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Introduetlou

In this study we shall discuss ways of accelerating the approach to a

steady state for the Euler equations. We first consider the tlme-dependent

equations. However, since we are only interested in the steady state we shall

feel free to alter the equations in any way that does not affect the steady

state. Since the Euler equations constitute a nonlinear system of equations,

it usually can not be proven that the modified system even approaches a steady

state. Instead, most of the analysis will refer to llnearized versions of the

equations. Assuming that the steady state is unique once the modified

equations reach a steady state, it umst be the steady state of the original

equations. We shall concentrate on the inviscld equations, though most of the

techniques are also applicable to the Navier-Stokes equations.

We assumed that a body-fltted curvilinear grid has been constructed from

some package. All that we require is the (x,y) coordinates of each zone.

The finite difference equations will be derived using a finite volume

approach. Though the cells can be of any shape in such an approach we shall

assume that all cells are quadrilaterals. Near the trailing edge some zones

may degenerate and the finite volume approach still holds. The use of mapping

formulas rather than finite volumes yields essentially the same finite

difference formulas. The finite volume approach naturally associates the

value of the dependent variables with zonal averages. These averages are

associated with values at the cell center. Hence, all boundaries are placed

along cell faces. With a mapping formulation the natural implementation would

be to place the variables at grid nodes. Furthermore, using a finite volume

approach, the Jacoblan of the transformation is identified with the area of a

cell. This leads to a slightly different formulation for the Jacobian than
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would be natural for a finite difference approach. The finite volume

formulation leads to a straightforward generalization for axisymmetric

coordinates.

For convenience of notation we shall only consider two-dimensional flows.

The Euler equations can then be written as

+ gy 0, (I.I)wt + fx =

w = (p, pu, pv,E)T,

f = (pu, pu2 + p, puv, puh) T,

(1.2)

g = (pv, puv, pv2 + p, pvh)T,

E +
h _-------R.

P

Integrating (I.I) inside a cell and using the divergence theorem we get

L ff wdV + f (fdy - gdx) = 0, (1.3)
Bt D _D

where we have chosen D to be a quadrilateral. Let two adjacent sides of the

quadrilateral be given by _ = constant and n = constant. The component of

velocity perpendicular to the curve _ = constant, denoted by q, is given by

ynu-x v

d_ = _ u + _y v = n J = x_ Yn - x y_, (l.4a)q =d-_ x J '
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while the velocity component along the curve _ = constant, denoted qll' is

given by

y_ v + xn u
qll = J " (l.4b)

Similarly, letting r be the velocity component perpendicular to n =

constant and rll parallel to n = constant, we have

r = nx u + ny v = (-y_ u + x_ v)/J, (1.4c)

rll = (y_ v + x_ u)/J, (l.4d)

r is proportional to qll' only if the grid is orthogonal, i.e.,

x_ yq + y_ xq = 0.

Letting wA denote the cell average

J_ wdv
, (1.5)

WA--ff dv

we replace (1.3) with

4

d (WA'V) + _ f (fdy - gdx) = 0, (I 6)

i=l Si

where Si are the sides of the quadrilateral and V is its area. We

evaluate the line integrals using the midpoint rule. Normalizing the mesh so

that the length of each quadrilateral is one, we replace (1.6) by the

approximation
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ddt (WA'V) = - _ (fYn - gxn) + _ (fy_ - gx_). (1.7)
_=const n=const

With second-order accuracy we can find w at the cell face by averaging w

from the cell centers. This averaging is done in FLO52ST without accounting

for the difference in volumes of neighboring cells. Given w at the cell

face, one can then calculate the fluxes. It is preferable to average w

rather than average the fluxes to help couple the even and odd points. For

efficiency the pressure is also averaged rather than computed from w. The

error in this procedure is of the same order as the error in the scheme.

Several numerical checks have confirmed that this pressure averaging does not

introduce any additional errors.

In the following sections we discuss ways to integrate (1.8) in time and

to accelerate the convergence to a steady state. To measure this acceleration

we need a way of deciding when a numerical steady state has been reached. In

[8] the measure used was Ap/At. However, once acceleration techniques are

used, it is important to measure the true residual_ i.e., the rlght-hand-slde

of (1.8). For exterior problems the mesh is finer near the body and is

coarser in the far field. As such the maximum residual usually occurs in the

far field where the volumes are large. This is true even though the true flux

is small in the far field even relative to the zonal areas. An alternative is

to normalize the true residual by the cell area which tends to emphasize the

zones near the airfoil.
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2. Runge-KuttaHethods

In 1960 Lax and Wendroff [Ii] introduced a one-step method which was

second-order in space and _ time. Richtmyer [15] suggested a two-step method

which is linearly equivalent to the Lax-Wendroff scheme. The advantage of the

two-step scheme is that only flux evaluations are necessary rather than matrix

multiplications.

A disadvantage of these two-step schemes is that the two steps are

different, complicating the coding. A more important disadvantage is that the

Courant number is one, even though two steps are used. The leapfrog method

requires only one step and has the same stability requirement. Hence, the

leapfrog scheme is twice as efficient as a two-step Lax-Wendroff method.

However, the leapfrog scheme is nondissipative and hence not useful for

shocked flows. Nevertheless, we are interested in multistage schemes which

are more efficient than the standard two-stage schemes. Graves [7] used a

three-stage Runge-Kutta scheme for the Navier-Stokes equations. Van der

Houwen [21], [22] analyzed multistage schemes for both hyperbolic and

parabolic problems. A fourth-order Runge-Kutta scheme for the Euler equations

was popularized in [8]. For simplicity we only consider two-space dimensions

although the extension to higher dimensions is straightforward. Let

wt = fx + gy" (2.1)

An N stage Runge-Kutta scheme is given by

w(k) = w(0) + _k AtIDx f(k-l) + D g(k-l)) (2.2)y
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with w(0) = wn, w(n) ffiwn+l, aN = I. We note that this method is, in

general, only flrst-order accurate in time even when the amplification matrix

agrees with that of a hlgher-order method. In many cases one can achieve

second-order accuracy in time. When one is only interested in the steady

state solution, this is not a drawback. For time-dependent problems one may

Wish to have higher accuracy. One can then replace (2.2) with a true higher

order Runge-Kutta method. The advantage of (2.2) is that only two levels of

storage are required, i.e., w(0) and w (k) at each stage.

