modes is arbitrary. The maximum value

achieved at any coordinate positon has been chosen to be unity

and the other values adjusted to retain the computed ratios from

point-to-point. The normalization is carried into the trans-

mission prediction with the parameter e . In the case where the

floor is present the integral required to determine -e is

/•
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where j counts over all interior locations. C(j) = 1 for
boundary points and centerline locations, C(j) = 2 for interior

points. Also e = 2 for q = 0; 1 for q > 0. The generalized
mass for mode i as defined in the finite difference program with

unit radius is

V1) = IL <f>i(J)G2C(j) . (C.10)

The volume enclosed is

V = a2L |iT-8 + cos8 sine 1I o o o
Thus

2 hr-e + cos6 sineL o o oj_ _ _ U U U U-l ( n -i -i \e = e . - — • (,0.11;.n qi « /.\

Sample Results

Figure C-3 shows examples of the finite difference calculation
for a case where the floor 6 is 56.6°. The first twenty modes are

shown and are ranked according to the A.. The resonance fre-
quencies are for a = 1 meter. The 1 meter results given in

Figure C.3 are simply the f. in Eq.(C.8). The resonance fre-
quencies for arbitrary radius a (in meters) is obtained from

Eq.(C.7). Eq.(C.7) can also be written in the form

c
f = f —^n qi 2-n( \

2JL\
L)

c
(C.12)

\co

where fj_ is the 1 meter result. Note that for q = 0,
f.

f = -i-^i a . '

Table C-l gives the computed generalized masses, $_(i) for the

1 meter (unit) radius.
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MODE 0. SYMMETRIC
FREQ. = 0.00

MODE 1. ANTISYMMETRIC
FREQ. = 99.5

MODE 2. SYMMETRIC
FREQ. = 120.4

oi
CO

1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0 1.0 1.0

-.0 .1 .1

-.0 .2 .3 .5 .6

.0 .2 .4 .» .7 .8

.0 .2 .4 .6 .7 .6

.0 .2 .} .6 .8 .9 .9

• 0 .2 .5 .7 .8 .9 1.0

-.0 .3 .» .7 .9 .9 1.0

-.0 .1 .» .7 .9 1.0 1.0

-.0 .3 .5 .7 .9 1.0 1.0

-.0 .3 .$ .7 .9 1.0 1.0

-.0 .3 .» .7 .4 .9

1.0 1.0 .9

1.0 .9 .9 .8 .7

.8 .8 .8 .7 .6 .»

.7 .6 .6 .» .4 .3

.4 .4 .4 .3 .3 .2 .1

.2 .2 .1 .1 .0 -.0 -.1

-.1 -.1 -.1 -.1 -.2 -.2 -.2

-.3 -.3 -.3 -.4 -.4 -.4 -.4

-.» -.5 -.» -.» -.5 -.» -.»

-.6 -.6 -.6 -.6 -.6 -.6 -.6

-.7 -.7 -.7 -.7 -.7 -.7

FIGURE C-3. ACOUSTIC MODES FOR A CASE WHERE
0 = 56.6°, q = 0, a = 1 rrieter



MODE 3. ANTISYMMETRIC
FREQ. = 175.9

MODE 4. SYMMETRIC
FREQ. = 187.9

MODE 5. SYMMETRIC
FREQ. = 220.4

o
i

VD

-•0 .3 .6

-.0 .4 .7 .9 1.0

•0 .4 .7 .9 1.0 1.0

• 0 *j • fr *S «9 «S

-•0 .2 .» .6 .7 .6 .6

-.0 .1 .3 .3 .4 .3 .3

• 0 .0 .0 .0 .0 .0 -.0

.0 -.1 -.2 -.3 -.3 -.3 -.3

-.0 -.2 -.4 -.5 -.6 -.6 -.fc

.0 -.2 -.5 -.7 -.8 -.8 -.8

.0 -.3 -.5 -.7 -.8 -.9

.6 .6 .4

.6 .3 .3 .1 -.2

.» .4 .2 -.1 -.4 -.6

.5 .4 .1 -.2 -.5 -.T

.4 .3 .1 -.3 -.6 -.9 -1.0

.5 .4 .1 -.3 -.6 -.9 -1.0

.6 ,5 .2 -.2 -.6 -.9 -1.0

.7 .6 .3 -.1 -.5 -.7 -.8

.8 .7 .» .1 -.3 -.6 -.7

1.0 .9 .6 .2 -<2 -.4 -.5

1.0 .9 .6 .2 -.1 -.3

1.0 .9 .7

• 9 •& «6 *3 *0

.» .» .3 .1 -.1 -.3

.1 .1 -.0 -.2 -.3 -.4

-.3 -.3 -.3 -.4 -.4 -.4 -.«

-.6 -.5 -.5 -.4 -.4 -.3 -.3

-.6 -.6 -.» -.3 -.2 -.1 -.0

-.» -.» -.3 -.1 .1 .3 .3

-.3 .-.3 -.1 .2 .» .6 .6

-.2 -.1 .1 .4 .7 .8 .8

-.1 -.O .2 .» .8 .9

FIGURE C-3. CONTINUED



MODE 6. ANTISYMMETRIC
FRE. = 253.2

MODE 7. SYMMETRIC
FREQ. = 259.2

MODE 8. ANTISYMMETRIC
FREQ.= 289.7

o
I

.0 -.* -.9

.0 -.5 -.9 -.9 -.8

-.0 -.* -.8 -.8 -.» -.1

-.0 -.3 -.5 -.4 -.1 .2

-.0 -.2 -.2 -.1 .3 .6 .8

.0 -.1 -.1 .2 .* .8 1.0

.0 -.1 -.0 .2 .S .8 .4

.0 -.1 -.1 -.0 .3 .5 .7

.0 -.2 -.4 -.3 -.1 .1 .2

.0 -.3 -.5 -.6 -.* -.3 -.2

—•0 — .4 -.6 *»7 ~«6 —.6

-.2 -.1 .1

-.3 -.1 .2 .5 .9

-.4 -.2 .1 .6 .9 1.0

-.6 -.5 -.1 .4 .7 .8

-.8 -.6 -.3 .1 .5 .6 .5

-.8 -.7 -.» -.1 .1 .2 .2

-.6 -.5 -.4 -.3 -.1 -.1 -.1

-.1 -.1 -.2 -.2 -.3 -.3 -.3

.« .3 .2 -.0 -.3 -.» -.*

.8 .7 .S .1 -.2 -.4 -.4

1.0 .9 .6 .2 -.1 -.3

-.0 .3 .5

.0 .3 .5 .« .3

.0 .2 .3 .4 .4 .3

.0 -.0 -.0 .0 .1 .1

.0 -.3 -.4 -.3 -.1 .0 .1

-.0 -,i -.7 -.6 -.3 .0 .2

-.0 -.6 -.« -.7 -.2 .2 .4

-.0 -.6 -.8 -.6 -.0 .$ .7

-.0 -.4 -.7 -.4 .2 .7 .9

-.0 -.$ -.6 -.2 .4 .9 1.0

-.0 -.4 -.5 -.2 .4 .8

FIGURE C-3. CONTINUED



MODE 9. SYMMETRIC
FREQ. = 300.2

MODE 10. ANTISYMMETRIC
FREQ. = 324.6

MODE 11. SYMMETRIC
FREQ. = 343.7

o
i

i.o .8 .*

• 8 .6 .2 ••• 3 ~.6

.3 .2 -.1 -.4 -.7 -.6

-.1 -.2 -.« -.5 -.S -.3

-.3 -.3 -.3 -.3 -.2 .1 .»

-.2 -.2 -.2 -.0 .2 .•> .7

.0 .0 .1 .2 .4 .6 .7

.2 .2 .1 .1 .2 .4 .i

.3 .2 .1 -.1 -.1 -.1 .1

.3 .2 -.1 -.3 -.4 -.5 -.»

.3 .2 -.1 -.* -.7 -.7

-.0 -.6 -••»

.0 -.6 -.8 -•« *2

.0 -.5 -•* -•!• •* I>0

.0 -.* -«» •! -7 l«°

-.0 -.3 -.3 .0 .5 .8 .7

.0 -.3 -«* -«2 -1 '3 .3

.0 -.2 -•* -•» -«3 -«2 -.3

.0 -.1 -.2 -.3 -.* -«5 -.fc

-.0 .» .2 .1 -.2 -.* -.*

-.0 .1 •* •* «Z "*° '•*

-.0 .* -7 •6 •* *2

-.2 -.3 -.6

.0 -.1 -.4 -.7 -.8

.0 .1 -.1 -.5 -.6 -.4

1.0 .8 .3 -.1 -.2 .1

.V .7 .3 .1 .1 .* .6

.3 .2 -.0 -.1 .1 .4 .6

-.» -.* -.» -.5 -.2 .2 .»

