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Abstract

A knowledge of the acoustic energy emission
of each blade row of a turbomachine is useful for
estimating the overall noise level of the machine
and for determining its discrete frequency noise
content. Because of the close spacing between the
rotor and stator of a compressor stage, the strong
aerodynamic interactions between them have to be
included in obtaining the resultant flow field.
This paper outlines a three-dimensional theory for
determining the discrete-frequency noise content
of an axial compressor consisting of a rotor and a
stator each with a finite number of blades. The
lifting surface theory and the linearized equation
of an ideal, nonsteady compressible fluid motion
are used for thin blades of arbitrary cross sec-
tion. The combined pressure field at a point of
the fluid is constructed by linear addition of the
rotor and stator solutions together with an inter-
ference factor obtained by matching them for net
zero vorticity behind the stage. The rotor solution
is obtained as a Fourier-Bessel series; the stator
solution is expressed as a Fourier-Laguerre series.
The coefficients of the series and the interaction
factor are determined as the eigenvector of a set
of algebraic equations in matrix form whose ele-
ments comprise the sum-integrals of the rotor and
stator eigenfunctions. The resultant pressure
field of the stage is the sum of the individual
perturbation pressures in the presence of the
interaction effects, expressions for which are
givenxherein.

1. Introduction

When the rotor is rotating in a uniform and
steady incoming free stream, a point behind the
rotor experiences periodicity in the pressure and
velocity characteristics, which are propagated as
acoustic perturbations. The relative motion
between the stator blades and the rotor efflux
introduces periodicity in the inflow to the stator.
Since the rotor efflux consists of both the heli-
cal vortex sheets and the viscous wakes of the
rotor blades, the aerodynamic forces and moments
on the stator blades and the outlet velocities and
pressure of the stator are affected by the flow
periodicity. Under subsonic flow conditions, peri-
odicity in the stator flow field also affects the
rotor. Reflection, transmission of the acoustic
perturbation from the blade surface, and interac-
tion with the duct resonance characteristics also
have a strong effect on the resulting acoustic
field at a point.

Kemp and Sears1'2 studied the unsteady flow
field of two rows of a two-dimensional thin airfoil
cascade in incompressible flow although they did not
dwell on the aeroacoustic aspects. The aeroacoustic
field of two-dimensional single cascades was studied
by several workers (Lane and Friedman ,Carta,
Carta and Fanti5, Hetherington6, Parker'-9, Tyler
and Sofrin10'11, Smith12, Whitehead13, Morfey14"16,
Mani17'18. and Mani and Horvay19). Kaji and
Okazaki2^-22 studied the aerodynamic interaction

between the two rows of infinite airfoil cascades
and observed the discrete-frequency circumferential
modes and their duct resonance characteristics.
Slutsky" solved the discrete-frequency noise gen-
eration due to rotor forcing excitation and rotor-
stator interaction by using a Kemp-Sears mechanism
with bound vortices on the rotor and the associ-
ated three-dimensional velocity potential; he ob-
tained the spin wave characteristics. Namba24>25
proposed the lifting surface theory for a single
blade row in a compressible three-dimensional flow
to calculate the unsteady blade forces and their .
acoustic power generation. He found that the sound
power generated was decreased by increasing the ra-
dial nonuniformity of a sinusoidal external distur-
bance in the circumferential direction. Mariano2"
considered the effect of reflection of the sound
field from a plane boundary for a uniform distribu-
tion of sound sources.