A fundamental question is how to choose the parameters ak, k=l,.-.,N-l.

To simplify the question, we only consider the linear problem with constant

coefficients. We then Fourier transform (2.2) and consider the following

amplification matrix

2 n (2.3)
G = 1 + 81 z + 82 z + ..- + 8N z ,

z is the Fourier transformof At(Dx w + D w). Hence, if we use centraly
At

differencing in x and y, then z = i • Ax l(A sin 8 + B sin _) where

l(A) denotesan elgenvalueof A. 8, _ are the Fouriervariables,Ax ffiAy,

8f 8g
A ffi_ , B ffi_w " The parameters 8i are given by

81 = i,

_2 = aN-l' (2.4)

8k = 8k_1 aN_k+I, k = 3,''',N.



-7-

One possibility is to choose the 8i so that At is as large as possible.

If the iteration is close, in some sense, to being time accurate, this implies

that we advance in time as fast as possible. This requires that Izl be as

large as possible while requiring that G G < I. In general, this At is

only required for some frequencies which depend on the scheme and the matrices

A and B. Using central differences the values of z lie along the

imaginary axis while for an upwinded scheme, z will lie on some curve in the

complex plane.

Using a central difference scheme the maximum time step is given by

At < K
A--x-- max p(A sin 8 + B sin $) ' (2.5)

e,.

where p(A) is the spectral radius of A and K is the maximum that z can

achieve in (2.3). Vichnevetsky [25] (see also [16]) has shown that when z

is purely imaginary that

.Izl < N-I for an N stage scheme. (2.6)

This maximum can be achieved and the formula is given by [16], [21]

G PN(Z) iN-I iN -iz -iz= = TN_I(N_--_)+--_ [TN(N_-_T) - TN_2(_L-r)]. (2.7)

For N odd, this formula coincides with that given by Van der Houwen [21] and

the formula is second-order accurate. For N even, the formula is only

first-order accurate.
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In practice, an artificial viscosity is needed to stabilize the scheme

(see section 4). This can be modelled, in one dimension, by

= - _w . (2.S)wt Wx xxxx

e

Using central differences, z now corresponds to z = 1 sin e - 16 _ sin 4 _ .

Izl now lies in the left half plane. Plotting the stability region of (2.3),

(2.7) we see that the stability region contains the imaginary axis up to N-I

and also includes portions of the right-half plane. The stability region also

includes part of the negative real axis up to z of about two to three

(depending on N). Hence, as long as _ is sufficiently small the previous

results are valid. At e = _, z = -16_ and so the stability is governed only

by the artificial viscosity. A similar analysis holds when the Navier-Stokes

terms are added to the differential equation.

In the previous analysis we assumed that the artificial viscosity is

reevaluated at each stage. In practice the computation of the artificial

viscosity is expensive and so the same artificial _iscosity is used for each

stage within a cycle. Hence, (2.8) is approximated by

w(k) = w(0) + c k At[D 0 w(k-l) - gD2 D2_ w(0)]. (2.9)

Let z be the Fourier transform of At • DO w and let y be the Fourier

transform of At (artificial viscosity). Then the amplification factor is

zN-2 ] zNG = 1 -- (z+y)[B 1 + B2 z + ... + BN_ 1 + BN + y. (2.10)
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Therefore_ the previous analysis does not hold since G depends on both z

and y and not on one complex number. In various computational trials the

optimal parameters (2.7) worked when the artificial viscosity was reevaluated

at _each stage. However, for N greater than four, the optimal parameters

were not stable when the viscosity was frozen. It is not clear how much of

these details are dependent on the exact formulation of the artificial

viscosity.

When the artificial viscosity is reevaluated at each stage, then the use

of a N stage formula used twice is equivalent to some 2N stage formula.

Hence, it is always more optimal to use a higher stage formula. However, when

the artificial viscosity is frozen at each stage, this no longer need be true.

With the second-order central difference scheme we have seen, (2.6), that the

Courant number for an N stage scheme has a maximum of N-I. Thus, the

efficiency per stage is (N-I)/N. Hence, for N large, we approach the

efficiency of the leapfrog method. At N = i0, we already have 90% efficiency

and there is not _mch benefit in using a higher stage method. However, since

this scheme requires the reevaluation of the artificial viscosity at each

stage, these higher stage schemes are not efficient. An alternative is to

evaluate the viscosity M times within an N stage scheme. The relationship

between M and N to achieve maximum stability is not known. Furthermore,

in many cases, robustness, i.e., including sections of the left-half of the

complex plane, is more important than maximal time steps.

Until now we have assumed that the stability condition is mainly governed

by z near the imaginary axis, i.e., central differences with a small

artificial viscosity. Equations with variable coefficients or nonlinearlties

require us to consider perturbations off the imaginary axis even without the
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presence of viscous effects, see [15]. For parabolic equations the

appropriate z are along the negative real axis. The optimal parameters for

this case were first considered in [17]. This is given by

G =Tnll + z/N2), 0 < z <-2N 2 (2.11)

for an N stage scheme. However, this formula is not stable for large

negative z if z is slightly off the real axis. These perturbations can be

caused by variable coefficients, lower order terms or boundary conditions.

