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Abstract

We discuss approximation ideas that can be used in parameter estimation

and feedback control for Euler-Bernoulli models of elastic systems. Focusing

on parameter estimation problems, we outline how one can obtain convergence

results for cubic spline-based schemes for hybrid models involving an elastic

cantilevered beam with tip mass and base acceleration. Sample numerical

findings are also presented.
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I. Introduction

In this lecture we discuss some approximation techniques that may

be used in algorithms for parameter estimation and/or feedback control

in distributed models such as those arising in models typical of large

flexible space structures. The focus of our recent efforts has been the

development and analysis of computational algorithms, e.g., convergence

analysis, numerical implementation (software development) and testing.

While the ideas involved are also applicable to the computation of

feedback controls, we restrict our discussions here to some of our

efforts on techniques in the context of parameter estimation or

"inverse" problems: given observations of a system, determine

parameters in models which best describe structural/material properties

manifested by the system in response to perturbations (loading, etc.).

The importance of such problems is twofold: (i) parameter

estimation can be viewed as a primary tool in on-orbit model development

and analysis where one seeks to understand elastic/viscOelastic material

properties such as damping, stiffness, etc. and to detect changes in

these due to aging, prolonged stress, etc.; (ii) parameter estimation is

a precursor to and integral part of development of sophisticated

feedback control laws (via feedback operators satisfying infinite

dimensional Riccatl equations involving functional parameters of the

system).

Many of the structures of interest to aerospace engineers entail

systems composed of composite materials in rather complex

geometric/structural configurations. The need for methods to
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investigate such variable structure distributed models has, in our

opinion, been clearly established in a number of recent efforts

including [I], [2], [3], [4]. A number of investigations of parameter

estimation in models for elastic beams have involved approximation

results (the Trotter-Kato theorem) from linear semigroup theory. In

particular, problems for simple beams have been treated in this manner

in [5], [6], [7], [8]. In [9] the Trotter-Kato ideas are employed to

establish results for hybrid models similar to those introduced later in

this presentation and which are important in the study of shuttle-

deployed payloads. However, in some instances it is advantageous to use

an alternate approach involving a variational (weak) formulation of the

system equations along with estimates in the spirit of those found in

numerous papers on finite element techniques in structural problems. In

[I0] such a treatment was given for damped cantilevered Euler-Bernoulli

beams. In this presentation we outline this approach in the context of

models for beams with tip masses and base acceleration. Full details of

our results in this direction will be given in a more lengthy manuscript

currently in preparation.

Fundamental to our discussions is a conceptual framework in which

one has a dynamical model with "states" u(t,x), 0 < t < T, x E _, and

"parameters" q(t,x), q E Q, where Q is an admissible class of

parameter functions. The state system is an inltial-boundary value

problem involving a hybrid model (parameter dependent and coupled

partial differential equations/ordlnary differential equations). One is

given observations (data) u_j for u(tl,x j) and seeks to solve the
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optimization problem of finding parameters _ in the feasible parameter

set Q which give a best (in the least squares sense) fit of the model

to the data.

We formulate this problem in an abstract setting with Hilbert state

space V and parameter space Q. For computational purposes we then

approximate V and Q by finite dimensional spaces VN and QM

respectively. We illustrate these ideas with a specific model and

particular classes of approximations in our subsequent discussions here.

II. The Identification Problem

We consider a flexible beam of length £, spatially varying

stiffness E1 and linear mass density p which is clamped at one end

and free at the other with an attached tip mass of magnitude m (see

Figure 2.1).

