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METHODS FOR ANALYSIS OF CRACKS IN THREE-DIMENSIONAL SOLIDS

ABSTRACT

Various analytical and numerical methods used to evaluate the stress—
intensity factors for cracks in three-dimensional (3-D) solids are reviewed.
The review covers some of the classical exact solutions and many of the
~approx1mate methods used in B—ﬁ analyses of cracks. The exact solutions for
embedded elliptic cracks in infinite solids are discussed. The approximate
methods reviewed are the finite element methods, the boundary-integral equa-
tion (BIE) method, the mixed methods (superposition of analytical and finite
element method, stress-~difference method, discretization-error method, alter-
natihg method, finite element-alternating method), and the line-spring model.
The stregs-intensity factor solutions for some commonly encountered 3-D crack
configurations were compared. The solutions by various methods appear to show
good agreement.

The finite-element method with singularity elements is the most widely
used method. The BIE method only needs modeling of the surfaces of the solid
and so is gaining popularity. The line-spring model appears to be the quick-
est way to obtain good estimates of the stress—intensity factors. The finite-
élement—alternating method appears to yield the most accurate solution at the
minimum cost.

Comparisons between various methods have shown that accurate mode-I
stress—intensity factors can be obtained. The ch&ice of a particular method

is only governed by the availability of computer programs and resources to

obtain a solution.
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INTRODUCTION

In aerospace, marine and nuclear structures, fatigue failures can occur
from the initiation and propagation of cracks from holes, scratches or defects
in the material. Such failures have caused loss of life, destruction of
equipment, and severely reduced the life of these structures. To design
against these failures, crack propagation lives and fracture strengths need to
be accurately predicted. To make these predictions, stress-intensity factors
are needed. ansequently, considerable research has been invested in the
determination of stress-intensity factors. For generalized plane-stress and
plane-strain conditions, many exact solutions have been developed. For
complex two-dimensional (2-D) crack configurations, where exact solutions are
not availlable, several approximate methods have been used to obtain the
stress—intensity factors. These methods can be found in excellent reviews by
Rooke et al; (ref. 1), Cartwright (ref. 2), and Hellen (ref. 3). Many stress-
intensity factor solutions are now available in the form of compendia by Tada
et al. (ref. 4), Rooke and Cartwright (ref. 5), and Sih (ref. 6).

A comprehensive review of aerospace structural failures complefed by the
United States Air Force in 1971 (ref. 7) showed that the origin_of failures
due to cracks, in order of frequency of occurrence to be (1) surface cracks,
(2) corner cracks, and (3) cracks emanating from fastener holes. Such cracks
propagate with elliptic or near elliptic shapes. These cracks are "truly"
three"dimensional configurations. Two-dimensional approximations to these
crack configurations are usually unsatisfactory and inaccurate. Accurate .
stress—intensity factors for these configurations, therefore, can be obtained

only by solving 3-D boundary-value problems.



The purpose of this paper is to review various methods used for determin-
ing stress—intensity factors for cracked 3-D bodies. Because cracks tend to
grow predominantly in mode-I, the symmetric opening mode, the review will be
» limited to determination of mode-I stress—intensity factors. First, some
‘exact solutions fof cracks in infinite solids are presented. Next, various
approximate methods that have been used for the solution of the boundary-value
problem of finite solids with cracks are reviewed. Third, the techniques used
to extract the stress-intensity factors from these solutions are discussed.
‘Last, various methods used to calculate the stress—-intensity factors for
through~-the-thickness cracks, semi-elliptical surface cracks and quarter-

elliptical corner cracks at holes are compared for the case of remote tensile

loading.
LIST OF SYMBOLS
a depth of crack
b half-width of cracked plate (see Fig. 2)
c length or half length of crack (see Fig. 2)
E Young's modulus
F boundary-correction factor
G strain-energy release rate
h half-height of cracked plate (see Fig. 2)

KI’ KII’ KIII stress—-intensity factor in Mode-I, Mode-1II, and
Mode—~1III, respectively

Kap apparent stress—intensity factor

N, M_ remote membrane load and moment in the line-spring model
P applied load

Q shape factor for an elliptic crack

r, 6 polar coordinates with the origin at the crack tip



R radius of the cylindrical pressure vessel

S remote uniform tensile stress

t thickness of the plate (see Fig. 2)

u, v displacements along x- and y-directions, respectively
%) width of the compact specimens (see Fig. 11)

X, ¥, z Cartesian coordinates

v Poisson's ratio
o) parametric angle of the ellipse
{o} . Cartesian stresses, {Qk’ qy, g, oky, q&z, Oéx}

EXACT SOLUTIONS
In this section, the exact solutions for cracks in 3-D solids are summa-
rized. The summary is limited to tensile loading and, hence, only mode-I
stress—intensity factor solutions are discussed. Further, because sur}ace and
corner cracks propagate with elliptical or near elliptical shapes only ellip-

tic cracks are considered here. For other crack shapes and loading see

references 3-6, 8, and 9.

Circular (Penny-Shaped) Cracks

The problem of the stress distribution around a penny-shaped crack in an
infinite solid was solved by Sneddon (ref. 10) using Fourier-Hankel trans-
forms. He considered four types of loadings: (1) uniform normal'pressure on
the crack faces, (2) uniform pressure over a circular area, (3) concentrated
ring loads, and (4) concentrated load acting at the center of the crack. All
loads were symmetry about the crack plane. Smith, Kobayashi, and Emery
(ref. 11) solved the problem of a penny-shaped crack subjected to any arbi-

trary pressure loading which can be expressed as a Fourier series.



