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FOREWORD

This report is a design and cost study for a Magnetic Suspension and

Balance System suitable for an 8 ft. x 8 ft test section at Mach 0.9 with 0.1%

control forces at i0 Hz for an FI6 model airplane.

R. W. Boom, Y. M. Eyssa, G. E. Mclntosh and M. K. Abdelsalam are the

major contributors to the study.
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I. INTRODUCTION

1.1 BACKGROUND

Magnetic suspension and balance systems (MSBS) have been used to support

models for aerodynamic tests in wind tunnel facilities for over 25 years. The

primary advantage of a MSBSis the complete elimination of support interference

effects which can result from the use of mechanical model support systems such

as stings and struts. The air flow over a test model can be affected both by

the physical proximity of a mechanical support and by the alterations to the

actual model shape which are often required to accommodate mechanical

supports. A secondary advantage of a MSBSis the ease and flexibility with

which the test model may be positioned in the wind tunnel air stream in both

the rotational and translational degrees of freedom.

The useful size of the wind tunnel test sections of the MSBSconstructed,

to date, have ranged in diameter from about I0 centimeters to 33 centi-

meters. As part of its research relative to the development of advanced wind

tunnel concepts and aerodynamic testing techniques, the NASALangley Research

Center has been sponsoring studies to investigate the application of MSBSto

wind tunnels having a test section large enough to accommodate the detailed

three-dimensional models required for configuration research and aerospace

vehicle development. The results of a study in 1981 (reference I) made the

consideration of a large 2.4 meters by 2.4 meters (8 feet by 8 feet) size test

section for a transonic wind tunnel with _uperconducting electromagnets appear

to be practical and feasible. However, before the size and force capacity of

such a technically desirable large MSBScan be selected, additional
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information is needed to allow performance and size trade-offs to be made.

The purpose of this study is to make a detailed evaluation, using advanced

concepts where possible, of one specific option, Alternate G, developed for a

large MSBSin reference I.

1.2 SUMMARY

The cost estimate for this MSBSdesign is $29,939,000 which is to be

compared to $88,448,000 for Case 1-Alternate G, the reference starting design

for an 8 ft. x 8 ft. wind tunnel.

Cost reductions are achieved by the following design choices,

-- Superconductive persistent solenoid in the suspended airplane model

which increases the model magnetic moment by 73.6% with attendant X,

Y and Z coil reductions.

-- Elimination of two magnetization coi|s accounting for about 10% of

magnet costs.

-- Permanent magnet wings resulting in a 20% improvement in achieved

wing magnetic pole strength.

-- New rol| coil design providing 0.3 tesla at wing tips.

-- Roll torque specifications are 100% achieved vs. 50% for magnetized

soft iron wings.

-- Compact magnet design in one commondewar with internal reinforcement

resulting in minimum structure and a low static heat leak of 4b W at

4.2 K.

-- Stainless steel internal cold intermagnet structure with attendant AC

eddy current losses is accommodated without fiberglass epoxy dewars.
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-- Magnet location and size optimization.

-- 44% reductionin conductorampere meters.

-- 47% reductionin stored energy and structure.

-- Only 560 liters/hourhelium liquefieris needed even with stainless

steel structure.

-- Maximum coil OD is 15% less at 8.10 m (drag coil).

The procedurefollowed in the MSBS design is to concentrateexclusively

on Case l-AlternateG specifications. Each componentis optimizedfor maximum

efficiency. The system configurationis given in Fig. 1.1. Y, Z, and R roll

magnets are mounted on rectangularwalls closely surroundingthe tunnel. The

race track R coils are especiallyefficient. All interactiveforces are taken

internallywithout external heat leak. The X drag coils are a minimum

diameter becauseof the compact nature of the system.

The magnets are all designed for use in 4.2 K one atmosphereliquid

helium with the established11 kA cryostable(3) Argonne NationalLaboratoryAC

conductor. There is more than adequatespace for interleaved304 stainless

steel structuralbanding between turns.

In chapter II the Specificationsfor Case 1-AlternateG are listed as to

forces and torques on the model. The AC losses occur in the magnets and cold

structureat the control frequencyof 10 Hz for continuousdisturbanceof

0.1% I in any coil. Full load correspondsto 0.1% Imax in all coils

simultaneouslyat IU Hz; quarter load is for U.1% (Imax/4)at 10 Hz.

Chapter Ill describes the Configurationsfor all magnet coils, the model

superconductingcore solenoidand the permanentmagnet wings. The magnets are

optimizedas to dimensionsand locationsto producethe required forces and

torques. Cross-couplingis accountedfor in all cases. As an example of
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TABLE I-i

MSBSDESIGNCOMPARISON

MADISONMAGNETICS,INC. DESIGN

Madison Magnetics Design Z Y Roll Drag Total

Ampere-Meters (MAm) 86 100 207 362 755

Energy Stored (MJ) 5U 60 140 666 9U6

Maximum Field (tesla) 5.8 6.3 6.1 4.4

GENERALELECTRICCO. DESIGN

Drag +

General Electric Design Z Y Roll Magnetize Total

5O8

Ampere-Meters (MAm) 374 51(?) 233 + 1346
18U

758

Energy Stored (MJ) 592 56(?) 248 + 1706
52

Maximum Field (tesla) 7.7 4 4 4
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cross-couplingconsider the Y coils which are responsiblefor Yaw torques.

The Y coils must have extra turns to counteractcross-coupledYaw torques on

the model from all other coils.

Chapter IV covers the Magnet System Design as to detailed sizes, forces

and torques. Table I-I is a comparison of the Madison Magnetics, Inc. (MMI)

design with the previous GE design. The MMI ampere meters are 56% of GE and

the MMI stored energy is 53% of GE. The Y coil for GE is surprisinglysmall

compared to the other GE coils. MMI improvementsstem from the compact,

single dewar design, from a new race track roll coil system and from a

superconductingmodel core magnet.

The conductordesign is explainedas regardsthe cable constructionand

stability in 4.2 K liquid helium pool cooling. AC losses in the coils during

dynamic 10 Hz controlare 405 watts at full load and 189 watts at 1/4 load.

There are 11 power supplieswith total power of about i_0 MW to meet the 10 Hz

requirement.

Chapter V covers the design of a massive cold Structureassembly to which

all of the magnets are attachedand all magnets, except for the two drag

coils, are cooled in a single large liquid helium container. The mutual

magnet forces are reacted by the large cold rectangularmounting structure.

The wind tunnel is surroundedby an "egg crate" load-bearingwall which reacts

atmosphericpressure on one side and helium pressure on the other side. The

major structureis a rectanglereinforcedwith spacedwebs. Overallweight is

about 367,6U0 Kg.

Eddy current losses in the steel structureare tolerablefor all coils

except the X drag coils. To reduce X coil eddy current losses the cold
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structure at 4.2 K is slotted bottom center in the y = 0 plane the full length

of the structure. Thereforethere is no closed circuitof structure

parallelingthe X coil turns. Even the thin 0.51 mm S.S. liner to hold helium

is slotted. The AC losses for the structurecompriseabout 70% of the 4.2 K

helium requirementat full load.

Chapter VI covers Cryogenics requirementsand the design of the cryogenic

system flow diagram. The key features are a 560 liter/hhelium liquefier,

47,500 liter helium storagedewar, 39,644 m3 gas storage facility,0.543 m3/s

helium recovery compressor,LN2 heat exchangersand 354 m3 helium gas bag.

Cooldown is approximatelyeight days. The system can operateat 1U0% load for

two hours and 25% load for eight hours continuouslywithout exhaustingthe

liquid helium supply. Recharging during down times can keep the liquid

storagedewar half full which provides sufficientcapacity to run 1.5 standard

days without a liquefier.

The daily operational requirementsare given in Table I-2 for power and

for cryogens.

TABLE I-2

CRYOGEN AND POWER USAGE

Full Load Quarter Load Stan_-by

2 h 8 h 14 h

Liquid Helium 3120 _/h 590 _/h 175 _/h

Liquid Nitrogen 13 _/h 13 _/h 13 _/h

Power Supplies 100 MW 6.3 MW 0
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Chapter Vll describes Scalin 9 to different size wind tunnels from the

present 8' x 8' cross-section. Forces scale as (L/8) 2 and torques as (L/8) 3

due to the model length being proportional to tunnel length L. For models

with magnetized iron or permanent magnet cores and wings the external field at

the pole tips remains the same. The field gradient scales as 8/L. For

superconducting model cores the external field at model pole tips varies

smoothly from 1.65 Bo at L = 4 ft to 0.75 Bo at L = 16 ft where B = Bo at

8 ft.

The use of superconducting cores for the airplane model scales favorably

for larger tunnels and is already better than magnetized iron by 73% in an 8

ft tunnel. The break-even tunnel size between superconducting cores and

magnetized iron cores is about a 4 ft tunnel. A 12 ft tunnel would require

about 2.25 times as large a magnet set for magnetized iron as for a

superconducting model core solenoid.

Chapter VIII |ists the Cost Estimates for the MSBSsystem following the

outline and maintaining the rates used in NASACR 165917. Major savings

result from reduced materials and labor for a small, compact and simple magnet

system. The Ii kA cable and magnet winding cost is based on known ANL costs.

The $29,939,000 cost for an 8 ft. by 8 ft. Mach U.9 wind tunnel

represents industrial costs on the same basis as in NASACR 165917.

Chapter IX Conclusion is a brief description of the major features of

this MSBSstudy.

Chapter X lists Recommendations for further studies.
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II. MSBSREQUIREMENTS

The MSBSspecifications and requirements are listed in Table 11-1. The

forces on a suspended airplane model in the wind tunnel are equal to the

product of magnetic pole strengths in the model multiplied by the applied

magnetic field. The core and wing dimensions determine the maximumvolume

available for the on-board magnetic poles and moments. The magnetic fields

necessary to provide the required forces and moments in the angular range

listed are provided by an external set of magnet coils. The dynamic force

requirements at I0 Hz are needed for feedback control to maintain model

positioning during operation.

11.1 OBJECTIVE

The object of this study is to design a superconductive magnet system

optimized for economic performance encompassing the listed requirements.

II.I.i Model Visual Access

The optimized configuration chosen by Madison Magnetics does not allow

visual observation and accessto the model. Observation must be via indirect

optical or electronic systems. In any case, the presence of high magnetic

fields would limit human observation. All equipment located close to the MSBS

coils, including viewing equipment, must be capable of operation in high

magnetic fields. A television display could replace visual observation.

11.1.2 Operational Duty Cycle

The operational duty cycle per day is two hours at full load, eight hours

at quarter load and 14 hours standby. Full load is defined as the i0 Hz

control of 0.1% I at maximumcurrent in all coils. This provides I0 Hz
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TABLE 11-1. MSBSREOUIREMENTS

8' x 8' TEST SECTION

A. Static Force Requirements

Lift 9790 N
Side 1380 N
Drag 4180 N

B. Static Moment Capability

Pitch 420 Nm
Yaw 140 Nm
Roll 140 Nm

C. Angular Displacement Range

Angle of Attack (_) ± 30°
Angle of Sideslip (8) ± i0 °
Angle of Roll (_) ± 20°

D. Core Dimensions

Length 75 cm
Diameter 12.7 cm

E. Wing Dimensions (see Fig. lll.a)

F. Dynamic Force Requirements, ± 0.1% at I0 Hz

Lift + 9.79 N
Side ± 1.38 N
Drag + 4.18 N
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control at maximumangles of pitch, yaw and roll with sufficient magnetic

forces to balance these wind forces. The operational duty cycle thus sets the

requirements for helium usage and electrical power, both of which are maximum

at full load.