In an earlier paper27, the author outlined a
lifting surface theory for a turbomachine stage in
a three-dimensional incompressible flow that uses a
distribution of sources and vortices to represent
the blades of the two rows: the rotor and the
stator. Another paper2" treats the acceleration
potential approach to the rotor-stator combination
for compressible flow for both the aerodynamic
loading and the acoustic characteristics. The con-
cept of a rotor-stator interaction factor is intro-
duced to isolate their mutual interaction effects,
and axially attenuated or wavelike solutions are
constructed for the general solution by using the
Birnbaum series expansion as modulated by the
eigenfunctions of the rotor and stator. Thus the
composite solution of the rotor and stator is ex-
pressed through Fourier-Bessel and Fourier-Laguerre
series expansions that simultaneously satisfy the
surface boundary conditions on both the blade rows
and arbitrarily match to give zero net resultant
vorticity in the wake of the stage. The procedure
followed in this paper for two blade rows parallels
closely that of Namba" for one blade row. An ad-
ditional condition is required, however, to quan-
tify the magnitude of the interference between the
two blade rows by matching them optimally. In
Section 2 the Green's function is written for the
linearized differential equations governing the
perturbation pressure field of a pulsating unit
pressure monopole placed at a point on a blade in a
double Fourier-Bessel and Fourier-Laguerre series
for the rotor and stator, respectively. From the
monopole solution the pulsating unit pressure
dipole solution is obtained in Section 3 as the
derivative normal to the blade corresponding to the
surface pressure distribution. The chordwise pres-
sure distribution on the blade is represented in
Section 4 as a Birnbaum series modulated by the
pressure eigenfunctions of the rotor and stator
corresponding to the camber and thickness effects.
The combined rotor-stator field is matched to give
a zero net vorticity condition behind the stage
(Section 5), and the coefficients of the Birnbaum
expansion are determined by satisfying the flow
tangency condition on the blade surface (Section 6)
followed by a short discussion in Section 7 of the



combined pressure field. Because of space limita-
tions, only the highlights of this work are pre-
sented herein. No attempt has been made here to
consider the reflection and absorption of waves or
the natural duct resonance characteristics. Numer-
ical results of the present theory will be reported
separately.

The author is deeply'grateful for the keen
interest evinced by Dr. Carl F. Lorenzo during the
formulation of the present research program and for
his constant encouragement throughout its execu-
tion. Thanks are also due to Dr. Anatole Kurkov
for his manifold discussions and useful suggestions
on the various parts of the research and to Dr.
James A. Pennline for his useful suggestions on
some aspects of the solution of the Laguerre dif-
ferential equation. The Aerodynamics and Engine
Systems Division of the NASA Lewis Research Center
provided the necessary atmosphere for the present
work for which the National Research Council pro-
vided the financial support.

2. Eigensolutions of Pulsating Pressure Pole
on Rotor and Stator

We shall consider a stage of an axial com-
pressor (Fig. 1) with the rotor followed by a
stator located centrally in an infinite annular
duct with an outer diameter such that the clearance
between the blade tip and the casing is uniform and
negligibly small. We shall consider a compressible
nonviscous fluid and assume a finite number of
rigid blades Zr and Zs in the rotor and stator,
respectively. Assuming that the compressor stage is
lightly loaded so that the perturbation pressures
are small compared with the free-stream static pres-
sure p«, the linearized differential equations for
the perturbation pressures pr and ps of the
rotor and stator are given by

3Z

in cylindrical polar coordinates where (0, Vr, Wr)
and (0, Vs, Ws) are assumed to be free-stream
velocity components along the radial, peripheral,
and axial directions for the rotor and stator,
respectively, and a«, is the free-stream speed of
sound. Because the stator is situated downstream of
the rotor in a region of rapid change, its inflow
components (0, Vs, Ws) cannot be defined a priori.
However, we assume that the stator inlet conditions
correspond approximately to that obtained from the

velocity diagram (Fig. 2) so that we can write the
components of inflow to the rotor and stator as

(0, Vr, Wr) = (0, or, Wa)

.(0, Vs, Ws) = (0, nr - Wa tan «2r, Wa)
(2)

where the axial velocity Wa is assumed to be
constant throughout the stage.

Equations (1) can be nondimensionalized, with
all lengths and time expressed in terms of the
rotor tip diameter and characteristic time, and
written as
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where

rl = r/rtr; 21 = z/rtr' h = t^O5 6? = 1 - M

62 = l _ M2; t() = rtr/Wa; Vr = nr; M = Wa/a.;

M = M tan a; M = na^

(4)

Equations (3) express the pressure perturbation
field of a pulsating unit pressure pole situated on
a rotor or stator blade at the vector point "p̂ - or
"p^ with a pulsation frequency <ur or u$, respec-
tively. We may write the general solutions of
Eqs. (3) as in

kr=

exp i[kr(e - 9p) + (5a)



Ps(?l>< ks,e

x exp i[ks(e - cps (5b)

where we have defined

P aPs = ;i7ir

where ar and as are the rotor and stator axial
wave numbers; kr and ks (kr,ks = 0,+l,̂ 2,...,jM
are the pair of integer separation constants; and
Pr and Ps are the unknown pressure functions.

