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ABSTRACT

O

The modal attenuation constants iti a cylindrical waveguide coated with a

lossy dielectric material are studied as functions of frequency, dielectric

constant, and thickness of the dielectric layer. A dielectric material hest

suited for a large attenuation is suggested. Using Kirchhoff's approximation,

we also studied the field attenuation in a coated waveguide, which is illumi-

nated by a normally incident plane wave. For a circular guide which has a

diameter of 2 wavelengths and is coated with a thin lossy dielectric layer

(Er = 9.1 - J2.3, thickness - 3% of the radius), a 3 dB attenuation is achieved

within 16 diameters.
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1. INTRODUCTION

Reducing the radar cross section (RCS) is one of the major problems in

designing a modern military aircraft.	 When an airplane is heading toward the

radar site, a major contribution to RCS comes from the jet engine intake. 	 The

RCS from the jet intake is mainly due to the rim diffraction and interior irra-

diation.	 The rim diffraction has been stu,Jied by several authors [1],	 [2].

The main goal of our research is to reduce, as much as possible, the

intR.-rior irradiation from the jet intake. 	 One way to achieve this goal is to

coat the interior wall of the jet intake with a lossy dielectric material. 	 Once

the wave is transmitted from the outside illumination, the wave will attenuate

as it propagates through the interior of the ,het intake before it scatters back

to the outside of the jet intake.

For our theoretical model, we approximate the jet intake by a cylindrical

r
k waveguide. We will investigate the properties of the wave attenuation in a

cylindrical waveguide coated with a lossy dielectric material and suggest 	 how

• the power attenuation of the transmitted wave to the waveguide from the outside

illumination can be maximized.

This report begins with the derivation of the normal modes in the lossy

waveguide. It is followed by the general discussion of the behavior of

the attenuation constant as Functions of the frequency, the dielectric constant

and the layer thickness of the dielectric material. A few specific materials

are chosen to show how the wave attenuates within the waveguide from the nor-

_e	 mally incident plane wave. In the conclusion and discussion section, other

possible devices for a large power attenuation of the wave are suggested.

1



2. FORMULATION

	Consider a cylindrical waveguide coated with a, lossy material as shown in 	 n

Figure 1. We assume that region I is free space and the permeability of region

II is the same as that in free space. TA*-t the past, a number of authors treated

the problem of thc:: partially filled waveguide (3), [4]. In this report, we

rederive the formulation to make this report self-sufficient and uniform in

notation for other derivations presented later.

2.1. Propagation Constant
t

2.1.1. Approximate solution

Though the perturbation theory does not give a very accurate result for the

waveguide perturbed by a very lossy material, this analytic result provides

guidance in the exact numerical calculation.

The difference between the propagation cocistants of the perturbed and

unperturbed waveguides is given by ( ejwt convention)[S]

r^	 t
C^	 o

w IS 
(A4^4	 Aa-ii ) dS

k,	
k

z - zo	
JS (o x t -	 x i )-ẑ  dS	

(2..

Isere 9(4) and o ( ito ) are the fields of the perturbed and unperturbed waveguides,

	

respectively, w is the angular frequency, and Ap and Ae are the differences of

	

	 j
i

the permeabilities and permittivities between the perturbed and unperturbed

cases, respectively. The integration is over the cross -sectional area of the

waveguide. In this report, we assume that Ap - 0 and Ae = (e r - 1 ) e
0
 where

eo is the free-space permittivity and er is the dielectric constant of the lossy 	 1

dielectric.

2
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In the cylindrically symmetric geometry, mode coupling is largest between
s

the TE and TM modes with the same mode indices, e,g., TE,, and TM 11 11	 Though the

normal mode in this case is no longer TE or TM, it is closer to one of the two

modes when the thickness of the dielectric layer is small.. 	 We call this mode

"quasi" TE or TM mode and will use the same notation as in the unperturbed

waveguide for convenience.	 Some authors prefer to use 1?	 and EH instead of TE

and TM, respectively[4].

Using the static approximation, we obtain (Appendix 1)

^2 Ue(e	 -1)
f ^mn

a p

kz - kzO	
o 

e
rkzo 1	 ( ^n ) 2 	 n2

for TEmn ( HEmn)	 (2.2)
2

JM2	 "mn)

kzo( E
r - 1) fm(^bna^

kz - kzO	 e
1 - for T%n(EHmn )	 (2.3)	 AP

r `'mn	 2

2 Jm+l ( Flmn)
'i

Here ao is the free-space permeability; 	 9mn 
and %n are the nth zeros of the

Bessel function of order m, Jm and its derivative Jm , respectively; k 
Po 

is the

radial wave vector for the unperturbed case; and

2

f(x) s	 [Jm+l(x) - Jm( X ) Jm+l
(x)] + mJm(x) 	(2.4)m

-^ 2.1.2.	 Exact solution	
i

The characteristic equation for the propagation constant of the normal mode

in a lossy hollow cylinder can be derived by imposing the boundary condition on

r the perfectly conducting surface and matching the fields between regions I and

II (Figure 1).	 The characteristic equation to be solved numerically for the

propagation constant kz is given by (Appendix 2)
F

3
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Figure 1.	 A cylindrical waveguide coated with a dielectric material.
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2	 2
e2 F

