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METHODS FOR ANALYSIS OF CRACKS IN THREE-DIHENSIONAL SOLIDS

ABSTRACT

Various analytical and numerical methods used to evaluate the stress-

intensity factors for cracks in three-dlmensional (3-D) solids are reviewed.

The review covers some of the classical exact solutions and many of the

approximate methods used in 3-D analyses of cracks. The exact solutions for

embedded elliptic cracks in infinite solids are discussed. The approximate

methods reviewed are the finite element methods, the boundary-lntegral equa-

tion (BIE) method, the mixed methods (superposition of analytical and finite

element method, stress-dlfference method, discretizatlon-error method, alter-

nating method, finite element-alternating method), and the line-spring model.

The stress-intensity factor solutions for some commonly encountered 3-D crack

configurations were compared. The solutions by various methods appear to show

good agreement.

The flnlte-element method with singularity elements is the most widely

used method. The BIE method only needs modeling of the surfaces of the solid

and so is gaining popularity. The llne-sprlng model appears to be the quick-

est way to obtain good estimates of the stress-lntenslty factors. The finite-

element-alternatlng method appears to yield the most accurate solution at the

minimum cost.

Comparisons between various methods have shown that accurate mode-I

stress-lntenslty factors can be obtained. The choice of a particular method

is only governed by the availability of computer programs and resources to

obtain a solution.



INTRODUCTION

In aerospace, marine and nuclear structures, fatigue failures can occur

from the initiation and propagation of cracks from holes, scratches or defects

in the material. Such failures have caused loss of life, destruction of

equipment, and severely reduced the life of these structures. To design

against these failures, crack propagation lives and fracture strengths need to

be accurately predicted. To make these predictions, stress-lntensity factors

are needed. Consequently, considerable research has been invested in the

determination of stress-lntensity factors. For generalized plane-stress and

plane-straln conditions, many exact solutions have been developed. For

complex two-dlmenslonal (2-D) crack configurations, where exact solutions are

not available, several approximate methods have been used to obtain the

stress-lntensity factors. These methods can be found in excellent reviews by

Rooke et al. (ref. I), Cartwrlght (ref. 2), and Hellen (ref. 3). Many stress-

intensity factor solutions are now available in the form of compendia by Tada

et al. (ref. 4), Rooke and Cartwrlght (ref. 5), and Sih (ref. 6).

A comprehensive review of aerospace structural failures completed by the

United States Air Force in 1971 (ref. 7) showed that the origin of failures

due to cracks, in order of frequency of occurrence to be (I) surface cracks,

(2) corner cracks, and (3) cracks emanating from fastener holes. Such cracks

propagate with elliptic or near elliptic shapes. These cracks are "truly"

three--dlmensional configurations. Two-dimensional approximations to these

crack configurations are usually unsatisfactory and inaccurate. Accurate

stress-lntensity factors for these configurations, therefore, can be obtained

only by solving 3-D boundary-value problems.



The purpose of this paper is to review various methods used for determin-

ing stress-intensity factors for cracked 3-D bodies. Because cracks tend to

grow predominantly in mode-I, the symmetric opening mode, the review will be

limited to determination of mode-I stress-intensity factors. First, some

exact solutions for cracks in infinite solids are presented. Next, various

approximate methods that have been used for the solution of the boundary-value

problem of finite solids with cracks are reviewed. Third, the techniques used

to extract the stress-intensity factors from these solutions are discussed.

Last, various methods used to calculate the stress-intensity factors for

through-the-thlckness cracks, seml-elliptical surface cracks and quarter-

elliptical corner cracks at holes are compared for the case of remote tensile

loading.

LIST OF SYMBOLS

a depth of crack

b half-width of cracked plate (see Fig. 2)

c length or half length of crack (see Fig. 2)

E Young's modulus

F boundary-correctlon factor

G straln-energy release rate

h half-helght of cracked plate (see Fig. 2)

KI, KII, KI11 stress-lntenslty factor in Mode-l, Mode-ll, and
Mode-Ill, respectively

Kap apparent stress-lntenslty factor

N, M remote membrane load and moment in the llne-sprlng model

• P applied load

Q shape factor for an elliptic crack

r, 8 polar coordinates with the origin at the crack tip



R radius of the cylindrical pressure vessel

S remote uniform tensile stress

t thickness of the plate (see Fig. 2)

u, v displacements along x- and y-directions, respectively

W width of the compact specimens (see Fig. ii)

x, y, z Cartesian coordinates

v Poisson's ratio

parametric angle of the ellipse

{0} Cartesian stresses, {_x' _y' _z' _xy' _yz' _zx }

EXACT SOLUTIONS

In this section, the exact solutions for cracks in 3-D solids are summa-

rized. The summary is limited to tensile loading and, hence, only mode-I

stress-intensity factor solutions are discussed. Further, because surface and

corner cracks propagate with elliptical or near elliptical shapes only ellip-

tic cracks are considered here. For other crack shapes and loading see

references 3-6, 8, and 9.

Circular (Penny-Shaped) Cracks

The problem of the stress distribution around a penny-shaped crack in an

infinite solid was solved by Sneddon (ref. I0) using Fourier-Hankel trans-

forms. He considered four types of loadings: (i) uniform normal pressure on

the crack faces, (2) uniform pressure over a circular area, (3) concentrated

ring loads, and (4) concentrated load acting at the center of the crack. All

loads were symmetry about the crack plane. Smith, Kobayashi, and Emery

(ref. ii) solved the problem of a penny-shaped crack subjected to any arBi- _

trary pressure loading which can be expressed as a Fourier series.
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Elliptical Cracks

Green and Sneddon (ref. 12) solved the stress distributions in an infi-

nite body with an elliptical crack (see Fig. I) using the known gravitational

potential for a uniform elliptical disk. Irwin (ref. 13) then derived an

exact expression for the mode-I stress-lntenslty factor around the elliptical

crack subjected to uniform tension based on this exact solution. The stress-

intensity factor along the boundary of the elliptical crack is

KI = SQ_ [(a/c)2 c°s 2 $+ sln 2 $]I/4 (I)

where Q is the elastic shape factor for the ellipse and is related to the

complete elliptic integral of second kind as

I_0 _/2 2 sln 2 _]i/2 _ 2

Q = [(a/c) 2 cos $ + d (2)

Kassir and Sih (ref. 14) derived the same results, equation (I), directly from

the stress field.

When the semi-major and seml-mlnor axes, c and a, are equal, equa-

tion (I) reduces to the stress-lntenslty factor for a penny-shaped crack as

KI = S_ _ (3)

which is the exact solution by Sneddon (ref. I0).

The problem of an elliptical crack subjected to arbitrary pressure load-

ing attracted much attention. Shah and Kobayashi (ref. 15) obtained the exact

. solution of an embedded elliptical crack subjected to a polynomial pressure

load of the form



Oy(X,o,z)= AO0+ A10x+ A01.+ A20x2+ A11xz+ Ao2z2

(4)

+ A30x3 + A21x2z + A12xz2 + Ao3Z3

The stress-lntensltyfactor distributionalong the crack front is given

in terms of coefficients Cij which are relatedto the coefficients Aij in

equation (4) by a matrix relation (see eq. 17 of ref. 15).

When all the coefficients Aij except AO0 are zero, and when all the

coefficients Aij except AI0 are zero, Shah and Kobayashi'ssolution

reducesto that of Green and Sneddon (ref. 12) and Kasslr and Sih (ref. 14),

respectively. For a penny-shapedcrack subjectedto sinusoldallyvarying

pressure,the stress-lntensltyfactorsof Shah and Kobayashlreduce to those

given by Smith et al. (ref. II).

