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SUMMARY

Zachary [Phys. Rev. A 29 (6)m 3224 (1984)] has recently analyzed

the instability of relativistic-electron helical trajectories in com-

bined uniform axial and helical wiggler magnetic fields when the

radial variation of the wiggler field is taken into account. It is

shown here that the type II instability comprised of secular terms

growing linearly in time, identified by Zachary and earlier by

Diament [Phys. Rev. A 23 (5), 2537 (1981)], is an artifact of simple

perturbation theory. A multiple-time-scale perturbation analysis

reveals a nonsecular evolution on a slower time scale which accommo-

dates an arbitrary initial perturbation. It is shown that, in the

absence of exponential instability, the electron seeks a modified

helical orbit more appropriate to its perturbed state and oscillates

stably about it. Thus, the perturbed motion is oscillatory but

nonsecular, and hence the helical orbits are stable.

*Summer Faculty Fellow. Permanent address: Jackson State Univer-
sity, Dept. of Physics and Atmospheric Sciences, Jackson, Mississippi
39217.
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I. INTRODUCTION

A recent paper by W. W. Zachary extends to arbitrary radius

2
some earlier work by P. Diament concerning the instability of rela-

tivistic-electron helical trajectories in combined uniform axial and

helical wiggler magnetic fields when the radial variation and axial

component of the wiggler field are taken into account. These authors

find in particular that, in the absence of exponential instability,

there remains a weak instability comprised of secular terms which grow

linearly in time, casting doubt on the suitability of these helical

orbits as a basis for free-electron laser calculations. Here, it is

shown that a refined perturbation analysis employing a multiple-time-

scale formalism reveals a nonsecular evolution of the orbit on a

slower time scale which accommodates arbitrary perturbing initial

conditions. In the absence of exponential instability, the electron

seeks a modified ielical orbit more appropriate to its perturbed state

and oscillates stably about this modified orbit. Thus, the secular

terms can be said to manifest physical stability of the orbits rather

than instability.

The plan of the paper is as follows. In .Sec. II, the formalism

of the multiple-time-scale perturbation theory is introduced. In

Sec., Ill, the first-order nonsecular solution is obtained by Laplace

transformation methods and it is shown how the parameters of the zero-

order helical orbit are modified by the perturbing initial conditions.

In Sec. IV, the analogous parameter shifts in response to a small

change in the guide magnetic field.are derived. Finally in Sec. V,
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2
the weak instability of Diament is interpreted in this context.

II. MULTIPLE-TIME-SCALE PERTURBATION THEORY

Zachary considers the trajectory of a relativistic electron in

the magnetic-field combination

21 (kr)
— - •• cos(kz - jrf) , (2-1)

where B and B denote the magnitudes of the axial guide and helical
o w

Wiggler magnetic fields, respectively, k is the wave number of the

axially periodic wiggler field, I is the modified Bessel function of

the first kind of order one, and (r,0,z) denote cylindrical coordinates

in space. We adopt Zachary 's notation in the following but refine his

perturbation analysis .

The equations governing the motion of a relativistic electron

in the magnetostatic field (2-1) can be written schematically in the

form

?= Y (x.̂  . . ., XG) , (2-2)

where x denotes the .six-dimensional phase-space vector

and (V ,V ,V ) are the cylindrical components of the electron velocity

muItiplied by#» the usual relativistic factor. Expressions for the

six components of y are given in Ref. 1. The equations (2-2) admit

the steady-state helical-orbit solution
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x*o(t) = [a, X^kut + 6 i T/2, V'̂ ut + k̂ e, 0, kau, u]T , (2-4)

where 8 is an arbitrary phase and the parameters a, u and tf are related

by the conditions

= kc{(l -*~ 2 ) [ 1 + (ka)2] -1}35 , (2-6)

| e l B /

Consider now perturbations w(t) of the steady-state helical orbit

x (t.) by writing

x(t) = xQ(t) + € w(t) + 0(€
2). (2-7)