Figure 2.I
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Using the Euler-Bernoullitheory to describe the transversevibrations

of the beam we obtainthe partialdifferentialequation (see [II], [12])

p(x)D_u(t,x) + D2xEI(x)D2xU(t,x) = DxO(t,x)DxU(t,x) + f(t,x),

x E (0,£), t E (0,T), (2.1)

for the transverse displacement u where _ denotes the internal

tension, f is the net externally applied transverse or lateral load,

and Dt = 8/St,D x = 8/8x. Use of principles of elementary Newtonlan

mechanics (i.e., force and moment balance equations) yields the boundary

conditions at the free end. From translational equilibrium we obtain

mD_u(t,£) - DxEl(£)D_u(t,£ ) = -_(t,£)DxU(t,£ ) + g(t), t € (0,T), (2.2)

where g is the net external force on the tip mass. In a similar

manner, requiringrotationalequilibrium,we have

D_u(t,£) = 0, t E (0,T). (2.3)

The geometric boundary conditions (zero displacement and zero slope) at

the clamped end are given by

u(t,0) = 0, t E (0,T), (2.4)

and
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DxU(t,0) = O, t E (0,T), (2.5)

respectively. The initial conditions are in the form of initial

displacement

u(0,x) = $(x), x E [0,£], (2.6)

and initial velocity

Dtu(O,x)= _(x), x _ [0,£]. (2.7)

In order to characterize solutions to the hybrid system (2.1) -

(2.7) of ordinary and partial differential equations, boundary and

initial conditions, we formally represent it as an abstract second-order

system. Consider

MoD2u(t) + A0u(t) = B0(t)u(t) + F(t), t € (0,T), (2.8)

YoU(t) = 0 Ylu(t) = 0 _2u(t) = 0
(2.9)

at x = O, at x = 0, at x = £,

A

u(0) = 4, Dtu(0) = $, (2.I0)

where u(t) = (u(t,£), u(t,.)), and the operators M0, A0, B0(t) and
A

Yi' i = 0,1,2 are defined by (for v = (v(£),v) E R x H0(O,£))
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Mo_= [_(_), p_],

B0(t)_= [-=(t,_)DxV(Z),D=Dxv)

and

yi v = D v, i = 0,1,2,

F A A(t) = [g(t),f(t,')), _ = [_(%),_J, and _ = [_(_),_.

Define the Hilbert space H by

H = R x H0(0,_)

with innerproduct

<(n,_),(_,_)>n = n_ + <_'_>0

where {H i, <-,->i } denote the usual Sobolev spaces together with the

usual Sobolev inner products. Let V be the Hilbert space defined by

V = {(q,_) E H : _ E H2(0,£), _(0) = D_(0) = 0, q = _(£)I

together with the innerproduct
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^ ^ <D2_ D2_>0,<@,¢>v= ,

where $ = [_(£),@), _ = [_(£),_) E V. It is easily shown that V is

dense in H and choosing H as our pivot space we have the continuous

embeddlngs V = H = V" where V" is the space of continuous linear

functlonals on V.

Of particular interest to us here will be the notion of a weak

solution to (2.8) - (2.10). Interpreting the derivatives in the

definitions of the operators A0, B0(t) and Yi in the distributional

sense, we rewrite (2.8) - (2.10) in variational form as

<M 0 D2u(t),8>H + a¢u(t),8) = b(t)(u(t),8) + <F(t),8> H, (2.11)

A

e _ v,t _ (0,T)

u(0) = $, Dtu(0) = _ (2.12)

wherethe sesquillnearforms a and b(t) on V x V are definedby

a(_,_) - <EID2_b,D2_b>^
X X U

and

b(t)(_,_)= --<c_S_,Dx_>0x

respectively,and the H innerproductis interpretedas the duality

pairing between V" and V (see [13], [14])) wherever appropriate.

Under the assumptionthat EI, p C L.(0,£), a CL2[[O,T],HI(0,£)J,
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f EL21[0,T], H0(0,£)) and g E L2(0,T), it is not difficult to show

(see [15]) that the system (2.11), (2.12) admits a unique solution
^

with values in V and which satisfies u E C_[0,T],V), Dtu E CI[0,r],H)

and D_u E LmI[0,T],V" ). The existence of strong solutions can be

demonstrated by rewriting (2.8) - (2.10) as an equivalent first-order

system and using linear semigroup theory [16], [i7] and evolution

operators. The details involve standard ideas for evolution systems

such as those found in [17] and under additional regularity assumptions

(e.g., E1 € H2(0,£), c € CII[0,T], Hl(0,£)),

E VN {Cv(£),v)Iv E H4(0,£), Dmv(£) = 0}, _ €V), one can argue
A

existence of strong solutions (i.e., u E CC[0,T],V), Dtu E C([0,T],H),

D_u E L2([0,r],H ) with u satisfying (2.8), (2.9) almost everywhere

on [0,T]) with sufficient smoothness to carry out the convergence

arguments underlying the results presented in the next section.