An operational duty cycle might be five days of the above schedule and

two days at zero load which provides time to liquefy extra helium for a five-

day week. In this case a smaller liquefier and larger helium storage is

required for a net saving of $I00,000 out of a total capital cost of about

$2,6UU,UO0.

11.1.3 Static Forces and Moments

The requirements for static forces and moments are listed in Table II-

I. If the model is replaced by a magnet of a length L and a pole strength Q,

then the force in the i th direction for + Bi at the north pole and - Bi at the

south pole (typical of MSBSfields) is

(II.I)
Fi = 2Q Bi ,

where Fi = force in the it_h direction, N

Q = model magnet pole strength, Am

Bi = magnetic field in the it-_h direction at the core tips

i : x, y, or z.

The magnetic field at the poles of the core, Bi, is the field due to all coils

in the i th direction at any position of pitch and/or yaw.

The pitch and yaw torques are
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Tp = Q L 6Bz cos _ , (11.2)

and T = Q L aB cos
y y , (II .3)

where 6Bz and 6By are the difference in Bz and By at the model tips. 6Bz

appears in Eq. 11.2 because the Fz forces at each end of the pole tip are in

the same direction and result in a torque only if one Fzl = QBzl is larger

than the other Fz2 = QBz2, or 6B =]Bzl - Bz2J> O. The pitch and yaw angles

are _ and B.

The roll torque at any roll angle @ is

Tr 2 q b Bz(dp:O) {cos 2 @- sin 2 dp} (11.4)

where q is an equivalent magnetic pole strength of the permanent magnets in

the wing tips and 2b is the equivalent span. Details of these definitions are

provided in Chapter III. Bz(@:O) is the z component of the magnetic field at

the tip of the wing for @:0.

The static force and torque requirements listed in Table II-I are the

values required at the maximum angles of ± 30o in pitch, ± I0 ° in yaw and

20o in roll. The forces and torques from Eqs. II.I, 2, 3 and 4 determine the

required field components at maximumangles of pitch, yaw and roll. A model

superconducting coil of pole strength Q = 3.75 x 104 Am and length of 70 cm is

used to determine the field components in Table 11-2. The wing is of

permanent magnet material, with a span 2b = 82 cm, see Section 111.4.2.
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TABLE 11-2

FIELD REQUIREMENTSIN TESLAAT POLETIPS FORMAXIMUMANGLES

OF PITCH (a), YAW(8), ANDROLL (@)

LIFT LATERAL DRAG ROLL

Field component Bz* By* Bx Bz
0 0 0

Field location _ = 30 a : 30 a = 30
: i0 ° _ = i0 ° _ = i0 ° € = 20°

Field required 0.1305 0.0184 0.0557 -
to produce force

Field required 0.0184 0.0054 - 0.3
to produce torque

Total field 0.149 0,024 0.0557 0.3

Margin for control 2% 2% 2% 2%

Total Field required 0.152 T 0.0243 T 0.057 T 0.306 T

*Fields are in negative direction of z and y axis when _ and B are positive
and vice versa.
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11.1.4 Model An_ular DisplacementRange

The MSBS coils are designed to provide the requiredforces and torques

within the specifiedangulardisplacementsof ± 300 in pitch, , 100 in yaw,

and ± 200 in roll. Extra ampere turns are providedto account for control and

for cross coupling between coils. The roll torquescan be easily satisfied

with permanentwing magnets with an averagemagnetizationof 0.70 to 0.75

tesla and an applied field at the wing tips of about 0.30 tesla.

II.i.5 System Availability

The system availabilityshould be as high as possible. The anticipated

availabilityis 91.6% based on a two year assessmentof the WisconsinEnergy

StorageSolenoid System.(4) In that case,

OA = (i - POR) (1-UOR)

= (i - .04) (1 - .046)

= 91.6% ,

where

OA = Operating Availability

POR= Planned Outage Rate

UOR= Unplanned Outage Rate.

The values of PORand UORare somewhat subjective since they are based on 30

years of bubble chamber magnet experience in which there were no outages. The

values POR= 0.04 and UOR= 0.046 are the author's opinion that there might be

a single three month outage in a 40 year period, for an unknown reason. In

addition, no reason could be given for planned outages although a value is

assumed.
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In the utility industry where 70% availability is normal a rating of 92%

is considered unprecedented. The basic reason for the high availability is

the combined operating experience of bubble chamber superconducting sole-

noids. In about 30 years of operation at ANL, FERMI and CERNthere has been

no unplanned outage. The ANL solenoid went normal once without damage due to

inadvertent high rate current ramping with the solenoid dewar only half full

of helium.

The MSBSproposed conductor and magnet manufacturing scheme is almost

identical with that used by ANL. The cable conductor to be used has

repeatedly withstood continuous II tesla/sec sawtooth ramps in test coils

while remaining superconducting. In contrast the MSBSsolenoids will never be

subjected to more than 0.24 tesla/sec.

Failure modes such as loss of cooling and loss of power are allowed

for. To quote reference (4): "No specific technical requirements were

identified for establishing a non-zero planned outage rate. This is because

there are no moving parts in the coil, corrosion of components inside of the

vacuum enclosure is unlikely, and because all systems are redundant and can be

maintained without shutting down the plant."

11.2 Tunnel Constraints

The "stay-out" zone of one foot on all sides requires that the MSBSbe

mounted outside a IU' x 10' region.

The 10 Hz requirement for dynamic field control requires that a I0 Hz

field variation must be transmitted through intervening walls. In NASACR

165917(I) this problem was approached by estimating the time constants for
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TABLE II-3

TIME CONSTANTSFOR FIELD DIFFUSION i

THROUGHDEWARWALLS

8 x 8 Foot Test Section

MMI Design NASACR 165917(1)

Wall Thickness 2 mm 25.4 mm bU.8 mm

Stainless Steel 0.00315 sec 0.04 sec U.08 sec

p = 50 x 10-6 Rcm

at low temperature

i
Characteristic time at T ~ -- : 0.i secf

i0 Hz for field change
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field diffusion through the intervening wall. The intervening wall was

modeled as an infinite cylinder between the magnet system and the airplane

model. Table 11-3 reproduces the field diffusion chart with an additional

entry for the presently planned MMI low temperature stainless steel wall

thickness,

If the test section has a time constant comparable to _ : 0.i sec then

severe field wave form distortion results. Note that the MMI wall thickness

of 2 mmhas a time constant about 1/30 of the field driving time constant and

would produce negligible distortion.

A similar conclusion can be drawn from skin depth 6 which measures depth

of penetration of an incident wave. The skin depth is the distance within a

conductor at a point at which the amplitude of the field vector is equal to

1/e : 0.3679 of its value at the surface.

a = (2 pi_)112

= 3b f-1/2 cm for S.S. at low temperature

= 11.4 cm at 10 Hz.

A wall 2 mm thick is almost transparent.

Separatelymounted coils requireheavy cold structuralsteel walls in

each dewar throughwhich field changesmust diffuse. Such steel walls in the

2.54 cm thickness range are unacceptableas to field distortionand lead to

selectingnon-metallic(epoxy)structures.

The MMI design mounts all magnets inside heavy steel structurewith only

2 mm cold stainlesssteel walls between the coils and the model. Such

favorabledesign is the direct consequenceof mounting all coils in one common

dewar.
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III. SYSTEMCONFIGURATION

The magnet system configuration for the 8' by 8' tunnel provides the

magnetic fields to produce the static forces and torques needed to control the

model in the six degrees of freedom. The system configuration is summarized

as follows.

-- A 70 cm long potted persistent superconducting solenoidal coil, 11.5

cm O.D., and 6.1 tesla is the model core. A superconducting coil produces

higher magnetic moments and pole strengths than a magnetized iron core or a

permanent magnet core.

-- The model wings contain permanent magnets that occupy 85 percent of

the wing volume. The rest of the wing volume is high strength stainless

steel.

-- Z and Y gradient coils are symmetric arrays of four solenoid magnets

each. They are bipolar coils to control and manipulate the model. The

conductor for all coil systems is the ll-kA low-loss cryostable conductor. (3)

-- The drag coils to counterbalance wind drag forces are large diameter

solenoids.

-- The roll coils are four race-track coils optimized for minimum ampere

meters.

The magnets are optimized as to dimension and location subject to the

required forces, torques, maximummagnetic fields in the windings and gross

current density of 1500 A/cm2 in the coils.
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Ill.1 MODEL CORE

The model core size is 75 cm long and 125 cm2 in cross-sectionalarea.

The model core can be either a permanentmagnet with an average remanent

magnetism of 1 tesla, or soft iron magnetizedby a pair of external coils at 2

tesla saturationmagnetization,or a superconductingcoil in a helium dewar.

A superconductingcoil could producefields up to 7 tesla. We compare the

magnetic pole strength in the three cases and show that the superconducting

coil is a better choice than either a soft iron core or a permanentmagnet

core for the model size in a 8' x 8' tunnel.

111.1.1 Model Core Magnetic Analysis

Assume the following superconducting coil nomenclature:

R = outer radius of the model dewar

b = outer radius of the model coil

a = inner radius of the model coil

= R - b : 6 mm (dewar + insulation thickness, see Chapter Vl)

L = model coil length = 70 cm

J : gross current density : 30,000 A/cm2,

and the maximummagnetic field at the midplane of a long solenoid is

Bm : _oJ(b-a), (Ill.l)

The magnetic pole strength is

Q : _j(b3-a3)/3 • (III.2)
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Using Eqs. (III.I) and (111.2), Q is

Bm 3

e = _J{(R-6) 3 - (R-_--_) } . (111.3)

For a magnetized saturated iron core Q becomes

Q : MA , (111.4)
Po

where A is equal to 0.0125 m2, M = 2 tesla and Po = 4x10-7"

As seen in Table Ill-l, a superconductingcore is superiorcompared to

magnetized soft iron core for R _ 5 cm. Within the 125 cm2 cross-sectional

area of the model a superconductingcoil can producea pole strengthQ = 3.7 x

104 Am, which is about 70% higher than Q for magnetizedsoft iron. The

superconductingcore results in smallerZ, Y and X coils.

Ill.2 Z AND Y GRADIENT COILS

Based on previous studies(1,2) a configurationof four bipolar coils is

chosen to provide forces and torques in the z and y directions. Their

functionsare identicalexcept for the directionand magnitude of forces and

torques produced. Consider a set of four coils, either Y or Z, as shown in

Figure III.l. The design task is to find the dimensionsS, R1, R2, and t

subjectto the constraints:

required forces and torques,

maximum self field in windings, and

gross current density _ 1500 amp/cm2.
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TABLE 111-1

COMPARISONOF MODELCOREMAGNETICPOLE STRENGTHSQmIN Am

FOR6.1TESLA SUPERCONDUCTINGCOIL,

FORMAGNETIZEDIRONAT 2 TESLA,

AND FORA PERMANENTMAGNETAT

i TESLA AS FUNCTIONSOF MODEL

OUTSIDERADIUS (R)

Magnetized Permanent

6.1T Coil Iron* Magnet*

R (inches) R (cm) (QmxlO4) (QmxlO4) (QmxlO4)

6" 15.24 29.2 12.4 6.2

5.5" 13.97 25.0 10.5 5.23

5" 12.7 19.47 8.64 4.32

4.5" 11.43 15.34 7.0 3.b

4" 10.16 11.71 5.53 2.76

3.5" 8.89 8.57 4.76 2.38

3" 7.62 5.92 3.11 1.56

2.5" 6.35 3.75 2.16 1.08

2" 5.08 2.UI 1.38 0.69

1.5" 3.81 0.912 0.77 0.39

*Pole strength is multiplied by 75/70 to account for the difference in model
length from the superconducting coil.
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Figure III.I. Z or Y Gradient Coils
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The required dimensions, ampere meters and stored energy are found

through a series of iterations. This optimization provides the coil

dimensions and location for minimum ampere meters and stored energy.