Since the pioneeringwork of Shah and Kobayashlin 1971, it was believed

that the solution for embeddedellipticalcracks subjectedto arbitrarypres-

sure loading is restrictedto a cubic distributionllke equation (4). How-

ever, in 1981, VlJayakumarand Atlurl (ref. 16) deriveda generalsolution

procedurefor an embedded ellipticalcrack, subjectedto arbitrarycrack-face

tractions.In 1983, Nishlokaand Atlurl (ref. 17) presenteda more detailed

solution,as well as a generalprocedurefor the evaluationof the required

ellipticalintegralsfound in the solutionof reference16. This analytical

solution cannot be directly appliedto embeddedcircularcracks becausesome

individualterms in the solution take indeterminateform at a/c = I. But the

analyticalsolution for circularcracks (a/c = I) can be derived from that of

an embedded ellipticalcrack by takingappropriatelimits for the integralsas

2 2 -
the term c - a

2 tends to zero. Most analysts, however, prefer to
a
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approximatecircularcracks with a/c = 0.98 or 1.02 and use the general

solution for an ellipticalcrack.

. The exact solutionsfor ellipticalcracks are limited to the completely

embeddedcracks in infinitesolids.

APPROXIMATEMETHODS

As pointed out earlier,failuresusually originateas surfacecracks,

corner cracks,or cracks emanatingfrom fastenerholes. However, these con-

figurations(seeFig. 2) are complexand, therefore,exact solutionsfor

stress fieldsand stress-lntensltyfactorsare not available. To solve these

3-D boundary-valueproblems,a varietyof techniqueshave been used. The

techniquesare (I) the flnlte-elementmethod, (2) the boundary-lntegralequa-

tion method, (3) the mixed methods, and (4) the llne-sprlngmodels. Some of

these methodswere aimed at solvingfor stressdistributionin 3-D bodies.

The methods for the extractionof stress-lntensltyfactorswere developed

later. In the followingsections,each of these methods is discussed.

Althoughmost of these methods can be used in mixed mode situations,the

discussion is limitedto mode-I problems.

Finlte-ElementMethod

The flnlte-elementmethod is a well-knownmethod extensivelyused to

solve 2-D and 3-D boundary-valueproblems. To solve crack problems,basi-

cally, two approachesare used - those based on conventionalelementsand

those based on singularityelements.

ConventionalElements

In the conventionalapproaches,regularor standard finite elementsare

used to model the complete solid. The disadvantageof conventionalelements



is that large numbers of elements are needed to accurately represent the

stress field near the crack front (refs. 18-20).

Hall et al. (ref. 21) presented a 3-D macroelement technique. In this

technique, the solid is first modeled into two or more substructures by

20-noded isoparametrlc elements and the region containing the crack by one

simple 20-noded element. This region containing the crack is then modeled as

a macroelement which contains a high density of nodes in the vicinity of the

crack front and is compatible with the standard 20-noded elements adjoining

it. With the macroelement, arbitrary 3-D configurations with cracks can be

accommodated (refs. 21-23).

Singularity Elements

A square-root singularity exists along the crack front and, therefore,

large stress gradients exist near the crack front. To delineate the stress

field accurately in these regions, several special elements have been pro-

posed. These elements have the required square-root singularity incorporated

in their formulations. Some of the singularity elements proposed are

described below.

Regular Displacement Models:

An element with the shape of an arbitrary pentahedron, with 6 nodes, was

proposed by Tracey (refs. 24, 25) and was used in reference 26 (see Fig. 3(a)

and 3(b)). With this element, the crack front is modeled with discrete linear

segments. Usually about 8 singularity elements around the crack front are

used in symmetric crack problems (ref. 26). The remainder of the solid is

modeled with 8-noded isoparametrlc hexahedrons (refs. 24-32). The singular

pentahedron element is of the nonconforming type.

Stern and Becket (ref. 33) and Blackburn and Hellen (ref. 34) proposed a

6-noded and 15-noded singular element (see Figs. 3(c) and 3(d)). The 15-noded



element is a pentahedron with curved sides with 6 corner nodes and 9 midside

nodes. Because of the curved sides the crack front can be approximated with

parabolic arcs. References 33 and 34 used 6 and 4 singularity elements,

respectively, around the crack front for symmetric crack problems. This

" singularity element is compatible with the standard 20 noded Isoparametric

elements that are used to model the remainder of the solid.

Enriched Displacement Models:

Benzley (ref. 351 proposed the concept of enriched singularity elements

for 2-D crack problems. The enrichment process can be explained as follows.

Consider an isoparametrlc quadrilateral at a crack tip. The displacement

functions assumed for this element are llke

4 4

u(x,yl= _ Njuj and v(x,ylTM _ Njvj (51
j=l

where u and v are the displacements at any point inside the element. The

uj and vj are the displacements at node J. Nj is the shape function.

Benzley proposed to "enrich" the element by adding the near field displace-

ments from the exact solution at the crack tip as

u(x,yl = _ NluI + -
J=l _=i

(61

+ Iii _ N -- a Qllu

• and similar equation for the v-displacements. In equation (6), KI and KII

are the unknown stress-lntensity factors, Q are the values o2 Q evaluated

at the node a.



The Q functions in equation (6) are chosen to be the near field

displacements at a crack tip as,

Qlu 2(IE+ v) 2__ 8 _- I _]= cos _ _ + sin 2

2(I + v) _ 8 _m+ i 2 _]Qlv = E sin _ 2 cos

(7)

2(1+ eQllu = E sin _ 2

2(i + v) _ _ _ K- I + sin2 _]
Qllv - E cos 2

where K = 3 - 4v for plane strain and (3 - v)/(l + v) for plane stress. The

r and 8 are the polar coordinates with their origin at the crack tip.

Equations 7 represent the displacement components along x- and y-directions

in mode-I and mode-II (refs. 4, 6).

The displacement interpolation functions as described by equation 6 do

not maintain interelement compatibility. Benzley suggests multiplication of

the last two terms in equation (6) by functions which are zero on the element

boundaries which adjoin the regular elements. Thus, Benzley's enriched ele-

ment would be a compatible element and, therefore, assures monotonic conver-

gence. The stress-intensity factors KI and KII are unknowns in addition

to the nodal displacements. Thus, the enrichedelements have the advantage

that no other methods of extraction of stress-intensity factors are necessary

after the finite-element solution is obtained. This concept of the enriched

elements was used by Gifford and Hilton to develop a 12-noded quadilateral

element for 2-D crack problems (ref. 36), and by Hilton et al. to develop a

15-noded pentahedron element with curved faces (refs. 37-39) for 3-D crack
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problems. The stress-lntenslty factors KI, KII , and Ki11 are unknowns In

addition to the nodal displacements and wlll be available when the finite-

element solution is obtained.

Quarter-Polnt Elements:

Henshell and Shaw (ref. 40) and Barsoum (refs. 41, 42) proposed that by

displacing the mldslde nodes from their normal position in an 8-noded quadri-

lateral isoparametrlc element, one can simulate a square-root singularity at a

corner node. They showed that the necessary position of the displaced node

should be at a distance of one-quarter of the length of the slde from the

corner node where the square-root singularity is needed. Henshell and Shaw

(ref. 40) suggested using an 8-noded element and 20-noded quarter-point ele-

ments as in Figures 3(e) and 3(f) for 2-D and 3-D problems, respectively.

Barsoum (refs. 41, 42) suggested collapsing one slde of an isoparametric ele-

ment to form a triangular element with quarter-polnt nodes as in Figure 3(g)

and collapsing one face of a 20-noded isoparametrlc element to form a 15-noded

pentahedron element wlth quarter-polnt nodes as in Figure 3(h) for 3-D prob-

lems. These quarter-polnt elements are attractive because of the ease with

which they can be implemented in a general purpose program. These elements

are extensively used by Ingraffea and hls coworkers (refs. 43-46), Hechmer

and Bloom (ref. 47), and Wu (ref. 48).

Hybrid Elements:

In addition to the elements described above, two types of hybrid sln-

gularity elements were also developed. They are the stress-hybrid and

dlsplacement-hybrld elements. The advantage of these singularity elements

- Is that the stress-lntenslty factors KI, KII , and Ki11 are obtained as

a part of the solution.
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Plan and Morlya (refs.49, 50) proposedassumedstress-hybrldelements.

In these elements,the stress singularitiesare representedby the stress-

intensityfactors KI, KII, and KIII and the near field 2-D stress solu-

tlons at the crack front. Other assumedstress terms are simple polynomials

which satisfyequilibriumand the stress-freeconditionson the crack faces.