We shall express the delta functions in
Eqs. (3) in a combined Fourier series - Fourier
integral form as
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and write p and p as

pr{V V V = Pr(?l ~ pr)e "" 1

Combining Eqs. (3), (5), (6), and (7) and equating
the corresponding terms on the two sides, we obtain
the nonhomogeneous second-order ordinary differen-
tial equations for the radial pressure functions
Pr and Ps, given by

d2P.
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An examination of Eqs. (3) or (8) shows that when
x = 0 as in the case of an incompressible fluid or
when the exit rotor blade angle a.2r = 0 in a com~
pressible fluid, both the equations reduce to the
Bessel type. But, for all other cases, x cannot
be neglected since kg extends over an infinite
range of values, and it is essential to consider x
in a formal solution of Eq. (8b). Thus Eq. (8a) is
the nonhomogeneous Bessel differential equation and
Eq. (8b) is the classical Whittaker nonhomogeneous
differential equation, for which the complementary
solutions can be written in the form

)
(lOa)

(ks _
<>

(ks)
(k )

(10b)

in which I(x) and K(x) represent the modified
Bessel and Hankel functions, respectively, and
WX)U(x) is the Whittaker function. To write
the solution of the complete nonhomogeneous equa-
tions, it is convenient to express the solution of
the rotor function Pr in an infinite expansion
in terms of the normalized functions t

fkfor Eq. (lOa). The function <t

for

is defined in

the appendix. The solution for the stator function
Ps is more conveniently written in terms of the
set of generalized Laguerre functions that satisfy
certain orthogonality relations than directly in
terms of the Whittaker function, to which they are
related by the expressions

r(l' •*• 2u) r(x - n •*• 7)

r(x

z/2 (
x e z

(2w) . }L(x-p_l/2)(
z) (11)

Thus we shall obtain the solutions of the nonhomo-
geneous Eqs. (8) for pr and ps in the form
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expansion to be determined. The eigenfunctions 1 sr s

,y ( K 1and T^ s; are combinations of Bessel and (18b)

Laguerre functions, respectively, that satisfy The Dirac delta functions 6(n - pr) and
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r) (k ) / ? ?\ spending eigenfunctions such that
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in which the independent variables r2s and p2s
are defined by

(k ) The pressure functions
r, = v s r, the end conditions of
" * 1 hub and the tip for wf

. . ^14' ients must vanish at b
^ s' the relations

P2s ' v* ps
fk \

For the Laguerre equation (Eq. lOa), eigensolutions gp- *4 = °
exist if31>32 1

is an
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11 = X8. + '(k ")' ~ (" + ?) (15) 1 * 2s

hi S (ks)at r0 = v s R2s 2, sinteger, and we shall put
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Pr and Ps must satisfy
zero radial flow at both the
ich the radial pressure grad-
oth these points and we have

at r1 = hr, r1 = 1

" 7} *i S = ° " (20)
/

(kj
h ; r0 = v Rr s' 2s £ sr

A

, from which we obtain an infinite set of eigenvalues
1, = «• + a + i (16) (k J (k )1 2 i r , , s r . _ n i 9 a,\ -frtr oarh \f flnH

(kj (k )xi and xs. ("• = °»1>2>•••»") may be re-
garded as the radial eigenvalues of the rotor and
stator since we can write

(k.