-.4 -.6 -.7 -.6 -.3 .0 .2

-.1 -.2 -.3 -.4 -.2 -.0 .1

.A .i .3 .0 .0 .1 .1

1.0 .» .* .2 .1 .1

FIGURE C-3. CONTINUED



MODE 12. ANTISYMMETRIC
FREQ. = 356.9

MODE 13. SYMMETRIC
FREQ. = 366.1

MODE H. SYMMETRIC
FREQ. = 381.0

o
I
M
ro

-.0 -.7 -1.0

-.0 -.6 -.9 -.6 -.3

.0 -.3 -.3 -.1 .1 .3

.0 .1 .3 .4 .4 .3

-.0 .4 .6 .6 .4 .0 -.3

-.0 .4 .6 .* .1 -.4 -.7

-.0 .2 .2 .1 -.2 -.6 -.6

-.0 -.1 -.1 -.2 -.2 -.4 -.i

-.0 -.4 -.» -.2 .1 .2 .1

-.0 -.» -.6 -.1 .5 .8 .8

.0 -.» -.6 -.1 .6 1.0

-.7 -.* -.1

-.5 -.3 .2 .f .7

-.2 -.0 .3 .5 .5 .3

.1 .1 .1 .2 .1 -.1

.2 .1 -.1 -.3 -.3 -.3 -.3

.3 .1 -.3 -.5 -.» -.2 -.0

.4 .2 -.3 -.5 -.2 .2 .*

.5 .) -.2 -.4 -.0 .6 .">

.6 .3 -.2 -.4 -.0 .7 1.0

.» .2 -.3 -.6 -.3 .3 .6

.» .2 -.4 -.7 -.» -.1

1.0 .7 .0

.7 .0 -.2 -.6 -.4

.2 -.1 -.5 -.6 -.1 .4

-.1 -.2 -.* -.4 .2 .7

.1 -.1 -.3 -.2 .3 .« 1.0

.» .3 -.1 -.2 .1 .9 .»

.7 .4 -.0 -.4 -.4 -.2 -.2

.J .3 -.1 -.4 -.» -.5 -.»

.2 .1 -.1 -.2 -.2 -.2 -.3

-.2 -.2 -.1 .1 .4 .* .3

-.4 -.3 -.1 .3 .7 .8

FIGURE C-3. CONTINUED



MODE 15. ANTISYMMETRIC
FREQ. = 393.3

MODE 16. SYMMETRIC
FREQ. = 418.4

MODE 17. ANTISYMMETRIC
FREQ. = 124.0

o
i

M
UJ

.0 -.» -.6

.0 -.4 -.4 .3 .9

.0 -.4 -.2 .4 1.0 .9

.0 -.4 -.1 .2 .4 .2

-.0 -.3 -.4 -.2 -.1 -.4 -.7

-.0 -.2 -.2 -.2 -.2 -.» -.6

-.0 .0 .1 .2 .1 -.1 -.2

-.0 .2 .1 .4 .4 .3 .1

-.0 .1 .2 .2 .3 .3 .3

.4 .» .4

• 1 .2 .2 -.1 -.3

-.4 -.4 -.1 -.1 -.4 -.4

-.7 -.4 .0 .2 -.0 -.2

-.4 -.1 .4 .6 .3 -.2 -.4

-.1 .1 .6 .7 .3 -.2 -.4

•-.1 -.0 .2 .3 .1 -.3 -.4

-.2 -.2 -.3 -.3 -.2 -.1 -.1

.1 -.1 -.4 -.5 .-.1 .3 .4

.7 .3 -.3 -.5 .0 .6 .7

1.0 .6 -.2 -.4 .1 .6

.0 -.7 -.9

.0 -.i -.6 -.2 .1

.0 -.0 .1 .2 .2 .1

.0 .4 .6 .5 .2 -.1

-.0 .4 .5 .2 -.2 -.4 -.4

-.0 .2 .1 -.3 -.4 -.3 -.1

-.0 -.0 -.3 -.4 -.4 .2 .i

-.0 .0 -.2 -.4 -.1 .6 1.0

-.0 .3 .1 -.2 -.1 .4 .«

-.0 .6 .5 -.1 -.4 -.2 .2

-.0 .7 .6 -.1 -.7 -.7

FIGURE C-3. CONTINUED



MODE 18. SYMMETRIC
FREQ. = 134.1

MODE 19. ANTISYMMETRIC
FREQ. = U47.9

o
i.

-.» -.1 .«

-.6 -.1 .8 1.0 .6

-.8 -.4 .3 .i -.0 -.»

-.6 -.4 -.1 -.2 -.» -.7

.2 .1 -.0 -.3 -.4 -.2 .1

.7 .6 .2 -.1 -.0 .4 .7

.4 .3 .1 -.1 .1 .5 .7

-.3 -.3 -.3 -.3 -.2 -.0 .2

-.6 -.4 -.2 -.1 -.3 -.5 -.*

-.3 -.0 .4 .4 .0 -.4 -.3

-.0 .3 .7 .8 .3 -.0

-.0 .5 .4

-.0 .4 .3 -.1 -.1

-.0 .1 -.1 -.3 -.1 .3

.0 .0 -.3 -.* -.1 .*

.0 .2 -.1 -.5 -.1 .7 1.0

.0 .6 .3 -.4 -.4 .3 .6

.0 .9 .6 -.4 -.7 -.2 .1

.0 .9 .ft -.3 -.7 -.2 .1

.0 .6 .3 -.4 -.3 .3 .6

.0 .2 -.1 -.5 -.1 .7 .9

.0 .1 -.3 -.6 -.1 .»

FIGURE C-3. CONCLUDED



TABLE C-l. EXAMPLE PROGRAM OUTPUT

Phase III Test Article

Angle subtended by floor edge with
vertical, 8^ = 56.6 degrees

MODE FREQUENCY GEN.MASS

0
I
2
3
*
5
6
7
8
9
10
11
12
13
1*
15
16
17
18
19

0.0
99.501
120.374
175.689
137.927
220.381
253.162
259.176
2*9.67*
30U.18*
32*. 597
3*3.723
356.9*9
366.051
381.030
393.310
*13.37*
*2*.029
*3*.105
'i <t 7 . 3 '6 1

SYrtn
ANTI
SYrt.1
A<<TI
SYM1
SYflrt
ANTI
sr»,i
ANTI
SYMrt
ANTI
SYrt.1
ANTI
SYMrt
SYnn
ANTI
SYrtil
ANTI
SYMM
A -N T I

2.59631
1.03531
.72535
.68099
.72*00
•*9S15
.5*535
.50751
.51521
.36571
.*2606
•*5**0
•*6005
.36319
.398*1
.2899*
.3*805
.37055
.*02**
.*5*90
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APPENDIX D - FUSELAGE STRUCTURAL MODEL

The fuselage modal characteristics are defined by the eigen-
i> _

vectors 4* (x), resonance frequencies u , and the mode normaliza-

tion given by the constant Mr (the modal mass). In the present

model, these quantities are computed for a ring-stringer

stiffened cylinder with a floor partition that is structurally

an integral part of the fuselage.

The basis of the structural model is an analysis of the free

vibrations of a circular cylindrical shell with a longitudinal

interior plate (Fig.D-1) by Peterson and Boyd [13>14]. A review

of their analytical approach is presented in this appendix and

then the generalization of their results to enable calculations

for the ring-stringer stiffened shell is considered.

Displacement Functions

The displacement functions are assumed to be finite series. For

the shell:

M* n*

M* n*

M* n*

= M?0 n?C

The plate functions upj Vp, wp are similarly expanded.

The longitudinal functions X(x) are the same for the plate and

the shell. These functions are expressed in terras of a single

function <{>..( x), in the following manner:
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FIGURE D-1. CIRCULAR CYLINDRICAL SHELL WITH A
LONGITUDINAL PARTITION
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XuM = *M(x>

XvM = Vx) (D.2)

XwM = Vx) '

The functions (̂x) are the mode shapes of a uniform beam.

The boundary conditions used in this model are those of a

supported beam, so ^M(x) = sinMirx/L. Note here that the shell

axial coordinate is x. In the cylindrical coordinate system

used in the body of this report, the axial coordinate is z. No

confusion should result from this temporary change in nomencla-

ture.

The circumferential functions for the symmetric modes of the

shell are
fy = cos n6
un

V. = sln n9

*wn = cos n0

For the antisymmetric modes, . (D.3)

\1> = sin n8 .
un

^vn = -cos n9

^wn = Sln n9

A similar set is used for the symmetric and antisymmetric modes

of the plate (floor).

Constraint Equations

The floor partition can be taken to be fixed or pinned, (hinged)

along the line of attachment to the shell. -For a rigid

attachment, the shell and plate displacements obey the following

relations

D-3



us = up

w sin6, + v cos9, = v
s 1 s - 1 p

w cos6n - v sin0, = ws 1 s i p

vs
r

I
r 96

3w
- -
8y 0

In the case of a hinged connection the last equation is dropped.