In addition,displacementsalong the element boundariesare assumed such that

they are compatiblewith the standardelements. The complementaryenergy is

minimizedto obtain the elementstiffness. Followingthe procedureslald out

by Plan and Morlya,Kuna (ref. 51) developeda 20-noded hexahedron(assumed

stress singularity)element. The crack front is approximatedby linear seg-

ments and each segment is surrounded by a group of four singularity elements "

for the general case and two for the symmetric case (refs. 49-51).

The displacement formulation for hybrid elements is similar to that of

the stress formulation. In the displacement formulation, however, one assumes

a compatible displacement field within the element as well as another set of

independent displacements and tractions on the boundaries of the element. The

singular stress field in the elementis incorporatedby the stress-intenslty

factors (KI, KII, and Ki11) and the near field displacements at a smooth

crack front as given in reference 14. (Note that the near field solution for

the displacements for the 3-D case can be obtained by superposltion of all

three modes under plane-stralnconditionswith K = 3 - 4v). On the element

boundaries,displacementsare assumedwhich are compatiblewith standard

adjoiningelements. A modified variationalprinciple(ref. 52) is used to

obtain the element stiffnessmatrices of these singularityelements. Tong and

Atlurl (ref. 52) and Atlurl and Kathlresan (refs.53-59) developedand exten-

sively used these dlsplacement-hybrldsingularity20-nodedhexahedronele-

ments. The crack front can be approximatedby parabolicarcs and each arc is
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surrounded by a group of four singularity elements for the general case and

two for the symmetric case (ref. 59).

f

Boundary-Integral Equation (BIE) Method

Any linear elasticity problem can be solved using two second-order tensor

kernels defined on the boundary (refs. 60-64). These kernels depend only on

the configuration being analyzed. These two kernels allow the calculation of

displacements and tractions at the boundary by an integral equation. The

interior displacements and stresses can then be calculated in terms of the

two kernels, the boundary displacements, and boundary stresses.

The BIE method uses the reciprocal theorem of elasticity together with

the solution of a point load in a _nfinite solid. The reciprocal theorem

relates the known point load solution to the solution of the desired problem.

In the numerical solutions by the BIE method, the boundary of the solid is

modeled with elements similar to the 2-D finite elements. Therefore, S-D

modeling of a solid is reduced to 2-D modeling of boundary surfaces. However,

in contrast to the finite-element analysis, the matrix involving the linear

algebraic simultaneous equations obtained in the BIE method is not symmetrical

and is fully populated. Also, the BIE method is inferior to finite-element

method when stresses at many points inside the solid are desired (ref. 62).

But, the BIE method is gaining popularity for S-D problems. Two-dimensional

elements like the 2-D finite elements including quarter-point elements can be

used along the crack front.

The BIE method has been widely used by Cruse (refs. 62, 65), Heliot et al.

(refs. 66, 67), Cruse and Wilson (ref. 68), Harris and Lin (ref. 69), Cruse

and Vanburen (ref. 70), and Lange (ref. 71), for problems of through cracks

and surface cracks in plates and cylindrical vessels.
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Mixed Methods

As pointedout earlier, flnite-elementanalyses of 3-D crack problems

involvelarge number of degreesof freedombecause of refinedmeshes along the

crack fronts. Further,modeling and data input become difficultand the num-

ber of equationscan exceed the capacityof average computer systems. There-

fore, several techniquesof reducingdegreesof freedomhave been proposed.

These techniquesuse either severalflnlte-elementsolutionsor combine two

differentmethods, one of which is usuallya flnlte-elementsolution. The

mixed methods that have been proposedare

I. Superposltionof analyticaland finite elementmethods

2. Stress-dlfferencemethod

3. Discretlzatlonerror method

4. Alternatingmethod

5. Finite element- alternatingmethod

An excellentsummaryand comparisonsof the first three methods can be found

in reference20. For completenessall these three methods are presentedin

the appendix. In this section the widely used alternatingmethod and the

finite element-alternatingmethod are discussed.

AlternatingMethod

The alternatingmethod (refs.72-74) uses two basic analyticalelasticity

solutionsfor infiniteand seml-lnflnltesolids. The first solution,Solu-

tion I, is that for an ellipticalcrack in a infinitesolid; the crack faces

are subjectedto variable normal loads (refs. 15, 72). The second solution,

Solution 2, is that of an untrackedseml-lnflnltebody subjectedto uniform

normal and shear stressesover a rectangularportion of the free surface

(ref. 75).
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The analytical solution to the problem of an elliptical crack in an

infinite solid, Solution I, with normal loading on the crack faces was

obtained by Shah and Kobayashl (refs. 72, 73). In this work, however, the

variation of the loading normal to the crack faces is limited to a cubic

function in the x- and z-coordlnates (see Fig. I) as

_y(X,O,z) = AO0 + AolX + Ao2x2 + A20 z2 + A21xz + Ao3X3 (B)

The stresses and the stress-lntenslty factor may be computed directly from a

lengthy set of equations involving elliptical and Jacoblan elliptical inte-

grals if the constants Aij in equation (8) are known.

The alternating method is an Iteratlve method in which stresses on the

external surfaces of the solid and the crack faces are reduced to zero by

alternating between Solution I and Solution 2. The logic for the iterative

steps is explained in the flow chart in Figure 4. In this method, the exter-

nal surfaces of the solid are modeled by rectangular regions. The stresses in

each of these rectangular regions due to Solutions I and 2 are evaluated for

each iteration and are used as shown in Figure 4.

Shah and Kobayashl (refs. 72, 73) modeled the front and back faces with

rectangular domains as shown in Figure 5. Very similar rectangular domain

idealization was used by Smith (ref. 74). Detailed discussion on the

approaches in references 72-74 can be found in the evaluation by McGowan

(ref. 22).

This method needs only coarse idealizations of the front and back faces

and, hence, the number of degrees of freedom in the problem are small. Fur-
J

ther, the stress-intenslty factors are directly obtained as a part of the

solution.
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Finite-Element-Alternating Method

As noted earlier, the alternating method uses the analytical Solution

(refs. ii, 15, 72) for an embedded elliptical crack in an infinite solid.
°

This analytical solution has been limited to cubic variation of normal pres-

sure on the crack surfaces. Recently, a general solution procedure has been

derived (ref. 16) for the problem of an infinite elastic medium with an

embedded elliptical crack in which the the faces of the crack are subjected

to arbitrary variations of normal and shear tractions. Nishioka and Atlurl

(ref. 17) presented a more detailed solution and a general procedure for the

evaluation of the required elliptic integrals found in the solution of

reference 16.

Utilizing this analytical solution, Nishioka and Atluri (refs. 76, 77)

proposed a finite-element-alternating method. The procedure is summarized in

Figure 6. A very similar procedure was used by Browning and Smith (ref. 78)

and Smith and Kulgren (ref. 79) except that they used the analytical solution

of references 15 and 72.

This method needs only coarse finite element models because the singular-

ity at the crack front is modeled by the analytical solution. Further, the

stress-intensity factors are directly obtained as a part of the solution.

Line-SprlngModel

The llne-sprlngmodel (LSM) was originallyproposedby Rice and Levy

(ref. 80) for the analysis of surfacecrack problems. The 3-D crack pr0blem

is reduced to a 2-D plate (or shell) theory problem. Consider the surface-

crack configurationllke Figure 2(a). Figure 7(a) shows the crackedplane of

this plate. The surface-crackedconfigurationis idealizedas a through-the-

thicknesscenter crack of length 2c in a plate with a series of llne springs

across the crack faces (see Fig. 7(b)). The remote loads N_ and M_ on the
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surface-cracked plate are applied to the plate in Figure 7(b). The surface

crack in Figure 7(a) has an uncracked ligament of t - a(x) at any distance

x from the center (a(x) describes the depth of the surface crack at any

distance x from the center). The 2-D idealization must account for the

transmission of membrane loads N_ and M_ across the crack faces. That

is, the stiffness of the llne springs should vary with the coordinate x. To

determine the stiffness of these springs the following procedure was followed.