In other words, we seek a perturbation solution of Eq. (2-2)

correct to first order in €. where € denotes the order of smallness of

the perturbing initial conditions. However, to cope with the secular

terms which arise in a conventional perturbation analysis , we intro-

duce a multiple-time-scale formalism. The essential idea of this method

is to extend the number of independent time variables to remove

secularities order by order in the perturbation solution; the removal

of time secularities on a fast time scale determines the time develop-

ment of the motion on a slower time scale. ' The solution x(t) is

expanded in the small parameter € in the form

x(t) = x "^ + € ' ™ ( t ' •••') + ••* ' (2~^

where t ,t ,t , ... denote a hierarchy of successively slower time

scales:
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dt dt.. dt,,
_ o _ 1 _ , 2 _ r 2
dt ~ 1 ' d t ~ ~ € ' d t ~ ~ € ' - ' ' * (2~9)

Operationally, we treat t ,t ,t , ... as independent variables,

expanding the time derivative in Eq. (2-2) according to

Since the number of time variables has been increased, there is

additional freedom in the perturbation analysis which we make use of

to remove, order by order, any time secularities which occur in the

solution. This approach ensures that the perturbation solution

represented by (2-83 is uniformly valid, order by order. It should be

emphasized that there is not sufficient freedom in a conventional

perturbation analysis of Eq. (2-2) to remove secularities order by

order; only if the conventional expansion procedure is carried out to

all orders in £ and the secular terms summed, can the slow evolution

of the motion be determined. However, in a multiple-time-scale

analysis of Eq. (2-2) , the condition that the first-order solution

w(t ,t , ...) be nonsecular as t0 —*> «*> determines the slow evolution

of x (t ,t , ...) on the t time scale. When the multiple-time-scale

perturbation solution has been obtained to the desired accuracy, one

returns to the physical variable t by making the replacements t = t,

2 -»
t = £t, t = € t, ••• in the final expressions for x (t ,t- ,...),

w(tQ,t1,i..) , etc.

Accordingly, our procedure now is to substitute (2-8) and (2-10)

into Eq. (2-2) , and then to equate to zero the coefficients of

successive powers of € . • To lowest order ( € ) , we have



ŝ (2-11)

which admits the axisymmetric helical motion (2-4) for a certain class

of initial conditions. We assume here that the given initial conditions

fall into this class with perturbations to these initial conditions

to be considered in next order. Note that the time variable t in (2-4)

is now to be replaced by t and, furthermore, that the parameters

a, u and 9, which characterize the helical solution (2-4), are constants

on the fast time scale t but can vary on the slower time scale t,.
o 1

Proceeding to first order in € , we obtain the equation

A . w (2KL2)

where A_ is a matrix whose entries are constant on the fast time scale

t and which has the explicit form

A =

0

_ ku
Xa

0

oC

O

o

0 O

o o

o o

0 0

- |C £

k

ICO -Ka|C

K-1

0 (ia)'1
i'

O 0

o jr
- t 0

ka

<\> o

O

o

X-1

-t
o

o

, (2-13)

where we have followed Zachary in defining the parameters

(ka + (ka) (2-14)
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- 2nwI1(ka) f 1 + 2 (ka)~
2] , : (2-14)

1C = + 2/Lku i (ka)

- 2ll (ka)'1 (ka)

The termix-/^t in (2-12) is absent in a conventional pertur-

bation analysis. It is to be obtained from the lowest-order solution

(2-4) by differentiating the parameters a, u and 8 with respect to

t.. , and it has the form

}?
-°- = p + tq* , (2-15)

where the vectors p, q are constants on the fast time scale t .