111.3 DRAGCOILS (X COILS)

The drag coils provide a field gradient at the model coil which produces

an axial force to resist the drag force of the wind. Because of the low drag

force compared to the lift force, the drag coils enclose the Z gradient

coils. Once the radius of the two drag coils is known, their optimized

location can be easily found, Figure 111.2. The drag force per coil is

_oNIQ i I

2.)3/2 } , N/coil (111.5)Fx = T {(I+A2)3/2

_ S _ L
where A R ' = R '

_oNIQ
and Fx =T F (A,_) . N/coil

To find the minimum value of ampere turns NI per required Force Fx, the

function F (A,_) is optimized. Figure 111.3 is a sketch of the optimized

values for F (A,_) and A as functions of _.

111.4 ROLL COILS (R COILS)

The roll coils provide a field on the magnetic wings to produce roll

torque on the model. The magnetization of the wing can be either permanent

magnetization (SPM) or induced magnetization (SIM).



III-7

Z

I

!R

........ _ X

I'--- S ----F--- L ---.t---- S

Figure 111.2. Drag Coil and Model Coil Locations
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Figure 111.3. F(A,_) and A vs. _ for optimization of location and

size of drag coils for given values of Fx, L, and R.
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The analysis of SIM has been recognized as complicated. A previous

study (I) used greatly simplifed approximate analyses to design the 8 roll

coils. A more representative analysis, as in reference 2, is applicable to

this configuration but would require further study which is beyond the present

scope of work. We use the SPMpermanent magnet wings and race track roll

coils which allow accurate field calculation. The wings are of high coercive

force permanent magnet materials with remanent magnetization on the order of

0.9 tesla such as Re Co.(2)

111.4.1 PermanentMagnet Materials

The conventionalparametersto characterizeany permanentmagnet material

are Br, theremanentmagnetism,and Hc, the coercive force. Another useful

parameterHk (2) is the demagnetizingfield at which the permanentmagnet

material loses 10% of its remanentmagnetism. The field Hk is applied

opposite to Br to demagnetizethe permanentmagnet material. Applying Hr at

right angles to Br should result in insignificantreductionin the values of

Br, which is the case for the roll coils. Table III-3 lists Br, Hc and Hk for

some strong permanentmagnet alloys.

Based on the roll torque requirementsthe externallyapplied field on the

wing will range from 0.0 at the center to U.30 tesla at the tip. The magnetic

material in the wing should be the Sm Co5 "RECOMA20" or graded from materials

2, 5, and 4 in Table III-3 dependingon the field distributionat the wing.

Because the field at the wing is normal to Br it may be possible to use values

higher than Hk without much change in the value of Br. Because of the poor

mechanicalproperties of the strong permanentmagnet materials listed in Table
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TABLE 111-3

PROPERTIESOF SOMEPERMANENTMAGNETMATERIALS

Material Br(T ) Hc(T ) Hk(T)

1. Sintered (3) 0.85 1.5 1.13
SMCo5

2. SMCo5 based (4) U.90 1.5 1.25
"Recoma 20"

3. "Commercial" (5) U.84 1.0 0.613
SMCo5

4. Alnico 5 DG (6) 1.33 0.068 O.U4

5. Alnico g (6) 1.04 U.16 0.i0

(3) |

(4) _-- In Reference (2) see listed references25, 32 and 33.

I(6)
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III-3, the wing should contain some other strong non-magneticalloy such as

stainless steel. It is found from mechanicaldesign that 15% of the cross-

section should be stainlesssteel. Accordingly,the magnetic material is 85%

of the wing volume for an averagemagnetizationof 0.7 to 0.75 tesla for an

ungraded wing using alloy No. 2 in Table III-3. An average magnetizationof

0.8 tesla may be obtained by gradingwith other alloys.

111.4.2 Win9 Configuration

The wing configurationis that of the FI6 fightermodel. The arrangement

of the wing plan form is shown in Figs. Ill.4 and Ill.5. Using the non-

dimensionalizedairfoilcoordinatesprovidedby NASA, the cross-sectionalarea A

at any chord of lengthC is

A = 0.02625C2 cm2 .

At the tip where C = 9.8 cm, A is 2.52 cm2 while at the fuselagewhere C =

43.18 cm, A is 48.9 cm2. Actually the wing starts at y = 6 cm which is the

outer radius of the model core and extendsto y = 41 cm at the tip. The

cross-sectionalarea A at any distancey is

A(y) = 48.4 - 1.8453y - 0.0173952y2 cm2. (Ill.6)

Taking M as the average magnetization in the y direction, it is easy to show

that the net torque is
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Figure 111.4. FI6 Wing
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Figure 111.5. Wing cross-sectionalarea at anychord length C showing stainless

steel support, skin, and permanentmagnet material.
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b

Tr : _--_2{bMA(b)Bz(b)_aMA(a)Bz(a)+M fa Bz(y)ydAy} (111.7)

where a = U.06 m, b = 0.41 m, and Bz(y) is

Bz(y ) = Bz(b ) Yb "

Bz and M are in tesla while distances are in meters and Tr is in Nm.

From the above equations the magnetic field Bz(b) at the tip of the wing

is

~ 4_i0-4 Tr
Bz(b) = _-- ,

where Tr is the torque at zero roll angle @. To produce a torque of 141Nm at

± 200,

Tr = 141/(cos 220 °- sln220 °) : 184 Nm.

For an average magnetization of 0.6 tesla Bz(b ) = 0.385 tesla, and for M = 0.7

tesla, Bz(b) = 0.300 tesla.

111.4.3 Roll Coil Configuration

The R coils produce a z component of magnetic field of 0.30 tesla at the

wing tips to produce roll angles ± 20o . The field should be an odd function

of y to produce zero field at the fuselage (the model core)for minimum cross
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Figure 111.6. Roll Field Distribution
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Figure 111.7. Torque RequirementAcross Wing
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coupling interaction. When the model pitchesor yaws cross coupling compo-

nents will exist. Details about cross couplingare discussedin Ill.5. Figure

III.6 shows the roll field and Figure Ill.7 the torque requirementacross the

wing span. The field configurationis producedby two straightwires in the x

directionplaced on the Z = 0 plane at y = • H and carrying a current in the same

directionas shown in Figure Ill.7. For minimum current requirements,the

distance H is as small as possible. The present 8 foot x 8 foot tunnel with a

one foot stay out zone and 25.4 cm needed for dewar insulationand structure

becomes 3.56 m x 3.56 m at the magnet edges. Thus H _ 1.78 m + half the winding

thickness. The R coils are locatedas close as possibleto the model plane

becauseof the high field requiredfrom the R coils. The Y coils are at a larger

distance on the y axis. The coil configurationis optimum if the return current

from the two straightR coil conductorscan be placed at a position which does

not change the requiredfield. The above requirementis satisfiedby the four

race-trackcoils shown in Figure III.8 along with the other coil systems. Figure

Ill.8 lists the dimensions of all coils and shows their locations.

Ill.5 CROSS COUPLING

An ideal situationfor the MSBS would be for all coils to function indepen-

dently. Unfortunatelythis is not possiblewhen the model plane pitches,yaws or

rolls. Then there are some minor cross couplingsand some major cross coup-

lings. When the model is at zero angle of pitch,yaw and roll, there are no

cross couplingsbetween any group of coils with any other group of coils. When

the model pitches,yaws or rolls cross coupling occurs. For larger angles the

cross coupling is larger. Hence the largest angle of pitch, _ 30°, will cause
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Figure III.8. Magnet System
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the highest mode of cross coupling. The roll field is higher than the fields

from the X, Y or Z coils because of the very strong fuselage core magnet and

the weak wing magnetic core. Consequently, the R coils suffer insignificant

cross coupling from the X, Y or Z coils while the latter suffer from the high

R coil field. Therefore we emphasize the X, Y and Z coils which are subject

to cross coupling from the R coil.

111.5.1 Dra9 Coils (X Coils)

The drag coils have no cross coupling with the R coils because the main

current in the R coils is in the x direction which produces no Bx component.

When the model pitches, there is cross coupling between the Bx component from

the Z coils and the X coil Bx field. This component may be calculated from

v x B = O. Similarly, as the model yaws, there is cross coupling between the

Bx component of the Y coils and the X coil Bx field. Unfortunately, these two

cross coupling components act against the required Bx component. At angles

and B in pitch and yaw the Bx component is related to the x, y and z field

component of the X, Y and Z coils respectively as

Bx = Bxo cos _cos B- Byo sin B- Bzo sin _ , (III.8)

where Bxo is the x component due to the X coils at _ = 8 = 0

Byo is the y component due to the Y coils at _ = 8 = 0

Bzo is the z component due to the Z coils at _ = B = 0

The required Bx value at maximumpitch and yaw is given in Table 11-2.
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111.5.2 Z Gradient Coils

When the model pitchesor yaws, the total z componentat the model tip

will be the sum of the z componentdue to the Z coils, a cross coupling z

componentfrom the X coil, and a cross coupling z componentfrom the R coils.

The cross coupling componentfrom the X coil during pitch may be found

Bxo
from V.B = 0 and is equal to - _sin _ •

When the model core yaws, the model coil tips experiencea Bz component

field produced by the R coils. This Bz field from the R coils produces a net

Fz force (no pitch torque) on the model core. This force is equal to slightly

less than one third of the maximum Fz requiredon the model. Correction is

made by increasingthe ampere meters of the Z coils to balance the undesiredz

force from the R coils. The undesiredBz componentduringyaw is relatedto

the z componentfrom the R coils at the wing tips, Bzb, as

Bz = Bzb (_b) sin B = 0.128 sin B .

In the above equationthe maximum value of Bzb = 0.3 tesla is used.

The total Bz field at angles _ and B in pitch and yaw is

I
Bz = Bzo cos a cos 13- Bxo -_-sin _ + 0.128 sin B . (111.9)

In the above equation,cross coupling from the X coils will always strengthen

the requiredBz componentduring pitch (positivecross couplings)while the z

componentfrom the R coils during yaw may add to or subtractfrom the net Bz

field dependingon the angles of roll and yaw.
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111.5.3 Y Gradient Coils

There is a positive cross couplingy componentfrom the X coils equal to

1
(-_ sin 8) Bxo .

When the model core pitches, the end tips experiencea By componentfrom

the R coil which translates into a net undesiredFy side force. The undesired

By field componentis

L
By = BZLD _ sin _ = 0.128 sin _ .

This y component from the R coils causes a serious cross coupling problem;

unfortunatelythere is no apparentsolution except for making the Y gradient

coils large enough to take care of this undesiredfield component.