(17)

The perturbation pressure amplitudes pr and
ps in Eqs. (5) involve summation over kr and ks
and a contour integration over ar and as with
the contour so chosen as to yield bounded or expo-
nentially decaying terms in the axial direction.
Because of the cumbersome and lengthy nature of the
calculations, only the final expressions for sub-
sonic axial flow are given herein as
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3. Representation of the Lifting Surface

The lifting surface of the rotor and stator
blades can be regarded as composed of a distribu-
tion of pulsating pressure dipoles with constant
interpole phase angle factors or and os and
with the dipole axes normal to the local blade sur-
face. The position of the unit dipole on the blade
has the coordinates [pr, ?r

 + <pr
 + mr(or + 6̂ );

zr
 + sr]; [PS, 9S + cps

 + 5V°s + ss)» zs + ?sJ on
the (ny.)™ rotor and (ms)

tn stator blade, respec-
tively, in which <pr and ips are the correspond-
ing offset angles of the first blade (Fig. 3). The
dipole field can be obtained from the pole field by
differentiating along the local unit normal to the
surface. The field of the Zr and Zs unit pres-
sure dipoles on the blades of the rotor and stator
can be obtained by summing over mr and ms. If
Apr and Aps be the net upward-acting pressure at
the points p^(pr,?r,cr) and P"S(PS,*S,CS) >

 we can

obtain the resulting pressure field of the rotor
and stator each in isolation by integrating the
dipole field of the intensity Apr or Aps and
integrating over the entire surface of each blade
with respect to p and 5. For subsonic axial
flow, we have the rotor and stator pulsating dipole
pressure field given by

Rsr Zs2

Rsrhs zsl 1=1 ks=~°°

dp dr (23b)

where the functions ** and YA are given in the
appendix.

4. Effect of Camber and Thickness

The pressure loading Apr and Aps on
the blades in isolation is caused by the combined
effects of blade thickness, camber, and incidence
and varies over the blade surface. It can be ex-
pressed by combining it with the rotor and stator
eigenfunctions *[ r' and f^ s' as

E
1=0 1=0

A>~ .1
'2,1 ("r)J

1=0 s.=0

(k ) I
1,1 )̂J

(kr)

.,1

(kj
•t (PS)

(24a)

(24b)

where (F},Fp) and (Ĝ .G?) are the chordwise varia-
tions for trie rotor and stator due to the thickness
and camber, respectively, in terms of the chordwise
coordinates ior and o?s related to the locally
orthogonal coordinates (yr,zr) and (ys,Zs)
defined by

yr = ~CR cos "r ~Cr - ys - +CR
(25a)

y$ = +C$ cos us -Cs £ ys £
 +CS 0 £ us < IT

(25b)

The orthogonal coordinates (r.ŷ .Zr) and
(r,ys,zs) are related to the Cartesian coordi-
nates (X, Y, Z) by rotation through the angles
(ar,as) and Ur,\|)S) described in Eq. (26)
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The axial positions of the leading and trail-
ing edges of the blades are given by

zrl = Zr0 - CR cos V Zr2 = Zr0 + CR COS ar

zsl = Zs0 - CR COS as; Zs2 = Zs0 + CS COS as

(27 a)

(27b)

where (\|>r,>|JS) and (cr,cs) are related to ur by
the equations

2-nm
- cos

, /2C_ sin a cos <o \
-1

2irm

s

. I 2C,. sin a cos
- - cos'1 I—^ 5

r,0

s,0

2cR COS "r COS

2cS COS "s cos

(28)

The offset angle ^y of the first blade on the
rotor can be written as ~y~ = siQti, where HQ =
the offset angle ~$3 of the first blade on the
stator can be set equal to zero. The terms
(2umr/Zr) and (2nmr/Zs) represent the polar angles
of the (mr)

tn rotor and (m?)
tn stator blades,

respectively, at the midpoint of the blade chord.
The last terms in i|ir and 4>s give the increment
in the polar angles for points (y'.z1) away from
the midchord point at any radius. We shall repre-
sent the functions (̂ 1,̂ 2) and (9l»G2) in an infi-
nite trigonometric series expansion corresponding
to the Glauert/Birnbaum series as

(k ) _ (k (k
sin

m=l
(29a)

sin U

sin (29b)

e the coefficients Â r), B̂ r', Ĉ s), and
) can be determined by making the blade sur-

faces as stream surfaces. The series in Eqs. (29)
satisfy the Kutta condition at the blade trailing
edge and have the usual singularity at the leading
edge. It can be observed from Eqs. (24) that
thickness and camber effects are inseparable and
are interwoven. Note that the thickness effect
corresponds to the monopole solution and can be
obtained directly.