Noting that the time dependences of u(t ) and a(t ) are related by

the equilibrium constraint (2-5) which implies

ku du _ ( «* + ku JT)

obtain for p and q the expressions

~o '= da/dt [ 1, O, O, 6, (ku + ka^rj ) ,
T (2-17)

[o, A, i, of o, o] , ;

[O, k, 1, O, O, O]T , (2-18)

where we have defined ft = - (kuka) ( o< + ku £ ) . The combination of

parameters ( of. + ku £ ) appearing in (2-16) - (2-18) has been analyzed

by Zachary , who notes that it can only vanish if (ka) takes on one and

only one critical value, viz., ka ̂  0.850.



III. FIRST-ORDER NONSECULAR SOLUTION

Combining (2-12) and (2-15) , we seek a nonsecular solution of

the first-order equation

•» ^ ,-, -ixr— = A . w - p - tQq . (3-1)
0

Equation (3-1) is conveniently solved by Laplace transformation in the

variable t in terms of specified perturbing initial conditions w

at t = O. Upon introduction of the Laplace transform of w(t ),

00 ~st
Q Q

r0
0)(s) = 1 dt e w (t) , (3-2)

there results from (3-1) the algebraic equation

(A - si) . 5(s) = -W* + p/s + q%2 , (3-3)

where 1^ denotes the 6x6 identity matrix. Solving (3-3) forco(s),we

find

R(S.) . (~ W + p/S +
6>(s) = - - - - , (3-4)

det ( A - si)

where R_(s) denotes the transpose of the matrix of cof actors for

(A_ - si) . Explicit expressions for the thirty-six entries in R_(s)

are given in the Appendix.

To evaluate the Laplace inversion integral corresponding to (3-4)

by means of the Residue Theorem, we require the zeroes of the

denominator , i . e . , the eigenvalues of the matrix A. Direct evaluation

of det (A - si) from (2-13) shows that the six eigenvalues are the
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six roots of the equation

det (A - si) = s2 (s4 + bs2 + d) = 0 , (3-5)

where, in agreement with Zachary ,

+ (ka)"1):] + K'^ka + (ka)"1] - I'1* , (3-6)

d = -*"2kaK {[l + (ka)"2] (o< + ku!f) - Y'Vu2 j . (3-7)

As an independent check on the algebra, we have related the results

3 4
(3-6) and (3-7) to those obtained by Freund and co-workers ' without

Laplace transformation. We have, by judicious use of the equilibrium

condition (2-5) , carefully verified the relations

b=.a + .ft. , d = nA , (3-8)

where il and .Tl are identical to the (possibly complex) character-

istic response frequencies of the equilibrium helical orbit derived

by Freund, Johnston and Spr angle and reported again by Freund and

4
Ganguly , viz.,

where

(*)2 = tf~2k2u2 + V^ku 211 I0(ka) [ ka + (ka)"1] , (3-10)
J- Vf £»

i , (3~1:L)r i ,
ku 2 _fi.w I2 (ka) [ ka + (ka) J

A = i ca"1 (SIQ - 2^"1ku) , (3-12)
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B-. -2Jlwu (c*)-
1}̂  -y^ku (1 - k2a2)]

+ H^ku [ (1 + k2a2) IJ (ka) - (ka)""1 ̂  (ka)] ̂  . (3-13)

The' conditions for exponential instability of the orbit are, as

shown by Zachary , either d < 0 with (b - 4cl) > 0, or d > 0 with

2
(b - 4d)< 0. The marginal stability condition d = 0 agrees exactly

4with that found by Freund and Ganguly . In the domain d > 0 with
* 5 . . . * ^ f )

(b - 4d) ̂0, the quantities -fl and -O. are real and positive and so

there is no exponential instability of the orbit. However, Zachary

finds a non-exponential instability instead in this case, associated

with secular terms which grow linearly in time. The proper inter-

pretation of these secular terms in terms of orbital stability is the

subject of this paper.