3 Fl kpl	
U2 F

1 F' ,̂Ij	k.m 2	

1

kP
0k 2 	F ' -	 F f -	 F2	1Pl	 1	 el	 F3	 P21	 F4	 P̂2	 w a	 el u1	 1

P21 (2.5) n

where

k2
	

+ k2 	w2 el pl	 k2 (2.6)
l	 r

k	 + k2 	w2 e2 u2 a k2 (2.7) Bp2

Fl A Jm(k pi a) (2.8)

F 3 u J
m(k P2a) Nm(k P2b) - Nm(k P2a) Jm (k P2b) (2.9)

r

F3	 Jm(k P2a) Nm(k P2 b) - Nm (k PZ a) Jm(k P2 b) (2.10)
k .n ..

F4	 Jm(k P2a) Nm (k P2b) - Nm(k P2a) Jm(k P2b) (2.11)

F4	 Jm (k P2a) Nm (k p2 b) - Nm(k P2a) Jm(k P2b) (2.12)

Fame and e2 are the permittivities; 	 u2 and p,, the permeabilities; k l and
i

k P2 , the radial wave vectors of regions I and II, respectively; and a and b are

the radii of the air region and the con&,cting cylinder, respectively. 	 J  is t'

the Eessel function and Nm is the Neumann function of order m.

2.2.	 Fields of the Normal Modes in a Lossy Waveguide

Once we find the eigenvalues for the propagation constants, the eigenvec-

tors for the fields in the lossy waveguide naturally follow.	 The electric and
i

magnetic fields are given by (Appendix 2)

Ak k	 ,
Ep	 -	 p1 Jm(k p1 p) - E Jm (k P, p)	 cos m¢ a jkZZ (2.13a)z	

wet

5

t,

rte. _._.	 .........^.. ......	 .W.,..._.,.....	
.+39. iE'^,:	 ii	

t n.•..'^`..
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Epx= - 
Ckzkp2 

{Jm ( k p2 p) Nm(k pE '>) - Nm( k p2 P) Jm(k p2 b) }
W E2

- pm {J
m (k p2 p) Nm (k p2 b) - Nm(kp2P) Jm(k p2b) } cos m^ e	 z z(2.13b)

I	 ^zm	 ^	 -jk z
E	 WE 

P 
3 ( k pI p) + Bk pl Jm (k pl p) sin mo e	 z	 (2.14a)

1

Ck m
E i'Vi 	 We2 p {J,m( k p2 p) Nm(k p2 b) - Nm( k p2 P) Jm(k^ p2 b) }

+ Dk p2 {Jm ( k p2 p) Nm(kp2b) - Nm ( k p2 P) Jm(k p2b) } sin mo 
a-jkzz	

(2.14b)

1)
Ak`

Ezj wPI Jm(k pi p) cos ift e - jk z 
z	

(2.15a)
1

Ck2 k-
EZ I' Wet LJm (k P2 P) Nm (k P2b) - Nm ( k P2P) Jm (k p2 b) } cos m ¢ e	 z z (2.15b)

r	 Bkk-kz
Hp	 -

P	
Jm(kPlp) - Wµ Pl Jm(k p1 P)	 sin m^ e j z	 (2.16a)

1

HT7= _ Cm {J (k p) N (k b) -• N (k p) J (k b) }
F	 p	 p	 m p2	 m p2	 m p2	 m p2

f

Dkzkp2	 - zjkz
- wu	 {Jm(kp2p) Nm (k p2b) - f m (k p2 p) Jm (k p2 b) }	 sin mo e

2	 (2.16b)

I	
Bkzm	 k

H _
 [Akpl J,

m ( k pl P) 
-1Wu 

p Jm ( k PI p)	 cos m^ e
- j z z 	(2.17a)

1
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OF Poop C^ ^oaLn iy"

HMI= [-Ck,, (Jm (k p2 P) Nm(k p2 b) - Nm(k p2 p) Jm (k p2 b) }

Dk m
z (J (k p) N I (k b) - N (k p) J^(k b)	 cos m e-jkzz (2.17b)mug P m p2	 m p2	 m p2	 m p2 }

2
- kzz

Hz ' ^wu1 Jm (k p2 p) sin m¢ a	 (2.18a)
1

2

HII= 
Dkp2 

[J (k p) v^(k b) - N (k p2 p) J m (k b) } siri m^ a-^kzz
	

(2.18b)
z	 w52 m p2	 m p2	 m	 m p2

Here the superscipts I and II indicate regions I and II (Figure 1), and

subscripts p, ^ and z indicate the radial, angular and propagation-directional

components of the fields, respectively. A, B, C and D are the constants, which

are determined by the boundary conditions and the normalization condition.