One type of perturbation is considered in [22]. Another perturbation of

(2.11) is

G = (i - E)TN(Y ) + e y TN(Y)/N 2, with y = I + z/N 2. (2.12)

The stability range of (2.12) is slightly smaller than but contains a large

region off the real axis when e > 0. In both cases the stability region for

an N stage scheme is proportional to N2. Hence, the more stages that are

used the more efficient the method is. This is in contradistinction to the

hyperbolic case where the efficiency per stage quickly approaches its upper

bound which is given by the leapfrog scheme. Hence, when the number of stages

for a parabolic problem is large, we can approach the time steps of an

implicit scheme while retaining the advantages of an explicit scheme.

Using an upwinded scheme for a hyperbolic equation also results in

eigenvalues that are not near the imaginary axis except for the longest of

wave lengths. When one considers a pure one-sided scheme together with

boundary conditions then the matrix is upper (or lower) diagonal and so all

the eigenvalues lie along the negative real axis. Some experiments with this

case are presented in [20].
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In our analysis we have assumed that one approaches a steady state fastest

by using the largest possible time step. This is intuitively obvious if one

is using a time-like iteration procedure. However, when the iteration process

is not time-accurate, the criterion for the optimal ci need not be connected

with the time step. This is well known for A.D.I. type schemes. In section 6

we shall show that when one uses residual smoothing, that the best strategy is

not to choose the largest possible time step, even in one-space dimension.

Recently, Jameson [9] has developed a multlgrld code using the Runge-Kutta

scheme as the smoothing operator. For this method one suspects that one would

choose the ci so as to damp the high frequencies. Hence, one choice for the

parameters, in one dimension, is to choose the ci so that

min max IG* G(e)l, (2.13)

=i e0• lel•

for some eo, At and with the additional constraint that IG* G I _ I,

-_ < 8 < _. Since there is not a well-developed theory for the multigrid

method for hyperbolic equations, it is not clear that (2.13) yields the

optimal parameters. Computations indicate that one wishes some combination of

large time steps together with good dampling properties at high frequencies

for the multigrld procedure to be efficient.
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3. Time Step in Generalized Coordinates

We consider the two-dimensional equation

w + Aw + Bw = O, (3.1)
t x y

where A and B are constant matrices which represent the gradient of the

fluxes appearing in (2.1). We shall only consider Runge-Kutta methods in time

and second-order central differences in space. The effect of the artificial

viscosity on the time step is ignored (see previous section for a more

complete discussion). From (2.5) we see that for any multistep Runge-Kutta

method that the stability criterion is of the form

At • d < K, (3.2)

where d is the maximum (over 8 and _) spectral radius of

D = A sin 8 + B sin $. The constant K depends on the parameters of the

Runge-Kutta scheme.

The Euler equations in general coordinates (_,_) are

(JW)t + f_ + g_ = 0, (3.3)

where

P _ ....

p pq pr

pu pqu + y_ p pru - y__ p
w = f = g = (3.4)

pv pqv - x p pry + x_ p

E q (E+p) r(E+p)
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J ffix_ Yn - xn Y_' (3.5)

q ffi y_ u - x v, r ffi x_ v - y_ u. (3.6)

The Jacoblan J is equal to the volume of the cell that appears in the finite

volume approach (see section i). Let

w ffiq sin 8 + r sin $, (3.7)

a ffiyD sin 8 - y_ sin ¢, b ffix_ sin ¢ - xD sin 8, (3.8)

h ffiE+--t-E (3.9)
P

s2 = (y- z) (u2 +v2), (3 zo)2

then

m

0 a b 0

aS2 - uw w - (y-2)au bu - (y-l)av (y-l)a

V ffi (3.1z)

bS2 - vw av - (y-l)bu w - (y-2)bv (y-l)b

-w(h-S2) ah - (y-l)wu bh - (y-l)wv yw
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Let

m m

s2 -(y-1)u -(y-1)v Y-__!
pc pc pc pc

u 1
--- -- 0 0
p p

T = (3.12)

v 1--- 0 -- 0
P P

S2 2- c -(y-l)u -(y-l)v y-I
m

Then

w ac be 0

ac w 0 0

DO = TDT-I = (3.13)
bc 0 w 0

0 0 0 w

where a,b are given by (3.8) and w by (3.7). Hence,

d = lwl+/a2+ b2 c. (3.14)

Letting At = An = I, then the time restriction is of the form

At < K-J < K.J (3 15), m

[w] + / a2+b2c ]q] + [r[ + / 2, 2 2 2x_ty_+xn+y n + 2[x_x +y_y_[c
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where r and q are given by (3.6). In the code FLO52ST the stability

criterionis implementlyslightlydifferentlyas

K.J
At < • (3.16)

'ql+ Irl + [/ x2_+ Y_ + / x2+_ Y2n)c

For most exterior problems a highly stretched mesh is used. In these

cases the time step is governed by the area of the smallest cell which is much

smaller than the area of the cells in the far field. To avoid this difficulty

we use a differenttime step in each zone. This destroysthe time accuracyof

the solution but accelerates the convergence to the steady state. This local

time step was first used in [13].

To see the effect of using a local time step we consider the radially

symmetricwave equation

1
utt = _ (rUr)r. (3.17)

Discretlzlng the time variable we have

n+l n n-I

u. - 2uj + ujlim 3 I
At+0 (At)2 = r (rUr)r" (3.18)

Let At be the local time step (At)j and rewrite (3.18) as

n+l n n-I

u.3 - 2u.3+ u.3 ( _ (At)j
lim - c2"r" (rUr)r, c(r) = . (3.19)
At+O (Atmin)2 r (At)mln
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Therefore, using a local time step is equivalent to introducing an artificial

wave speed that increases as one goes to the far field. Hence, the further a

wave goes towards infinity, the faster it goes. As an example, we consider a

mesh that increases exponentially with r. Then (At)j is proportional to r

and so c(r) = r. Then (3.19) becomes

utt = r(rUr)r- (3.20)

Let s = log(r), (3.20) becomes

utt = Uss. • (3.21)

If we only allow outgoing waves, then the solution to (3.21) is

u = f(s-t) = f(log(r) - t). (3.22)

Hence, if we begin with a wave of compact support at r = I, t = 0, then at

time to, the wave is centered at r = exp(t0) , i.e., the wave has moved

exponentially fast.