Equations of Motion

Peterson [13] used Hamilton's principle to derive the equations

of motion. He assumed that the cylinder was of uniform thick-

ness t and allowed for different modulii Ex and Eg, but no

stiffeners. Following [13], the displacement functions are

written in the matrix form

u

v

w

= . [Ns]
(D.5).

where [N 0 ] is a matr ix of size 3 x 3M*n* and {q} is a vector oi
O '

the generalized coordinates of the shell given by

(— \
us

W

(D.6)

where

on*

*

ol

on

in*

ol

on (D.7)



The displacements of the plate are expressed in the matrix form

= [N ] {q } , (D.8)
P P

where the elements of (q } are the generalized coordinates of

the plate, arranged in the same manner as the elements of {q }.s
For either the shell or plate the strain energy can be expressed

as

U = i / (a)T (e}dS , (D.9)
JS

where (a) is a vector of stress resultants and fe) is a vector

of strains and curvatures for the plate or shell.

For a linearly elastic material,

(a) = [D] (e) , (D.10)

where [D] is a matrix of elastic constants. The strain-

displacement relations, obtained from Love's shell theory and

classical plate theory, have the form

(e) = [G] {u}, where (u) = Jv \ . (D.ll)

Substituting Eqs.(D.lO) and (D.ll) into (D.9), and using

Eq. (D.5) or (D.8) leads to

U = \ £ ([G] [N] fq})T [D] [G] [N] fq) dS . (D.12)

For either the shell or the plate the kinetic energy is (in

terms of the generalized coordinates)

U = | {q}T[K]{q) , (D.13)

where "

[K] = / [[G][N]]T [D][G][N] dS . (D.lH)
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Writing the strain energies for the shell and plate as

Us = X}T[Ks]{^} and Up • !VT[K

gives the total strain energy:

The kinetic energy of the plate or shell is

T = \ / p{u}T{u) dS.
d S

In terms of the generalized coordinates

T = | /s p{q}
T[N]T[N]{q) dS .

The mass matrix is defined as

M = / p[N]T [N] dS ,
S

giving for either shell or plate

T = {q}TOl]{q}

The total kinetic energy for the system is the sum of the

kinetic energies of the shell and plate, T = Ts + Tp, yielding

where

is the combined vector of all the generalized coordinates of the

shell and plate.

The components of the coordinate vector {q} are not independent

because the constraint equations must be introduced to insure

displacement compatibility at the interface between the plate
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and shell. The equations expressing this compatibility can be

written in terms of the generalized coordinates in the following

matrix form:

CG]{q} = (0) . (D.17)

Applying Hamilton's Principle and adjoining the constraint

equations by introducing a vector of Lagrange multipliers in the

standard way leads to the equations of motion and constraint for

the system.

If (q) is partitioned into a set of independent coordinates tq^

and dependent coordinates {q~}, the constraint equations can be

manipulated and the dependent coordinates and Lagrange multi-

pliers can be algebraically eliminated. The equations of motion

then take the form:

CM] {q̂ } + CK](qi) = (0} , (D.18)

in which

CM] = [E]T[M*][E], [K] = [E]T[K*][E] , (D.19)

where

[E] = (D.20)

and GI and C2 are obtained from the partitioned constraint

equations

= (0) (D.21)

The eigenvalue problem is obtained by letting (q-̂  vary harmoni-
cally with time to yield finally

(D.22)

D-7



Now, the primary concern In this appendix is to modify the Peterson

results to enable calculations for a stiffened shell. Prom Eqs.

(D.10) and (D.ll),

(a } = [D](e } = [D][G](uJs s

Peterson's results for the above (Appendix A of Ref.[13]) can

be written in the modified form

'N
X

Ny

Nxy

M
x

My

Mxy

^ _

k 3 I v k — 1 v kXS3~^" r x 939 r x 9

vAk — - k — - k6 x3x r 9R 36 r 6R

— G nt^TTT G ^t -r 0r x6 39 x9 3x

1 3 * a 2 i 3 ' 2
0 v D -o — - D d - M D 1 8

x U 9r 2 39 D xs3x 2 Vx°9 r 2 3 9 2

0 D 1 3 ' • -v D 9' - l D 9'
9 r2 39 J9Lx 3x2 r 2 D 9R 39 2

0 r t3 1 3 * t3 2 32

• 'x6 12 r .3x x9 12 r 3x39

*

r •*

u s

V s

ws

(D.23)

In Eq.(D.23), Peterson's k , k_, D , and DQ have been replaced at
X D X t)

various points in the matrix by the augmented terms

kxs • kx +l^ stringer

k6R = k

D = D .xs x

D9R = D9

ring

d / stringer

(D.21J)

W ring

The result may be compared to Eqs. (25)-(27) on Page 10 of Mikulas

and McElman [15]- If the assumption is made that the stiffeners

used by Mikulas and McElman are symmetric about the skin (i.e.,

z and z are zero), the equations are very similar except thats r
the terms with the asterisks do not appear.
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The strain energy term is obtained from Eq.(D.12). The result
T

of concern is [G] [D][G] and is given by

,. 92 i n t 9
2

"xs 9x2 rz x9 992

1 » i- 32 + I c t 32r 6 x 8x99 r xG^ 3x96

^vk 3-1r 9 x 9x

1 a2 1 22\)k d + r; t °
r x 6 9x96 r xQ 9x98

1 a 2 a 2
* lr ° + r1 t- "

r2 k6R 962 x9^ 9x2

+ D ^^1_+ G ^ 1 _32
6 r1* 962 x6 12 r2 9x2J

1 1- -9 v D 1 33
r K6R 98 x 6 r2 969x2

_ 1 D 1L. 2 t3 9
2

r4 ^8 98 3 r2 x6 12 9x296

1 M v 9
r2 Ve 96 -

1 ir 8 X M n 33
rzK3R 99 r2 8 x9x298

_1 93 G t3
 2 93

r" 6R 963 xe 12 r2 9x296

1 a1* la2
-1- 1 ,- -LTl C J_ , , TV -1- O

r2 IC9R xs 9x" +VxD8 r29x2982

+1 un 3" + 1 n 3"
r2 8 x9x2962 r1* U6R 99"

+ M t3 3"
r2 x0 12 9x2962

(0.25;
The equations of motion that result for the shell when the

matrix (D.25) is used are almost identical to those of Mikulas

[15], p. 8, or Leissa [16], p. 191. The differences are due to

assumptions made in the analyses, but the. important main diagon-

al terms are very similar in form.

To incorporate the effects of the stiffeners in the Peterson

analysis, the properties of the stiffeners are "smeared-out",

i.e., averaged over the shell surface as done in Ref.[15]. An

equivalent skin thickness, t, is defined by

where t is the actual skin thickness. A and A^ are the
s s R

stringer and ring frame cross-sectional areas, and d and £ are
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the stringer and ring spacings. Using this thickness, the skin

stiffnesses are computed from

k = k = Et
X ~B I_v2

Et3

and the skin rigidities with

Dv = Dfl =x 6 12(l-v2)

In (D.25), kxs and kQR revert back to kx and kg (as originally

used by Peterson) but are computed with the equivalent skin

thickness. D and DQR revert back to DX and DQ everywhere

except in the third diagonal term and are also computed using

the equivalent thickness as above. In the third diagonal term D

and DQR are computed from the results in (D.24) where D and

Dg are computed for the actual skin thickness.

When these modifications are incorporated, it can be seen that

reasonable approximations are found for the first two diagonal

terms and for the off-diagonal terms but the skin stiffnesses

will be somewhat higher than they would have been had k and
X S

kQR been used (i.e., the results in (D.24)).

The Mode Shapes (Eigenvectors)

The eigenvectors for the fuselage model are the displacement's u,

v, and w for each eigenvalue, w . The w component is the
r — r

desired mode shape ty (x) . This mode shape encompasses both the

plate and shell normal displacements. The maximum normal dis-

placement computed on either plate or shell is assigned the

value of 1.0, and all other values of u, v, and w at other

positions are divided by that maximum value for normalization

purposes.
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n*
The mode shapes for the symmetric modes of the shell are

— ,„, • (D-26)

and for antisymmetric modes

n*

(̂z,6) =-sin ̂  Z C^(-l)nsinn6 . (D.27)
n=l

In these two equations, z is again the axial coordinate and 8 is
G >*>

measured from the bottom of the cylinder. The Cj, are the

generalized coordinates for the shell (the same as the WMn of

Eq.(D.7)) •

The symmetric modes of the floor are

n*

= sin e cos , (D.28)
n=0

and the antisymmetric modes are
n*

(z,x) = sin sin . (D.29)
P L n=0 Mn Lp

Again, z is the axial coordinate measured from the forward end

of the cylinder and x is the distance measured horizontally in

the floor plane from the centerline of the fuselage to the

position of concern on the floor. Lp is the. width of the

floor and is given by

Lp = 2a sin 9O >

pr
where 90 is the floor angle as shown in Pig. 1. The CMn are the

generalized coordinates for the floor plate. Note that ^ (x) is

the combined set for cylinder and floor, that is,

. (D.30)
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Generalized Mass

The generalized mass must include all energy in both the

cylinder and floor and therefore is defined by

r2n

9 = 0

2 2? , r ,+ v + w
5 S

2

rr ) m ad6s s

tf
(D.3D

L LP r2 r2 r2
(up + vp + wp } mpdx

where ms and m are the masses per unit of area of shell and

plate respectively, a is the cyli-nder radius, and L is the

cylinder length. Note that there are two components of the

modal mass, one for the shell and one for the plate. If a

particular mode r is, say, predominately a floor mode, M will

be dominated by the second term and the shell contribution will

then be small. For such a mode, the floor can be seen to re-

strain the motion induced by fuselage sidewall excitation.