In formulating the identification problem, for ease of exposition

we assume that we wish to identify the parameters m, El, 0 and

only. We do note, however, that our general approach is in fact

applicable to a wider class of problems involving the estimation of the

forcing terms and initial conditions (see [18], [19]). Let Q be a

compact subset of Q = R x L_(0,£) x L_(0,£) x L2([0,T],H0(0,£)) .

We assume that we have been provided with displacement observations

{_(ti,x j) : i=l,.-.,_, j=l,''',9} at times ti E [0,T] and positions

xj E [0,£] and formulate the identification problem as a least squares

fit to data:
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(ID): Find q = (m,El,p,o) E Q which minimizes

j(q;_) U 9
= I I lu(ti,x j) - _(ti,xj)l 2,
i=Ij=l

subject to u(t) = (u(t,_),u(t,')) being the solution to (2.11), (2.12)

corresponding to q E Q.

III. The Approximation Scheme

Our approximation scheme is based upon the use of a standard

(finite element) Galerkin approach to construct a sequence of finite

dimensional approximating identification problems. For each

N = 1,2,..-, let VN c V be a finite dimensional subspace of H.

Let pN denote the orthogonal projection of H onto VN with respect

to the H innerproduct. The Galerkin equations for the system (2.11),

(2.12) are

<MoD_uN(t),sN> H + a(uN(t),8 N) = b(t)(uN(t),8 N) + <F(t),SN>H, (3.1)

8N E VN, t € (0,T),

A

IN(0) = pN_, DtuN(0 ) = FN_, (3.2)

where iN(t) = (uN(t,£), uN(t,')) E VN. The approximating

identification problems then take the form
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(IDN): Find qN _- (mN,EIN,pN,aN) E Q which minimizes J(q;u N)

^N
subject to u being the solution to (3.1), (3.2) corresponding to

qEQ-

Of particular interest to us here is a scheme involving the use of cubic

I=N_N+I
spllne functions. Let L.jjj=I denote the (modified) cubic B-spllnes

on the interval [0,A] corresponding to the uniform partition

{0, _ , --_ ,.o.£ 2£ ,A} which satisfy B_(0) = DBj(O) = O, j = 1,2,---,N+I.

_N. IN+I Then vN= V and (3.1), (3.2) take theLet VN = span{(B (A), Bj)_j=I"

form

MN wN(t) + ANwN(t) = BN(t)wN(t) + _(t), t E (0,T) (3.3)

•N N
wN(0) = [wN]-I Wo, w (0) = [wN]-I wI (3.4)

where

N+I

BN

j=l

£ N

[AN]ij £EID2B= f N D2B N0 J'

£

[BN(t)]ij = f o(t,')DBN DBN,0

A

N[FN(t)]i = g(t)B (A) + _ f(t,.)Bi,
0
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£
N

[Wo]i = _(£)Bi(£) + f _Bi,
0

£

0
and

]ij N N _£ N N i,j = 1,2,...,N+I.[WN = B (£)B (£) + Bi Bj,

Our convergence results for the cubic spllne approximation schemes are

summarized in the following two theorems.

Theorem 1. Suppose {qN} = Q with qN + q as N + _. Suppose

further that u(q), the solution to (2.11), (2.12) corresponding to

q € Q is a strong solution. Then if _N(qN) is the solution to (3.1),

(3.2) correspondln_ to qN we have

luN(qN) - u(q)iv + 0 and IDtuN(qN) - Dtu(q)IH + 0,

as N + = for each t E [0,T].

--N
Theorem 2. Le___ttq be a solution to problem (IDN). Then the

sequence {q--N} admits a convergent subsequence {_Nk} with

.-Nk _
q + q as k + =. Moreover, q is a solution to problem (ID).