The total requiredBy field at angles of a and B in pitch and yaw is

1 sin B + 0.128 sin a . (III.10)
By = By° cos _ cos B - _Bxo

III.5.4 Field Requirement

As discussed in the previoussection, the fields Bx, By and Bz needed to

produce required forces and torquesat maximum angular displacmentof _, B and

@ can be expressedin terms of Bxo, Byo and Bzo as
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Eq. 111.11

n,._ n m m

cos_ cosB sinB sir:,_ Bxo Bx

sing cos_ cosB 0 Byo _ By - 0.128 sin
2 i

i

I

sin_ 0 cos_ cosB Bzo Bz - 0.128 sin B2

where Bx, By and Bz are the field componentsat the pole tips at angular

displacements_ and B. Bxo, Byo and Bzo are the field componentsat _ = B = 0

due to the X, Y and Z coils respectively. Values of Bx, By and Bz at maximum

angles (_ = 30°, B = 10°) are discussedin Section II.1.3and listed in Table

II-2. Solvingthe above equation for maximum angles of _ and B yields the

requiredmaximum field componentsat _ = B : O: Bxo, Byo and Bzo. The

solution is

Bxo = 0.18 tesla

Byo = -0.086 tesla

Bzo = -0.159 tesla

These maximum field components Bxo, Byo and Bzo are used to size the X, Y and

Z coils, respectively. The matrix equation above can be derived from the

force relation

F : (m.V)B .
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IV. MAGNETDESIGN

The magnet system consists of one model superconducting coil, 4 Z

gradient coils, 4 Y gradient coils, 2 X drag coils, and 4 R roll coils. The

Z, Y, and R coils are fully bipolar while the X coils are monopolar. The

symmetry of the coil array enhances the reliability of the magnet system.

IV.1 MAGNETSYSTEMREQUIREMENT

All system requirements discussed in Chapter II for static forces and

torques plus the I0 Hz dynamic control forces are met with the system

configuration described in Chapter III. Other magnet requirements such as

peak magnetic field strength, peak voltage at the magnet terminals and the

structure requirements are within the state of the art.

IV.1.1 Coil Shapes

All coils are solenoids except the race track R coils. The use of race

track R coils instead of solenoids minimizes ampere meters and stored energy.

IV.I.2 Coil Peak Fields

The maximum field in each coil is found by field scanning the coil with

all other coils powered to ± 11 kA. The maximumfound may be unrealistically

high compared to normal operation. The maximumvalues for self and total

fields are listed in Table IV-I. It is seen that 6.3 T on the Y coil is

maximum.
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TABLE IV-I

MAXIMUMFIELDS IN COILS IN TESLA

Coil Self Field Max. Total Field Max.

R 4.2 T 6.1 T

X 3.8 4.4

Y 4.0 6.3

Z 4.O 5.8
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IV.I.3 Coil Terminal Voltages

The requirement for dynamic control is ± 0.1% of any magnet current at 10

Hz. Accordingly the maximum voltage across any MSBScoil is about 3000 V on

the X coil.

The power supply maximum voltage and power is determined for I = ii kA in

all coils and for the I0 Hz correction to be applied to each coil continuously

at maximumamplitude. The requirements on power supplies for initial charging

to full current in all coils is less than for the I0 Hz load providing the

charge time exceeds 25 sec. The 2 min and I0 min charging powers are smaller

as seen in Table IV-2o

IV.I.4 Coil Structural Design

The system structure meets all the specified functional requirements with

304 N stainless steel designed at 137.9 MN/m2 working stress. In lower stress

areas 304 and 304 L are used. The system structure provides for and reacts

gravity loads, steady state forces and 10 Hz control forces, vacuum pressures,

thermal cycling contraction forces, and accurate coil positioning with

acceptable flexure during pulsing.

The system structure is the main AC load on the helium system during full

load. The internal coil structure is a bifilar 304 stainless steel strip

slightly higher than the conductor. All axial forces and all radial forces

are taken by this interleaved strip. The forces are spread each layer by

radial insulator separator slats.
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TABLE IV-2

VOLTAGEAND POWERREQUIREMENTSPERCOIL

10 Hz at 0.1% of 2 min charge 10 min charge

max current specification specification

Coil Voltage Power Voltage Power Voltage Power

V MW V MW V MW

Z 131 1.44 27.3 0.30 5.5 0.06

Y 173 1.90 36 0.4 7.2 0.08

X 3018 33.2 629 6.92 125.8 1.38

R 399 4.4 83.5 0.92 16.7 U.19

Total Power* 97.2 MW 20.25 MW 4.08 MW

*For all coils simultaneously.
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IV.1.6 Magnet Control Requirement

The control requirement is 0.1% of the static forces at 10 Hz. Each R, Y

and Z magnet has a 3 phase Graetz bridge SCR bipolar power supply with

voltages sufficient to provide the 10 Hz current variation for control, see

Table IV-2. The X coils are monopolar and require only monopolar power

supplies. In all cases the power supply voltage must be sufficient to

overcome any unwanted voltage pickup from any other coil undergoing control

current correction in addition to providing its own dl/dt.

IV.2 CONDUCTOR

The conductor in all coils is the ANL 11 kA cable conductor. (3) The

cable was fabricated by Supercon Inc. by twisting 24 basic cables around an

insulated stainless steel strip with a twist pitch of 22.5 cm. A photo of the

cable is shown in Fig. IV.I. The basic cable is made by twisting three,

seven-strand conductors (triplex cable) with a twist pitch of 2.2 cm. The

seven-strand conductors are made of six OFHCcopper wires twisted around a

superconducting center conductor and soldered with Staybrite. Since the

requirements of low AC losses and cryostability conflict with each other, the

basic principle chosen is to achieve cryostability within the basic cable. To

restrict AC coupling among the 24 triplex cables in the final cable, only

limited current sharing among the triplex is allowed by coating a thin

insulating film around the seven-strand conductors. Each superconducting

strand has a diameter of 0.051 cm and contains 2041 filaments of 6 pm dia with

a twist pitch of 1.27 cm. The copper-to-superconductor ratio for each strand

is 1.8.
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Fig. IV.1 Cryostable 11 kA AC cable.

The final cable is compressed during the cabling by heavy rolls from four

sides. This minimizes mechanical perturbations of the basic conductors during

pulsing. The compression did not damage the insulation between the 0.I cm

stainless steel strip and the 24 triplex cables. However, owing to the

deformation of the soft solder in the seven-strand conductor, about 5%

degradation of the recovery current occurs. The MSBSmagnet design with

interleaved 0.19 cm to 0.53 cm thick stainless strips between turns relieves
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the necessity to square up a winding with accurate cable compression since the

strips, not the cable, govern the winding. The finished cable has a width of

3.78 cm and a thickness of 0.74 cm.

Conductor coils were pulsed up to ii T/s with relatively low losses.

After more than 4000 pulsing cycles, no changes in the pulsing characteristics

and cryostability of the coil were observed. Thus the ii kA cable is an ideal

conductor for all MSBScoils. In the ANL 1.5 MJ coil the gross current

density was 2300 A/cm2. For the MSBScoils a current density of 1500 A/cm2

will be used, which is more conservative and allows space for extra stainless

steel interleaved banding.

An extra 25% NbTi over the above design is allowed to provide extra

stability margin. This additional NbTi is included for cost estimating in

Chapter VIII.

IV.2.1 Conductor Coolin 9 and Stability

The MSBSmagnet system is pool cooled with saturated liquid helium at 4.2

K, which is most commonfor large modern superconducting coils. With pool

boiling the conductor is cooled by natural convection. A typical gross

current density for large coils in 4.2 K Helium I is 150U A/cm2. The heat

removal to helium and by end cooling of a short normal region is equal to heat

generated when normal. Other cooling schemes such as supercritical helium or

superfluid helium (Helium II) offer higher current densities or higher fields

or both. For the MSBSsystem an improvement in current density would provide

higher fields at the model with less NbTi in all coils. This could provide

either significant cost reduction or performance improvement with identical

coils. Helium II usage deserves further analysis.
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IV.3 MAGNET SYSTEM CONCEPT

The magnet system configurationis shown in Fig. Ill. 7. The system

consistsof 14 superconductingcoils arranged around the tunnel test

section. The function and arrangementof these coils is discussed in detail

in Chapter III. All the coil forms are slotted stainlesssteel with epoxy

plate reinforcement. The forces and torquesbetween the coils are contained

by cold stainlesssteel structurewith a specialdesign to minimize structural

eddy current losses in the drag coils as well as with general slottedforms

for all coils. Details of the dewar and structureare in Chapters V and VI.

IV.3.1 System Analysis

The computer code EFFI(5) is used to calculatemagnetic fields, forces,

torques, field profiles in the tunnel area, and coil inductances.

Magnetic forces are calculatedfor all coils in the system under maximum

static forces and moments and different modes of operation. The analysis

shows the need for rigid, bi-directionalcoil supports.

The homogeneityof the magnetic fields in the model region is examined in

detail. Cross couplingbetween the differentcoils at differentmodes of

operationis accounted for as explainedin the previouschapter.

The self and mutual inductancesof the MSBS coil system are calculated

with the computer programEFFI. The inductancematrix is shown in Table

IV-3. The mutual inductancesbetween coils are relativelysmall compared to

self inductances,except for the large coupling betweenthe Y gradient coils

and the race track R coils.



TABLE IV-3

INDUCTANCEMATRIX IN MILLI HENRIES

Z Z Z Z Y Y Y Y X X R R R R

l 2 3 4 5 6 7 8 9 I0 II 12 13 ]4

I 200 T(_pFront

2 8 200 Top Rear

3 3 l 2011 Bottom Front

4 I 3 8 200 Bottom Rear

5 5 I 5 1 250 Right Front

6 I 5 l 5 10 250 R|gi,tRear

7 5 l 5 I 2 I 250 Left Front

8 I 5 1 5 l 2 I0 250 Left Rear

9 16 17 16 II 29 26 29 26 5,581 Front

I0 17 16 17 16 26 29 26 29 893 5,581 Rear

lI 15 15 5 5 4 4 28 28 52 52 594 Left Top

12 5 5 15 15 4 4 28 28 52 52 76 594 Left Bottom

13 15 15 5 5 28 28 4 4 52 52 19 9 594 Right Top

14 5 5 15 15 28 28 4 4 52 52 9 19 76 594 Right Bottom

297 297 291 297 394 394 394 394 6,858 6,858 906 906 906 906 19,520

Numher (}f Turns:

7-Co11 = 330 i

Y-Co|I = 346

X-Co|l = 682
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IV.3.2 Model Core Solenoid

The model core solenoid is maximumlength and maximumdiameter to achieve

the highest possible magnetic moment and pole strength. The solenoid is a

high performance persistent epoxy potted solenoid 70 cm long and 11.5 cm OD

wound with i0 A composite NbTi wire. A sma|l prototype model core

superconducting coil has been successfully tested under wind tunnel operating

conditions by Britcher, Goodyer, Scurlock and Wu at Southampton

University. (6) Table IV-4 lists coil parameters.