Due to the external loads, the middle surface of the plate on one side of

the llne spring displaces by an amount 5 and rotates an angle _, relative

to the other side. The values of 6 and _ at any point are considered to

be functions of the membrane loads and bending moment per unit length which

are transmitted across the spring at that location, x. Then, the stiffness

of the spring at x is the inverse of the compliance matrix which relates

{6} and {N} as

= (9)

where _ = x/c. Rice and Levy (ref. 801 proposed that the compliance of these

springs (Eq. 9) can be obtained from a plane-straln solution of a single-edge

cracked plate (Fig. 7(c)) of width t and crack length a subjected to an

axial force N and bending moment M per unit thickness. Note that the com-

pliance is a function of the crack depth.

At each x-location, the crack-depth a(x) is first established. Then,
P

for this crack depth the compliance matrix [C] of equation (9) is calculated

• from the single-edge crack solution with an edge-crack a(x) in a plate of

thickness t. Inverse of the compliance matrix [C] will yield the desired

17



stiffness matrix of the line-spring at that x-location. This procedure is

used to determine the stiffnesses of the line-springs from x = -c to x = c.

These line-spring elements are then used across the faces of the center-

crack (see Fig. 7(b)). The center-cracked plate with the line-springs across

its crack faces is then subjected to the remote loads N_ and M_. The solu-

tion of this boundary value problem yields the relative displacements 8(x)

and _(x). From these displacements the loads N(x) and M(x) at any sta-

tion x can be calculated by equation (9). The stress-intenslty factor

Kl(X) is then calculated from

V-J

The functions FI and F2 are obtained from the plane-strain solutions for a

slngle-edge cracked plate in tension and bending, respectively (refs. 4-6).

The boundary value problem of Figure 7(b) was solved using the finite-

element method by German et al. (ref. 81) and using integral equations in

references 80 and 82-85. With this model, German et al. (ref. 81), Parks

et al. (ref. 82), Delale and Erdogan (refs. 83, 84), and Rice (ref. 85)

analyzed the surface crack in plates and cylindrical vessels.

A model very similar to the line-spring model called the slice-synthesis

model was developed by Dill and Saff (ref. 86). They also applied this model

to surface cracks in plates.

EXTRACTION OF STRESS-INTENSITY FACTORS

After the boundary-value problem is solved, one has to extract the

stress-intensity factors from the solution. In some formulations using the

flnlte-element method, the stress-intensity factors are included in the ele-

ments as the unknown parameters. In such cases, the stress-intensity factors
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are available when the boundary-value problem is solved. The enriched ele-

ments (refs. 35-39), the stress-hybrid elements (refs. 49-51), and the

displacement-hybrid elements (refs. 52-55) give stress-intensity factors

directly from the solution.

When other elements are used, however, the stress-intensity factors must

be extracted from the finite-element solution. Three methods are widely used.

They are the crack-opening displacement (COD) method, the force method, and

the virtual-crack extension method. These methods are briefly discussed

below.

Crack-Opening Displacement Method

In this method, the COD just behind the crack front is compared to the

corresponding 2-D case to evaluate the stress-intensity factor. If r is

the radial distance measured normal from the crack front at station i (see

Fig. 8), then the 2-D solution assuming plane strain gives

4(1 - v)2v I

KI _ (Ii)

where v is the one-half of the COD at a distance r from the crack front.

In the COD method, two approaches are used. In the first approach,

Approach I, the crack-opening displacement at the node next to the crack front

is used in equation (ii) to calculate KI. In the second approach,

Approach 2, the COD values at various distances from the crack front are used

to calculate apparent stress-lntensity factors, Kap. Linear regression is

used on the Kap against r plot (Fig. 8(b)) to compute the value of KI at

the intercept, r=O.

The first approach, utilizing one node, is extensively used with quarter-

point elements (refs. 42-48), the conventional finlte-element method
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(refs. 18-20) and singularity elements (ref. 87). The second approach is

used with singularity elements (refs. 34, 40, 88).

The main disadvantage of this method is that one has to assume a state of

stress, either plane stress or plane strain. The stress-intenslty factors

calculated from the assumption of plane stress and plane strain differ by a

factor (i - v2), the plane-straln assumption yielding the higher value. The

factor (I- v2) translates to a 9 percent difference for a Polsson's ratio of

0.3. Most analysts prefer to use the plane-straln assumption all along the

crack front and the plane-stress assumption in the region where the crack

meets the free surfaces.

Force Method

In this method, the forces ahead of the crack front and normal to the

crack plane are used to evaluate stress-intensity factors.

In contrast to the near-fleld displacements at the crack tip (in the 2-D

case), the near field stresses ahead of the crack tip are identical for plane

stress and plane strain. Therefore, use of the 2-D stress solution ahead of

the crack tip would eliminate the assumption of either plane stress or plane

strain. However, the accuracy of stresses in a finite element solution is not

as good as that for displacements. But the accuracy of nodal forces computed

in a flnlte-element solution is the same as that of displacements. Therefore,

RaJu and Newman (refs. 26 and 27) used the flnlte-element forces ahead of the

crack front and normal to the crack plane, and compared these forces to those

obtained by integrating the near-field stresses from the 2-D solution. The

stress-lntensity factor is evaluated, as in the COD method, by plotting the

Kap against radial distance r from the crack front and extrapolating to

r=O as in Figure 8(b). The method thus avoids the assumption of plane stress

or plane strain. This method was extensively used in references 26-32.
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Virtual Crack Extension Method

In this method, the strain-energy release rate (G) for the cracked con-

• figuration is calculated and then the K values are evaluated from G. The

strain-energy release rate is obtained by taking the difference in the strain

Au

energy of the structure divided by incremental crack length Ac, G = - _-_.

In the conventional finite-element analysis, this requires two runs with crack

•lengths c and c + Ac.

Parks (ref. 89) and Hellen (ref. 90) proposed similar algorithms which

require only one run at crack length c. The 2-D problem is first solved by

a finite-element method. Then the crack length c is incrementedby amount

Ac. When the crack length is c + Ac, nodes within, but not on the contour

FI (see Fig. 9), get shifted by an amount Ac. However, all nodes within and

on the contour F0 simply get shifted by Ac and therefore suffer no change

in energy. The only change in the energy is due to changes in the element

configuration between contours F0 and FI. Therefore, the strain-energy

release rate is

G = _ {u}T {[klc+Ac - [klc {u} (12)

where {u} are the displacements obtained from the original loading and with

a crack length of c. The [k]c+A c and [k]c are the assembled stiffness

matrices of elements between the contours F0 and FI. They are calculated

with coordinates corresponding to crack lengths c + Ac and c. The stress-

intensity factor KI can be calculated from G by the relations
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KI

G - E for plane stress

(13)
2

KI (I v2) for plane strainE

In this method, the crack extensions Ac can be very small, of the order of

10-3 to 10-5 times the crack length c. For 3-D analysis, the extension is

straightforward and is discussed in detail in references 89 and 90. Again,

to obtain the stress-intensity factor by this method, an assumption of either

plane stress or plane strain needs to be made because of equation 12.

The virtual crack extension method was extensively used by Hall et al.

(ref. 21), McGowan and Raymund (ref. 23), Hellen (ref. 90), and Blackburn and

Hellen (ref. 34).

COMPARISONS

The methods outlined earlier were used to obtain stress-lntenslty factors

for various cracked solids. Broad comparisons between different methods are

not possible because the investigators did not work identical configurations

and loading. However, the following specific configurations subjected to

tensile loading have been studied by numerous investigators.

i. Compact specimen

2. Semf-elllptical surface crack in a plate

3. Semi-elliptical surface crack In cylindrical pressure vessels

4. Quarter-elliptical corner cracks from holes

The solutions for each of these configurations will be compared in this

section.
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CompactSpecimens

Compactspecimensshown in Figure I0 representthe simplest 3-D configu-

rationswith cracks. These specimenshave through-the-thlcknesscrackswith

straight crack fronts. Severalinvestigatorshave analyzedthese conflgura-

tlons with varyingdegree of success. All investigatorsshowed that the

stress-lntensltyfactor, KI, at the mldplane of the specimenis higher than

that at the surface. However, the KI value at the mldplane computed by

various investigatorsdisagreedby as much as 9 percent. In reference87,

Tseng reviewed these results. Table i, taken from reference87, summarizes

the results. A recent result for configurationof Type C (see Fig. I0) is

added to the table. This table presents the nondlmenslonalstress-lntenslty

factor, F, obtainedby various investigatorsnormalizedby the F value

obtained from plane-stralncollocationmethods. Based on the resultsin

Table I, Tseng concludedthat (I) COD method using Approach 1 yields accurate

results, (2) superposltlonand 15-nodedsingular elementsare reliable,and

(3) pronouncederror may resultunless care is taken in selectingthe type of

singularityelement.