4. Artificial Viscosity

The Runge-Kutta method with central differencing in space has two

difficulties. The first difficulty is that the highest frequency is not

damped, i.e., for a linear problem the neighboring points decouple. This odd-

even decoupllng prevents the possibility of driving the residual to machine
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zero. With the nonlinear equations the variables are averaged at the cell

faces before forming the fluxes. This nonlinearity couples all the neighbors

together. Nevertheless this coupling is weak and convergence to a steady

state can be slow. In order to accelerate the convergence a fourth-order

linear viscosity is added to each equation.

A second difficulty with central differences is that it does not enforce

an entropy decrease across shocks. As such the central difference may

converge to the wrong solution. We attempt to enforce the entropy condition

by introducing an artificial viscosity. The fourth-order viscosity does not

help near shocks. In fact there are theoretical indications that the fourth-

order viscosity can be a destabilizing factor [14]. These observations are

confirmed by numerical experiments. Hence the fourth-order viscosity is

turned off in the neighborhood of shocks. In order to prevent oscillations at

the shock an additional viscosity is added which behaves as a second

derivative. This is in the spirit of the Navier-Stokes equations and seems to

yield shocks without any overshoots. This viscosity is a nonlinear viscosity

so that the formal order of accuracy is not affected by the addition of the

artificial viscosity.

We wish the artificial viscosity to accomplish two contradictory purposes.

We want these terms to accelerate the convergence to a steady state. This

implies that we should choose the viscosity as large as possible without

violating any stability restrictions. On the other hand, we wish the

viscosity to be as small as feasible so as not to affect the accuracy of the

solution. Formally, the viscosity is of higher order than the truncation

error. However, for a finite mesh, increasing the viscosity will decrease the

accuracy of the steady state.
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In section 7 we will introduce an upwinded scheme that does not require

the use of an artificial viscosity. The use of an artificial viscosity has

both advantages and disadvantages. The basic disadvantage is its

artificiality. An artificial viscosity is not aesthetically appealing.

Furthermore, there are invariably constants which must be adjusted for each

case. This makes the code less robust. An upwind scheme has a built-ln

viscosity which should automatically adjust itself to each situation. The

advantage of an artificial viscosity is its flexibility. We can use the

freedom of arbitrary constants or functions to tailor the code to an

individual problem. This requires more work on the part of the user but it

can be beneficial. The upwind schemes are more automatic. However, in cases

where one does not want any viscosity, it is difficult to turn off since it is

built into the algorithm.

In order to introduce the artificial viscosity into the Runge-Kutta scheme

we modify (2.2) and get

w(k) = w(0) + _k AtILw(k--I) + V2 --V4)' (4.1)

where Lw represents the approximation to the Euler equations. V4 is given

by

C4 j

V4 - 128 [D+_ D _(_-_D+_ D _ w) + D+q D q(_t D+q D_q w)], (4.2)

and V2 will be presented later. At is the local time step while J is the

area of the zone. C4 is an arbitrary constant (usually about 0.2) while D+

and D represent forward and backward differences respectively. _ and q
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are the curvilinear coordinates and we have assumed A_ = An = I. As one

approaches the boundary, V4 can no longer be generated by (4.2). One

alternative is to extrapolate the variables to an artificial position across

the boundary and then to use (4.2). This is equivalent to using a one-sided

approximation to (4.2). The viscosity added by V4 is a completely

dissipative mechanism. If we look at the differential level (4.2), (with

V2 = 0) leads to an approximation of

c4 J
wt = Lw - (KWxx)xx, K = A----_-" (4.3)

Multiplying (4.3) by w and integrating over all space we get

1 d f lw12 dx = f (w, Lw)dx - _ w(Kwxx)xx dx. (4.4)2 dt

Integrating the last integral by parts twice and ignoring boundaries we get

1 d _ w2 dx = _ (w, Lw)dx - _ K(Wxx )2 dx. (4.5)2 dt

Hence, as long as K is positive the viscosity terms decrease the total

energy. An alternative to (4.2) is to use

c4 J D2 w)] (4.6)V4 - 128 [D+$(_--_D+$ D2_$ w) + D+n(_ t D+n -n "

This version contains both dissipative and dispersive characteristics. The

same technique can be used on the finite difference level using summation-by-

parts. One can then also include boundary terms to see their effect.
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Eriksson and Rizzl [4] choose boundary conditions so as to maximize the

dissipation of the artificial dissipation. We shall see later that this may

introduce errors into the steady state approximation.

The form of V2 is given by

c2 8x 8y D w]. (4.7)V2 - 4 [D+_ D _ w + D+q -_

8 is a switch which measures the gradients of the flow. In smooth regions

8 should be of the order of A2 while near shocks 8 should be of order

unity. Hence, this viscosity is of fourth-order in smooth regions and does

not affect the order of the scheme. 8x is given by

8x = max(-Sjj+l/2,k ,k 8--j+l,k)" (4.8)

Two possibilities for 8 are

IPJ+l'k - 2pJ_k + PJ-l_kl K N 1.0, (4.9a)
_j,k = _ IPj+l,k + 2pj,k + Pj_l,k I '

or

-- IPj+l,k - 2pj,k + Pj-l,k ]2

8j, k = K , _ ~ 0.05. (4.9b)

IPj+l,k - PJ'k 12 + ipj,k - Pj_l,kl2 + €

As with the fourth-order viscosity, (4.7) cannot be used directly at the

points next to a boundary. Salas (see [I]) suggests extrapolating the

variables to a virtual point outside the domain and then using (4.7).