Potted (epoxy impregnated) coils are adiabatically stable. Such coils do

not contain much copper or cooled surfaces, and their ability to tolerate

disturbances is limited to the adiabatic heat capacity of the conductor

material. However the absence of large amounts of copper and helium in the

windings allows such coils to operate at current densities up to ten times as

large as those for cryostable coils which is ideal for model cores. Based on

General Electric experience and technology, (I) a field of 6.1 tesla and

current density of 30,000 A/cm2 is used.

The cryostat is shown in Fig. IV-2. The internal cold dewar is supported

at each end by fiberglass epoxy support loops from a S.S. support plate which

is cooled by a 6.35 mmOD helium vent tube which is wrapped into a helix to

extend its heat transfer length before exiting at the rear into the wind

tunnel. The intermediate shield temperature is approximately 75 K. ,The

internal cold dewar is supported from inset axial G-II tubes at each end to

reduce the heat leak into the dewar.

The helium capacity is 3.5 liters, the idling boil off rate is 0.137 h/h,

and the idling time to lose 50% helium is I0 hours. For an expected AC I0 Hz
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TABLE IV-4

MODELCOIL PARAMETERS

Length (cm) 70

OO (cm) 11.5

ID (cm) 8.26

Operating Current (A) 10

WindingCurrent Density (A/m2) 3 x 108

Peak Field (T) 6.1

Stored Energy (MJ) 0.065

Number of Turns 339,780

Conductor Length (m) 1.055 x 105

Conductor Diameter (cm) 0.02

AC Losses at full load (W) ~ 0.03
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TABLE IV-5

X DRAG COIL PARAMETERS

Number of Coils 2

Number of Turns/Coil 682

Bifilar S.S. Strip Width (cm) U.53

OperatingCurrent (kA) 11

Winding Current Density (A/cm 2) 1500

Peak Field (T) 4.4

Height (m) 1.25

O.D. (m) 8.2

I.D. (m) 7.4

Energy Stored/Coil (MJ) 328

Inductance (H) 5.58

Voltage for 10 Hz (V) 1509

AC Losses/Coil at 10 Hz (W) 99.2

Discharge Voltage (kV) (Tmax ~ 200 K) 1.05
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TABLE IV-6

Y GRADIENTCOIL PARAMETERS

Number of Coils 4

Number of Turns/Coil 346

BifilarS.S. Strip Width (cm) 0.24

Operating Current (kA) 11

Winding Current Density (A/cm2) 1500

Peak Field (T) 6.3

Height (m) 0.4

O.D. (m) 2.7

I.D. (m) 1.43

Energy Stored/Coil (MJ) 15.3

Inductance (H) 0.251

Voltage for 10 Hz (V) _6.4

AC Losses/Coil at 10 Hz (W) 11.4

Discharge Voltage (kV), (Tmax ~ 200 K) 0.67
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TABLE IV-7

Z GRADIENTCOIL PARAMETERS

Number of Coils 4

Turns/Coil 330

Bifilar S.S. Strip Width (cm) 0.24

Operating Current (kA) 11

Winding Current Density (A/cm2) 1500

Peak Field (T) 5.8

Height (m) U.4

U.D. (m) 2.486

I.D. (m) 1.286

Energy Stored/Coil (MJ) 12.3

Inductance (H) 0.21

Voltage for 10 Hz (V) 65.4

AC Losses/Coil at 10 Hz (W) 9.8

Discharge Voltage (kV), (Tmax ~ 200 K) 0.56
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TABLE IV-8

R COIL PARAMETERS

Number of Coils 4

Turns/Coil 355

Bifilar S.S. Strip Width (cm) 0.19

Operating Current (kA) 11

Winding Current Density (A/cm2) 1500

Peak Field (T) 6.1

Energy Stored/Coil(MJ) 35

Inductance (H) 0.588

Voltage for I0 Hz (V) 200

AC Losses/Coil at 10 Hz (W) 30.4

Discharge Voltage (kV), (Tmax ~ 200 K) U.79
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lossof 0.03W at fullloadthe time to 50% heliumboiloff wouldbe about7

hours. A batterypoweredliquidlevelsensoris feasiblebut requireseither

radioor opticaltransmission.

IV.3.3 X_ Y_ Z and R Coils

The specificationsfor the X, Y, Z and R coils are listed in Tables IV-5,

6, 7 and 8. Note that most of the energy is stored in the X coils, where more

internal structurebifilar S.S. strip is needed. The ampere meters and stored

energy are listed in Table IV-9.

IABLEIV-9

AMPEREMETERSAND STOREDENERGY

Coils 4R 2X 4Y 4Z Total

Ampere Meters (MAm) 2U/ 3bZ 100 86 755

Stored Energy (MJ) 140 656 60 50 906

The coil weights are divided betweenthe interleavedstainlesssteel

strip, 0.53 cm to 0.19 cm thick, and the conductorshown in Fig. IV.1 which

includesa 0.1 cm strip of internalstainlesssteel. The weights are listed

in Tab]e IV-IO.
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TABLE IV-IO

COIL WEIGHTS,kg

Coils R X Y Z

Conductor 6240 21,700 3000 2580

S.S. Strip 2860 27,700 1740 1510
(width cm) (.19) (.53) (.24) (.24)

Total 9100 49,400 4740 4090

No. Coi I s 4 2 4 4

Total Weight (kg) 36,400 98,800 18,960 16,360

Sum 170,520 kg

The AC losses in the coils and stainless steel structural interleaved

strip at 10 Hz for full and quarter load are listed in Table IV-IIo

Hysteresis for the 6 _m filaments of NbTi is the major loss item. At quarter

load hysteresis is only about half the value at full load while the other eddy

current losses are 1/16 down.

The eddy current losses into the liquid helium from 10 Hz AC induced

current in nearby cold S.S. heavy structures are the major operating losses

for the cryogenic system. The large X coils are entered as zero loss in Table

IV-12 because of the complete cold structural slot in the structure, as

explained in Chapter V. X coil structural losses are not exactly zero because

all nearby small webs and flanges try to shield their own volume. Such

detailed calculations were not undertaken and are expected to be small.
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A major potential loss is due to the presence of the inner cold S.S.

surfaces of the X coil. Although these surfaces are split as explained above

to avoid direct coupling with the X coil windings such surfaces still couple

to all other coils. To the R, Y, and Z coils the inner heavy surfaces of the

X coils, on which the X turns are wound, appear as large, thick flat plates.

The losses listed in Table IV-12 assume that these plates are segmented to

avoid such losses. It is beyond the scope of this report to present this

detailed design which is a difficult electrical and mechanical compromise in a

high stress structural region. Additional assistance is expected from taking

advantage of the higher stress rating for stainless steel at low temperature

which could reduce some thicknesses as discussed in V.2. For example at I0 Hz

reducing plate thicknesses to one-half would reduce power losses by one-half,

even without segmenting.
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TABLEIV-11

COILAC LOSSESAT 10 Hz

Coil R X Y Z Sum

Hysteresis 27.7 80.0 10.35 8.9

Conductor 2.3 8.2 0.8 0.7

S.S. Strips .44 11.0 0.22 0.2

Total 30.4 99.2 11.4 9.8

No. CoiIs 4 2 4 4

Total, Full Load 121.6 198.4 45.6 39.2 405 W

Total, Quarter Load 56.1 92.0 22.2 19.1 189 W
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TABLE IV-12

EDDY CURRENT LOSSES IN THE EXTERNAL STRUCTURE

FOR 10 Hz CONTROL AT 0.1% I

Coils Power Loss Power Loss

at Full Load at 1/4 Load

R 676 W 42.3 W

Y 600 37.5

Z 284 17.8

TOTAL 1560 W 97.6 W
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V. STRUCTURALAND THERMALDESIGN

V.1 INTRODUCTION

There are three structural design drivers:

-- Size and location of the magnets

-- Magnet forces and torques

-- Choice between individual cryostats or one commoncryostat.

These three factors are inter-dependent with the objective of making the

magnets small and locating them as close as possible to the model in the wind

tunnel. It is found that the magnet coils can be located closer to the tunnel

and closer to each other if they share the same pool boiling helium

enclosure. There is a significant thermal advantage for transferring inter-

magnet forces directly through cold structure in a commoncryostat as compared

to transferring inter-magnet forces from cold to warm and back to cold. Thus

all of the magnets are housed in a single primary helium reservoir attached to

a single cold structure frame except the drag coils which have separate liquid

containers.

The selected design includes a load-bearing thermal-vacuum enclosure

immediately surrounding the wind tunnel, a large rectangular box with rounded

corners for mounting the R, Y and Z coils, the principal structural elements

which incorporate the two large X coils, a cylindrical outer cold surface,

multilayer insulation space with liquid nitrogen shield, and the stiffened

outer vacuum jacket. To reduce eddy current losses in the X coils the entire

cold structure has a longitudinal electrical break. The helium container

around each X coil is a thin non-structural stainless steel liner which
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includes a separate electricalbreak. The use of a thin liner to contain

helium removesthe requirementto seal against helium leakage at insulated

flanges in the heavy structuralwalls which are subjectto large mechanical

torques.

Several drawings and sketchesmade in the course of the design study

providea physical understandingof the system. The first of these, Fig. V.1,

is a simplifiedsectionof the wind tunnel and cryostatwhich shows the

generalarrangementof the system and the locationof the Y, Z and R coils.

Location of the X coils is less clearlydepicted. The next drawing,Fig. V.2,

is a first attemptto show an isometricview of the basic cryostat. While the

main portionof this drawing is not particularlyinformative,the location and

size of the Drag coils is shown. More informationis provided in the smaller

longitudinalsectionquadrant view since it shows a drag coil, location of the

structuralwebs, and the scheme for connectingthe load bearing "egg crate"

structurewith the main part of the cryostat. The best view of the relative

sizes and positionsof the magnets in the cryostatis shown in Fig. V.3 which

is entitled, "CryostatCut Away Isometric." Finally,Fig. V.4 shows two views

of the complete cryostat and its support system in place around the wind

tunnel. Other smaller sketches have been preparedto supportdescriptionof

specific featuresdiscussed in the followingsections.

V.2 MATERIALS

Structural and thermal design is based on materials satisfactoryfor use

at low temperaturein high magnetic fields. The list is not extensive. 304 N
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stainlesssteel is the main structuralmaterial of the cryostat. 304 or 304 L

are used as convenientin lower stress areas. Liquid nitrogenthermal

radiationshieldsare ETP copper with 1100-0 aluminumsheet and tube as an

alternate. G-11CR epoxy-fiberglasscompositeis the material used for

cryostat supports,for clamp plates on the individualmagnets and for

electrical insulationand separationbetween structuralsections. Structural

bolts are a nickel-manganesealloy, Nitronic40. 2024-T6or 7075-T6 aluminum

alloy rods may be used to clamp the magnet coils together,since relative

contraction is favorable.

Room temperaturepropertiesare used for mechanicaldesign even though

the selectionof materials primarilydepends on low temperaturesuitability.

This may be overly conservativefor the 304 N cold structuresince magnetic

forces can only exist when the cryostat is filledwith liquid helium. The

ultimate tensile strength of annealed stainlesssteel typicallyincreasesby

about a factor of three in cooling from ambient to 4.2 K. Thus, it is

possibleto design structurebased on higher maximum stress values which would

result in mass and cost reductions. These possibilitieswarrant further

structuralanalysis. Thinner sections,by the factor of three, are used in

critical regionsto reduce AC losses, see Table IV-12. However, for this

study the followingpropertiesare used for mechanical design:

304 N - Suitable for low temperaturesand used in large magnet cryostats at

LawrenceLivermoreLaboratory. ASME design stress of 137.9 MN/m2.