Those constants are related by

2

C = A k2 F1 1 e2	 (2.19)
k2 	 3 1

k 

2

D=B PI F
1 P2

k2 F4 a1
P2

'	 e2 F3F1 kpl
k P1 F 1 - el 

F3 kp2
B -
A	

kmk2<< 1 for TWEH), m * 0

w p1 F 2 1 - k21
P2

(2.20)

(2.21a)
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'	 u2 F 1 F4 k plk 
pl 

F 
1 - 1j, F4 k p2

'	 A = -	 « 1
B	 k m	 k2z

w aeI 
F
1 1	 k2

P2

for TE(HE), m 0 0
	

(2.21b)

There is no mode coupling between the TE and TM modes for m = 0. We note that

there are two degenerate modes for each angular mode index m except when m = 0.

In the expressions of the fields, we have arbitrarily chosen une of those

two modes.

2.3. Wave Propagation into a Cylindrical Waveguide from the Incident Plane Wave

Consider a plane wave incident on the opening of a cylindrical waveguide

(Figure 2). An exact 6olution for the cylindrical waveguide without the

dielectric coating has been derived by Weinstein [6] using the Wiener-Hopf

Method. GTD has been applied by several authors [2], [7]. When the waveguide

is coated with lossy material, the problem is much more complicated. Since we

emphasize the wave attenuation within the waveguide, we use Kirchhoff's approxi-

mation. This method provides an approximate solution and is much simpler than

the GTD or Wiener-Hopf Method.

We assume in the following derivation that the perturbation within the

waveguide is weak enough so that the modal fields in the perturbed waveguide can

be approximated by the modal fields in the unperturbed waveguide.

For the incident fields, we write (Figure 2)

Ein = E0 (x cos 60 - z sin 60) exp[-j(kxx + kz z)]	 (2.22)

i

f

1

s	
i

s

fi
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Figure 2.	 An open-ended cylindrical waveguide illuminated by an incident
plane wave.
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E0 ^A
in °-2- y exp[-J(kxx + kz z)]	 (2.23)

0

where 6  is the incident angle, k  and k z are the components of the wave vector,

Eo is a constant, and Z0 is the free-space impedance u. Note that we

choose the coordinate for the incident* field ir, order to simplify the for-

mulation. When the tangential E field at the opening of the waveguide is

matched, the trar,smitted transverse fields at z = 0 are given by (Appendix 3)

k

» (Z - 0+) =	 Cm^m
+	 kon 7H mn	(2.24)m

tn
	 n n

k	 -̂^HI 
H t (z - 0+

) = z  m^n 
kon Cmn(z X r ) + Cmn(` x Vmn )	 (2.25)

x

f

R

{

t

s

where

r#

E,m	 Sri m¢	 ^	 n	 ,	 cos m¢

mn = Nmn p m Jm 
n P I 	+
	

b Jm bn 
P	 (2.26)

I_
i^mn l	 p	 b	 L-cos m¢	 sin mo

Vmn Nmn 	 Nmn

	

in m^	 ^ m	 E'mn	
-cos m^ f

= N -p	 J	 p	 +^—J	 p	 lV H	 mn	 h m b	 cos m^	 p m b	 sin m^
mn	 J

l

1

..	 Cmn - - Zo cos 8o Nmn T m 
( _j )m-1 Jm

(^ d Jm(kxb)

(2.27)

(2.28)



1
4-t	

f

G

`	 E	 2ir^m (-J)m-1

un	
Cmn - Zo cos Ao Nmn	

n	
2 kxim( 

Nmn) 
Jm(kxb)

k2 _ mn
x	 b

(2.29)

Here ko is the free-space wave number w3uo so , and 6 and l indicate the nor-

malized TE and TM fields, respectively. The Ruperscripts V and H indicate the

vertical and horizontal polarizations, respectively. The symbols with an over

bar indicate TM modes and these without an over bar, TE modes. Nmn and Nmn are

the normalization constants (Appendix 3).

When we match the tangential magnetic field, the expressions for the

transmitted transverse fields at z = 0 are similar to the above expressions

except for the cos @o ,.erms in Eqs. (2.28) and (2.29) and the factor of

k
zmn o

/k (Appendix 3). In this report, we use the electric-field matching.

In order to characterize the power attenuation of the transmitted wave, we

approximate the modal fields in the lossy waveguide by the modal fields in the

perfect waveguide with the exception of the z-dependence of the propagation

constant, which characterizes the wave attenuation. Then the power propagating

within the lossy waveguide from a normally incident plane wave is approximately

given by (Appendix 3)

s

	

P(z)	 ( Sln
/ko) exp[-2alnz]

21

	

Po 	 n	 ( ^1n)2 - 1 (2.30)

{
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where

k
z1n	 aln	 J aln (2.31)

Here Po is the power incident on the area of the opening of the waveguide and

a 
In 

and aln are the real and imaginary parts of the propagation constant,

respectively.

We note in Eq. (2.30) that the higher mode usually carries less power

because the higher mode has a smaller 0 
In 

but a larger 91n'



y	 f

3. NUMERICAL RESULTS

Numerical results are given for the dominant TE 11 and TM 
11 

modes for the

purpose of comparison. The cutoff frequencies of lower-order modes in terms of

the cutoff frequency of the dominant mode are shown in Figure 3. The mode pat-

terns of 30 lowest modes are shown in Figures 4 and 5.