Sample Output

Modes are ranked according to the occurrence of their resonance

frequencies and the values of the generalized coordinates
si-* or*

CMn and CMn for each mode are output. For each value of r,

there is a single value of M that defines the axial mode shape,

and a sequence of n's that defines the circumferential mode

shape. Table D-l gives the results for the first 32 modes of the

1.83m (72 in.) long cylinder used in the present validation study.

The values of n given in the table are those that contribute most

to the determination of the mode shape. Ohly 5 terms are retained

for the shell and 3 for the floor. Fig.D-2 shows an example of a

typical mode shape, in particular, for the first mode -of Table D-l

It is 'apparent from the figure and also from the computed gener-

ized mass, that the mode shown is basically a floor mode.
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TABLE D-l. EXAMPLE PROGRAM OUTPUT

Phase III Test Article: 1.803m (71 in.) long cylinder,

stiffened 0.0008m (0.032in) skin, 0.508m (20 in.) radius with floor at 56.6°

NODE FREQ nOOE
NO (HZ) TYPE

1 188.52 SYHM

I 208.21 SYNM

3 217.88 SYMH

231.01 SYHN

5 293.25 SVHH

6 301.93 SYHH

7 303.67 SYNM

6 318.73 ANTI

SHELL
H

1
1
1
1
1

1
1
1
1
1

2
2
2
2
2

2
2
2
2
2

3
3
3
3
3

1
1
1
1
1

3
3
3
3
3

1
1
1
1
1

N

2
3
4
1
5

2
4
5
3
1

<i
2
5
1
3

4
5
2
8
7

4
5
2
1
7

2
3
5
4
b

4
5
8
2
7

2
3
1
4
5

CHN

-.06610
-.03362
.02042
.01776

-.00589

-.07691
.06646

-.03793
-.02065
-.01360

.01270
-.01001
-.00550
.00391
-.00293

.04328
-.03088
-.01367
-.00803
.00740

.00824
-.00455
-.00386
.00195
.00119

.60434

.39210
-.02343
.01026
.00956

.03058
-.02783
-.00764
-.00758
.00698

-.69794
.33122

-.17597
-.10995
.03684

H

1
1
1

1
1
1

2
2
2

2
2
2

3
3
3

1
1
1

3
3
3

1
1
1

PLATE
N

0
2
1

1
2
0

0
2
1

1
3
2

0
2
1

2
1
3

1
3
2

1
2
3

CNN

.41496

.33940

.23432

1.42371
-.34033
-.30912

.44544

.41198

.14239

1.08434
.20954

-.13739

.46520

.43756

.10293

.34208

.24271

.11650

1.00245
.19801

-.08872

-.71809
-.37744
-.13196

GENERALIZED MASS (KG)
TOTAL SHELL W PLATE U

1.13889 .02830 1.10253

1.12644 .05670 1.05950

1.06241 .00143 1.06071

1.05432 .01444 1.03897

1.05532 .00050 1.05476

3.35573 2.32876 .47468

1.04019 .00869 1.03105

5.33569 2.87324 1.56559
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STIFFENED .032 IN CYLINDER, 20 IN RADIUS,. WITH FLOOR AT 56.6 DECREES

MODE FREO 100E
NO (H/) TYPE

t 346.71 ANTI

10 434.31 SYMM

11 441.78 SYHH

12 470.53 ANTI

13 502.23 SYHH

14 528.78 ANTI

15 555.05 SYHH

lb 556.43 ANTI

SHELL
n

1
1
1
1
1

4
4
4
4
4

4
4
4
4
4

2
2
2
2
2

1
1
1
1
1

1
1
1
1
1

1
1
1
1
1

2
2
2
2
2

N

3
2
1
4
5

4
5
2
1
7

5
4
8
7
2

3
2
4
5
6

1
4
3
6
0

4
1
2
5
7

4
3
2
1
5

3
2
1
6
7

CHN

.65759

.29630

.08228

.06592
-.02470

.00568
-.00383
-.00218
.00130
.00106

-.02558
.02362
-.00753
.00695
-.00602

.42411
-.05284
-.03870
-.01810
.01552

-.76763
-.12362
-.11395
.01293
.01078

-.66794
.31690

-.22781
.05974
-.02769

.61552

.37347
-.18507
-.09309
.07360

.30944

.10406

.02332

.01193
-.00791

H

1
1
1

4
4
4

4
4
4

2
2
2

1
1
1

1
1
1

1
1
1

2
2
2

PLATE
N

2
1
3

0
2
1

1
3
2

2
1
3

2
0
4

1
2-
3

3
2
1

1
3
2

CMN

-.37430
-.10529
-.02409

.47682

.45133

.08093

.96440

.19308
-.06599

-.48203
-.46964
-.24148

.66675
-.17384
.05223

1.12932
1.02632
.92727

-.26052
-.09653
-.08745

1.00231
.96170
-.46528

GENERALIZED MASS (KG)
TOTAL SHELL H PLATE tf

3.07613 2.38329 .30019

1.05268 .00025 1.05241

1.03311 .00632 1.02654

2.27504 .82788 1.34321

6.31376 2.76903 .76399

3.71841 2.70485 .23627

3.02626 2.55327 .18097

1.65729 .48102 1.10579



STIFFENED .032 IN CYLINDER, 20 IN RADIUS, MlTH FLOOR AT 56.6 DEGREES

MJOE FREO MODE
NO (H/l TYPE

1? 560.65 ANTI

18 572.86 ANTI

591.88 SYHM

20 607.50 ANTI

21 626.01 ANTI

22 632.02 ANTI

23 636.15 SYHH

641.20 SYNH

SHELL
N

1
1
1
1
1

3
3
3
3
3

2
2
2
2
2

2
2
2
2
2

3
3
3
3
3

1
1
1
1
1

5
5
5
5
5

5
5
5
5
5

N

1
4
3
2
5

3
4
2
5
6

3
2
4
5
6

4
3
2
5
6

3
4
6
5
2

1
2
3
5
4

4
5
2
1
7

5
4
8
7
2

CNN

-.25827
.19682
.11259

-.05185
.02207

-.03551
.03125
.02289
.01994
-.01569

.42559

.28611

.27539

.03191
-.02568

.44272

.32362

.29967

.06404
-.05875

-.29317
.20194
-.09539
.08096
.04894

.22426
-.13579
.12769
.12610
.09665

.00462
-.00363
-.00161
.00102
.00100

-.02553
.02158
-.00763
.00715
-.00591

N

1
1
1

3
3
3

2
2
2

2
2
2

3
3
3

1
1
1

5
5
5

5
5
5

PLATE
N

3
1
2

1
3
2

2
3
0

2
4
3

2
3
4

2
4
3

0
2
1

1
3
2

CNN

.55091

.53220

.14949

.55890

.46354

.21649

.06831
-.05649
-.02208

.84374

.25752
-.05258

1.58856
-.54749
.44915

.64039

.23344

.20029

.48042

.45601

.0737tt

.95366

.19080
-.05895

GENERALISED MASS (KG)
TOTAL SHELL W PLATE M

2.00966 .54454 1.11528

1.22949 .04255 1.18227

1.73996 1.52659 .00197

2.88669 1.78872 .88336

1.95333 .66669 1.23632

1.99704 .51331 1.07277

1.05173 .00018 1.05154

1.03218 .00591 1.02608
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STIFFENED .032 IN CYLINDER, 20 IN RADIUS, WITH FLOOR AT 56.6 DEGREES