304 and 304 L - These stainlesssteels are not specificallyused in the design

but may be used where stress is not critical. ASME allowables for
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304 and 304 L are 129.6 and 108.25 MN/m2 respectively.

Nitronic 40 - The ASMEequivalent of this material, UNSS21904, has an

allowable design stress of 155.13 MN/m2 and it is suitable for low

temperatures. Nitronic 40 would be used for structural bolting.

ETP Copper - Electrolytic Tough Pitch copper is a commoncommercial material

with high thermal conductivity. It is easy to solder and silver

braze but is not satisfactory for welding. Since only de-oxidized

copper can be welded and cycled to low temperature more expensive

OFHCcopper will be used.

ii00 Aluminum - If extensive shield welding is required, ii0_-0 aluminum may

be used. The disadvantage of aluminum is that the trace tubes

carrying liquid nitrogen are more difficult to solder and join than

copper.

G-II CR - This material is the premium commercial epoxy-fiberglass composite

for low temperature applications. It has low thermal conductivity

and good strength with design allowables between 103.4 and 137.9

MN/m2 depending on the application.

2024-T6 or 7075-T6 - These heat-treatable aluminum alloys have high strengths

at low temperature. They are good candidates for magnet clamp bolts

because their thermal expansion coefficients are nearly 50% greater

than stainless steel which causes such bolts to tighten on cool down

and their low tensile modulus of 72,395 MN/m2 makes them "springy" in

relation to stainless steel.
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V.3 FORCESANDTORQUES

The interactive resultant forces on each magnet are computed with the

EFFI code. These forces and torques are given in Table V-I for simultaneous

maximum loadings. This loading assumption may be overly stringent and a

careful analysis of the maximum realistic combination of loadings should be a

part of future design work since any reduction will result in less expensive

structure.

Eddy current forces betweenmagnets and externalstructureare much

smaller than the magnet to magnet forces,see Table V-2. The eddy current

forces are found by computingthe mutual energy between coils and nearby

plates and differentiatingthat energy term. The X coils do not produce eddy

current forces because they are completelysurroundedby liners and structure

with electricalbreaks. However, a more careful but complex calculationwould

give forces from severalwebs and arcs of S.S. around the X coils even if the

complete secondarycircuit has been eliminated.

V.4 STRUCTURALDESIGN

The first step in structuraldesign is to determinehow close to the wind

tunnel the magnets can be located. This resultsin the selectionand design

of the load bearing "egg crate" wall around the tunnel. This evacuated and

insulatedstructuresupportsatmosphericpressure on the wind tunnel side and

the static plus overpressureof liquid helium on the other side for a

differentialon the order of 0.14 atm. This is accomplishedin a structure

only 152.4 mm thick without protrudingbeams. The egg crate name stems from

the design which consists of 2 mm (14 gauge) stainlesssteel skins
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TABLE V-1

COIL FORCESANDTORQUES*

Coil Fx Fy Fz Tx Ty Tz
MN MN MN MN-m MN-m MN-m

Z ± 5.9 ± 6.0 ± 7.0 ±8.0 ±26.3 0

Y ± 9.0 ± 5.8 ± 23.4 ± 8.6 0 ± 25.7

X ± 60.0 ± 9.1 ± 8.0 O ± 44.6 ± 63.7

R ± 5.9 ± 15.3 ± 42.6 ± 27.2 ± 41.1 ± 71.U

*Based on R coil pairs being series connected.
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TABLE V-2

EDDYCURRENTFORCESBETWEENSTRUCTUREAND COILS

AT FULL LOAD

Outer Plate Inner Plate Drag Coil Shell

Coil 22.23 mm 2 mm 22.23 mm

Z 4.44 kN 0.82 kN 1.06 kN

Y 10.72 0.16 1.48

R 8.14 0.94 1.56

X _0 _0 =_0
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supported by a 88.9 mmsquare matrix of 0.051 mmG-11CR sheet similar to an

over-size honeycomb structure. A sketch of the egg crate structure is shown

in Fig. V.5. The configuration of the egg crate inner wall provides a

physical reference point for the magnet coil system design. Following the

magnet design it is possible to size the enclosure. Structure design follows

from the above coil configuration and forces and torques listed in Table

V-I. Stress calculations are made in three dimensions for what appears to be

worst case combinations of forces and torques. The resultant structural

scheme is illustrated in Fig. V.I and Fig. V.2. As shown, the structure is

basically a continuous flange I beamwith repeating variable depth webs spaced

609.6 mmon centers. Additional webs are inserted in the corner areas to

increase the section modulus of the equivalent fixed-end beams. The design

utilizes 22.23 mmthick 304 N plate throughout with all stresses less than

137.9 MN/m2.

Although the stress calculations are done in considerable detail, this

work is preliminary and should be considered as an area for additional work.

Factors to be considered in the future include:

-- Re-examination of magnet loads for the most realistic combinations.

-- Possible use of 304 N at a higher stress level than 137.9 MN/m2.

-- Detail design of the internal magnet supports to accurately and

effectively distribute loads to the internal rectangular cold

surfaces.

-- Consider more efficient, alternate structural concepts. The present

rectangle in a circle concept is now selected to get structure close

to the magnets and to minimize the quantity of contained helium.

-- Accurately check the design via a detailed stress analysis utilizing

finite elements.
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V.5 ELECTRICALISOLATION

Structural eddy current helium losses due to the 10 Hz control

requirement impose severe thermal loads, particularly due to the Drag coils.

This results in the decision to split the entire structure to achieve an open

circuit condition for drag coil structural secondary circuits. The split is

made at the bottom center of the cryostat where the stress is lowest. Concept

designs of the electrical break for the main structure and egg crate cold wall

are shown in Fig. V.6 and Fig. V.7.

There are two electrical breaks around the Drag coils. The outer break

is purely structural and does not require either vacuum or helium tightness.

This break employs a flange similar to that shown in Fig. V.6. The inner

break is in the thin stainless steel liner which surrounds each Drag coil and

bears against the outer structure. This break must be helium-tight and may

employ a flange similar to Fig. V.7. However, even this small flange uses

more space than desired so a flat tongue and groove design should be developed

for this combination seal and electrical break.

All of the seals utilize epoxy adhesive and fiberglass-epoxy composite

insulation and spacer material. The seals are under compression in all cases

so that their only function, except for the Drag coil structural break, is to

hold liquid helium. This is a high reliability application but it should be

pointed out that epoxy composites slowly diffuse helium gas, particularly when

warm. Therefore, we would expect to run a small vacuum pump continuously to

avoid degradation of the insulating vacuum.
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V.6 WEIGHT SUMMARY

Estimatedweights of magnets and structureare given in Table V-3. The

estimatedtotal weight of 367,636Kg falls within a range of + 10% to - 20%

which recognizessome overestimateon attachmentand clamp structure.

V.7 CRYOSTAT SUPPORT

No additionalinternal structureis requiredfor mounting since the

cryostat structureis very rigid in order to containthe magnetic forces.

The design consists of a 1219.2 mm long flat pad for each leg to distribute

loads into three main and two partial internalwebs. The generalarrangement

is sketched in Fig. V.8. The supportmembers are four G-11CR tubes 304.8

O.D., 279.4 I.D., and 914.4 mm effectivelength. Compressivestress per leg

is about 75,842MN/m2. To account for inward shrinkageof the cold structure,

amountingto about 1U.7 mm per leg, the legs will be jacked out about 5.35 mm

at assembly and will pass through neutralto a similar5.35 mm cold deflec-

tion. Maximum bending stress in the legs due to these deflectionswill be

about 50.33 MN/m2. These legs cannot withstanda 1/2 g seismicload, M = 0.41

MN-m, and will require diagonaltension braces of unidirectionalfiberglass-

epoxy or aircraft cables.

Both the legs and seismicbraces have liquid nitrogen heat interceptsto

limit helium heat leak. Estimatedheat leak of the entire support assembly

is:

Helium Nitrogen

2.36 W = 3.33 L/h 17 W = 0.4 L/h .
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TABLEV-3

ESTIMATEDWEIGHTSOFMAGNETSANDSTRUCTURE

Main cryostat stainlesssteel structure 127,834 kg

End bells 9,636

Egg crate assembly 4,727

LN2 shield assembly 2,545

Multilayer insulation 909

Sub-total 145,651

Helium - 30,000 liters @ 0.126 kg/P 3,773

Magnets 17U,455

Magnet attachment structureand auxiliaries 47,727

Total SupportedWeight 367,6U6 kg
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V.8 Cryostat Heat Leak

Static heat leak of the cryostat is given in Table V-4. Most of the heat

leak is due to solid conduction and is accurate to about 15%. The performance

of multilayer insulation is reflected in the end bell and outer cylinder heat

leaks. Quality of the installation of insulation can affect these heat leaks

- i0 to + 50%. To realize the calculated heat leak of the egg crate assembly

it is important to get the insulation spaces well filled with Perlite. This

can be done with an industrial vacuum cleaner and appropriate end filters plus

a shaker or vibrator to compact the powder.

TABLE V-4

STATIC HEATLEAK AND CRYOGENCONSUMPTION

Item Helium Nitrogen

Q L/h Q L/h

Legs and Braces 2.36 W 16.73 W

Egg Crate 24.52 416.87

End Bells 1.7 30.47

Outer Cylinder 6.19 103.14

Stacks 6.61 24.5

Contingency 3.62 32.79

Totals 45.0 W *63.5 L/h 600.0 W 14 L/h

*0.7089 W (heat leak into helium) _ I liter/h evaporated
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VI. CRYOGENICSYSTEM

VI.1 INTRODUCTION

A schematic of the proposed cryogenic system is shown in Fig. VI.I which

is an enclosed drawing. Major elements of the system include the magnet

cryostat, helium liquefier, helium storage dewar, helium recovery compressor,

18 atm. helium gas storage, and a cooldown loop. Design of the system is

based on the following criteria:

-- Reasonable cool down time of eight to ten days.

-- Adequate liquid storage to fill the magnet cryostat with reserve to

meet daily or five-day week operating deficits.

-- Available liquid storage capacity sufficient to empty the cryostat

without loss of helium.

-- Liquefaction capacity to maintain scheduled operations on either a

continuous or five-day week basis.

-- Sufficient compressor capacity to handle the maximumplanned rate of

gas evolution without helium loss.

-- Helium gas storage for all of the helium in the system to permit an

indefinite shut down.

Considerations relating to the design and operation of each part of the system

are discussed in the following paragraphs.

VI.2 MAGNETPOWERLEADS

There are twenty-four 11,000 A leads for the 14 magnets, not 28 leads,

since the two R coils on each side are series connected. Full load losses for
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standard commercial gas cooled leads are 1.4 x 10-3 liters per hour of helium

per ampere for one lead and 40% less or 0.84 x 10-3 liter per hour per A

rating at zero current. For the twenty-four Ii kA leads these helium loss

rates are 370 and 222 liters/hour respectively. However, since cold return

gas is not otherwise utilized, the leads are cooled with the excess gas with

significant reductions in lead losses. As an example, the optimum L/A ratio

can be exceeded to markedly reduce zero current static losses, which is most

important for the expected long standby periods at 4.2 K with I = 0 in all

magnets.