Tseng's conclusion3 was based on the lower values of F at the mldplane

calculatedby Tracey (ref. 25), Raju and Newman (ref. 26), and Kathlresan

(ref. 59). The reason for these lower values,however, is not becauseof the

singularityelementsused but becauseof the inadequacyof the flnlte-element

model to representthe bendingthat occurs in the compactspecimen. In refer-

ence 91, RaJu and Newman analyzedthe compact specimenType C (see Fig. I0).

(Note that the Type C configurationhas a differentheight H compared to

. Type A and Type B configurations.) They refinedthe mesh on a z = constant

plane in a 2-D analysisuntil they were within 2 percent of the plane-straln

value. Then they performeda convergencestudy in the thicknessdirectionin
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a 3-D analysis to model one-quarter of the specimen. Table 2 presents the

results of the convergence study. The F value at the mldplane from the

2-1ayer model differed from that with the 8-1ayer model by only I percent.

Therefore, the modeling on a z = constant plane is more important in this

problem than the modeling in the thickness direction.

Table 3 presents the effect of thickness of the specimen. Surprisingly,

the specimens with W/B = 5 and W/B = I gave nearly same F values at the

mldplane and these values are slightly lower than that for W/B = 2. There-

fore, there appears to be a slight thickness dependence on the F value at the

mldplane.

The two configurations, Type A and Type B, analyzed by the investigators

in Table i corresponds to the one with W/B = 2. For this configuration,

Tseng (ref. 87) showed that the maximum F value for the finlte-thickness

compact specimen should be about 8 percent higher than the plane strain value.

Similar conclusion was reached by RaJu and Newman (ref. 91) using Type C con-

figuration with W/B = i. Therefore, it appears that most of the available

singularity elements and K-evaluation procedures can yield accurate results

provided the flnite-element models can adequately represent the bending that

occurs in the compact specimen. Furthermore, for the same accuracy some

singularity element models need fewer degrees of freedom compared to other

singularity element models.

Semi-Elliptical Surface Crack in a Plate

The second three-dimensional cracked configuration studied by several
o

investigators is that of a semi-elliptlcal surface crack in a finite plate

(Fig. 2(a)). Several investigators worked the problem of a semicircular

(a/c = I) surface crack, with shallow crack depths, that is, a/t < 0.2.

Plan and Moriya (ref. 50) used stress-hybrld singularity elements. Tracey
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(refs. 24, 25) used the 6-noded singularity element with COD method using

Approach i. Blackburn and Hellen (ref. 34) used a 15-noded singularity

element and the virtual crack extension method. Yagawa and Nishioka (ref. 92)

used the superposition method. These solutions are in excellent agreement

with one another. Ando and Yagawa (ref. 20) reviewed and compared various

solutions by mixed methods for this problem. The results by various methods

show qualitative agreement but the stress-intensity factors differed in some

cases by more than I0 percent.

In 1979, Newman (ref. 9S) reviewed the solutions for the surface crack

problem obtained by analytical methods, experimental methods, and by engineer-

ing estimates. He limited the review to the solutions which were applicable

to wide ranges of crack shapes (0.2 < a/c < i) and sizes (0 < a/t < 0.8). The

analytical methods reviewed were: alternating method (refs. 72-75, 78, 94),

line-spring model (ref. 80), and the finite element method (refs. 27, 29).

For shallow cracks, a/t < 0.3, and near semi-circular cracks, 0.6 < a/c < I,

the stress intensity factor at the maximum depth point (_ = _/2) by various

methods showed good agreement (5 percent) with one another. However, for

deeper cracks, a/t > 0.3, and for semi-elliptical cracks, 0.2 < a/c < 0.6, the

stress-intensity factors by various methods showed considerable disagreement

(20 to 80 percent). Newman (ref. 93) attributed some of the discrepancies

between the results to the improper prescription of boundary conditions.

In 1976, at a workshop at Battelle's Columbus Laboratory three "Benchmark

Problems for Three-Dimensional Fracture Analysis" were proposed (ref. 95) for

use as standards for comparing analysis methods. One of the benchmark prob-e

lems, Benchmark Problem I, was the problem of a semi-elliptical surface crack

in a finite plate. Only a few analysts have worked the wide range of param-

eters suggested by Hulbert (ref. 95). Atluri and Kathiresan (refs. 53, 54)
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used a displacement-hybrid singularity element. RaJu and Newman (refs. 27, 29)

used the 6-noded singularity element and a force method to evaluate the stress-

intensity factors. McGowan and Raymund (ref. 22) used the macro-element

approach (ref. 21) in conjunction with the virtual crack extension method for

extracting stress-intensity factors. Heliot et al. (ref. 96) used the

boundary-integral method with the COD method (Approach i). Shah and Kobayashi

(refs. 72, 73) and Smith and Sorensen (ref. 94) used the alternating method.

These six solutions were critically evaluated and reviewed by McGowan in

reference 22. McGowan's comparison of various solutions for crack shape of

a/c = 0.5 and a crack depth of 0.75 is shown in Figure Ii. For this deep

crack and a shallow crack (a/t = 0.25) there is good agreement among the six

different solutions. In particular, the finite-element solutions of refer-

ences 27, 29, 53, and 54 and the boundary-integral equation method (ref. 96)

solutions were in very good agreement (5 percent) with one another. Based

on these comparisons, McGowan suggested a best estimate curve and a band of

3 percent for the stress-intenslty factor distributions along the crack front

(see Fig. Ii).

Since the review by McGowan, as pointed out earlier, Nishioka and Atluri

(ref. 17) used the flnite-element-alternating method and analyzed the bench-

mark problem. Their results showed excellent agreement with the benchmark

estimate of McGowan. Very recently, Wu (ref. 48) analyzed the benchmark

problem with quarter-point elements using the COD method (Approaches i and 2).

He compared his results for a/c = 0.5 and a/t = 0.25 and 0.75 with the

benchmark estimate of McGowan. Excellent agreement is reported in refer-

ence 48. Wu also compared his results with the interpolated values from

reference 29. For the majority of cases, the agreement is excellent (I to

26



3 percent). For the special case of a/c = 0.2 and a/t = 0.8, Wu's results

were I0 to 15 percent lower than those of reference 29.

The surface crack problem with a slightly different configuration than

the benchmark problem was also analyzed with the llne-spring models. German

et al. (ref. 81), and Parks et al. (ref. 82) analyzed surface cracks with

a/c = 0.2 and 0.667 with a/t ratios from 0.2 to 0.8. Delale and Erdogan

(ref. 83) and Dill and Saff (ref. 86) analyzed surface cracks with a/c = 0.2

and a/t = 0.4 to 0.8. The results of references 81 and 82 at the deepest

point are in very good agreement (4 percent) with those of reference 27. The

differences between the results of (ref. 81 or 82) and (ref. 27) increase near

the free surface (_ = 0). Also, the results for the shallow cracks are in bet-

ter agreement than those for the deep cracks. Furthermore, for a/c = 0.667,

the agreement is not as good as those for a/c = 0.2. The largest disagree-

ment was observed when a/c = 0.667 and a/t = 0.2. This is not surprising

since this configuration taxes the assumptions made in the llne-sprlng model.

Delale and Erdogan (ref. 84) and Dill and Saff (ref. 86) compared their

results with those of RaJu and Newman (ref. 27). Again very good agreement

(3 percent) is observed for all three a/t ratios. Table 4 summarizes the

normalized stress intensity factors at the deepest point (_ = _/2) of a semi-

elliptical crack with a/c = 0.2 obtained by the three llne-sprlng models and

compares with those of references 27 and 29.