NOOt FREO NOUE
NO (HZI TTPE

25 648.70 srrin

26 663.30 ANTI

27 716.23 ANTI

28 717.33 ANTI

29 738.44 ANTI

30 761.91 SYNH

31 779.76 ANTI

32 811.04 ANTI

SHELL
fl

2
2
2
2
2

4
4
4
4
4

4
4
4
4
4

2
2
2
2
2

1
1
1
1
1

3
3
3
3
3

3
3
3
3
3

2
2
2
2
2

N

4
2
5
1
6

3
4
5
6
2

4
3
6
5
7

2
3
4
5
6

4
3
1
6
5

4
3
5
2
1

3
4
5
2
6

4
5
2
1
3

CHN

.54137
-.45147
.01850
.01384
-.00425

-.03615
.01914
.01472

-.01272
.01226

.11594
-.11451
-.07550
.05392
.03384

-.42010
.16269

-.15887
.11998

-.07240

-.59228
.14987

-.12843
-.09905
-.07457

-.63950
-.35980
-.00670
.00615
-.00485

-.60810
-.29025
-.10698
-.08652
.04237

.44856

.28040
-.25218
-.14779
-.09074

«

2
2
2

4
4
4

4
4
4

2
2
2

1
1
1

3
3
3

3
3
3

2
2
2

PLATE
N

3
2
0

1
3
2

2
4
3

2
4
3

2
4
3

3
2
0

2
4
3

2
4
3

CNN

-.31842
-.31722
.11216

.60174

.53040

.13228

1.12205
.34731

-.19925

.55423

.29992

.25016

.81512

.50058
-.13113

.31731

.15446
-.05975

-.25398
-.16348
-.16054

-.33993
-.28072
.05882

GENERALIZED MASS (KG)
TOTAL SHELL M PLATE w

3.12167 2.22892 .58061

1.17010 .00997 1.15917

1.33482 .16827 1.15854

2.32071 1.11855 .98835

3.63204 1.85287 .93833

2.90922 2.41279 .31644

2.59160 2.12986 .26505

2.10595 1.69469 .20392
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MODE NUMBER 1

FREQUENCY = 188.51

SYMMETRIC MODE

M = 1

Composite

**-1.0

TOP C/L
*.
*.
*.
*.
*.
*.

*
*
*.*
.*
.*
.*
.*
. *
. *
. *
. *
. *
. *
.*
.*
.*

SHELL
DISPLACEMENT

(Cylinder Wall)

FLOOR
DISPLACEMENT — 0.5

C/L 'SIDE

*F = FLOOR LOCATION
*.
*.
*.
*.
*.
*.
*.
*.
*.
*.

*
BOTTOM C/L

FIGURE D-2. EXAMPLE SHELL MODE ( Z DEPENDENCY SUPPRESSED)
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F1g.D-3 shows a n o t h e r  mode, t h e  sixth mode of  Table D-1. I t i s  

found t o  b e  basically a s h e l l  mode. 



MODE NUMBER 6
FREQUENCY = 301.93
SYMMETRIC MODE
M = 1

x v
Top C/L

-0.5

•
. *

0.5 *

* 1.0

COMPOSITE
SHELL
DISPLACEMENT
(Cylinder Wall)

.1.0

FLOOR
DISPLACEMENT

* 0.5

*

C/L • SIDE

F =* FLOOR LOCATION

*
. *
. *
. *
. *
• *
. *
. *
. *
. *

*

* *
Bottom C/L

FIGURE D-3. A SECOND EXAMPLE MODE
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APPENDIX E - VALIDATION STUDIES

The models of Section 3 are based on fairly precise solutions of

the sound transmission problems. Nevertheless, the models will

have limited prediction accuracy due to errors inherent in the

input data that is used to describe the various physical systems

involved, i.e., exterior field, fuselage structure, cabin acous-

tic space, sidewall trim, etc. The primary goal of the present

modeling effort has been to minimize these errors through

elaborate, though limited, system models. Although the overall

quality that has been achieved is not predictable, it is

measurable, and a test has been devised for that purpose.

Test Hardware

The test configuration is very similar to that represented in

Figure 1. The actual test rig and hardware are shown in Figures

E-l through E-3. As seen in Figure E-l, the fuselage and the

propeller are located downstream of a nozzle that supplies air

to simulate airplane forward velocity. The fuselage model

itself is a cylinder 1.83m (72 in.) long and 1.02m (40 in.) in

diameter. The skin is 0.00081m (0.032 in.) thick and is

stiffened by eighteen (18) stringers spaced on 20° centers. The

stringers are 90° angles having dimensions of approximately

0.00953 x 0.0112 x 0.00051m (3/8 x 7/1.6 x 0.020 in.). They are

riveted to the inside of the skin and pass through cut-outs in

eight (8) internal ring frames that are spaced along the

cylinder every 0.2m (8 in.) The frames are aluminum channels

with dimensions of approximately 0.017 x 0.038 x 0.00081m (5/8 x

1-1/2 x 0.032 in.).

The cylinder has a structurally integral floor consisting of a

0.00081m (0.032 in.) plate stiffened by floor supports of the

same thickness spaced every 0.2m (8 in.). The supports extend

E-l



FIGURE E-1. MODEL TEST FACILITY
(Dimensions in meters)
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0.046 m
(1.8 in.)

0.00081 m (0.032 in.) skin
1.016 m (40 in.) diameter
x 1.83 m (72 in.) long

0.00051 m (0.02 in.)
stringer, 0.0095 x
0.011 m (0.375 x 0.44 in.)

0.039

Trim Lining &
Insulation

0.00081 m (0.032 in.)
frame, 0.017 x 0.038 n
(0.67 x 1.5 in.) channel,
0.2 m (8 in.) spacing.
8 req'd.

0.00081 m (0.032 in.) floor beam,
0.017 x 0.0.038 m (0.67 x 1.5) channel
1.79 m (70.75 in.) long

0.00081 m (0.032 in.) floor support at each frame

0.00081 m (0.032 in.) floor, 1.83 m (72.0 in.) long,
rivet to supports, bolt to skin, cutout to clear frames

FIGURE E-2. FUSELAGE MODEL
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Stiffener

Clip for end ring and support attachment

floor

^ ĵ- holes for screws
_^^-^-^^^ / to skin and end rings

cutout to clear ring frames

0.017

floor
beam

cutout to clear floor beam <-

0.794

frame and floor beam

0.003 R

0.01M

•floor

floor support

frame

skin

FIGURE E-3. FLOOR ASSEMBLY
(Dimensions in meters)



downward from the floor to the bottom of the cylinder. There

are also two floor beams (channels of the same dimensions as the

cylinder ring frames) that run longitudinally, each located

approximately 0.13m (5.1 in.) from the center of the floor. The

width of the floor is 0.85m (33.4 in.) leading to a floor angle

0 of 56.6 degrees (see Pig.D.I). The outer edge of the floor

is bolted to the cylinder wall. The cylinder is closed by

0.013m (1/2 in.) thick end caps that are used to support the

cylinder in the NASA Langley propeller test facility. The

entire fuselage assembly is constructed of 2024-T3 aluminum.

Propeller

The propeller is a three-bladed, 0.3 scale Hartzell for a Twin

Otter aircraft with a diameter of 0.76m (30 in.). It is driven

by a 30 kw (40 horsepower) variable speed electric motor capable

.of turning it up to 8000 rpm. The propeller blades are

Series 16 airfoils. The geometry of the blades is specified in

the input data to the ANOPP Propeller Noise Prediction program.

The data used to define the particular propeller used in the

present test are proprietary and thus are not included here. In

the present circumstance the angle-of-attack and local chord

are specified as a function of radial location. Airfoil coordi-

nates are specified for several locations and then interpolated

as required with a cubic spline to fix these variables at all

locations on the blade.

Figure E-4 shows the grid coordinates used for the calculations

required in the-present test. There are 160 points on the upper

quarter of the cylinder. In the present test rig, each position

on the grid, i.e., (k,&) lying in the fuselage surface, has

coordinates defined by the equivalence relation

(k,£) ++ (X*, x*, x*) ,

where (in meters):
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x* = 0.457 + 0.508. U-cos[(£-l) -ir/18]}

and
= -0.508 sin

= 0.622 - 0.089 (k-1) .

This grid covers all of the upper quarter surface of the

cylinder forward of the propeller and a somewhat greater amount

behind it. Because of the lengthy calculations involved in the

ANOPP program, the data for the lower quarter of the cylinder

seen by the propeller are obtained from the data for the top

quarter with the relation (imagining an identical grid below the

centerline)

/ **- 4- \ _ / 4- "N
£-* \ -A- -i y •*»• 03 o5 ^/ ~~ £~ \ •"• "i ) ~~ •" o J •"• O5 10' 3

where Tk^ is a time delay given in milliseconds by the result

_ 333.33 „
N

N is the propeller rpm and a

the result

is in degrees and is given by

a, -1,

The propeller harmonic amplitudes at corresponding points above

and below the centerline are given by

bottom

-ki
= AH top

and the corresponding phases (in degrees) are related by

bottom H top
-~ x H x 360°
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where T = BPF is in milliseconds and H is the harmonic index,

This can also be written as

kfc
'H bottom

,k£
H + 2BHa,

top
where B is the number of propeller blades.