The proposed design incorporates all of the above features. Since there

is excess helium gas at both 1/4 load and full load, the leads will be run at

0.08 g/s/iUO0 A instead of the optimum 0.046 g/s/lO00 A. Flow controllers

will be installed on each lead for this purpose. The leads are about 1524 mm

instead of the typical 762 mmlong to reduce the no load losses at the expense

of somewhat higher full current losses. Although the design is not considered

optimized the improved performance is listed in Table VI-I.

TABLE VI-1

PREDICTEDLEAD LOSSES

Mode Heat Input - W Helium Loss - L/h

Zero Current 78.6 110.9

1/4 Load 81.2 114.5

Full Load 120 169.3
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VI.3 OPERATINGLOSSES

AC losses for the system for i/4 and full load conditions from Tables IV-

ii and 12 are combined with the static heat leak, lead losses, and conductor

joint losses to compile total heat loads in Table VI-2. These losses

determine the size of the liquefaction and refrigeration system.

VI.4 COMPONENTDESIGNAND SIZING

The MSBSsystem may be operated either continuously or on a five-day week

basis with weekends for reliquefying helium. As shown below, the two

operating plans influence the size of individual components but the total

plant cost is about the same for either. In both cases the 30,000 liter

cryostat is assumed to have been cooled down to 20 K after which 4000 liters

of liquid helium is provided for final cooldown.

The liquefier is sized first based on continuous operation with daily

liquid consumption as follows.

Full Load 3120 L/h x 2 = 6,240 L

One-quarter Load 590 L/h x 8 = 4,720 L

Zero Load 175 L/h x 14 = 2,450 L

Total 13,410 L/day

Liquefier Size = 13,410/24 h = 560 L/h

The liquid helium storage dewar is sized by the liquid deficit from full load

(2 h) and quarter load (8 h) which must be made up during zero load (14 h).
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TABLE VI-2

MAGNET CRYOSTAT OPERATINGLOSSES

Loss Zero Load I/4 Load Full Load

Conductor (AC) -- 187.78 379.4

S.S. Strip (AC) -- 1.58 25.44

StructuralEddy Current -- 97.52 1560

ConductorJoints -- 5.13 82

Leads 78.6 81.2 120

Static Heat Leak 45 45 45

Total Losses - W 123.6 W 418.21W 2211.84 W

Helium Consumption - L/h 175 590 3120
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It is not considered feasible to oversize the liquefier to match the full load

of 3120 L/h since the average load is only 560 L/h. The total deficit per day

is:

Liquid Deficit 2(3120 - 560) = 5120 L

2 h - full load

Liquid Deficit 8(590 - 560) = 240

8 h - quarter load

Total Deficit per Day = 5360 L

The recovery compressor is sized by the maximumhelium off-gas rate during

full load when 3120 L/h of liquid helium evaporates of which 560 L/h is

reliquefied and 2560 L/h is compressed into 18 atm storage. The 2560 L/h is

converted into 1 atm, 21.1C gas at the rate of 0.7576 m3/L or

Vgas = 2560 x 0.7576 = 1939.4 m3/h

and the recovery compressor size is

V/60 = 32.58 m3/min (1150 cfm).

Ine storage dewar size is:
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Final cryostat cooldown 4,000 liters

Fill cryostat 30,000

Daily running deficit 5,360

39,360

Contingency 8_140

Dewar size 47,500 liters

The gas amount is taken as 10% more gas than from the liquid in the storage

dewar,

Vgas = (47,500) (1.1) (0.7576) = 39,644 m3 ,

which at 18 atm requires a gas storage size of

V18 = 2,226.3m3 .

Table Vl-3 is a componentsummary.

TABLE Vl-3

CRYOGENICCOMPONENTSFORCONTINUOUSOPERATION

Liquefier 560 L/h

Recovery Compressor 32.58 m3/min (1150 cfm)

Storage Dewar 47,500 L

Gas (at I atm, 21.1 C) 39,644 m3

Gas Storage at 18 atm 2,226.3 m3
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By the same analysis the components for a five-day week are listed

below. In comparison, the liquefier is smaller and the recovery compressor,

storage dewar and gas storage are larger. For a five-day week the component

sizes are given in Table VI-4.

TABLE VI-4

CRYOGENICCOMPONENTSFORFIVE-DAY WEEKOPERATION

Liquefier 450 L/h*

Recovery Compressor 34 m3/min (1200 cfm)

Storage Dewar 56,000 L

Gas (at i atm, 21.1 C) 46,723 m3

18 atm Storage 2,624 m3

* Liquefiers would be slightly oversized to make up
for dewar losses which should fall in the range of
0.15 to 0.2% per day or approximately 4 L/h.

VI.5 COMPONENTDISCUSSION

Liquefier: While not an off-the-shelf item, either the 560 or 450 L/h

liquefier is well within the state-of-the-art and smaller than several which

have been in commercial service for 10 to 15 years. There will be multiple

bidders for this item.

Dewar: The design anticipates a multilayer insulated dewar incorporating

a liquid nitrogen cooled shield. A similar 19,000 liter helium vessel

designed by one of the investigators has a measured loss rate of 0.13% per day
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and it is reasonable to expect 0.1% for a larger dewar. However, such dewars

are considered difficult to build and there will be fewer bidders than on the

liquefier. It should be noted that the proposed installation of the dewar is

about 10.7 m above the cryostat so that it can be maintained at low pressure

with liquid supplied by gravity flow.

Gas Handling: The gas handling system consists of the recovery

compressor, gas bag, and 18 atm storage. The compressor will be a four-stage

oil lubricated machine equipped with oil removal components and a small

cryogenic purifier so that only high purity helium is stored. The commer-

cially available 354 m3 gas bag provides a low pressure buffer volume for both

the liquefier and recovery compressor. As described above, 18 atm storage is

sized to hold all of the helium in the system for indefinite shutdown.

Preliminary plans were to utilize a high pressure recovery compressor and

store helium at 150 atm. However, storing at 18 atm utilizes commercial

propane tanks which are much cheaper than high pressure cylinders. The main

disadvantage of lower pressure storage is that the 20 tanks required, each

2.74 m in diameter and 20.12 m long, take considerably more space than high

pressure storage cylinders. One advantage of low pressure storage, besides

cost, is that it matches the liquefier operating pressure so that the recovery

and liquefier compressors can be used interchangeably.

Cooldown System: Only helium will be used to cool down the cryostat to

avoid the possibility of contamination and the difficulty of removing nitrogen

if it is introduced. As shown in the MSBSCryogenic Schematic, Fig. VI.I, the

system is set up so that both liquefier and recovery compressors work in
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parallel for this function. For the 560 L/h liquefier, flow is about 49.55 +

32.58 = 82.13 m3/min. For the 450 L/h liquefier the available flow is

approximately 39.64 + 33.98 = 73.62 m3/min. In either case, flow goes through

a special cooldown heat exchanger to a liquid nitrogen bath and on to the

cryostat. At the start, the level in the bath will be controlled so that

entering cold gas will not be more than 100 K colder than the cryostat. As

the cooldown proceeds the bath will be filled so that 78 K gas will be

available. Since it is important to get all possible cooling from liquid

nitrogen, the LN2 system will be equipped with a blower-type vacuum pump to

reduce the bath temperature to 65 K.

Whenthe cryostat has been cooled to approximately 70 K, use of the

cooldown system will be discontinued and the liquefier will be used as a cold

gas refrigerator. This mode of operation will be continued until the

temperature is about 20 K. At 20 K the specific heat of the magnets and

cryostat is low enough that cooldown can be completed with about 4000 liters

of liquid helium. Thus, when the cryostat reaches 20 K the liquefier will

switch back to the storage dewar and liquid will be withdrawn from the storage

dewar to finish the cooldown and fill the cryostat in one continuous

operation.

Liquid and Cold Gas Transfer Lines: Necessary vacuum jacketed lines are

indicated on the flow schematic. Of these, the principal line runs from the

dewar to the cryostat, with branches to the two Drag coils, with a cold gas

extension beyond the dewar to the liquefier cold box. A sketch of this co-

axial line is shown in Fig. VI.2. In liquid service this line will function

as follows:
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-- Liquid flows in the inner line at 0.07 to 0.136 atm above the

cryostat pressure making the liquid 0.i to U.15 K warmer than liquid

and gas in the cryostat.

-- Liquid is throttled to cryostat pressure as it is delivered with a

reduction in temperature and a small percentage of gas flashing to

vapor.

-- The slightly colder vapor returns in the gas annulus. This cold gas

intercepts heat and essentially creates a zero heat leak environment

for the liquid line. The purpose of the insulation space between the

lines is to prevent the two passages from forming a heat exchanger

whenever the gas return is warmer as in the cooldown operation.

Controls and Safety Devices: At this stage only rudimentary attention

has been devoted to controls necessary for functioning of the cryogenic

system. As shown on the schematic, the cryostat will be equipped with a level

indicator and controller for the main volume and each Drag coil reservoir and

all three will be protected by relief valves and burst discs. Each lead will

have a flow controller and consideration wil] be given to an overall monitor

and control system to ensure that flows are properly distributed at times of

less than full flow. The compressors will be equipped with bypass circuits

and standard over and under pressure switches for automatic unattended

operation.

VI.6 Component Cost Estimates

Cost comparisons between the continuous seven-day system and the five-day

system are listed in Table VI-5. The system costs are almost identical and
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TABLEVI.5

CRYOGENICSYSTEMCOSTESTIMATES

ContinuousSeven-DayOperation

560 Liter Liquefier $1,977,000

Dewar 509,000

Recovery Compressor 328,000

Gas Storage 550,000

Sub-Total 3,364,000

Cooldown System 150,000

VJ Pipe and Valves 100,000

Balance of Plant* 150,000

Total $3,764,000

Five-Day Operation

450 Liter Liquefier $1,700,0U0

Dewar 572,000

Recovery Compressor 343,000

Gas Storage 633,000

Sub-Total 3,248,00U

Cooldown System 150,000

Vacuum Jacketed Pipes and Valves 100,000

Balance of Plant* 150,000

Total $3,648,000

*No buildings or civil work.
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lead to the choice of the continuous system as being less restrictive,

although five-day/weekoperation is probablyadequate and $116,000 less

expensive.

VI.7 COOLDOWNANALYSIS:

Cooldown calculationsare based on the 560 L/h liquefier (seven-dayweek)

and 32.58 m3/min recoverycompressor for a total helium flow of 82.13

m3/min. Also, maximum temperaturedifferenceis limited to 100 K. Below 70 K

only the liquefiercompressor is used and liquid helium is used directly for

final cooling from 20 to 4.2 K. The estimatedcooldowntime is:

300 - 70 K 132 hours

70 - 20 44

20- 4.2 4

Total 180 hours, 7 I/2 days.

VI.8 OPERATINGPLAN

The summary operating plan for the cryogenic system from a completely

warm start might consist of the following steps:

I. Purge and fill the entire system with helium gas.

2. Start the liquefier and fill the storage dewar. Including dewar

cooldown, this will take about 96 hours for the seven-day system and

136 hours for the five-day system.

3. Cooldown and fill the magnet cryostat. Allow eight days total for

this step.
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4. Operate the cryostat as scheduled

a. Whenever gas flow exceeds the liquefier capacity the recovery

compressor will cycle on to pump gas back to 18 atm storage.

b. To the extent possible the liquefier will run continuously when

there is liquid helium in the cryostat.