Insertion of . (3-5) and (3-8) into (3-4) yields the relation

R(s) . (- £Q + p/s + q/s
2)

to (sD = -̂ —z ——5 5 , (3-14)
s^ + JO (s^ +JTO1 *

and it remains simply to invert the Laplace transformation to obtain

w(t ) . The singularities of o>(s) occur at the simple poles s = - ijCl. ,
o J.
+ ~^

s = - lA-r and also at s = 0. It appears from the form of the q term

in (3-14) that the pole at s = 0 may be as high as fourth order.

However, explicit evaluation of the q term reveals that R̂ (s) . q is

proportional to -s and so the pole at s = 0 is at most of third order.

Accordingly, we rewrite (3-14) in the form

_* N (sO
6) (s) = -—0 5—-5 5~ ' (3"15)

)
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where the vector numerator N(s) is analytic at s = 0 (as well as at

the other zeroes of the denominator) and is given by the expression

N(s) = R(s) . (-sv + p* + q̂ s) . (3-16)

The Laplace inversion integral can now be evaluated using the

2
Residue Theorem. In the domain d>0 with (b - 4d)>0, the contributions

from the simple poles at s = - iJV. and s = - iH- lead to stable

sinusoidal oscillations at the characteristic frequencies .fL and

-£!-. Thus, the solution w(t ) can be decomposed into an oscillatory
£• O

part, w (t ) , and the contribution from the pole at s =0, w (t ) ,
osc o * o

which includes any time secular it ies :

Use of the Residue Theorem leads directly to the oscillatory terms

w (t )
osc o

(3-18)

It remains; then, to investigate the contribution ŵ (t ) from the pole

at s = 0.

Since it is of third order, the pole at s = 0 leads to a contri-

bution of the form
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where %, u. and f are vectors, constant on the fast time scale t .
I * O

Following the philosophy of the multiple-time-scale approach, we seek

to eliminate the secular time-growing terms in (3-19), i.e., to arrange

that ym = 0 and J= 0 by an appropriate choice of the slow time

dependence of a(t )oi»d 8(t ). The term ^ represents a small net phase-

space displacement of the orbit which need not vanish.

Upon use of the Residue Theorem, there result the following

expressions for the vectors \, p., ~j :

lira «? ds

1 lira

ds
(3-21)

lim
-3*0

N(s) (3-22)

Examining (3-20) - (3-22), we see from (3-16) that we must determine

' ' 2 2
the matrices R_(o) , (dR_/ds)|s = 0 and (d R/ds ) | s. = 0. The explicit

formulas for the entries in the cofactor matrix R_(s) given in the

Appendix make these determinations straightforward.

Consider first the vector J given by (3-22). From (3-16), we

see that '

lim
dR

N(s) = R(o) . p \
ds s = 0

(3-23)

From expressions (2-17), (2-18) for p, q, there results then the

formula
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Since ( o( + kuJT) ? 0 except for the one critical value of ka, we must

therefore set

||- - 0 (3-2S,

in order to eliminate the quadratic time secularity in (3-19).It

follows from the constraint (2-16) that we must also have

= 0 , <3-26)

and from (2-18) that q = 0.

Proceeding to the evaluation of u and noting that

lim d̂ (s) _ . dR
* Wo

(3-27)
s = 0

we find, making use of (3-25), the explicit result

= ( JL
\ X3

( * + kul) (kawo5 + Wo6) _ 1 d9_
ka 2l2 k dti

x [o, k, 1, 0, 0, 0]T . (3-28)

Note that the condition that u vanish is again a single scalar

equation rather than a vector equation, this time leading to a

determination of the slow precession of the phase 9(t ). From (3-28),

the condition for a nonsecular solution with U = 0 is
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d6 - K
1 o2 ̂  2 (3-29)

It remains, finally, to evaluate and interpret the constant

shift vector g in (3-19). Using the relation

lim 1_
s-»0 2

ds

d

ds

dR
P -

s=0 ds s=0

we obtain for the six components of $ the results

r =
1" (ka w _ + w •_)

o5 06

(3-30)