Theorem 1 can be established using approximation properties of

cubic spllnes (see [20]) and variational arguments which are similar in

spirit to those found in [21] for second-order hyperbolic systems and in



-12-

[i0] for damped cantilevered beams without tip mass. Continuous

^N
dependence of J and u and compactness of Q allow us to conclude

that problem (IDN) admits a solution. The existence of a convergent

subsequence also follows from the compactness of Q. Finally an

application of Theorem 1 yields

Nk ^Nk Nk ^Nk
J(_,u(_)) = lim J(_ ,u (_)) _ lim J(q,u (q)) = J(q,u(q))

k+_ k+_

for all q E Q and Theorem 2 is thus proven.

Although the state equation in problem (IDN) is finite dimensional,

the admissible parameter space Q is a function space and hence the

minimization of J is over an infinite dimensional space. We briefly

indicate a means of overcoming this difficulty which involves the

introduction of a second level of approximation into our scheme. A

detailed discussion of these ideas along with several numerical examples

for problems with parabolic, hyperbolic, and simple Euler-Bernoulli

equations can be found in [22], [23], and [7] respectively.

For each M = 1,2,..., define the set QM = Q by QM = IM(Q)

where IM is a mapping which satisfies

QI. IM : Q + Q is continuous

Q2. IM(q) + q as M + m uniformly in q for all q E Q.

The approximating identification problems now take the form
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N - N N N aN) QM j(q;u N)(IDNM): Find qM = (mM'EIM'PM' E which minimizes

^N
subject to u being the solution to (3.1), (3.2) corresponding to q.

Typically, the spaces QM and the mappings IM are realized using

finite dimensional spaces of interpolating linear or cubic spline

functions. In this case under sufficient regularity assumptions on Q,

it can be shown that conditions Q1 and Q2 above are satisfied.

Using conditions QI, Q2, and the compactness of Q, one can readily

establish a convergence result analogous to that given in Theorem 2.

Specifically, if {q--NM} is any sequence of solutions to the problems

Nk _N k _

(IDNM), there exists a convergent subsequence {_Mi } with qM_ . q
.J

as Nk . _, M. + _ where q is a solution to (ID)j '

IV. A Numerical Example

We present a representative example to illustrate some of the

numerical results we have obtained using the methods outlined above.

Further details and other numerical findings _ will be presented

elsewhere.

We consider the problem of estimating the spatially invariant

stiffness E1 and linear mass density p of a cantilevered beam of

length £ = 1 with an attached tip mass at the free end of unknown

magnitude m which is also to be identified. We also assume that the

entire system is subjected to a time varying base acceleration a0(t).

The internal tension _ is then given by (see [9], [12])
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a(t,x) = - a0(t)(p(%-x) + m).

The system was assumed to be initially at rest (_ = _ = 0) and then

acted upon by the distributed transverse load

f(t,x) = eXsin2=t

and point load at the tip

g(t) = 2e-t.

The base acceleration a0 was taken to be

= I I 0 _ t _ 1.5
a0(t) [0 t > 1.5 .

"Observations" (i.e., displacement values to be used as data in the

inverse algorithm) at positions xj = .75, .875, 1.0 at times ti = .5,

1.0,..-,5.0 were generated using the "true" values of the parameters

m = 1.5, E1 = 1.0, and p = 3.0, the first two natural modes of the

unforced, unaccelerated system and a standard Galerkin scheme. The

approximating optimization problems were solved using a Levenberg-

Marquardt iterative steepest descent method. "Start up" values for the

parameters to be estimated were chosen as m0 = 1.7, El0 = .7 and

PO = 2.7. The initial value problem (3.3), (3.4) was solved at each

iteration using a variable step size Adams predictor corrector method.

The system did not appear to be stiff. Our results are summarized in

Table 4.1 below.
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Table 4.1

N E_ _ m-N _ CPU (min/sec)

2 1,0016 3.0997 1.4793 ,17 x 10-4 0/18,01

3 1.0012 3.0636 1.4873 .18 x 10-4 0/35.93

4 1,0009 3.0414 1.4921 .19 x 10-4 1/26.19

5 1.0006 3.0306 1.4944 .19 x 10-4 4/15.87

6 1.0012 3.0319 1.4944 .35 x 10-4 5/21.34
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