3.1. Mode Attenuation and Dispersion

3.1.1. Frequency dependence

Figures 6 and 7 show the real and imaginary parts of the propagation 	
w

constants of the TE 11 and TM11 modes as a function of frequency in a waveguide

coated with a thin dielectric material. In Figure 6. , the exact numerical solu-

tions for the attenuation constants are compared with the results obtained from

the perturbation theory ( Section 2.1.1). We can see that the perturbation

theory is valid only at the low-rrequency region even though the thickness of

the dielectric layer is small. At the high-frequency region, the TE11 mode	

I>^	 t
shows much hiL'bar attenuation than the TM11 mode. This is due to the fait that 	 i

k

the TE 11 modal field moves closer to the surface of the waveguide than the

TM 	 as frequency increases. These features are shown in Figures 8 and 9,

where the magnitudes of the angular and radial electric fields are plotted as a 	 t

function of radial distance. Note that the fields of both TE 11 and TM 11modes
b

at the low frequency ( 3 GHz) are similar to those for the unperturbed case, but 	 R

the modal fields of the TE 11 mode (Figure 8) are closer to the surface than	

{``
those of the TM 

11 mode (Figure 9) at the high frequency ( 7 GHz'). On the other	 1

hand, the real part of the propagation constant is not much different from that
3

for the unperturbed case (Figure 6). 	 j

3.1.2. Dielectric constant dependence - thin layer
c

9	 Figures 10 and 11 show the attenuation constants as a function of the

complex dielectric constant e  of the lossy dielectric material. We observe two

t
13
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interesting features in these graphs. First, there is a clear "resonance"

effect of the imaginary part er of er on the attenuation constant when the real
w

part of er of er is small (< 1.5). S6eond, a smaller 
r gives a larger atten

uation constant except for that with a "dielectric resonance." Since the x

of the practical materials are usually larger than 1.5, we need to choose the

lossy dielectric material with a large loss tangent (small 
r 

but large er) for

a large power attenuation in the waveguide.

Note that the general dependence of the attenuation constant on the

dielectric constant for both TE 11 and TM 11are very similar, and these proper-

ties may not be limited to Chose two particular modes. To understand these

results, consider the following. The attenuation constant is proportional to

the power dissipation within the lossy dielectric layer. The power dissipation

per unit length P d is related by

Pd s 210 j	 I Er i19 1 2 dS
e--layer

where the integration is over the dielectric region. Then the attenuation

constant is given by

W J e-layer j er j j^1 2 dS
Im k	 (3.1)

z
2 f x 6 •z dS

where the integration in the denominator is over the cross-sectional area.

Hence for a large attenuation constant, we need a large er and large field con-

centration within the dielectric layer. These properties can be illustrated

from the field distributions within the waveguide (Figures 12 and 13). The

"'°-•	 tangential electric fields are usually small in the dielectric region with a

thin dielectric layer becau. =.^ the tangential electric fields vanish on a

7^,	 L

a
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perfectly conducting surface.	 These features are shown in Figures 12 acrd 13 as

3 well as the field expressions in Section 2.1.2. 	 The ratios of the tangential
A
b

fields to the radial fields are approximately given by

= T/b	 (3.2)

E_t

P

e

2

Z	
kp2
T	

for TH(EH)	 (3.3)E P	 Z

i

^^ =
E

k	
b
	 for TE(HE), m # 0	 (3.4)

P 
2bP

Since k P2 T and T/b are small for a thin dielectric layer, these ratios are

usually small.	 Thus E	 is responsible for most of the power loss.	 Since',P

E P	at the dielectric region is inversely proportional to 	 ler j (see eq. (A1.7)),

increasing Cdecreases the electric-field strength within the dielectric layerr

(Figures 12 and 13).	 Since the power loss is also proportional to 	 r1, there
may exist an optimum value of e= for a maximum power loss and a maximum atten-

uation constant (Figures 12b and 13b).

We expect the attenuation constant to become vanishingly small as er becomes j

1

very large, because the dielectric layer becomes a perfect conductor in this
I

limit.	 These features are shown in Ff,gures 14 and 15, where the attenuation

constants in the asymptotic limit of 
e 	 are plotted as a function of er. 	 Note

that the attenuation constants decay rather slowly as C
r
 becomes very large. E

1

x
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3.1.3. Dielectric-thickness dependence

When the dielectric layer is thick. the behavior of the propagation

constant is different from that in the case of the thin dielectric layer. These

features are shown in Figures 16, 17, 18, and 19. We observe a few interesting

points in these figures.

First, there may exist a "spatial"-resonance effect as the layer

thickness increases. That is, there may exist an optimum layer thickness for a

large attenuation constant. As shown in Figure 20, the optimum thickness

results when the thickness of the dielectric layer is about 1/4 of the wave-

length within the dielectric layer. This is contrary to the common belief that

the thicker the lossy layer is, the larger the attenuation constant becomeu. It

is interesting to note that when the resonance is weak (e.g., TE with a small

eI ), the field is similar to the field of a surface mode confined to the

dielectric region near the surface. This feature is shown in Figure 21a, where

the ratioG of the magnitudes of the electric fields to those at the center of

the waveguide are plotted as a function of the radial distance.