Erlksson and Rizzl [4] again implement the boundary terms so as to increase
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the dissipative effect. However, computations indicate that the viscosity

V2 introduces errors near the boundaries. This error consists of two

parts. Near the leading edge false entropy is generated which then forms an

entropy layer along the body. At the same time a pressure jump occurs at the

trailing edge which violates the Kutta condition. This problem is especially

noticeable at high angles of attack. FLO52ST was used to find the solution

about a NACA 0012 at I0° angle of attack with a free stream Mach number of

0.3. The solution is completely subsonic and so the Euler and potential

solutions should agree. With the standard code a noticeable pressure jump is

generated at the trailing edge. Since the flow is subsonic one can set V2 =

0. Without the second-order viscosity the pressure is continuous at the

trailing edge. Furthermore, comparisons of the llft between the potential and

Euler codes show that the Euler code underpredlcts the llft by about 9% on a

coarse 64×16 0 mesh On a finer mesh th_ llft is improved but is still _ch

worse than the corresponding prediction of the potential code. Removing the

V2 component of the viscosity improves the llft prediction though it is still

5% too low on the 64×16 mesh. Careful checks show that the pressure jump at

the trailing edge is due to the tangential component of the V2 viscosity.

Hence, this difficulty is not caused by the difficulty in evaluating (4.7)

near the boundary. The cause is that the switch (4.9) becomes large near the

leading and trailing edge. Hence, these regions are treated as if there were

a shock and a loss of entropy is created. This entropy layer extends over the

length of the airfoil and is different on the upper and lower surfaces.

Hence, the stagnation pressure on the upper and lower surfaces are different

leading to a pressure jump at the trailing edge. If the tangential component

of the V2 viscosity is set equal to zero then the pressure jump disappears.
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However, there is no improvement in the llft prediction. Thus the llft is

more sensitive to the normal component of the viscosity.

In [3] it is suggested that the viscosity V2 be multiplied by a linear

factor which is zero near the body and one in the far field. This improves

the accuracy in many cases, however_ it is ad hoc. An alternative is to

multiply the viscosity by M4. In stationary flow, shocks only occur in

supersonic regions and so the viscosity is not changed near shocks. However,

there is a stagnation point at the trailing edge and so the viscosity is

turned off near the trailing edge.

5. Enthalpy Damping

With a second-order system in time one can add artificial terms that

depend on the flrst-tlme derivative. Though such terms destroy the time

accuracy they do not affect the steady state solution. These terms can be

chosen so as to speed up the convergence to a steady state. Such applications

have been used for SOR or the full potential equation. However, for a first-

order system one cannot, in general, add on lower order terms since they are

not zero in the steady state. For the Euler equations it is known that the

total specific enthalpy is constant along each streamline in the steady state.

If all the streamlines originate from a constant reservoir then the enthalpy

will be constant in the entire region even in the presence of shocks. This

constant enthalpy is known a priori from the inflow boundary condition.

Therefore, one can add artificial terms to each equation that depend on the

deviation of the local enthalpy from the steady state enthalpy. Such a

forcing term is zero in the steady state and we will show that it can
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accelerate the approach to the steady state. For simplicity of presentation

we shall assume a one-dimensional isentropic fluid. We therefore consider the

following modified equations.

Pt + UPx + PUx = _ (5.1a)

2
e =

+ uux + P--rPx 0 (5.1b)u t

= -_@(h - h0) , (5.1c)

2 2

h = E + p = c + u (5.1d)
p y-i 2'

differentiating these equations, one obtains

2

Ptt + 2UPxt + (u2 - c )Pxx + ut Px + Pt Ux + 2UUx Px
2 (5.z)

C

z_ x Px= *t+ u*x'- pux

also

#t + U_x = - _[(h - h0 + c2)pt + u(h - h0)Px ]. (5.3)

We ignore all terms involving the product of derivatives and then freeze the

coefficients. We then have

Ptt+ 2UPxt (c2 2- - u )Pxx + _(h - h0 + c2)pt - au(h - hO)Px = O. (5.4)
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This is a convective wave equation in which e multiplies the first time

derivative of p. This is similar to the acceleration procedure used for the

full potential equation. To reduce this to a standard wave equation we

introduce new independent variables

= x, • = Mx + /i - M2 t, M = u-, (5.5)
c! I - M2 c

where we assume that M _ i. With this change, (5.4) becomes

P_ - (c2 - u2)p_q + _ [(i - 2M2)(h - h0) + (i - _)c2]p_
/ i M2 (5.6)

- eu(h - h0)P_ = 0

or

- d2 + Kpz + = 0. (5.7)p_ p_ Lp_

Using a finite difference scheme we choose K proportional to d/A_ so as to

reach a steady state rapidly. In terms of the original variables this implies

eat proportional to I - M • (5.8)

(i - 2M2)(h - h0) + c2(i - M2)

Note: Since e depends on l/At the enthalpy damping is not a low order

term and so it affects the stability limit.

As noted above this procedure is valid only for subsonic flow. For the

potential equation it is well known that adding a _t term is not advisable

in supersonic regions. Using en{halpy damping for the Euler equations it has

been found experimentally that using a small amount (relatively) of enthalpy

damping in the supersonic regions can accelerate convergence, especially for

problems which are mainly supersonic.
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In the code FLO52ST _ = al(l - M2) + _2' _i' _2 constant. In the above

derivation we used the primitive variables. For the conservative variables,

(5.1) is replaced by

Pt + LI = - ap(h - h0)

(pu)t + L2 = - =pu(h - ho) (5.9)

(pv)t + L3 = - =pv(h - ho) ,

where Li represent the standard Euler terms. The finite difference

approximation to (5.9) is

n+l
pn = - _p - -AtL I _Atpn+l(h n ho) (5.10)

or

n

p - AtL In+l
p = . (5,n)

i + _A(hn - ho)

We stress then in these formulas, _ is always positive independent of the

sign of (h - ho). Thus, the right-hand-side of (5.9) is not the equivalent

of a forcing function that gives rise to an exponential decay in an ordinary

differential equation. Replacing (h - ho) by lh - hol in the definition

of $ destroys the enthalpy damping and can lead to divergence.