Conversion to the coordinate system used in Figures 1 and 2 in

the body of this report is with the relations

zk = ZP -
 X3 '

and (using 4> = ir/2 in Fig. 2) g
I \

e, - \ + I""'1 (7-77] = *P + (*-X> W '

The coordinates of the grid point (k,£) are given by the
equivalence statement

In the present test, rp = 0.965m (38 in.) and zp = 0.662m
(2;?.5 in.). The resulting grid has spacing A of approximately

0.089m (3.5 in.). This spacing is sufficiently close to assure
a relatively smooth change in phase for each propeller harmonic

from grid point-to-point.

Test Description

The test program discussed in this appendix was conducted at

NASA Langley Research Center by NASA personnel. The main test

involved the transmission of propeller noise into the interior

of the model cylinder. For this test the cylinder and propeller

were mounted in an anechoic chamber in the configuration shown

in Figure E-l. Additional tests were performed in a reverbera-

tion chamber to measure the noise reduction associated with a
reverberant sound field. Also, decay measurements were made on

the acoustic field in the cylinder and the structural vibration
of the cylinder to determine empirical loss factors.
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The interior of the cylinder was treated with fiber glass blank-

ets with a density of 9.61 kg/m3 (0.6 Ib/ft3). The blankets

were applied in layers which were nominally 1.3 cm (0.5 inch)

thick, four layers with a total nominal thickness of 5.1 cm (2

inch) being applied to the curved surfaces and one layer to the

end plates. One face of each layer had a vinyl facing with a

thickness of 0.005 (0.002 inch); the total surface density of

one layer plus facing was 0.22 kg/m2 (0.045 Ib/ft2). On the

curved surface, three of the fiberglass layers were placed

between the frames and the fourth layer covered the frame caps.

The inner surface of the fiberglass treatment on the curved-

walls was covered with a trim septum consisting of a sheet of

epoxy/fiberglass NEMA G-10 (0.079 cm or 0.031 inch thick) from

floor to floor, and a sheet of vinyl (of the same thickness)

over the upper 120° of the cylinder. The installation is shown

diagrammatically in Figure E-5. The trim was hard-mounted to

the floor and attached to the frames by nine soft-mounted

screws. The total weight of the trim septum was 6.5& kg (14.51

Ib).

During the propeller noise test, sound levels inside the cylin-

der were measured using an array of eleven microphones which

could be located at any selected station along the cylinder and

could be rotated about the cylinder axis. Measurements were

made at a total of 196 locations, consisting of 49 locations at

each of four axial stations. The stations were chosen so that

the interior of the cylinder was divided into four segments of

equal volume. Figure E-6 shows the microphone locations on the

rotating array. The array was positioned at angular locations

= 0°, _+ 51.5° and ±103°. The radial positions of the micro-

phones were chosen such that all microphones were associated

with approximately equal cross-sectional areas. The sound

levels measured at the different microphone locations were

averaged on an energy basis to obtain space-average sound

pressure levels for each measurement axial station and for the

cylinder as a whole.
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Measurements were made by NASA at several test conditions, but

results for only one condition are considered in this appendix.

The airflow speed into the propeller was 23-b m/s (7B ft/sec)

and the propeller rotational speed was 4000 rpm. The resulting

fundamental, or first harmonic, of the blade passage frequency

is 200 Hz.

In the case of the noise reduction tests for reverberant excita-

tion, sound levels were measured at only two axial stations, one

at the mid-point of the cylinder and the other at the one-sixth

point. Symmetry was then assumed about the mid-point of the

cylinder length in order to calculate space-average sound

pressure levels.

The bulk of the data reduction was performed in terms of one-

third octave band spectra. However, a small amount of harrow-

band analysis was performed in order to obtain a better under-

standing of the data.

Measured Interior Sound Levels

Typical narrowband sound pressure level spectra measured at two

locations in the cylinder are shown in Figure E-7- The two

selected locations are close to the plane of rotation of the

propeller (X3/D = 0.015 where D is the propeller diameter),

microphone #1 being near to the center of the cylinder and #8

near to the periphery (as shown in Figure E-6). Figure E-7

shows that the contributions associated with the three lowest-

order harmonics are easily identified but that contributions

from higher-order harmonics may be difficult to identify. This

masking of the discrete frequency components by the broadband

signal limits the upper frequency bound on the useful propeller

noise data, particularly when, as in the present case, much of

the data presentation is in terms of one-third octave band

spectra.
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Average one-third octave band sound pressure level spectra are

shown in Figure E-8 for each of the four axial stations of the

microphone array. Little variation in sound pressure level is

observed from station to station. The space-average spectrum

for the cylinder as a whole is plotted in Figure E-9, which

also contains the range of measured sound pressure levels. The

space-average values are compared in Figure E-10 with associated

95% confidence limits. Because of the large number of samples,

the 95^ confidence intervals are small.

The spectra show distinct peaks in the frequency bands centered

at 200, 400 and 630 Hz, the sound levels in these bands being

controlled by the contributions from the first, second and third

harmonics of the blade passage frequency. At higher frequen-

cies, the broadband contributions become important, as indicated

in Figure E-7, and the one-third octave band spectra are rela-

tively smooth. The harmonic components may be significantly

lower in level than are the corresponding one-third octave band

levels.

Propeller Noise Field

The analytical model to predict sound levels in the cylinder

uses, as data input, a description of the propeller noise field

(in terms of pressure amplitude and phase) computed for free-

field conditions using the NASA ANOPP computer program. The

blocked pressures are then calculated within the present analy-

tical model using the relationship given in Eq.(43).

During the test program at NASA, sound pressure levels were

measured at several free-field locations surrounding the model

propeller, and at other locations on a rigid-wall cylinder

placed close to the propeller. A brief comparison of the

measured and predicted sound levels has been performed to get an

indication of the accuracy with which the predictions fit the
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test environment. This comparison was made for axial locations

associated with grid line £ = 1 shown in Figure E-4. The com-

parison was restricted to pressure level, because no phase data

were available from'the test program.

The comparison of measured and predicted free-field pressure

levels is shown in Figure E-ll. In this case both the measure-

ments and the predictions were performed by NASA personnel. The

agreement is generally good except at large distances from the

plane of rotation where the pressure levels are relatively low

and could be affected by broadband flow noise.

Figure E-12 contains the corresponding comparison for the

pressure field on a rigid cylinder (i.e., the blocked pressure).

The test data were obtained directly from NASA measurements and

the predictions from the application of Eq.(43) to the output of

ANOPP. The equation provides an empirical relationship for

calculating the effect of pressure reflections at the surface of

the cylinder. In general the predicted levels are higher than

the measured values, the differences being 0 to 5 dB at loca-

tions in the neighborhood of the plane of rotation where the

pressure levels are highest.

Acoustic Loss Factors

Acoustic reverberation decay measurements were made inside the

test cylinder using pink noise and sinusoidal excitations.

Acoustic absorption coefficients were computed from the

reverberation time TR using the relationship

= 17.6TTV

" coSTR

where S and V are,, respectively, the surface area and volume of

E-18



130

120

110

S. 100

o
CM

OQ

120

•» 110
tt>

0)

0)

a.
T3

I

100

90

110

100

90

i i i r
First Harmonic

Predicted

o Measured

Second Harmonic

Third Harmonic

o o o

I
(Forward) 1 0.5 -0.5 -1 (Aft)

Distance from Propeller Plane, X _ / D

FIGURE E-1U MEASURED AND PREDICTED FREE-FIELD

SOUND LEVELS FOR TEST PROPELLER

E-19



130

120

110

100

o
(N

« 120

CO
T3

15 110

(A
«

(X

C

O
(ft

100

90

110

100

90

First Harmonic
Predicted
Measured

Second Harmonic

Third Harmonic

(Forward) 1 0.5 0 -0.5
Distance from Propeller Plane, X./D

1
-1 (Aft)

FIGURE E-12. MEASURED AND PREDICTED BLOCKED SOUND LEVELS
INDUCED BY PROPELLER ON TEST CYLINDER

E-20



the interior of the cylinder. Values of a, averaged over

approximate one-third octave bands, are given in Figure E-13.

The acoustic loss factor nn was computed from the equation

c So.
nn = ¥̂ \T

Resulting values for the acoustic loss factor are plotted in

Figure E-l4.

Also contained in Figure E-14 are band-average values of the

acoustic loss factor calculated using the analytical model out-

lined in Appendix A. It is necessary in this analytical model

to assign a value to the structural loss factor rirp of the trim

septum. A' value of 0.5 was assumed in [7] for the trim loss

factor, on the basis of the best fit with test data then avail-

able. The same value was assumed initially for the present

analysis. At frequencies above 500 Hz, the measured data are

scattered about the predicted spectrum, but at lower frequencies

the predicted values are significantly higher than the measure-

ments .

When the trim structural loss factor was increased by a factor

of 2 to a value of 1.0, the calculated acoustic loss factor

decreased in the 250 Hz band (which contains a predicted reson-

ance frequency of the trim) but the change at other frequencies

was small or negligible. The disagreement between measurements

and predictions in the lower frequency -range was not affected to

any significant extent.