Semi-Elliptlcal Surface Cracks in Cylindrical Pressure Vessels

The third 3-D crack configuration studied by several investigators ise

that of a semi-elllptlcal surface crack in a cylindrical pressure vessel (see
q

Fig. 12). The configuration extensively studied is a cylinder of R/t = i0

with an internal surface crack with a/c = 1/3. This is a standard configura-

tion recommended by the ASME Boiler and Pressure Vessel Code.
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In contrast to the Benchmark Problem I, several investigators chose to

load the crack faces. They applied four crack face distributions, uniform,

linear, quadratic and cubic, to the crack faces as
D

_j = (z/a) j for j = 0, i, 2, 3 (14)

where z is measured from the crack mouth toward the crack front (see

Fig. 13(c)). The stress-intenslty factors are expressed as

KI =_Gj for J = 0, I, 2, 3 (15)

The influence coefficient Gj corresponds to the Jth stress distribution.

Several investigators obtained the influence coefficients Gj for each

of the Jth crack face loadings. McGowan and Raymund (ref. 23) used the

macroelement approach with the virtual crack extension technique for evaluat-

ing the stress-intensity factors. Atluri and Kathlresan (refs. 56, 57) used

the dlsplacement-hybrid singularity element. RaJu and Newman (refs. 31, 32)

used the 6-noded singularity element and the force method to evaluate the

stress-intenslty factors. Heliot et al. (ref. 67) used the boundary-integral

equation method and the COD method (Approach I). Nishloka and Atluri

(ref. 77) used the finite element-alternatlng method. A typical finite

element model for this problem (ref. 31) is shown in figure 13.

Figure 14 compares the influence coefficient distributions obtained in

references 23, 31, 32, and 67 for a deep crack, a/t = 0.8, for various crack

face loading distributions. The influence coefficlentdlstrlbutions of

reference 67 agreed very well with those of references 31 and 32. The maximum

discrepancy is about 2 percent. The finite element results of reference 23

are within 8 percent of the results of Hellot et al. (ref. 67). Similar
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agreement between these three investigators were also noted for a/t = 0.5 in

reference 32. The finlte-element-alternating method was also applied to this

configuration in reference 76. The influence coefficients obtained with this

method agreed well with those reported in references 32 and 67 for both

a/t = 0.5 and 0.8. Atluri and Kathlresan (ref. 56) using the displacement-

hybrid singularity element analyzed the same configuration but with internal

pressure loading. Their stress-intensity factors were about 7, 8, and nearly

0 percent, lower than those in reference 67 for a/t = 0.25, 0.5 and 0.8,

respectively.

The line-spring model was also used to analyze the cylindrical vessel

configuration. German et al. (ref. 81) analyzed a cylindrical vessel

(R/t = I0) subjected to internal pressure. They compared their solution for

a/c ffi1/3 and a/t = 0.2 and 0.8 with that of Newman and Raju (ref. 31). At

the maximum depth point (# = _/2), the results agreed within 3 percent for

a/t ffi0.2 and within I percent for a/t = 0.8. Delale and Erdogan (ref. 83)

analyzed the same cylindrical vessel subjected to internal pressure with a

longitudinal surface crack with a/c = 0.2 and a/t = 0.2 and 0.8. At the

deepest point of the crack (_ = _/2), their solution is about 5 and 9 percent

higher than that of reference 31 for a/t = 0.2 and 0.8, respectively.

The complex configuration of a semi elliptical surface crack in a

cylinder appears to be well analyzed by various methods. The agreement

between several investigators is good.

Quarter-Elliptical Corner Cracks from Holes

A configuration that is more complex than the previous three, is that of

q

a quarter-elllptical corner crack emanating from a hole. Figure 2(c) shows

the configuration studied by several investigators. Shah (ref. 97) used the

alternating method and englnering estimates, Smith and Kulgren (ref. 79) used
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finite-element-alternatlng method, Kathiresan (ref. 59) used the displacement

hybrid-slngularlty element, Hechmer and Bloom (ref. 47) used quarter-polnt

elements with the COD method (Approach 2). RaJu and Newman (ref. 28) analyzed

the configuration with 6-noded singularity elements and obtained the stress-

intensity factors by the force method. Recently, Nishioka and Atluri

(ref. 76) applied the finite-element-alternating method to the corner crack

configuration.

For a quarter-circular corner crack (a/c = I, a/t = 0.5, and R/t = 0.5)

figure 15 compares the stress-lntenslty factors obtained by several investi-

gators. Smith and Kulgren's (ref. 79) results in this figure were obtained

from interpolation between their results of a/c = 0.75, 1.5 and 2.0. Their

results and the results of RaJu and Newman (ref. 28) are in very good agree-

ment (less than 5 percent). The results of Shah (ref. 97) and Kathiresan

(ref. 59) are about i0 percent and 15 percent lower than those of refer-

ence 28, respectively.

Hechmer and Bloom (ref. 47) analyzed a shallower crack (a/t = 0.2) than

that discussed in Figure 15 and their results are about I0 to 20 percent

higher than the corresponding results of reference 28 (see Fig. 8(a) of

ref. 28).

The corner cracks in Figure 2(c) tend to grow faster along the hole

boundary rather than on the front face under cyclic loading. Therefore, the

stress-lntenslty factors for cracks with a/c > i are important. RaJu and

Newman (ref. 28) and Nishloka and Atluri (ref. 76) analyzed one such case.

They analyzed the configuration of quarter elliptical corner cracks with

a/c = 2, R/t = 0.5 for three crack depths, and a/t = 0.2, 0.5 and 0.8 under

pin loading. The pin loading was assumed to be applied by normal stresses on

the hole boundary, _n (see Fig. 16) as
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= 3P
Cn sin2e (i6)

where P is the total applied force acting in the y-directlon over the arc

from e = 0 to =. The comparison of the stress-intenslty factors by these

two methods is shown in Figure 17. (The results of Raju and Newman in

Figure 17 for a/t = 0.2 and 0.5 are corrected results. The orlglnlal

results of reference 28 for these crack depths with a/c = 2 were in error

due to a computer input error.) Fair agreement is observed between the two

sets of results except near the region, where the crack intersects the edge of

the hole (_ = =/2). The drop-off of the stress-lntenslty factors of refer-

ence 28 was attributed to the boundary-layer effect and is discussed in

references 27-29.

RaJu and Newman (ref. 28) used about 9000 degrees of freedom in their

finite element model while Nishloka and Atlurl (ref. 76) used about

1400 degrees of freedom in the flnlte-element-alternating method. The

accuracy of the two solutions appears to be comparable. The efficiency of

the new flnlte-element-alternatlng method appears to be attributable to the

complete analytical solution of references 16 and 17.

CONCLUDING REMARKS

In the design of damage tolerant structures, complex three-dimensional

(3-D) configurations with cracks are encountered. For a safe design, accurate

stress-lntenslty factor solutions are needed. Until the early 70's, the com-

plex 3-D configurations were approximated as two-dlmenslonal (2-D) configura-

tions. However, recent advances in the methods to solve the 3-D boundary-

value problems and the development of large, fast computers have lead to more

accurate modeling of these complex conflguratlons. In this paper, various
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methods that are available to solve 3-D boundary-value problems and the tech-

niques used to obtain mode-I stress-lntenslty factors are reviewed.

The most widely used method is the flnlte-element method. Several types

of singularity elements were proposed for 3-D crack problems. The most

attractive of these appears to be the family of quarter-polnt elements. These

elements can be easily implemented in general purpose programs. In general,

the major difficulty with the flnlte-element methods is the effort involved

in modeling the solid. But even this difficulty is being circumvented by the

recent advances in automatic mesh generators. On the other hand, the

boundary-lntegral equation (BIE) method needs only modeling of the surfaces

of the solid and so is gaining popularity.

The llne-sprlng model appears to be the fastest way to obtain good

estimates of the stress-lntenslty factors. However, this model requires a

specialized program. Recent literature shows that some versions of general

purpose programs llke ADINA have the llne-sprlng elements in their library of

finite elements. _

The most accurate solution at the minimum cost appears to be provided by

the flnlte-element-alternatlng method. The success of the method is due to

the recent analytical solution of an embedded elliptical crack subjected to

arbitrary pressure loading. Again, the major disadvantage Is that this method

needs a specialized computer program module for the analytical solution.