For the energy equation we append to (5.1)

St + L4 = 0. (5.12)

[
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Deriving the equation for E - h0 p one gets a forcing term that depends on

(h - h0)2 which can lead to difficulties. In [8] this was fixed in a

heuristic manner. An alternative is to replace (5.12) by

ht + L5 = -8(h - h0) (5.13)

A

where _ may depend on the Mach number. Let E = E - h0 p then combining

(5.13) with (5.9) yields

Et -(h - h0)(aE + 8 8 8= _ p) =-[c(h- h0) +_ ]E +_ p. (5.14)

We note that when 8 is large we force the enthalpy to be equal to its steady

state value. Hence (5.14) is a generalization of the isoenergetic systems.

Computations show that the enthalpy damping is also useful in removing

temporal oscillations. Using the enthalpy damping, with a Mach number

dependence, yields a more monontone convergence to a steady state than in the

absence of damping. This property is especially useful if one uses an

acceleration procedure on top of the Runge-Kutta scheme.

6. Residual Smoothing

Residual smoothing was first introduced by Lerat [12] for use with the

Lax-Wendroff scheme. Jameson [9] later introduced a similar technique in

conjunction with the Runge-Kutta "schemes. We shall later compare the effects

on both these methods. However, we first consider a two-step Runge-Kutta

method. This scheme is given by
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n (n)
u(I)= u + =At Qu

(6.1)

n (i)
u(2) ffiu + At Qu

where Q denotes all the spatial derivatives. When an artificial viscosity

is used it can be used either in both steps or else frozen at the same value

for both stages. The residual smoothing is then given by

(i - _J 6(J))(un+l - un) = u (2) - un (6.2)4 xx
J

where the product is over all space dimensions. One can also replace the

operator on the left-hand-slde of (6.2) with a full multidimensional elliptic

operator. Since this operator only involves constant coefficients on a

rectangular region (in computational space), it can be inverted by a fast

solver. However, we shall see that one should not use large tlme-steps in

conjunction with (6.2) even in one-space dimension. Since the difficulties

are not concerned with splitting errors there is not much of an advantage to

consider multidimensional operators that are not in split form. Numerical

experiments indicate that a multidimensional Laplaclan is more effective in

accelerating the flow to a steady state than (6.2) but not sufficiently fast

to warrant the additional cost of inverting the multidimensional matrix even

with a fast solver.

We now consider the constant coefficient problem in one-space dimension.

Let Q be the second-order central difference and ignore the artificial

viscosity. Taking the Fourier transform of (6.2) for ut ffiUx, we get
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(1 + 8 sln2 _)(G-I) = iX sln 8 - eX2 sin2 8
(6.3)

X = At/Ax

or

iX sin 8 - eX2 sin2 8
G = 1 + • (6.4)

I + 8 sln2 _2

The original two-step Runge-Kutta scheme (8 = 0) is stable when

/ 2a-1
X < . (6.5)

For general 8, the scheme is stable if we choose

Alternatively, if we replace 8 by cX2 and a > 1/2 c > 2e, then the

scheme is unconditionally stable.

In three-space dimensions, (6.4) is replaced by

(i + CX2 sin 2 8)(1 + Cl2 sin 2 _)II + CX2 sin 2 _)(G-I) = IlK - aX2 K2, (6.7)

with K = sin 8 + sin 8 + sin _. For stabilitywe require that G G < I.

Thls occurs if and only if
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A sufficient condition for stability is that

8
-2_[I + cX2(sln2 _ + sin2 _ + sln2 _)] + 2 X2 K2 + 1 < 0. (6.9)

Hence, the three-dimensional scheme is unconditionally stable if

c > max a[sln 8 + sin @ + sin _]2 . (6.10)
--p,@,_ 2(sin2 8_-+ sln2 _ + sin2 _)

Therefore, we have shown that a sufficient condition for the three-dlmenslonal

scheme (6.2) to be unconditionally stable is

o.>_ 1/2, C >_.6o_. (6.11)

Hence, the three-dlmensfonalversion of (6.2) is unconditionallystable.

Moreover, since the Runge-Kutta scheme gives a steady state which is

independent of At and (6.2) is in delta form we concludethat the steady

state solution to (6.2) is also independentof At. We point out that the

version of residual smoothingproposed by Lerat does not have a steady state

independentof At. This is becausethe Thommenschemeused by Lerat has a

At dependent steady state. Since the time steps used are not very large

relative to the explicit time step this dependence on At may not be

noticeable to graphicalaccuracyw We also note that for the one-dlmenslonal

Lax-Wendroff two-step methods (Richtmyer,MacCormack,etc.) and for the two-
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dimensional Burstein scheme that the solution after the intermediate step is

independent of At.

We wish to stress that even though (6.2) is unconditionally stable,

choosing a large time step is not the best strategy. Even in one-space

dimension choosing a very large time step severly retards the convergence to a

steady state. This is not true, in one-space dimension, for the Lax-Wendroff

scheme, if 8 depends on the matrix of the differential equation (see [12]).

Hence, the use of residual smoothing with the Runge-Kutta scheme is

fundamentally different than the backward Euler method. For the residual

splitting method the inefficiency of large time steps has nothing to do with

splitting errors. Let 8 = cI2, (6.4) becomes

ii sin 8 - a2 12 sin2 8 a _ 1/2
G(8) = 1 + . (6.12)

1 + oi2 sin2 8-- 0 > 2e
2

For large I, (6.12) becomes

2

G(8) = _ sin2 8 (6.13)
o sin2 8/2

We thus see that withoutartificialviscositythat the highestfrequency,

8 = _ is not damped.