Second, when we keep the ratio of e  to e r (i.e., the loss tangent)

constant, the basic dependence of the attenuation constant on the dielectric-

layer thickness remains similar. Generally, a thicker layer attenuates the TE

mode more significantly than the iM mode.

Third, as e  increases, the attenuation constant of the TM11 mode

increases, but the attenuation constant of the TE 11
mode decreases. This can be

understood from the field distributions as shown in Figures 21 and 22. Note

that when er increases, the electric field of the TE 11 mode at the dielectric

region decreases significantly while the electric field of the TM 11
mode remains

relatively unchanged. Since the attenuation constant is also proportional

4P
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Figure 22.	 Radial and angular components of the electric field relative to the
fields at p 2 0 (thicker layer case): a = 9.7 cm, b = 14 cm,
a.)	 TM 1 1,	 er. =	 1.5 - J,	 b) TM11 ,	 er = 1..5 - 32.
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to C
r (Equation (3.1)), the attenuation constant of the TM11 mode increases

a
w	

while the attenuation constant of the TE 11 mode decreases as the er of the lossy

dielectric increases.

3.2. Wave Attenuation is the Lossy Waveguide from a Normally Incident 3

F . As shown in Section 3.1.2, the lossy dielectric with a large loss tangent

is a good choice for the coating material for a large wave attenuation within

a	 the waveguide. Plastics are in this category [81; three materials are chosen

for further analysis (Table 1). Figures 23, 24 and 25 show the power attenu-

ations of the transmitted waves from the normally incident plane wave with a

unit power on the aperture. Only two modes (TE 11 and TE 12 ) are propagating in

this particular geometry (Figures 2 and 3) and 84% of the incident power on the

L	 aperture is transmitted in this approximation. There are two interesting

features to be observed. Most of the power is carried by the dominant mode
r

F
(TE 11 ) ( which has been discussed in Section 2.3) and the attenuation constant of

x	 the dominant mode is usually larger than that of the higher mode. As those two

modes propagate through the waveguide, eventually the higher mode will carry

most of the power, but when this happens, the total power of the wave has

already decayed to a small fraction of the initial transmitted power at z = 0.
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Figure 23 24 k:,)

Material Polystyrene 7% Catalin Pyralin
700 base

*Real er 9.1 4.74 3.74

*Imag e  -2.275 -0.7252 -0.6171

Real Ir	 xb 6.1321 6.1059 6.0960

TE11

Imag k xb -1.038840 
-2 -6.1856 x1O-3 -7.2436 x10-3

Z
TE11

Real k xb 3.3726 3.3554 3.3513
TE z

12

Imag k xb -9.2734 x1Q 3 -2.9211 x10 3 -2.6319 x10-3z
TE12

*Reference (8)
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TABLE 1.

THE DIELECTRIC CONSTANTS OF THE LOSSY DIELECTRIC MATERIALS AND THE PROPAGATION
CONSTANTS OF TE 11 AND TE12 MODES WHEN THESE MATERIALS ARE USED IN THE WAVEGUIDE

(a - 9.7 cm, b - 10 cm, f - 3 GHz (b/a - 1))
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4. CONCLUSION AND DISCUSSION

We have calculated the attenuation constants of the normal modes in the

waveguide coated with a lossy dielectric material. When the lossy-dielectric

layer is thin, choosing the dielectric material with a large loss tangent

results in a large attenuation constant of the normal mode (TE or TM). We have

chosen a few practical materials for the lossy dielectric to demonstrate the

power attenuation of the wave in the lossy waveguide from the normally incident

plane wave. Unfortunately, the power attenuation may not be sufficient in a

practical application. For a circular waveguide coated with the thin layer

((b - a)/b - 3%) of the best dielectric material available (polystyrene 70% and

carbon 30%, e  - 9.1 - J2.3), a 3 dH attenuation can be achieved around a

distance of 16 diameters.

We have also calculated the attenuation constant as a function of the

thickness of the lossy dielectric layer. There way exist an optimum thickness

of the lossy dielectric layer for large attenuation, and the behavior of the

attenuation constants of the TE and TM modes as a function of the dielectric

constant of the lossy material are different from that in the thin-layer case.

That is, choosing the lossy material with a smaller r
 results in a larger

attenuation constant for the TE mode but a smaller attenuation constant for the

TM mode, or vice versa. Usually, TE modes attenuate more than TM modes in the

thicker layer case.

The main reason we can not obtain a large attenuation constant in the wave-

guide coated with a thin lossy dielectric layer is that the electric field A

is small because its tangential component vanishes at the perfectly cond"cting

surface and its normal component is inversely proportional to the dielectric

constant, which is usually large for the available materials. A thick lossy

t

R	 ,

42 ti



R̂ I ̂  "
I

1*`

x.

dielectric layer may be used for a large attenuation constant of the normal

mode. For example, when the waveguide is coated with the thick dielectric layer

((b - a)/b = 10%) of Cataa,in (700 base, c  = 4.7 - j0.7), a 3 dB attenuation can

be obtained within a distance of one diameter. However, too thick a layer may

not be desirable in the design of the structure.

It may be possible to attain a large attenuation constant'of the normal

mode even with a thin dielectric layer but with a different pattern of coating.