5. Boundary Conditions

By defining the mean camberline and thickness
shapes of the blades through the equations

zCr = ZCS =
(30)

The upper and lower surface blade profiles are
given by

ZUr ~ zCr ZTr; zLr zCr ~ zTr

'Ts
(31)

If Ur and Us be the resultants of the free-
stream and induced velocity perturbations of the
rotor-stator flow field, we can represent the sur-
face flow tangency condition on the upper and lower
blade surfaces by the equations

fdz,
TU1 =

Rz

Ry,
TU2 =

(32a)

rL2

(32b)

In keeping with the thin airfoil theory postulates,
the boundary conditions are satisfied on the blade
chord.

To obtain the induced velocity perturbations of
the rotor and stator, it is convenient to introduce
a local intrinsic helical orthogonal coordinate
system (Fig. 4) for each based on the corresponding



undisturbed streamline with the helix angles
and en2 defined by

R*
tan ehl = —

(33)

tan e h2 - M2/R)

The helical intrinsic coordinates (pr, TJ, s^,)
and (ps, T2, 52) of the rotor and stator are
related to the cylindrical coordinates by the
matrix transformations of differential lengths as

(34)

The equations of motion in the intrinsic coordi-
nates can be written as

3V
T13S 3S rM

3P 3P

3V
T2

 3Va2 3P 3P

3S

(35)

where Mr and Ms are the resultant free-stream
Mach numbers of the rotor and stator, defined by

M2 1 + Ui- - tan a,'2r

(36)

The velocity perturbations (vri, v_i, VTI) and (vr2,
V<j2' V t2^ °f t^e rotor &nd the stator separately can
be obtained by integrating Eqs. (35) along a helical
streamline by putting e., = (e - z,/Rj and inte-
grating over z\. We tliu|_ obtain trie resultant
free-stream velocity Ifr,irs from the equations

'Rl

V

Rz

1

0 sin o cos a

0 -cos a sin o

(37a)

US1

Ur ,

USz'

5=

1 0 0

0 sin a cos a

0 -COS a$ sin a

vn - tan a^

(37b)

where the total perturbation velocity of the rotor-
stator combination (vr, ve, vz) is expressed as

(38)

The first two vectors on the right of Eq. (38) are
the perturbation velocities of the rotor and
stator, each in isolation, and the last vector is
the interference velocity due to the simultaneous
presence in the compressor stage of the two rows in
close proximity. We shall assume that the inter-
ference velocity vector is a linear combination of
the perturbation velocities due to the rotor and
stator, so that Eq. (38) can be written

(1

sr

v + vre se

szy

(39)

This is the simplest assumption that can be made
for the interference effect and permits us to esti-
mate the magnitude of the interaction. By defining
the parameters

9hl - V 93
9hi - V ei

- eh2

(40)

and combining Eqs. (32) and (40), we can obtain the
perturbations va\, VTI, v02, and vT2 in the form

AA] = EI[BB] (41)



where the matrices [AA] and [BB] are given by

AA =

I U J

- (sin 8^ + T. i

- (sin 83 + T.|2

cos BJ) - (sin e2 + T..J cos e2)(cos e, - T.., sin B,)(COS e2 - T..,

cos e,) - (sin e2 + T., cos e2)(cos e, - T. , sin e,)(cos e2 - T. i

COS 8-

- (sin 63 + T. 2 cos e-

[(tinSin a,, + COS a,.