5. At the end of an operating program with the wind tunnel, or at any

time the system is to be down more than two weeks, liquid should be

transferred back to the dewar and the cryostat allowed to warm up to

78 K by continuing to supply LN2 to the shields. Restart can then be

accomplished in three to four days.

6. Since the storage dewar will only lose 2,500 to 3,000 liters per

month, it should be left cold except for very long shut downs of

three months or more. When the dewar is idling, gas is collected in

the gas bag and can be pumped back to 18 atm storage every three or

four days.

7. For long term shut down, liquid may be sent through the ambient

vaporizer at a rate consistent with the recovery compressor capacity

and pumped to the gas storage facility.
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VII. SCALINGRELATIONS

Scaling relations are developed between a L ft x L ft wind tunnel and the

present reference 8 ft x 8 ft tunnel as to force, torques and currents.

Vll.1 FORCEANDTORQUESCALING

All forces Fx, Fy, or Fz are related to the square of the model length

which is linearly related to the tunnel length L. Thus the required static

forces for an L' x L' tunnel are those listed in Table II-I multiplied by the

square of L/8.

FLIF 8 = (LI8) 2

The new torque requirements are therefore given by

3
TL/T8 = (L/8)

vii.2 MODELCORESCALING

If magnetized iron or permanent magnets are used for either the model

core or the wing then the pole strength for an L' x L' tunnel will be

increased by the square of L/8. Therefore the new pole strengths and magnetic

moments are

2
QL/Q8 : (L/8)

3
and ML/M8 = (L/8) .
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Accordingly to produce the required forces or torques the magnetic field

values at the tip of the wing or on the model core remain the same and the

field gradients will be scaled as

VBLIV88 = 81L .

If a superconducting coil is the core model then scaling toward greater

length will be more favorable since the new pole strength is related to the 8'

x 8' tunnel by more than the square of the L/8, as seen in Table III-i. For a

6.1 tesla coil at 3 x 108 A/m3 current density, the relation is

QL/Q8 = 2.5 x 104 {(R L - 6) 3 - (RL - 6 - 1.61 x 10-3) 3}

where RL = 0.0635 (L/8)

and 6 = 0.006 .

The model coil length will be scaled as {(£ - 5)/70} where

= 75 L/8 .

To produce the required forces and torques, the magnetic field values at the

tip of the superconducting core coil are scaled as

BL Q8 70 _ 388

Table VII-1 is a list of BL/B8 and VBL/VB8 for model cores of soft magnetic

material and for model cores of a superconducting coil as a function of L/8.
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TABLE VII-1

SCALINGOF MAGNETICFIELD ANDFIELD GRADIENTAT THE

MODELFORSUPERCONDUCTINGCOIL CORESANDMAGNETIC

CORESAS A FUNCTIONOF L/8

SUPERCONDUCTINGCOIL MAGNETICMATERIAL

L/8 _ = BLIB8 VBLIVB8 BLIB8 VBLIVB8

0.5 1.65 3.3 1.0 2.0

U.6 1.55 3.59 1.0 1.667

0.8 1.22 1.52 1.0 1.25

1.0 1.0 1.0 1.0 1.0

1.6 0.798 0.499 1.0 0.625

2.0 0.744 0.372 1.0 0.5
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VII.3 AMPERE METER SCALING

The total ampere meters, IS, may be divided into two parts. The first

part, IS1, is relatedto the x, y, z forces,and the pitch and yaw torques.

The second part, IS2, is relatedto the roll torque requirementplus the cross

couplingon the Z and Y coils due to the roll coils. Table VII-2 summarizes

the ampere meter requirementfor the 8' x 8' tunnel.

TABLE Vll. 2

AMPEREMETERREQUIREMENTFORTHE 8' x 8' WIND TUNNEL

Drag Z Y Roll Total

Coils Coils Coils Coils IS

IS 1 309 73 16 -- 398

(MAm)

IS2 53 13 84 2U7 357

(MAm)

For any L° x L' tunnel the total ampere meters IS is

IS : IS1 (L/8)2_+ IS2 (L/8)2 ,

where _ z BL/B8 .
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Ampere meters (IS) and ampere turns (NI) are listed in Table VII-3 as a

functionof L/8.

TABLE Vll-3

TOTAL AMPEREMETERSAS A FUNCTIONOF L/8

L/8 NIL/NI 8 ISL/IS 8 IS (MAm)

0.5 0.670 0.335 253

0.6 U.788 0.473 357

0.8 0.894 0.715 540

1.0 1.000 1.000 755

1.6 1.43 2.281 1722

2.0 1.724 3.449 2604
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VIII. COSTESTIMATE

The cost estimate is $29,939,000 for Case 1 - Alternate G. Costs are

estimated for the completed project consisting of preliminary design, final

design, construction, installation, and test. The cost of items not addressed

in this study are transcribed directly from NASACR 165917 for Case I -

Alternate G. Such items are marked by an asterisk * in the following chart.

Other items have been scaled when there is simple cost dependence on size,

weight, stored energy and there is no apparent reason to change the cost

basis. Particularly retained are those costs which include industrial

management and industrial accounting.

The independent costs presented here cover the magnet system, the struc-

ture, the cryogenic system and the power supplies. Even though this is a

different design it is possible to show that independently costed items are

consistent with the NASACR 165917 cost basis. The differences are due to

reduction in materials and simplicity of design with the same industrial based

cost rates.

The cost estimate is for a system which meets the roll torque

requirement, uses stainless steel dewars and structure even with the eddy

current loss penalty, has adequate sized Y coils, and accounts for maximum

cross coupling disadvantages. There is no magnetization coil. There is no

factory test 1.3.14 since the dewar is constructed in place. The installation

cost 1.3.16 is listed separately but is complementary to support structure

manufacturing 1.3.12 where a full I0 $/Ib is allowed for structure. The full

value of 1.3.2 is transcribed from NASACR 165917 even though machines and
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tooling for steel constructionare more routinethan for large epoxy coil

structures. Position sensors and controls are not addressedin this study and

such costs are transcribedfrom NASA CR 165917. The cryogenicsystem includes

a recoverycompressorand cooldown system.
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TABLE VIII-1

MSBSCOSTESTIMATE(CASE 1 - ALTERNATEG) - CONTROLBASEDON

0.1% Imax AT IO Hz IN ALL COILS SIMULTANEOUSLY

COSTSIN THOUSANDS$

1.0 MSBS 29,939

1.1 PRELIMINARYDESIGN PHASE 919

1.1.1 SYSTEMENGINEERING * 120

1.1.2 MAGNETSUBSYSTEMSPRELIMINARYDESIGN 151

1.1.3 CRYOGENICSSUBSYSTEMSPRELIMINARYDESIGN 60

1.1.4 POWERSUPPLYAND PROTECTIONPRELIMINARYDESIGN 30

1.1.5 POSITIONSENSORSSUBSYSTEMSPRELIMINARYDESIGN * 131

1.1.6 CONTROLSUBSYSTEMSPRELIMINARYDESIGN * 87

1.1.7 SUPPORTSTRUCTURESPRELIMINARYDESIGN 138

1.1.8 MANUFACTURINGENGINEERING 30

1.1.9 VERIFICATIONTESTING * 40

i.i. I0 PRELIMINARYDESIGNPHASEPROGRAMMANAGEMENT * 132

1.2 FINAL DESIGNPHASE 2,853

1.2.1 SYSTEMENGINEERING 178

1.2.2. MAGNETSUBSYSTEMSFINAL DESIGN 306

1.2.3 CRYOGENICSSUBSYSTEMSFINAL DESIGN 300

1.2.4 POWERSUPPLYAND PROTECTIONFINAL DESIGN * 95

1.2.5 POSITION SENSORSSUBSYSTEMSFINAL DESIGN * 419

1.2.6 CONTROLSUBSYSTEMSFINAL DESIGN * 350

1.2.7 SUPPORTSTRUCTURESFINAL DESIGN 492
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1.2.8 MANUFACTURINGENGINEERING 178

1.2.9 VERIFICATIONTESTING * 144

1.2.10 FINAL DESIGN PHASE PROGRAMMANAGEMENT * 391

1.3 MANUFACTURINGINSTALLATION, CHECKOUTPHASE 26,167

1.3.1 ENGINEERINGSUPPORTOF MANUFACTURING, 683
INSTALLATION, CHECKOUT

1.3.2 MACHINESANDTOOLING * 1,458

1.3.3 Z GRADIENTCOILS MANUFACTURING 505

1.3.4 Y GRADIENTCOILS MANUFACTURING 551

1.3.5 ROLLCOILS MANUFACTURING 1,146

1.3.6 DRAGCOILS MANUFACTURING 2,182

1.3.7 MODELCORECOIL MANUFACTURING 350

1.3.8 CRYOGENICSSUBSYSTEMSMANUFACTURING 3,764

1.3.9 POWERSUPPLYAND PROTECTIONMANUFACTURING 6,.318

1.3.10 POSITION SENSORSSUBSYSTEMSMANUFACTURING * 1,068

1.3.11 CONTROLSUBSYSTEMSMANUFACTURING * 1,046

1.3.12 SUPPORTSTRUCTUREMANUFACTURING 2,813

1.3.13 VERIFICATION TESTING 144

1.3.14 FINAL FACTORYINSPECTIONAND TEST --

1.3.15 BOX, PACKAND SHIP 310

1.3.16 INSTALLATIONOF MSBS 1,000

1.3.17 CHECKOUTANDACCEPTANCETESTING * 1,012

1.3.18 MANUFACTURING,INSTALLATION, CHECKOUTPHASE * 1,817
PROGRAMMANAGEMENT

*Directly from NASACR 165917.
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IX. CONCLUSION

The MSBSdesign presented satisfies all specified requirements with

consideration given to most major design problems. Each coil is optimized as

to location and shape. Stainless steel structure is used throughout.

Structural eddy current losses are large but tolerable. The cryogenic system

is sized primarily by the structural eddy current losses which arise during

the two hour full load period of maximumcontinuous AC losses at I0 Hz.

Two unique features of the design are the compact model core supercon-

ducting solenoid and the compact magnet design with race track roll coils.

Considerable design simplicity and reduced heat leak results from mounting all

magnets in one pool cooling dewar with internal cold structure and eliminating

heavy cold steel structure between coils and the model.

The cost estimate is about $30,000,000 for the MSBSfor an 8 x 8 ft

tunnel operating at 0.9 Mach.
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X. RECOMMENDATIONSFOR FUTURE STUDIES

The present study demonstrates technical feasibility of the MSBSand

provides cost estimates which seem economically feasible. The general design

is simple and straightforward, and should be accepted with confidence.

Four basic key items of the MMI design are:

i. Model core superconducting magnet and cryostat

2. Permanent magnet wing assembly

3. Helium leak-tight electrical breaks

4. Structural insulated segmentation.

The major recommendation is to implement a program aimed at verifying and

improving these four basic key items.

The second recommendation for future studies is to continue to study this

design aiming towards three general goals.

-- To simplify and improve the structural design for optimum usage

-- To explore cost-benefit compromises for such major options as

superfluid cooling, supercritical cooling, control frequency limits

other than 10 Hz, and wind tunnel sizes other than 8 ft x 8 ft.

-- To prepare and evaluate several advanced conceptual designs embodying

the best features of the above work.
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