Consider a waveguide which is coated with double layers (Figure 26a). If we use

the dielectric with a large dielectric constant for the outer ,layer, then the 	 f

modal field will shift to the surface, and the electric field in the inner

dielectric layer with a large er will be large, where the power of the wave is

dissipated. We have seen in Section 3.1.2 that the tangential field does not

contribute much to the power dissipation in the case of a single thin dielectric

layer. Increasing the tangential component of the electric field with a multi-

layer coating makes this component play a major role in the power dissipation of 	 j

the guided wave. The above effect with the multilayer can be achieved with

commercially available resistive sheets (Figure 26b).

Another way by which the electric field in the dielectric region can be

increased may be using the corrugated layers (Figure 27a). The basic idea in

this device is to increase the radial component of the electric field in the

I
dielectric region by making space within the dielectric layer.

i
Since the electric field at the center region is usually large, it has been

suggested that putting the lossy material (e.g., resistive cards) at the center

region may increase the attenuation constant (Figure 27b).	 t
E

The feasibility of those devices mentioned above also depends on the actual
1

design problem of the jet intake.
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Commercially 200-2000 ohms

(b)

Figure 26. Multilayer structures: a) double layers, b) resistive sheet.
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(a)

Figure 27. Other possible devices for a large attenuation constant:
a) corrugated layer, b) resistive card.
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APPENDIX 1

APPROXIMATE SOLUTION OF THE PROPAGATION CONSTANT IN THE
CYLINDRICAL WAVEGUIDE COATED WITH A LOSSY DIELECTRIC MATERIAL

In this appendix, we derive the approximate solution based on the pertur-

bation theory. Refer to the main text for the notations.

The fields in the perfect cylindrical waveguide are given by

A z * (magnetic vector potential)

_	 r

	

E P j we aapaz	 , HP p

g^	
wep a	

: H^ . .a

_	 2
Ez 3wF 8 2 + k2	 ,	 ff a 0	 for TM	 (A1.1)

'z

and

F = z^(electric vector potential)

_	 a*	 1 a2^y
E P =	 P a¢ '	 H p 	 jwp apaz

E 	 H = 1	 a2 rY

ap	 ¢	 J WPP 30az

1 a
2	 2

	

z	 zE = 0	 ,	 H	
j wu 

az2 + k for TE
	

(A1.2)

0'.
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The wave functions satisfying the boundary condition are

nn	
cos m$ -Jk z

%n= Jm 
b 

p	 e z	 (A1.3)
sin m^

mn	
COs m^ -j kz 2

*mn Jm b P	 e	 (A1.4)
[sin  m¢

::here ^mn 
and gmn are nth zeros of J n(x) and Jn(x), respectively. The disper-

sion relation is
k

kz + k  = ko = w Uo eo	 (A1.5)

where

k p = bn or 
bn	

(A1.6)

i

We approximate the perturbed fields in the denominator of Eq. (2.1) by the

unperturbed fields. In the numerator, we use the quasistatic approximation [51

such that

= e Eo	 (A1.7)	
4

r

where er is the complex dielectric constant of the coating material. This may I

I

be a good approximation assuming the tangential electric field is small near the

surface and the electric field is nearly normal to the surface in the dielectric

region. Assuming AN = 0, Eq. (2.1) becomes in this approximation

k - k	
Weo fd.r. (er - 

1) Eo •E^ dS	
(A1.8)

z	 zo	 ^

2 j(Eo x Ho )-z dS
S



Y a

k
f
t
i

where the integral in the numerator is over the cross section in the dielectric

region (d.r.), and the one in the denominator is over the cross-sectional area

. of the cylinder.

Substituting the fields fo,, the TE mode in (A1.2), we obtain

2
ln
	 gm(x) dx

W uo C  (Er	1 b %nkz -k zo
—	 2 eel. for HEmn	(TEmn )	 (A1.9)

r zo ^mn
Ogm (x) xdx

where

2
gm(x)	

n2 J2 (X) + Jm2 (x) (A1.10)
X2

Using the recurrence formula [9],

gm 
(x) Jm+l (x) + x dx Jm(x)

(A1.11)

Substituting Eq.	 (A1.11) in Eq.	 (A1.9), we obtain

w2 
uo Co( e

r - 1)	
fL^mb

kz - s	
1 _
	

► 	 2	
for HEmn(TEmn )kzo ^o	 (	

)2	 n	

'

(2.2)

^mn 2	
Jm ( mn )

where f(x) is given in Eq. (2.4). 	 For the TM mode, we follow a similar proce-

dure with the fields given in Eqs. 	 (A1.1) and (A1.3). 	 Then we obtain

gmba

kzo(Er - 1)	 f
kz - 1 -	 for EHmn (TMmn )

kzo o (2.3)
e	 2r	 n	 2

2	 Jm+1 ( %n)
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EXACT NUMERICAL SOLUTION OF THE PROPAGATION CONSTANT
IN THE CYLINDRICAL WAVEGUIDE COATED WITH A LOSSY DIELECTRIC MATERIAL (10]