B = "

V * '

. - (sin 84 + TU2 cos e4)(cos 83 - T .„ sin e )(cos e4 - T||2

, - (sin e,, + T. , cos e.Hcos e, - T. , sin e,)(cos e. - T. ,
T \-£- 1 -j L£ %5 f \-£-

fi/R*) + (tmCOS a^ - Sin aj] \1 z'=0+r

[(T. ^sin ar + cos a ) (r,/R^) +

[(T.J2 sin a +

[(T. 2 sin o +

\

TL1COS a - Sin a )]
z=u-r

COS o (r-j/R^t - tan a.,) + (T.,2 cos o - sin a )]
z^=u-«-

COS a (ri/R* ~ tan "9) + (Ti •> cos ac ~ s^n ac)^ls . ._ , „ ,=0_
s
(43),

The velocity perturbations va\, v02, VT
can be expressed in terms of the coeffic

, and vT2 z
ents of / ,\l/2

the Glauert series expansions and written as the / rf \ /
system of equations in matrix form rpW 1 + — i 1 - /

r " a \ R2/ J
fl,m 9l,m

f2,m 92,m

f3,m 93,m

4,m 94,m

K = 0,

Kk)

1 m

*i

= el

Zrl

(44)

r /r \2i1/z

±1,±2,...,±-

sin e2)

sin e2)

(42)
sin e4)

sin e4)

APrdZr (46a)

f\

J .PS,ZS
2
rl

The submatrices f, g, and "^ in Eq. (44) are
functions of the position vector and are not given
here because of space limitations but may be ob-

tained from Ramachandra28 The coefficients j/00
and

of

= 0,1, 2,...,») are defined in terms

k) and

(46b)

We assume that the rotor and stator are matched at
any .operating condition when the net vorticity
behind the stator is zero. If rrh and rsh are
bound vortex strength of the rotor and stator at
the blade hub, we express the matching condition by
the relation

as

(k) (k)-

Zrrrh Zsrsh (47)

By combining Eqs. (24), (29), (45), and (46), we
can express the matching condition (Eq. (46)) as

1 1 0 ' m m m

m=2,3,... (45)

6. Rotor-Stator Matching and Final Solution

With each of the rotor and stator blades is
associated a bound vortex of strength rr,rs pro-
ducing the local lift L = pVr per unit span
according to the Kutta-Joukowski theorem. The
strengths rr and rs of the bound vortex can be
obtained from a chordwise integration of Apr and
Aps as a function of r^ and z-^ as

k = O.*l.*2 ..... *.

(48)

The reader is referred to Ramachandra29 for the
expressions of f5 and g5 in Eq. (48). A composite
equation can be written in matrix form for the
unknowns &m, &m, and S\ by combining Eqs. (44)
and (48) as

(49)



where

and

is the vector of unknowns

(W,k) A T m = 0,1,2,... (50)

is the matrix

yW -
*7

fl,m
f2,m

f3,m
4,m

f5,m

9l,m -
92,m"

93,m"
94,m -
95,m-

«1
« 2̂

*3

^4
0

(51)

m = 0,1,2,. ..

The eigenvectors of the lPj*trix,l/f
r in Ecl- (49)

give the coefficients sfW ,&{*•>, and «fi
(K * 0,±1, ±2,..., *<><>) from which the pressure load-
ing Apr and Aps on the blades is obtained.
Equations (45) are insufficient to determine the
coefficients A, B, C, and D of the' Glauert
series of Eq. (29) in order to separate the thick-
ness and camber contributions.

7. Combined Pressure Field

It is now possible to express the pulsating
pressure fields PR and PS of the rotor and
stator from Eq. (23) inclusive of the interaction
effects. The resultant pressure P at any point
in the flow is the sum of the pressures PR and
PS

; kr,i; ay)

ks'l; (52)

Assuming that the free-stream values of the stream-
wise components of the perturbation velocities
v i » = v02 ,0 * 0, we can write Eq. (52) in the
form

(4irB/Zr)P(f1,t; kr,ks,t; uy,u.s)

00 ^ -(-

Z r 1
c#<S'e - t.

j,s.,m=0

where

; St=

(53)

(54)

(̂ 3̂ 3)e, and are-
The terms (»i,̂ ), (»2̂ 5). and

respectively, functions of r^, e, and Zj alone;
^1> *l' ̂2» anc' ̂ 2 are constants obtained in
terms of trie geometry of the stage, the number of
blades, and the flow conditions. Again, because
of space limitations, the reader is referred to
Ramachandraz° for detailed expressions of these
quantities.