- K

Wo2
ku

(3-31)

r - <((<+ kuJP) „ ^ .
&Z = ":> o T (ka w K + W«J

){ ka ̂ ^

These results can be understood in terms of shifts $a, Su, $9 in the

parameters a, u, & which characterize the equilibrium helical orbit

(2-4). They admit the interpretation

52 • k.$3 = Se , S4 = o

= (kuj Sa + (ka) Su
(3-32)
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where

„. (ka w _ + w „)
f Kku o5 06ba =

*3 Aj *l

Su - . (3-33)

£6 = * . { SI2. IT.2 w- - «a(v . - k w ) -+ w
n2 n2 I 1
JiJl

. -
o3 2 L o2 o3 tf o4

with de/dt. given by formula (3-29) . It follows that the perturbed

motion (3-17) comprises stable oscillations at frequencies H , Jtl

about a modified helical orbit whose parameters are shifted slightly

by the perturbing initial conditions .

To conclude this section, it should be noted that the quantity

(ka w _ + w ) appearing in (3-33) vanishes for an initial perturbation
Oo 06

which conserves energy £ see the equilibrium solution (2-4) J . Since

the basic equations (2-2) conserve energy, such an initial energy

perturbation €)J remains constant and could be incorporated into the

zero order energy X . For energy- conserving initial perturbations

with $tf - 0, the secular terms vanish identically and the only

non-vanishing shift in (3-33) is &9. However, this is not the case

for the response to perturbations in the magnetic field structure, as

the next two sections will demonstrate.
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IV. ORBITAL RESPONSE TO A SMALL CHANGE

IN THE GUIDE MAGNETIC FIELD

It has recently been proposed that the efficiency of free-electron

lasers can be enhanced by an appropriate taper in the axial guide

magnetic field strength. In such a scheme, it is important to under-

stand the effects of the changes in the guide field on the motion of

the electrons. In particular, one can ask whether the helical orbits

persist or are destroyed (by secular terms) as such changes occur. In

this section, we show by means of a calculation completly analogous

to that in Sec. Ill that the effects of a small change in the guide

magnetic field are two-fold: the parameters of the helical orbit are

shifted slightly and oscillations about this modified orbit occur.

In addition to the reason stated above , these results are also important

to the extent that they reflect a generic resiliency of the helical

orbits in response to more general magnetic perturbations.

Consider a small change £B in the guide magnetic field where
o

oKB I « B , and define1 o • o • . •

-.- ^̂  • <4-l)

The linearized equations of motion [cf. (3-1) J then take the form

• . . -

w* = A . w*- p*- t cj+fal [0, 0, 0, -kau, 0, o]T , (4-2)

where we treat $B as a first-order perturbation and where the

quantities A, p and q are given as before by (2-13), (2-17) and (2-18),
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respectively. It is clear from (4-2) that the net effect of the

perturbation £B on our calculations in Sec. Ill will be to change the

vector p by an amount

kau S-fl. [ 0, 0, 0, 1, 0, o]T . (4-3)

For simplicity, we set the initial perturbation w =0 and take (4-3)

instead as the source of the perturbed motion.

The solution of (4-2) again takes the form

where w* (t ) is given by (3-18) and £, uT and f by (3-20) - (3-22) ,
osc o / ' .

provided we now take

if(s) = R(s) . ( p* + $p + q%) . (4-5)

As in Sec. Ill, the condition f = 0 implies da/dt = 0 and

hence du/dt = 0 and q = 0. The condition ft. = 0 again leads to an

expression for the slow evolution of the phase 9 (t) , viz.,

dti
(4.6)

Finally, the vector £ can be calculated and interpreted according to

(3-32), i.e., in terms of shifts Sa, Su and SB in the parameters

a, u and 9 which characterize the unperturbed helical orbit. Our

results for these shifts are

U ( 1 + k2a2) , (4-7)
>2 TL2 TL21 i a.
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=o , (4-8)

*-"*U'\ , (4-9,

where the ratio form displays the rates of change of these quantities

with reispect to a smoothly varying guide field. Our results imply

that the helical orbits persist in the presence of such a smooth

variation.