The field expressions in terms of the wave functions are given in Appendix

1. The wave functions in Region I (Figure 1) satisfying the boundary condition

at the origin are given by

I
^+m(k 

pl 
P) - AJm(k pl p) cos m^ e

-3 k zz	 (A2'.1)

(k PI p) - BJm (k pl P) sin m^ a jkzz	 (A2.2)

and the wave functions in Region II satisfying the boundary condition at the

conducting surface ere given by

*m- (k p2 P) - C[Jm(k p2 P) Nm(k p2 b) - Nm(k p2 P) Jm (k p2b)] cos m^ a 
3kz	 (A2.3)

a

i

*m (kp2P) - D[Jm (k p2 P) Nm(k p2 b) '- Nm(k p2 P) Jm(k p2b)] sin m¢ 
a-jkzz 

(A2.4)

where

kPl + kZ	 w2 el k2111

k 22 + k2	 w2 E2 u2 = k2 (A2.5)

` r ^'s with and without the bar indicate TM and TE modes, respectively.	 For other

notations, please refer to the main text (Section 2.1). Note that the angular

terms of the wave functions are chosen such that these two modes are coupled.

i{

''	 6

m

i
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r	 Substituting Eqs. (A2.1) through (A2.4) in Eqs. (A1.1) and (A1.2), we obtain the

general field expressions given in Eqs. (2.13) through (2.18). Matching the

tangential fields between Regions I and II, we have four equations,

k 

2	 2

E	 A p1F	
k

1	
C p2 F3

z	 e1	 e2

2	

k 

2 
F4

H ; B 
p1 1 

D p2
z	 u1	 u2

e

Bk m	 , Dk m
H^:	 Akp1F1 + wuia F 1 Ck p2F3 + wu2a 

F4

Ak m	 ,	 Ck m	 ,
E^:	 we1a F 1 + Bkp1F1	 we2a F

3 + Dk p2 F4	(A2.6)

I

where the notations are given in Section 2.1.2. For a nontrivial solution for	
tt^
	 1

A, B, C and D, the determinant for Eq. (A2.6) must vanish. This condition gives 	 fy
{

the characteristic equation given in Eq. (2.5).

t

i.

I

r

dd
_	 1
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APPENDIX 3

NORMAL MODES PROPAGATING INTO A CYLINDRICAL
WAVEGUIDE FROM THE INCIDENT PLANE WAVE

The geometry for this problem is shown in Figure 2, and the notations are

s;_3icated in the main text (Section 2.3).

The transverse electric and magnetic fields in the waveguide at z	 0+ are

given by

t ( 
z	 0+)	 CV 6V	 + CH U -	 + k

zmn ^1
 —AT	 + kzmn ^ i	 i

zmn (A3.1)m,n	 mn mn	 mn mn	 ko	 mn	
k 
	 mn mn

r

k	 kH (z	 0+) a 1	 zmn CV ( z x ^V )+	 zmn 
CH ( z x it	 Z	 k	 mn	 mn	 k	 mn	 mno m,n	 o	 0

+ Vn(z x ^mn) + mn(z x Vin ) (A3.2)
s

where C's are constants. 	 The symbols with the bar indicate the TM mode, while

those without the bar indicate the TE mode, and [ and 	 are given in Eqs.	 (2.26)

and (2.27).	 We can also write t	 and	 such that

Nmn z x Vt'^-mnH= (A3.3)

Y

^mnH= -Nmn Vt mnH (A3.4)

where

'V	
cos m^

^►nnHn 3 Jm

P1 [sin
(A3.5 )

m¢
zmn

n 	 0P1

Z

[sin
jnj	
*m

Imn	
cos m^

t.	 r
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k Define the orthonormalization condition such that
X,
w

+V,H
<Umn

+V,H
*% In' > = Zo amm , ann , (A3.7a)

$ V,H
<^mn

V,H	 a Z
o amm' ann,'^^m' n'> (A3.7b)

^n

+V,H +V ,H<Umn •Vm'	 `>
= 0 (A3.7 c )n

Superscripts V, H indicate that these conditions apply to both cases of vertical

and horizontal polarizations. However these two normal fields are orthogonal.

Substituting Eq. (AM) in the right-hand side of Eq. (A3.7a), we obtain

+VH+VH
<Umn OUm`n' >

2	 VH	 VH
= Nmn<(z	 x Vt*mn )'(z x Vt *,m ; n , )>

2	 V,H	 V H
=Nmn< Vt' mn • Vt *m' n' >

2	 V,H	 V,H=Nmn S I	 *'mn a Vt *m' n' dSVt

V,H
a*^2

-Nmn J1 ^mnt ^minr dS + §H ^
*Mn dRap (A3.8)

S	 c

Due to the boundary condition at the surface, the second term vanishes.	 Since

V2^V,H	 = - [ %In' ^V,H
12t m'n'	 I b I	 m'n'	 '

(A3.8) becomes

,	 2

V,H +V,H	 2	 Nmn 2 b	 Nmn
<TJmn 'Umn > = Nmn dmm' ann' (1 + dm0 ) n --^- f Pd P Jm b P0

= N2 a , d ,(1 + a )	 J2 ( m n )^(	 )2 - m2l
mn mm nn	 m0 2 m 	 n

Then, the normalization constant becomes
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[2Z 0 /71(1 + dm0 ) ] 1/2 [ ( 1 2 _ m
2 ]