If we add an artificial fourth-orderdissipationwith coefficient 9 at

each stage, then (6.12)is replacedby

- _ sin4 _] + 12Ci sin 8 - v sin4 _]2I(i sin8

,G(8) = 1 + " _" " z" . (6.14)
1 + ci 2 sin 2

2

As I gets larger, we get
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2
G(_) .-"1 + !> 1, (6.15)o

and so the scheme is not stable for large I. We next consider the case that

the same artificial viscosity is used at both stages. In that case (6.12) is

replaced by

i% sin 8[I + '_l[i sin 8 - U sin 4 e)] _ 19 sin 4 _2
G(0) = 1 + . (6.16)

1 + cX2 sin 2 _
2

As % approaches infinity, the coefficient of the artificial viscosity goes

to zero relative to the denominator and so we recover (6.13) in the limit.

Hence, when we freeze the artificial viscosity, the scheme remains

unconditionally stable. However, when % is large, the highest frequency is

damped only a small amount proportional to I/%. Therefore, if we wish to

minimize G, we do not wish to choose % large. An alternative is to choose

a finite % so that f G2(8)de is minimized.
0

We also note that if one adds the viscous terms from the Navier-Stokes

equations, then a similar analysis holds. Hence, if one wants the scheme to

be unconditionally stable then the Navier-Stokes terms should be frozen and

one evaluated once per cycle. If the Navler-Stokes terms are reevaluated at

each stage then the residual smoothing should be applied at every stage and

not after the second stage.

The above analysis was for a two-stage Runge-Kutta scheme. For a multi-

stage scheme one should apply the residual smoothing after every even stage.

If the total number of stages is odd then one should do an extra residual

smoothing after the cycle is completed. One can also show that the residual
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smoothing will not stabilize a one-stage Runge-Kutta with central differences

for a hyperbolic problem but the method is unconditionally stable for a one-

stage method for parabolic problems. In fact it gives the backward Euler

methods. Hence, for the Navler-Stokes equations one should use residual

smoothing after every stage.

7. Highly Subsonic Flow

It is well known that for very subsonic flow that the flow can be

considered as incompressible. The use of the compressible fluid equations is

considered as inefficient, since the fluid velocity is ,mch smaller than the

speed of sound. The use of an explicit scheme requires At to be bounded by

i/c. However, the physical properties change over time scales of order I/u

which is much larger. Similar arguments hold for viscous flows with a high

Reynolds number. Hence, it is usually agreed that explicit schemes are

inefficient for highly subsonic flows. We shall now show that if one is only

interested in the steady state then a minor change to the code can greatly

increase the efficiency of the explicit method. Even if one is using an

implicit method the following changes should increase the efficiency of the

scheme since all waves have similar speeds.

The Euler equations are expressed as

wt + fx + gy = 0, (7.1)

where (x,y) represent general curvillnear coordinates (see (3.3)). Since we

are only interested in the steady state we replace (7.1) by the system
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M-I
wt + fx + gy 0. (7.2)

The requirements on M are that the matrix be nonslngular and that the

original initial boundary value problem still be well-posed. It is

straightforward to solve (7.2) with an explicit scheme. With an implicit

method only the diagonal portion of the matrix to be inverted is changed.

Though the code solves (7.2) we shall only analyze the constant coefficient

problem

M-I wt + Aw + Bw = 0, (7.3)x y

where the matrices M, A, B are constant and A = _f_-_, B = 8g_w" Let

w(0) Tw, A0 T A T-I B0 T B T-I MOI -I T-I= = , = , = T M , where T is given by

(3.12). Then (7.3) can be converted to

M01- w_ 0) + A0 w(0)x + B0 w(0)y = 0 (7.4)

with

q c 0 0 r 0 c 0

c q 0 0 0 r 0 0

A0 = B0 =
0 0 q 0 e 0 r 0

0 0 0 q 0 0 0 r

(7.5)

where q and r, defined in (3.6), are the eontravarlant velocity components.
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If M0 = I, then we have not changed the eigenvalues or the stability

condition of (7.1). We now consider the case that u2 + v2 << c2. We wish to

MO 1 so that the eigenvalues of M0 A0 and M0 B0 are independent
choose

of c. In addition, we wish M0 to be positive definite. This will imply

that (7.3) is a symmetric hyperbolic system and so is well-posed. One choice

is

m

c2 0 0 0
z2

0 1 0 0

MOI- = , (7.6)
0 0 I 0

0 0 0 1

where z2 = max(_, u2 + v2). € is introduced so that the matrix MO I is not

singular at stagnation points. In particular, € = .01c seems to give

reasonable results. Transforming back to the curvilinear coordinates we

define

o=

" s2 -u -v 1

s2 = u2 + v2
2

us2 -u2 -uv u

Q = (7.7)
vs2 -uv -v 2 v

c2
h =--+ s2

hs2 -uh -vh h y-I

Then

M-I = I + dQ, M = I + eQ, (7.8)

where

2 2
y-I

d- Y-12 (2- I), e =--2 (2- 1). (7.9)
c z C c
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We note that given the first row of Q, the following rows are derived by

multiplying the first row by u,v,h, respectively. Hence, the product of Q

times a vector requires only six multiplications. For use in a Runge-Kutta

scheme we evaluate the fluxes in (7.2) as usual including the artificial

viscosity. The vector of the changes in the variables Aw is then multiplied

by the matrix M where the elements of Q are evaluated at the previous

stage. The variables at the next stage can then be evaluated.
2

Let _2 = z
-_ , then the largest elgenvalue of D = A sin e + B sin _ is
C

given by

X = lwl(l + _ 2) + !w2(l _ _2 ) + 4(a 2 + b2)z 2
2 , (7.10)

where w, a, b are given in (3.8), (3.9). We see that at a stagnation point

= 0(_) and % = 0(_). For M = I, % = lwl + _ a2 + b2 c. Hence, at low

Mach numbers the largest eigenvalues (and hence the time step) is independent

of the sound speed c. At transonic sound speeds the largest elgenvalue is

comparable to the case with M = I. Comparing with (3.16) we see that the

preconditioned form (7.2) allows the use of a larger time step for all

subsonic flows. Applications to the incompressible Navier-Stokes equations

are presented in [19] together with extensions to supersonic flow.