Presently, such a module is not available to the general user. However,

investment of time and effort in the development of the module Is certainly

worthwhile. A further disadvantage of thls method is that it is applicable

only to crack shapes which are elliptical or part elliptical.

After the stress analysis of a 3-D crack problem is completed, the

stress-lntenslty factor needs to be extracted from the solution. Several
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investigators have proposed singularity elements which yield stress-intenslty

factors as a part of the solution. These elements are the enriched elements,

stress-hybrld and dlsplacement-hybrld elements. However, with other finite-

element methods and the BIE method, three methods are generally used to

extract the stress-lntenslty factors. They are the crack-openlng displacement

(COD) method, the force method, and the virtual crack-extenslon method. Of

the three, the COD method and the virtual crack extension method are widely

used. In fact, comparisons between various stress-lntenslty factor solutions

for several 3-D crack problems show that all three methods yield nearly iden-

tical solutions when plane-straln conditions exist at the crack fronts.

In general, despite the complexity of some crack configurations, com-

parisons between the available methods have shown that accurate mode-I stress-

intensity factors can be obtained. The choice of a partlcular method is

governed only by the availability of computer programs and resources to obtain

the solution. As analyses of the 3-D crack configurations are completed, com-

pendla of stress-lntenslty factors llke the ones that are available for 2-D

configurations, can be developed. With the advent of supercomputers, and with

the reduction and anticipated reduction in computing costs, such compendia

appear to be within the researchers' reach. 'Some investigators have already

made efforts in this direction. The compendia can help engineers design

structural components which are safe, economical and damage tolerant.
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APPENDIX

Mixed Methods

The following three mixed methods are presented in this appendix.

i. Superposition of analytical and finite element methods.

2. Stress-dlfference method.

3. Discretlzation error method.

Superposltlon of Analytical and Finite Element Methods

Yamamoto and Suml (refs. 98, 99) proposed the use of the method of

superposltion of analytical and finite element solutions. The singular part

of the solution around a crack front is expressed as a linear combination of

analytical solutions. The stress-lntenslty factor is determined by a linear

combination of finite element and analytical solutions. References 98 and 99

applied the technique to compact specimens, round bars with circumferential

cracks, and surface cracks in plates.

Yagawa and Nishloka (ref. 92) divide the total solid into two regions:

the inner region and the outer region. The inner region VI, is the region

which surrounds the crack front and the remainder of the solid is represented

by the outer region VO. The displacements in the two regions are

u(O) = _(0) in V0

and (17)

u(1) = _(i) + _ in VI

where _(0) and _(i) are the usual finite element displacements and u are

the displacements due to the analytical solution (s).
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The displacements u are taken as the product of plane-straln solutions

in planes nor_l to the crack plane (in r,e coordinates) and a power series

in s, the coordinate along the crack front.

u= f(S)Up(r,e) = amS Up(r,e) (18)

The generalized displacements _, d(0), and _(i), are the unknown displace-

ments in the problem. _These are dete_ined by _nimizing the total potential

energy of the system.

Ya_moto and Nishioka (ref. 92) applied this method to the embedded •

penny-shaped crack and semi-circular surface crack problems. They showed good

comparisons with known solutions.

Stress-Difference Method

In this method, successive finite-element solutions are used to obtain

stress-intensity factors (ref. i00). Two finite-element solutions with

identical mesh patterns are obtained, one with no crack (i.e., crack com-

pletely closed) and the other with the crack. Let the stress _g be the

Stress in an element at a hypothetical crack tip in the solid with no crack

(crack completely closed). With the same finite element model, let _tip be

the stress in the same element in the solid with the crack. The stress dif-

ference (_tip - _g) at the crack-tip element is assumed to be related to the

stress-intensity factor. Two problems A and B are solved with this proce-

dure. Then, for the two problems A and B the stress-dlfference ratio

(_tip- _g)A/(_tip- _g)B will be nearly equal to the ratio of stress-

" intensity factors KA/K B at that location. Therefore, if one of the stress-

intensity factors is known the other can be calculated. Reference I00 showed
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good agreements for a limited number of 2-D and 3-D problems with known

solutions.

Discretlzatlon Error Method

In this method, a combination of conventional finite-element solution and

the discretizatlon error of the mesh subdivision is used to determine stress-

intensity factor (ref. i01). The finite element solution, f, can be repre-

sented as the sum of the exact solution, fex' and the dlscretization error,

provided that the round-off error is negligible. Reference I01, assumes that

-6
3 xj

f = fex + _ Axj Nxj (19)

where Aj and Nj are the amplitude of the error and the number of elements,

respectively. The 6j are positive parameters relating to the dlscretizatlon

error due to Nj(J = I, 2, 3). As the singularity around a crack front is, in

general, particular to the directions xI and x2 (see fig. 18) 6x3 may be

much larger than 6Xl and 6x2. Therefore, equation (19) reduces to

-6 -6
xI x2

f = fex + Ax I Nx I + Ax2 Nx2 (20)

Yagawa et al. (ref. i01) further assume that 6Xl = 6x2 = 6 and that the

ratio Nxl/Nx2 is a constant. Equation (20) then reduces to

f = rex + A N-6 (21)

Similarly, the stress-intenslty factor can be expressed as

K = Kex + A N-6 (22)
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The unknowns are Kex , A, and 6. To determine Kex from equation (22),

three finite-element solutions are obtained with three different mesh sizes

, NI, N2, and N3 resulting in three stress-intensity factors KI, K2, and

K3, respectively. The unknowns Kex , A, and 6 can then be determined by

using the three equations,

= Kex + A NU 6, i = 1,.2, 3Ki (23)i

The above procedure is repeated at various stations along the crack front to

obtain the stress-intensity factor distribution. The stiffness derivative

method (ref. 89) is used to evaluate the K values needed in equations (22)

and (23).

The discretization error method requires only coarse models. Refer-

ence I01 applied the method to through crack and surface crack problems and

showed good agreement with earlier solutions.
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Table I.- Comparison of Stress-lntensity Factor Solutions

by Various Investigators for Compact Specimens

KIB_ F

F =---F--; _= ; v= 0.3
Fcollocation

B
Degrees

Investigator(s) C/W Element K-evaluation of 2-D 3-D

Type method Freedom plane at

strain midplane

Tracey [25] a 0.5 6-noded singular COD Approach I 1980 0.94 0.99

RaJu & Newman 0.5 6-noded singular Force Method 1875 - 0.99

[26]a

Tseng & Berry 0.5 15-noded singular COD Approach I 1497 0.99 1.08

[87]a COD Approach 2 1497 0.95 1.05

Bloom & van 0.5 20-noded COD Approach 2 1200 0.97 1.035
Fossen [88]a Quarter-point 4965 0.99 1.076

Tseng & 0.5 20-noded COD Approach i 1497 0.97 1.07

Berry [87]a Quarter-point COD Approach 2 1497 0.94 1.04

de Lorenzl 0.6 20-noded COD Approach 2 4887 - 1.07

[87]b Quarter-point

Kathiresan 0.6 20-noded K-built in 1476 - 1.01

[59]b displ, hybrid

Plan & Morlya 0.5 20-noded K-built in 504 - 1.08
[50]b Stress hybrid

Yamamoto & 0.5 20-node Superposition 2106 0.99 1.08

Sum/ [98, 99] b Isoparametric

Yagawa & 0.5 20-node Superposition 376 1.00 1.07

Nishioka[92]b Isoparametrlc

RaJu & Newman 0.55 6-nodedslngular ForceMethod 5085 0.98 1.08
[91]c

aconfiguration is Type A with W/B = 2.

bconfiguration is Type B with W/B = 2.