-1/2 
IJm( ^mn) 

I-1	 (A3.9)

r

t 

^c	 Equations (A3.7b) and (A3.7c) can be similarly proved. The normalization

constant of the TM mode is shown to be

Nmn	 [ 2Zo/ n(1 + 6m0) ] 1/2 %n
Jm+l ( 9mn ) -1	 (A .10)

k.	 First, we assume the tangential electric field is continuous at z - 0:

f

E n(z - 0- ) _ k(z - 0+)	 (A3.11)	

a

From Eq. (2.22),

in(z - 0 ) = E	 x cos Aexp[-Jk x]
t	 o	 o	 x

(A3.12)
.	

i

and the right-hand side of Eq. 	 (A3.11) is given in Eq. (A3.1). Multiplying both

sides of Eq. (A3.12) by the integration operator, w

(i

b	 2 n
Pd P 

ff	 d 

o^mnH
(A3.13)

s
0	 0

and using the orthonormalization conditions of Eq. (3.7), we obtain

V
C b	 2 n VU	 •Y(^:)

't

Z0 11 = Eo cos 90 f	 pdp f	 d¢ +	 +jj
(A3.14)

ICmn
0	 0 Umn•Y(x)

where it

-^kxx
1(x) =xe

Amitay and Galindo evaluated the integral of Eq. (A3.14) (Eq. (6) in reference
1

[11]).	 The coefficients in Eq.	 (0.14) then become
t
1
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f	 1 i
f

V
mn E

Z° cos
1	

0

o Nmn 
2k m 

(-3)m -1 
Jm (	n) Jm(kx (A3.15)

C o x	 -1mn

We can following a similar procedure for the other two coefficients. They are

shown to be

mn
E k o 2 it(-J) m-1

	
0%n_

ZH
=	 o
Zo cos	 B	 N	 k	 J ( fm ) J (k b)o	 mn	 x	 m	 n	 m	 x

r,
(A3.16)

mn
zmn

k2	 %n 
2	

-1_
x	 b

s

If we match the tangential magnetic field,

in (z
	 0- ) _ t (z a 0+)	 (A3.17)

where

E- k x
Hinz 0

+)	
o y e j x

t	 za	 ^r

and the right-hand side of Eq. (A3.17) is given in Eq. (A3.2). If we follow a

similar procedure as before, the result is different from the one obtained by

matching the tangential electric fields. The only difference in this case is

that the cos 90 terms in Eqs. (A3.15) and (A3.16) and the factor of k
zmn/ko .	^.

The coefficients in this approach is given by

I
V

	

	 ^	 r
E 0	 ICHn	

zo zmn Nmn 2

kxm (_J)m-1 
Jm ( ^ d Jm(kxb) -1	

(A3.18)

mn
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VZ	 m 1
t	 C	 E _ 2n^n (-3)

-Hn*^ 	
Nm	

2	
kxJm , + Jm ( kxb )	 (A3.19)

Omn	 Zo	 kx - ^ 
bn)	 1-0 11

In this report, we use the electrical-field matching. Witt and Price [121 indi-

cated that using the magnetic-field matching gives a better convergency for the

high (evanescent) modes. However, as shown in Eq. (A.18), this method gives a

very large coefficient for the mode near the cutoff frequency. In this case,

the total power transmitted may be more than 100%, which can not be justified in

a physical point of view.

When 8° ' 0 (normal incidence), matching the electric fields at z 0,

the transmitted tangential electric field is given by

r

^ ^ k# tzb	 ^ln
IP P

t	 2E° n J 1 ( ln ) L ( ln ) 2 - 11	
J1 b 

P1 cos

r

n
9ln J 1 	 b P	

(A3.20)sin 

Note that we have terms with m 1 only because the incident field is linearly

A

polarized in the x-direction. Also, from Eq. (A3.2), the transverse magnetic

field is given by

	

jkzlnz	
r

2Eo	a	 kzln
9t 	 2	 Pln J 	

P sin 0
0 0	 J1(^ld)	 In ) - 11

1

+ 0 p J1 
S 

b° p cos Q (A3.21)

Assuming that the perturbation is not too large, we use the fields in the
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unperturbed waveguide for the fields in the perturbed waveguide except for the

exponentially decaying factor in the z-direction. Then the power attenuation of

the transmitted wave from the normally incident field is given by

P _ 4	 01  exp[-2zaln,
P0	 b2k0 n [ J l ( gin)" gin)2 - 

1 ) l2

r 2	 r	 2

R	 x f PdP b
2 

J
ln 

P	
+ g2 Jr In P

P2 l b
	

in' 1 b

Sin/k0) exp[-2zalnj
2 ^	 r	 {ti3,22)

l ) 2

n - 1

where
n

kzln	 ^ln - J 0ln

P	 E2 irb2 /Z	 }
0	 0	 0a 	 6

Here Po is the power incident on the area of the aperture. The integration in

Eq. (A3.22) is evaluated in Eq. (A1.9).

c

^^	 I

a^gy	
1,	 ^. a •a..-..	 a	
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