Structural Loss Factor

The damping of the cylinder structure was determined experi-

mentally from vibration decay measurements using sinusoidal
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excitation. The resulting empirical values are plotted in

Figure E.I5, where they are compared with band-average values

predicted on the basis of the analytical model given in

Appendix A. The analytical model includes the influence of the

sidewall trim and requires, as an input, an assigned value for

the trim structural loss factor HT. The two calculated loss

factor spectra in Figure E-15 assumed trim loss factors of 0.5

and 1.0.

The comparison of measured and predicted values shows good

agreement at frequencies above 400 Hz, but the single experimen-

tal data point at lower frequencies is an order of magnitude

smaller than the corresponding predicted values. For diagnostic

purposes, an alternative analytical representation was construc-

ted whereby the structural loss factor was arbitrarily limited

to a maximum value of 0.15 in the frequency band below 400 Hz.

Predicted Interior Sound Levels

The model scale experiments discussed in the preceding sections

of this appendix were performed in order to obtain data for

comparison with sound levels predicted using the analytical

model described in this report. The predictions were made

using a computer program based on the analytical model outlined

in this report.

Initially, the interior sound levels were calculated without

placing any restraints on the structural loss factor for the

cylinder and with an assumed structural loss factor for the trim

of Hm = 0.5. Space-average sound pressure levels were computed

for the five lowest-order harmonics of the propeller blade

passage frequency. These levels are compared in Figures E-16

with the range of measured values and the associated space-

average levels, and in Figure E-17 with the average and 95%

confidence limits. The predicted sound levels refer to discrete
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frequencies whereas the measured levels are associated with

one-third octave bands. However the harmonic frequencies of

200, 400, 600, 800 and 1000 Hz are centered within the corre-

sponding one-third octave bands so that there should be no

filter cut-off problems.

The comparisons show that the predicted levels are generally

lower than the corresponding measured one-third octave band

space-average levels. The largest difference occurs in the

highest order harmonic considered (1000 Hz) where the measured

levels may be dominated by broadband noise rather than the dis-

crete frequency component associated with the propeller blade

passage sound.

A small number of parametric studies have been performed in

order to assess the sensitivity of the analytical model to

various factors. These studies were limited to considerations

of the changes in trim and cylinder structural loss factors

discussed previously. In summary, the trim structural loss

factor was assigned a value of 1.0 and the cylinder structural

loss factor was limited to a maximum value of 0.15- The result-

ing predicted interior sound levels are shown in Figure E-18.

The effect of the changes of the loss factors was small except

for the first harmonic at 200 Hz. The predicted level at this

frequency now lies within 2 dB of the measured one-third octave

band space-average value, instead of being 10 dB lower as shown

in Figure E-17 for the initial calculations.

Further diagnostic analysis is highly desirable, particularly

with respect to the model for the sidewall treatment, but such

analysis was not possible in the present study.
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Noise Reduction

In addition to predicting the transmission of propeller noise

into an airplane fuselage, the analytical model also contains a

capability for calculating the noise reduction associated with

a reverberant incident sound field. This capability has been

the subject of validation studies in earlier phases of the

development of the analytical model [3,7]. Additional compari-

sons are discussed here.

Interior sound pressure levels were measured at two axial

stations inside the cylinder, and average noise reductions

computed for the two stations. The resulting noise reduction

spectra are plotted in Figures E-19 and E-20- At frequencies of

160 Hz and above the two average spectra have similar values, as

was the case in Figure E-8 for propeller noise excitation.

There are, however, large differences in noise reductions for

the two stations at frequencies of 80 and 100 Hz.

Space-average noise reductions for the cylinder as a whole were

computed assuming that the sound field in the cylinder was

symmetrical about the mid-point of the cylinder length. The

space-average spectrum is shown in Figure E-21 with the range of

measured values and in Figure E-22 with 95% confidence limits.

Figures E-21 and E-22 also contain the space-average noise

reductions which were computed. It was assumed for these calcu-

lations that the trim structural loss factor was rim = 1-0 and

the structural loss factor n' was limited to a maximum value of

0.15. In addition, allowance was made for noise transmission

through the end plates; the method used was the same as that in

[7] and it was applied to the four lowest frequency bands, 80 to

160 Hz. Without this modification the analytical model would

predict significantly higher noise reductions at low frequen-

cies.
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The computer program assumes that no noise is transmitted

through the ends of the cylinder, since such contributions are

not usually important in aircraft. Furthermore, because of the

directivity characteristics of propeller noise, the noise levels

on the end plates of the test cylinder would be low when the

cylinder was exposed to the propeller excitation. Thus, noise

transmission through the end plates would be negligible in the

propeller noise test. The contribution becomes significant

only for reverberant field excitation.

The agreement between measured and predicted noise reductions is

not as good as was the case for propeller noise excitation. The

discrepancy between predicted and measured noise reductions at

high frequencies was observed in previous data [7] where it was

believed to be due to flanking paths through exposed stiffeners.

There are no flanking paths of this type in the present test

model. Two possible explanations for the discrepancy are (a)

other flanking paths are present, and (b) the analytical model

over-estimates the influence of the sidewall treatment.

The noise transmission measurements were repeated with the

fiberglass treatment on the end plates increased from a thick-

ness of 1*3 cm (0.5 inch) to 3.1 cm (2 inches). The resulting

change in measured space-average noise reduction is shown ir

Figure E-23 which contains spectra associated with the two

treatments. Figure E-23 contains corresponding predicted noise

reduction spectra. The two figures show somewhat different

trends with the predictions giving an increase in noise reduc-

tion in the frequency range 315 to 1250 Hz whereas the increase

in measured noise reduction occurs mainly at frequencies above

800 Hz.

The predicted spectra in Figure E-24 are influenced directly by

the analytical model for the fiber glass material on the end

plates. Figure E-25 compares the acoustic loss factors computed
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for the interior of the cylinder for the two end plate treat-

ments. The results show that a resonance-type effect predicted

for the trim is shifted down in frequency from 1600 Hz for the

1.3 cm treatment on the end plates to 500 Hz for the 5.1 cm

treatment.

General Comments

This brief discussion of validation studies for the analytical

model has shown fairly good agreement between predicted and

measured sound levels in a cylinder exposed to propeller noise

excitation. The discussion has also identified several items

for future study in order to improve the analytical model. For

the propeller noise pressure field, the procedure for estimating

pressure reflection effects should be reviewed. Also, the ana-

lytical model for relative phase between the upper and lower

grids should be validated.

The present analysis represents the first time that the sidewall

treatment has been incorprated as an integral part of the sound

transmission model. As such, the analysis makes a major step in

providing a comprehensive model for airplane interior noise.

The validation studies indicate that some improvements to the

sidewall treatment model are required in order to improve the

agreement between predictions and measurements. It is recom-

mended that these improvements be made.
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APPENDIX F

LIST OF SYMBOLS



LIST OP SYMBOLS

A Cylinder surface area, used in Eq.(4).

or

A Interior (cylinder & floor) surface area, used in

conjunction with structural/acoustic coupling

function f'(n,r)

A1 Transmitting area of cylinder without trim

A Exterior cylinder surface area

A Transmitting area of cylinder with trim
T/

(A +A1) Total transmitting area of cylinder, floor to floor

Au Amplitude of Fourier component of blocked propeller
ri

pressure signature at propeller harmonic H and grid

location m = (k,l), see Eq.(43)

Am Amplitude of Fourier component of free field propel-

ler pressure at harmonic H and grid location m=(k,£)

a Radius of cylinder

.m

for harmonic H at location m; see Eqs. (2?),(29)

a™ Fourier series coeffficient of propeller pressure,
H

am/2 Mean propeller pressure amplitude at location m

(defined in Eq.(28))

arctan \nl Functions defined in Section 3.3, Eq.(17), et seq
arctan I

B - Number of propeller blades

N"R
BPF Propeller blade passage frequency (Hz); BPF = -
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LIST OP SYMBOLS

(Continued)

bn,br Functions defined in Section 3.3, Eq.(17) et seq

bu Fourier series coefficient of propeller pressuren
for harmonic H at location m; see Eqs.(27),(29)

C(J) Function defined in Eq.(76)

fZ

Cin(z) Cosine integral; Cin(z) =J (l-cost)dt/t

"Q T* S T**

^Mn^Mn Floor and shell generalized coordinates for

structural mode r = (M,N); see Eqs.(46)-(49)

Cpbl (x| x
 f ;w ) Cospectral density function of the blocked

exterior pressure field

Cp(x| x';co) Cospectral density function of the exterior

pressure field

CW,GW,CW Trim parameter, derived from the trim transfer

matrix, Eq.(A.B); Cw = C* + iC^

C (̂ ,o))C (^,co) Cospectral density functions of the exteriorx y
pressure field in the axial and transverse

directions respectively; see Eq.(60)

c0 Speed of sound in air

cn,cr Functions defined in Section 3«3, Eq.(17) et seq

GW Constant percentage bandwidth parameter, where

Au = c a) [c = 0.232 for one-third octave bands']to w
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LIST OP SYMBOLS