8. Upwind Schemes

At each stage of the Runge-Kutta scheme we have replaced the flux

derivatives by central differences. This necessitated the use of an

artificial viscosity. This stabilized the scheme in both smooth regions and
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provided an entropy condition in shocked regions. To avoid this artificial

aspect one can replace the derivatives by appropriate upwind differences.

Presently this is implemented using the flux splitting described by Van

Leer [24] for the Euler equations. At each zone face _,n = constant, we

calculate

wi+i/2,j = wi +1/2 61 w (8.1a)

wi_ i/2,j = wI -I/26 i w. (8.1b)

61 is constructed from the forward and backward differences using a switch.

This switch prevents overshoots when the variables change dramatically over a

zone width. The flux is then split into plus and minus contributions

depending on the sign of the eigenvalues. These fluxes are calculated in a

rotated system using the velocity components parallel and perpendicular to

each coordinate direction. The result fluxes are then rotated back to yield

the Cartesian fluxes. We then combine the plus and minus contributions from

neighboring cells to obtain the flux at the face of the cell. This is done

independently in each direction. Given the fluxes at all four faces of the

cellwe update the variables to the next stage. The coefficient of the Runge-

Kutta scheme given by (2.7) were appropriate for central differences. Optimal

values of the parameters for one-slded schemes are not known. Further details

of the scheme are presented in [20].

Because of the extra logic involved in an upwind scheme it is more costly

per stage than a central difference scheme. Though a central difference

scheme requires an artificial viscosity it can be calculated once and then

reused at each stage of the Runge-Kutta scheme. Since the viscosity of an
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upwind scheme is built in, it is more difficult to perform some operations

once and then reuse them during the k stage scheme. A four-stage scheme

using upwind differences requires about three times as much computer time as

the corresponding four-stage central difference Scheme. In addition, the

enthalpy damping technique of section 5 can not be used. This occurs since

the enthalpy is not a constant in the steady state when using flux splitting.

The stability limit for the one-slded scheme is only about two-thlrds of that

allowed for the central dlfferencescheme. Hence, the present version of the

upwlnd scheme is about five times slower than the central difference scheme to

reach a steady state with a given tolerance. The chief advantage of the

upwind scheme is its robustness. There is no need to choose constants for the

artificial viscosity. Preliminary test indicate that the upwind scheme works

for a larger range of inflow Mach numbers than the central difference scheme.

9. BouBdary _ndlti@ns

In addition to advancing the scheme in the interior, it is necessary to

supply boundary conditions. At the airfoil the normal component of the

velocity is zero. Using the finite volume approach, it is only necessary to

know the pressure on the airfoil. This pressure is found by the normal

momentum equation. It is also necessary to give boundary conditions in the

far field. When the flow is subsonic at infinity one should specify three

conditions at inflow and one condition at outflow.

In one-space dimension, in order to decrease the energy as fast as

possible and reach a steady state rapidly, one should specify characteristic

conditions. Diagonalizing the wave equation one gets
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= Ux, = VX, _ut vt 0 < x < i

(9.1)

u(l,t) = =v(l,t), v(0,t) = _u(O,t)

u,v are the characteristic variables. Specifying characteristic boundary

conditions is equivalent to _ = _ = O. From (9.1) it follows that

d___fl(u 2 + v2)dx = ( 2 _ l)v2(l,t) + (62 _ l)u2(0,t). (9.2)
dt 0

Hence, choosing _ = _ = 0 minimizes the right-hand-side.

Therefore at inflow, one should specify three characteristic variables.

However, we require that the enthalpy be constant over the entire fieldin the

steady state. To achieve this it is necessry to specify enthalpy at inflow.

This condition replaces one of the characteristic boundary conditions. For

nonlinear problems it is more appropriate to specify the Riemann variables

rather than characteristic variables. Hence_ at inflow we specify

p/p%' (9.3a)

v (9.3b)

E+
h = p • (9.3c)

P

u is the component of velocity perpendicular to the boundary while v is the

component parallel to the boundary. The fourth boundary condition is found by

extrapolation from the interior. For stability it is preferable to

extrapolate characteristic variables [5]. Hence, at the inflow we extrapolate
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2c (9.3d)
u Y-l"

At the outflow boundary we reverse the procedure and specify

2c (9.4a)
U -- _ ,

and extrapolate

p/p2 (9.4b)

v (9.4c)

h (9.4d)

An alternative to (9.4) is to use nonreflecting boundary conditions [2].

Numerical experiments indicate that the far field boundary exerts a much

greater influence on the drag and lift coefficients than does the boundary

condition at the airfoil.

I0. Conclusions

We have discussed many of the components of the code FLO52ST. This code

gives a rapid solution to the Euler equations in both two- and three-space

dimensions for a variety of geometries and a range of Mach numbers.

With central differences it is easy to increase the accuracy of the

differences to fourth-order or spectral accuracy. Using an 0 mesh all

variables are periodic around the airfoil. Therefore_ high-order differences

do not encounter any boundary difficulties. Using spectral methods a Fourier

scheme would be appropriate. With a C mesh all boundaries are in the far

field. Hence, one can simply reduce the order of accuracy near the outer
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boundaries where the flow is smooth enough for second-order accuracy to be

adequate. The approximation normal to the boundary requires more care with

regard to boundary conditions at the airfoil surface. Hence, it is reasonable

to consider second-order differences normal to the airfoil while using higher-

order methods parallel to the body. In this case one must be careful in

approximating the metric derivatives so that the constant flow in the far

field remains a solution to the finite difference equations. Work is also in

progress on extending the code to the Navier-Stokes equations.
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