CConflguratlon is Type C with W/B - I (see Fig. I0).
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Table 2.- Convergence of the Finite Element Solution With Mesh

Refinement in the Thickness Direction for a Compact
Specimen - Type C (see Fig. i0)

W/B = 2.0; F = ---_; Fplane strain 20.216;

a/W = 0.55

Number of nodes on each Z = constant plane = 339

Degrees of Fmidplane
No. of Layers Freedom Fat midplane

Fplane strain

2 3051 22.374 1.107

4 5085 22.566 1.116

8 9153 22.631 I.I19
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Table 3.- Effect of Thickness on the Stress-Intensity Factor at
Midplane of a Compact Specimen (Type C) (see Fig. I0)

KIB_

F =--'p , a/W = 0.55; Fplane strain = 20.216

a

W/B Fat mldplane Fmidplane/Fplane strain

5.0 21.818 1.079

2.0 22.566 I.I16

1.0 21.854 1.081

aWith 4-1ayer model in the rhlckness direction
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Table 4.- Comparison of Stress-lntensity Factor Deepest Point ($ = _/2)

of a Semi-Elliptical Surface Crack in a Plate Subjected to
Tension

,.a/c _
/ _ Yq !

F at $ = _/2
Finite Element

a/t Method Line-Spring Models
RaJu & Newman

[28] German et al. Delale & Erdogan Dill & Saff

[81]a [84]b [86] c

0.2 1.173 1.173 - 1.174

0.4 1.359 1.404 1.365 1.425

0.6 1.642 1.692 1.635 1.655

0.8 1.851 1.865 1.841 1.820

avalues read from Fig. 6 of ref. 81.

bValues read from Fig. 7 of ref. 84.
CValues read from Fig. A-3 of ref. 86.
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S

Fig. I- Embeddedelliptical crack in an infinite solid subjected
to remote tension.
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S S

((]) Surface crack, (b) Corner cracks at hole,

Fig. 2- Surface crack and corner crack from hole configurations.



Two-DimensionalVersions Three-DimensionalVersions

(o) 3-noded element, Trocey [24] (b) 6-noded element, TroceY [24]

(d) 15-nodede]ement,
(c) 6-noded element, Stern end Becker [33]

Stern ond Becker [33] BIockburn ond He]]en [34]
Hilton et al [37]

(e) 8-noded Quarter-point element, (f) 20-nodedquarter-Point element,
Henshell ond Shaw[40] Henshell ond Show[40]

(g) 6-noded quorter-Point element, (h) 15-nodedquarter-point element,
Borsoum[41] Borsourn[41]

Fig.3- Varioustypesof singularityelements.
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t START

t

-_STEP 2: CRACK FACE STRESSES ARE NEGLIGIBLE I YES SOLUTION HAS

|

I CONVERGED,

t SUN UP THE
NO STRESS INTEN-

SITY FACTORS

STEP 3: FIT THE CRACK FACE STRESSES TO FOR AIL

A CUBIC POLYNONIAL LIKE EQ. (8) ITERATIONS

FOR THE CURRENT ITERATION

STEP 5: USE SOLUTION 1 TO EVALUATE THE STRESSES
ON EACH OF THE RECTANGULARDONAINS
ON EACH OF THE EXTERNAL SURFACES
OF THE SOLID DUE TO THE CRACK
FACE STRESESS

STEP 6: REVERSE THE STRESSES ON THE RECTANGULAR
DONAINS OBTAINED IN STEP 5, USE THE
SOLUTION 2 TO CALCULATE THE STRESSES ON
THE CRACK FACES AND ON EACH OF THE
RECTANGULARDONAINS (THE EFFECT OF ALL
RECTANGULARDONAINS ARE INCLUDED BY
SUNNING OVERALL RECTANGULARDONAINS)

I STEP 7: REVERSE THE CRACK FACE STRESSES I

,i

j I
. t

Fig. 4- Flow chart for the alternating method.
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Y
.

Backsurface
rectanglegrld
breakdown

i

I I

"X

Backsurface

aiT
f-,--c---_ Front surface_ x
Z

i I I I

i

Frontsurface
rectangulargrid
breakdown

f
Y

Fig. 5- Rectangulargrid idealizationfor the front and
back surfacesin the alternatingmethod, ref. 72.
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I START I

|STEP 1: SOLVE THE UNCRACKEDBODY SUBJECTED

1 TO THE GIVEN EXTERNAL LOADING BY

USING THE FINITE ELENENT NETHOD
• (FEM)

STEP2: USE THE FE SOLUTION TO COMPUTETHE

STRESSES ON THE LOCATION OF THE
CRACK IN THE UNCRACKEDBODY

SOLUTION HAS

! ! CONVERGED.
STEP 3: CRACK FACE STRESSES ARE NEGLIGIBLE YES SUN UP THE

STRESS-INTEN-
SITY FACTORS

NO FOR ALL
ITERATIONS

IN STEP 2 AND FIT A POLYNOHIAL FUNCTION

FOR THESE STRESSES ! STOP ]

STEP 5: EVALUATE THE STRESS INTENSITY FACTORS I
FOR THE CURRENT ITERATION I

f !

STEP 6: USING THE ANALYTICAL SOLUTION CALCULATE [
THE STRESSES ON EXTERNAL SURFACES OF THEI
BODY DUE TO THE STRESSES OBTAINED IN I
STEP q. I

STEP 7: REVERSE THE STRESSES ON THE EXTERNAL SURFACES
OBTAINED IN STEP 6 AND CONSIDER THESE AS
EXTERNAL LOADS, CALCULATE THE EQUIVALENT
NODAL LOADS AND USE THESE AS APPLIED
LOADING FOR THE UNCRACKEDBODY

t

• Fig. 6- Flow chart for the finite-element-alternating method.

55



f 1_---2c---H x
I_ 2b .I

(a)Surfacecrock.

, ¢
2b -

X -- O_-P--2c_

_t----

Moo-' Noo

(b) Center crack with line springs (c) Single-edge crack plate
across the crack faces, under plane stratn,

Fig. 7- The line-spring model for the surface crack.

°
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Crack front

•Kop

COD I_r-_ r

(o) CrGck front region. (b) Apporent stress-Intensity f_ctors,

Fig. 8- Crack-opening displacement method of evaluating stress-intensity factors.



Flnlte element

5

YC _-

T _X

C+4C

Fig. 9- Illustrationof the virtualcrack extensionmethod.
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B

Type C x
B

z i
Fig. I0- Variouscompacttype specimensanalyzed.
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I I-- 2c--I t

1,5 --

o o

____22__ -v- _-.- - _-a- Z
_ _ .____ _>______ _ ,__n_>____

KI 0

o Smithand Sorensen[94]
• RaJuandNewman[27,29]
[] McGowanandRaymund[22]
0 Hellot et al [96]

Shah and Kobayash! [72,73]
,5 - %7AtIurJ and Kathlresan [53,5q]

--McGowan's "Bestestlmate"and

13 percentbands [22]

I I I I
0 ,25 ,5 ,75 1

TF

Fig. II- Comparisonof stress-intensityfactorsfor a semi-elliptical
surfacecrack in a plate subjectedto remote tension
(a/c = 0.5; a/t = 0.75).
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Fig. 12- Internal surface crack in a cylinder.

• o
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Y
y

_o

J

b _ "---_ Z

e t
Z

(a) Finite-element model, (c) Loadtngon crack surfaces,

(b) Element pattern on Y= 0 plane,

Fig. 13- Finite-elementmodel and loadingon a semi-elliptical
surfacecrack in a cylinder.
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1,5
McGowanand Raymund[23] GO

Hellot et al [67]

1,0 NewmanandRaju[31,32]

I I

0 ,5 1

rr

Fig. 14- Comparisonof influencecoefficientsfor an internalsurface crack
in a cylindricalvessel subjectedto variouscrack surface load
distributions(R/t = lO; a/c = I/3; a/t = 0.8).
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2,0-

s 1.s o

• RaJuand Ne_an [28]
1,0- o Kathlresan [59]

Smlth ond Kulgren [79]
--- Shoh [97]

,5-

I I I I
0 .25 ,5 ,75 1.0

Tr

Fig. 15- Comparison of stress-intensity factors for corner cracks
from a hole in a plate subjected to remote tension
(R/t = 0.5; a/c = I; a/t = 0.5).
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Fig. 16- Corner cracks from a hole in a plate subjectedto pin loading.
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Nlshloko ond Atlurl [76]
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Fig. 17- Comparisonof stress-intensityfactors for corner cracks
from a hole in a plate subjectedto pin loading
(R/t = 0.5; a/c = 2.0).
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X2

X1Crack front

X3

Fig. 18- Coordinatesystem used for the discretization-errormethod.
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