(Continued)

Dnr Function defined in Section 3-3, Eq.(17) et seq

E[ ] Expected value of a function

f'(n,r) Interior structural/acoustic coupling factor; see

f ' (n,r)=f ' (qi, r) Interior structural/acoustic coupling factor

including effect of trim factor T, , see

Eq.(52)

f.. Frequency of propeller 1st harmonic; f^ = 1/T =

BPF

fjj Frequency of propeller harmonic H; f = Hf^

f Acoustic/structural coupling factor in axial

direction; see Eq.(57)

gn,gr Functions defined in Section 3-2, page 3-11

H Propeller harmonic order, used as superscript to

denote functions evaluated at frequency <*)„
ii

i Acoustic mode number counter for fuselage cross-

section modes, associated with mode n =(q,i)

I1I2I Integrals defined in Equations (63) and (70)-(73)

j Circumferential location on fuselage wall, 6., a
J

boundary point at which the acoustic eigenvector

is evaluated (see Fig.C-2)
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LIST OP SYMBOLS

(Continued)

j-2., (o>) Structural joint acceptance function in axial

direction

j2T(co) Structural joint acceptance function in

circumferential direction

J2(w) Structural joint acceptance in axial and

circumferential directions; j£(w) = Jr/^1

= JM^) Ji.T(
(JL)); see Eq.(58)

2 rev
jr (w) Joint acceptance for reverberant/diffuse

excitation

<j (u)> Joint acceptance for reverberant excitation

averaged over structural modes resonant in band Aw

k Acoustic wave number, k = 2 f r / A
or

k Axial non-dimensional coordinate for grid point;

see Figure E-4

L Fuselage structure length

L Floor width (wall to wall)
P

£ Circumferential non-dimensional coordinate for

grid point; see Figure E-^J)

In ,ln Functions defined in Section 3.3, Eq.l? et seq

M Number of axial half-wavelengths for structural

mode r = (M,N)



LIST OP SYMBOLS

(Continued)

Mr Generalized modal mass, for structure mode r

m = (k,£) Grid point on surface of cylinder used for

propeller noise predictions; see Figure E-4

or

m Average surface mass/unit area of cylinder

N Structural mode counter, associated with mode

r = (M,N)

or

N Propeller rpm

Nn,Nr Number of acoustic modes or structural modes in

frequency band Aw

n Symbolizes acoustic mode n = (q,i)

or

n Number of circumferential wavelengths (or

transverse half-wavelengths) in fuselage

shell (or floor); see Eqs.46-49.

n* Number of terms in displacement series for

fuselage shell (or floor)

nb,n^ Number of boundary points on the fuselage shell

(or floor) at which the acoustic eigenvectors are

defined

n Modal density of acoustic modes

nr Modal density of structural modes
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LIST OP SYMBOLS

(Continued)

P(wn) Probability distribution function for u> in Aw

p(u)n) Probability density function for CD in Aw

p (x,t) Exterior pressure over the blocked (immobile)

fuselage

<pbl> Band-limited mean square blocked pressure

<pf(£,<jj)> Interior mean square pressure at location 1
L/

<p? > Space-averaged band-limited mean square interior
1 S ) t

pressure

<pf >=• +• Space-averaged band-limited mean square exterior
G 5 3 U

pressure for a reverberant field

<P2> Space-averaged band-limited mean square modal
n s ̂  u

pressure, for nth mode in interior volume V

Qu Function defined in Section 3.2. En.(12)
rt

q Number of axial half-wavelengths for acoustic mode

n = (q,i)

r Symbolizes structural mode r = (M,N)

r Radial distance from center of fuselage cylinder

to the axis of rotation of the propeller.
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LIST OP SYMBOLS

(Continued)

R (x|x';to) Average cross correlation of the exterior

blocked pressure over the fuselage

S Absorbing surface area of fuselage sidewall

Se Absorbing surface area on each end surface

(bulkhead)

Sp(w) Power spectral density of exterior pressure

Spb-,(w) Power spectral density of exterior blocked

pressure

Spbl(x|x';w) Cross spectral density of exterior blocked

pressure

Si(z) Sine integral; Si(z) = \z sint.dt/t
o

t time

T Period of rotation of propeller; T = 60/N

T .T-, Period of propeller noise signature; T = T =

(BPF)"1 = T/B

u In-plane axial displacement of cylinder wall (or

floor)

V Volume of cavity

v Circumferential (or transverse) displacement of

cylinder wall (or floor)

V/dlss Power dissipated on the cabin walls
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LIST OP SYMBOLS

(Continued)

W. Net power inflow

" n (03) Spectral density of power radiated by structure

into interior acoustic space

.. , (w) Spectral density of power absorbed on inner wall
3. D S

of the space from interior acoustic field

w Cylinder wall (or floor) normal displacement

x Transverse coordinate; see Figure 1

x Location on exterior surface of fuselage

xm Location of grid point on exterior surface of

fuselage

X1X2X3 Local coordinate systems; see Figure E-1!

y Vertical coordinate, relative to fuselage

centerline (see Figure 1)

z Axial coordinate, relative to forward end of the

fuselage structure (of length L); see Figure E-4

z Axial coordinate for grid point k, see Figure E-4

z Location of propeller relative to the forward end

of the fuselage structure (of length L); see

Figure 1)
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LIST OP SYMBOLS

(Continued)

Band average absorption coefficient

Incidence angle between propeller and location x ;

see Figure 2 (in degrees)

Grid spacing for propeller noise predictions

AA = A2 Area associated with each grid point; see Figure E--

Aco( radians/sec) Frequency band of width Aw = c w
0)

n<Aw symbolizes modes resonant below band

neAco symbolizes modes resonant inside band

n>Au symbolizes modes.resonant above band

6( ) Delta function

en = V//v<j>^dv Acoustic mode normalization factor

e Acoustic mode normalizing -factor in axial direction

(see Eq.C.ll)

t, Transverse coordinate; see Section 3-6

n Acoustic mode loss factor
n

n Structural mode loss factorr

n' Structural loss factor, including damping due to

trim; Eq.(B2)

n'' Internal radiation loss factor, due to closely

coupled structural and acoustic modes; Eq.(83)
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LIST OP SYMBOLS

(Continued)

nn Average one-third octave band acoustic mode loss

factor

n = n' +TI' ' +nexj; Average one-third octave band structural mode
-L -P JL

loss factor

nr
 uc Average one-third octave band structural loss

factor

•vi *a *-3

nr Average one-third octave band radiation loss factor

int ext
n d Average one-third octave band internal and external

radiation loss factors defined after Eq. (19)

Angular coordinate, relative to fuselage bottom

centerline; see Figure 1

Angular coordinate for grid location (k,£ )

Angle at which fuselage shell/floor joint is

located

Angle 6 for point j on fuselage wall, a boundary

point for the acoustic eigenvectors

j Angles defining mid-points between boundary point j

and adjacent boundary points

Axial coordinate; see Section 3.6

or

Conductance for trim on end surface of cylinder

interior
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LIST OF SYMBOLS

(Continued)

| Interior cavity location

£ Conductance for trim on cylinder (fuselage) sidewall

p Density of air inside the cylinder

p Density of air outside the cylinder

T Time delay for cross-correlation

or
T Acoustic transmission coefficient for diffuse field

excitation; T = T „ + T^
i R

if Field incidence transmission coefficient for mass

controlled panels; defined in Eq.(20)

/2pc\2

TmL = \ moo / Mass law sound transmission coefficient

t Trim transmission coefficient, defined in Eq.(A.22)

p Resonance transmission coefficient for diffuse

field, defined in Eq.(19)

^(1) Generalized mass for two-dimensional acoustic mode(j
i, defined in Appendix C

f> Angular position of propeller hub relative to

fuselage bottom centerline; see Figure 2

j>H Phase of Fourier component of propeller pressure

signature at propeller harmonic H and grid location

m = (k£)

F-ll



LIST OP SYMBOLS

(Continued)

Mode shape, or eigenfunction, of the nth mode

cf the cavity at location £

$^(6.) Mode shape of ith acoustic mode of the fuselage

cross-section evaluated on the fuselage wall at

location j, angle 6.
J

^G(r,H) Generalized modal forcing function due to propel-

ler noise, mode r at propeller harmonic H; see

Section 3.4

TO —ijj (x) Mode shape, or eigenfunction, of the rth mode of the
structure, at location x

i|>p(z,,x) Floor displacement in structure mode r

1°ijj (z,G) Fuselage shell displacement in structure mode rs

w Angular frequency (rads/sec)

a) Angular frequency of propeller harmonic H
H

to Acoustic mode resonance angular frequency

w Structure mode resonance angular frequency

< > Band-limited, space-averaged and time-averaged value
S y T>
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