The acoustic modes and their characteristics,
including their attenuation and resonance proper-
ties in ducts.^can be obtained from Eq. (53). How-
ever, these discussions will be given in separate
papers elsewhere.

8. Discussions and Conclusions

A lifting surface theory has been formulated
for the two rotor-stator blade rows of an axial
compressor stage in terms of the acceleration po-
tential. Since the acceleration potential equals
the ratio of the perturbation pressure and the mean
flow density, the method is equivalent to the deter-
mination of the acoustic field of a rotor-stator
combination in a duct of infinite length in terms of
the flow Mach number, the geometry, and the oscil-
lation frequency of a distribution of pulsating
pressure dipoles through a lifting surface theory.
The combined effects of blade thickness and camber
have been included as well as that of incidence
although it has not been possible to separate them.
Curiously, it has been possible to separate their
effects when the fluid is incompressible2'. The
perturbation pressures designated in terms of their
mode numbers (kr, ks, and i.} form a superposition
of an infinite number of acoustic modes consisting
of the circumferential wave numbers kr and ks and
the radial mode numbers n. It has also been pos-
sible to isolate the rotor-stator interaction
effects by matching the blade rows to give zero
vorticity downstream of the stator as in an ideal
combination. This assumption may appear restric-
tive in a multistage compressor. However, this
can be relaxed and the same method can be used to
determine the coefficient vector by using a finite
prescribed wake vorticity condition in Eq. (47).
From this general solution it is possible to obtain
special cases of interest like that of a single or
twin tandem actuator disk or single or twin two-
dimensional cascade rows. This procedure could be
extended to the study of counterrotating propel-
lers, of course, by modifying the end conditions
in Eq. (20) at the blade tip. This results in a
different set of eigenvalues and the corresponding
eigenfunctions.

APPENDIX

In this appendix expressions for the quan-
tities mentioned in the paper are given without
their detailed derivations. The functions I and K
are, respectively, modified Bessel and Hankel func-
tions of the first kind normalized over the range

(kr)
h <_ r-, £ 1. The radial eigenfunction *
given in~Eq. (Al) appears somewhat different from
the form used by McCune for the rotor. The

(k ) (k )
radial eigenfunctions t r and v s of the
rotor and stator are given by

( r , )
(k -1) (k

r
(k +1} (k )

I r (x r hr)

(kr) (k ) (kr) (k )
I r (x r r:) + K (x r

 ri) (AI ;

' 2 s - = C , « /
/ <U \(x S-5-1/2]-5-1/2J

(2a)
(k

S

r2s) (A2)



where

) tr + IJLf (ksV1/?yVi )
' Vx +g-l/2/

1
7 L

c'k"

The eigenvalues x(kr) and
roots of the equations

(ks)

/ o 1

V (ks) \(vl}
lx -«-3/2J (A3)

(25)

x
 s -5-3/2

are obtained as
(kr) (k )

(k.,-1)(k -1) (k +1)
11/ r /, \ j. u i /.
IN ^ AI / T N ^ A

+ A
+1)(x(krj -fK

(^1)(x(k'-))+K(^1)(x^)Jj

!,Pr,ti: kr,i)

ik

x I + I 0 (A4)

2-iO . 1

(25)

(2

x
 s +5-1/2

_

-3/2

(25

sr

(ks), -

(kjs

2°_+ 11—+ (25)

^ S R s r

( k s ) -

(ks)
v s R sr,

OT
sr

L(x2"ks)-5-l/2)

v Rsr,

(25)
(ks) \(vl) -

x -5-1/2J

(25)

L( (ks)(x S-a-3/2
= 0

tan o. sgn

(kr)

x exp[iMMZr - -^~ W
x exp i[kr(e - vr - 9r)

 + ^t^ (A6)

= exp f-l/2

(ks)

ik.
cos sin MA^ZJ) + M tan

|AI (SF cos MA1ZS - CF sin

+ SF sin MAI?S);

sgn ?] (CF cos

exp

exp i[ks(e - <PS - q>s)] x exp (i

(A7)

where CF and SF are functions defined in
Ramachandra28 and will not be given here because
of their lengthy nature.

(A5)
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