V. DIAMENT'S WEAK INSTABILITY

2
The weak instability of Diament differs somewhat from the type II

instability of Zachary which was discussed in Sec. III. Diament takes

for the unperturbed motion the helical orbit associated with the ideal-

ized wiggler field in which all radial dependence is ignored. He then

treats the radially-dependent corrections to the wiggler field as a

perturbation and asks what will be the first-order effect of these

realizability corrections on the idealized helical motion. As Zachary

points out , this approach is clearly limited to the case of small ka.

2
Diament finds that when the idealized orbit is exponentially stable,

there remains a weak instability associated with secular terms growing

linearly in time except for special choices of perturbing initial

conditions. He concludes from these results that realizable wigglers

tend to induce outwardly spiralling motion in general. The purpose of

this section is to properly interpret the secular terms and to show
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this conclusion to be erroneous.

2
Following Diament , we take for the unperturbed magnetic field

the common approximation

B,. = Bw cos(kz - jrf) , B^ = Bw sin (kz - #) , B = BO , (5-1)

which is the limit of (2-1) as r -» 0. The radially-dependent corrections

to (5-1), i.e., the terms which must be added to yield (2-1), are thus

SBr = Bw[2 IJ (kr) - l] cos (kz - 0) , (5-2)

$Bp = Bw[2 (kr)'1 I1 (kr) - l] sin (kz - 0) , (5-3)

SB = - 2 6 ^ ^ (kr) sin (kz - 0) , (5-4)

and are to be treated as a small perturbation. The limiting field

(5-1) admits a steady-state helical orbit as a solution of the

equations of motion (2-2) which again takes the form

(t) = [a , iT'Hcuff 9 - V/2 , tf~ "Kit + k"^ , 0 , kau , u]T.
15-5)

However, relations (2-5) between the parameters a and u now simplifies

to

Û ku =H - (ka)~1-f1w . (5-6)
o

We now proceed with a multiple-time-scale perturbation calculation

of the first-order correction to the helical motion (5-5) , following

closely our work .in Sees. Ill and IV.
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The linearized equations of motion take the form [cf. (4-2)1

3" « A1 . w - p« — ±^' + & , (5-7)

where henceforth a prime will denote association with the approximation

(5-1). The matrix .A1 has exactly the same structure as the matrix A_

given by (2-13), but the definitions of the parameters <*, J? , K , ̂

must be modified as follows:

(5-8)

In fact, most of our earlier calculations can be adopted without

change provided that the replacements (5-8) are made; in particular,

the formulas given in the Appendix for the entries in the cof actor

matrix R̂ s} remain valid. The characteristic response frequencies

Sl-,,̂ -) of the equilibrium helical orbit now simplify to

k2a2)] ,

(5-9)

and the condition for exponential instability reduces to (Jl') in

(5-9) being negative.

The vectors p* and q* in (5-7) again arise from the slow-time-scale

term ix /̂ t. , with (2-17) and (2-18) simplifying to the expressions

'1
p' =Vda/dtr [l, 0, 0, 0,JIQ, (-ka)' ( ̂ 'u -/l

k
'1

[0, k, 1, 0, 0, 0]T , (5-10>
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q' = - (ka)""1 (̂ ""-Scu -£1Q) da/d̂  [o, k, 1, 0, 0, o]T . (5-11)

The source term £ in (5-7) is due to the realizability corrections

(5-2) - (5-4) and takes the form

"£•••<* + u_nw[2 ka (1 + k~
2a~2) 3̂  (ka) - l] [o, 0, 0, 1, 0, o]T

(5-12)

From the form of (5-7), we see that the net effect of £ is again to

modify the vector p1, just as in Sec. IV. For simplicity, we again

set w =0. Since the rest of the calculation proceeds exactly as in

Sec. IV, we shall simply state and interpret the results.

The slow phase precession is found to be

. _ 2
> -̂f|- = - ~2 [-2 ka (1 + k~ a ) 1^ (ka) - l] , (5-13)

with da/dt. and du/dt.. both zero. The shifts £a, Je, $u in the

idealized helical orbit parameters (5-5) are as follows:

f\ o 2
< w (1 + k a ) r _ . .. . -2 -2. _ ... .Sa = - - -* - - - '- 2 ka (1 + k a ) I (ka) -1 ,

k2a L -1

(5-14)

Se = 0 , (5-15)

2

Su = - u - ^ [ 2 ka (1 + k~2a~? I (ka) -1 "J . (5-16)

As in the previous sections, the corresponding perturbed motion is now

nonsecular.

These results admit the following interpretation when exponential
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instability is absent. An electron assumed to be executing an

idealized helical orbit satisfies relation (5-6),

3 ku' = Jl (ka')̂ ! , (5-17)o w

whereas, in the presence of the realizability corrections (5-2) - (5-4) ,

the proper relation between a and u is (2-5), i.e.,

tf'1 ku = fLQ - 2J1W 1^ (ka) (1 + k~
2a~2) . (5-18)

The electron in question is therefore not on the helical orbit appro-

priate to its perturbed state and so, in accordance qualitatively with

our rsults in Sees. Ill and IV, it seeks out this proper helical

orbit by shifting its orbit parameters and by oscillating stably about

this modified helix. To support this interpretation, set a = (a1 + $ a)

and u = (u1 + Su) in (5-17) and (5-18) , with Sa and £u given by (5-14)

and (5-16) , respectively. Upon subtraction of (5-17) from (5-18) ,

the consistency condition is seen to be

V'1 k $u - (ka2)"1 !̂ Sa = - (ka)'1!! \2 ka (1 +k~2a~2) I, (ka) - ll .
W W I. 1 : J

(5-19)

To leading order in (ka) , i.e., in the small expansion parameter, the

dominant contribution to the left-hand side of (5-19) comes from Sa and

condition (5-19) is found to be verified.

In conclusion, it should be stressed that realizable wigglers do

not induce outwardly spiralling motion in general. We have shown here

2
that the secular terms found by Diament are just an artifact of a
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direct perturbation calculation and that they disappear in a more

2
refined analysis. Diament's assertion that, even if the secular

growth were bounded, the electrons would typically strike the wall of

the drift tube before turning around, is not correct. The radial

excursion associated with the shift (5-14) and the amplitude of the

stable oscillations is of the same order of smallness as the perturba-

tion parameter (ka), and the smallness of (ka) is a necessary

prerequisite for Diament's analysis to be valid.
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APPENDIX: ENTRIES IN THE COFACTOR MATRIX

In this Appendix, we summarize thet entries in II(s) , the transpose

of the matrix of cofactors for (A_- si) . Each of the thirty-six

entries below results from the evaluation of an appropriate five-by-five

determinant.

R12

R13

R14 = - s
2 X"1 { s2 + if1* [ka + (ka)"1] j

1 [R15

R16

R_ _ *? S ( 0 cl) . I KUS "t" JCU.
^J. •

R22

R23 = " sK(Va)"1[s2 -

(s2 + V'̂ aK) s2 - ' V"1 ( <^ + ku

R26

R31
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(s2 -

R33 - - s { s

R
34

+ ku<

'^ts2 - V~2ku|Q

)"] }

2 <>-!

"* K ( < + ku J )

R
41

R42 = s3 k"1 * ( ^ + ka

+ ka

3 f 2
R.. = - s i s

45

"LK [ka + (ka)"1]

[?

R51 = s3 <ka)"1 (

^52

R53

R54

R55

R,

s2 (ka)""1 ( t s2 -

s [ s4 + s2 (H»2

2

56

(«<a -f- u t )]

L + ut )} •
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R63

R65

R66
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