Elliptical Cracks
Green and Sneddon (ref. 12) solved the stress distributions iq an infi-
nite body with an elliptical crack (see Fig. 1) using the known gravitational
potential for a uniform elliptical disk. Irwin (ref. 13) then derived aﬁ
exact expression for the mode~I stress—intensity factor around the elliptical
crack subjected to uniform tension based on this exact solution. The stress-

intensity factor along the boundary of the elliptical crack is
Ky = SJ%E [(a/c)2 cos? o+ sin’ ¢]1/4 (1)

where Q 1s the elastic shape factor for the ellipse and is related to the

complete elliptic integral of second kind as |

/2 2 |
Q = f [(a/c)2 c052 ¢+ sin2 ¢]1/2 dé (2)
0

Kassir and Sih (ref. 14) derived the same results, equation (1), directly from
the stress field.
When the semi-major and semi-minor axes, ¢ and a, are equai, equa-

tion (1) reduces to the stress—intensity factor for a penny-shaped crack as
Ky = sym@ = | (3)
1 ™7

whicﬁ is the exact solution by Sneddon (ref. 10).

The problem of an elliptical crack subjected to arbitrary pressﬁre load-
ing attracted much attention. Shah and Kobayashi (ref. 15) obtained the exact
solution of an embedded elliptical crack subjected to a polynomial pressure

load of the form



= 2 2
Uy(x,o,Z) = AOO + Alox + AOlz + A20x + Allxz + Aozz

(4)

2

+ A30X3 + AZIXZZ + Alzxz + Ao3z3

The stress-intensity factor distribution along the crack front is given
in terms of coefficients Cij which are related to the coefficients Aij in
equation (4) by a matrix relation (see eq. 17 of ref. 15).

When all the coefficients Aij except AOO are zero, and when all the
coefficients Aij except A;g are zero, Shah and Kobayashi's solution
reduces to that of Green and Sneddon (ref. 12) and Kassir and Sih (ref. 14),
respectively. For a penny-shaped crack subjected to sinusoidally varying
pressure, the stress—intensity factors of Shah and Kobayashi reduce to those
given by Smith et al. (ref. 1ll).

Since the pioneering work of Shah and Kobayashi in 1971, it was believed
that the solution for embedded elliptical cracks subjected to arbitrary pres-
sure loading 1s restricted to a cubic distribution like equation (4). How-
ever, in 1981, Vijayakumar and Atluri (ref. 16) derived a general solution
procedure for an embedded elliptical crack, subjected to arbitrary crack-face
tractions. In 1983, Nishioka and Atluri (ref. 17) presented a more detailed
solution, as well as a general procedure for the evaluation of the required
elliptical integrals found in the solution of reference 16. This analytical
solution cannot be directly applied to embedded circular cracks because some
individual terms in the solution take indeterminate form at a/c = 1. But the
analytical solution for circular cfacks (a/c = 1) can be derived from that of
an embedded elliptical crack by taking appropriate limits for the integrals as

c2 2

the term ———%—5— tends to zero. Most analysts, however, prefer to
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approximate circular cracks with a/c = 0.98 or 1.02 and use the general
solution for an elliptical crack.
The exact solutions for elliptical cracks are limited to the completely

embedded cracks in infinite solids.

APPROXIMATE METHODS

As pointed out earlier, failures uéually originate as surface cracks;
corner cracks, or cracks emanating from fastener holes. However, these con-—
figurations (see Fig. 2) are complex and, therefore, éxact solutions for
stress fields and stress—intensity factors are not available. To solve these
3-D boundary-value problems, a variety of techniques have been used. The
techniques are (1) the finite—element method, (2) the boundary-integral equa-
tion method, (3) the mixed methods, and (4) the line-spring models. ‘Some of
these methods were aimed at solving for stress distribution in 3-D bodies.
The methods for the extraction of stress—intensity factors were develbped
later. 1In the following sections, each of these methods 1is discussed.
Although most of these‘metﬁods can be used in mixed mode situations, the

discussion 1s limited to mode—~1 problems.

Finite-Element Method
The finite-element method is a well-known method extensively used to
solve 2-D and 3-D boundary-value problems. To solve crack problems, basi-
cally, two approaches are used - those based on conventional elements and

those based on singularity elements.

Conventional Elements

In the conventional approaches, regular or standard finite elements are

used to model the complete solid. The disadvantage of conventional elements



is that large numbers of elements are needed to accurately represent the
stress field near the crack front (refs. 18-20).

Hall et al. (ref. 21) presented a 3-D macroelement techniqué. In this
technique, the solid is first modeled into two or more substructures by
20-noded isoparametric elements and the region containing the crack by one
simple 20-noded element. This region containing the crack is then modeled as
a macroelement which contains a high density of nodes in the vicinity of the
crack front and is compatible with the standard 20-noded elements adjoining
it. With the macroelement, arbitrary 3-D configurations with cracks can Ee

accommodated (refs. 21-23).

Singularity Elements

A square-root singularity exists along the crack front and, therefore,
large stress gradients exist near the crack front. To delineate the stress
field accurately in these regions, several special elements have been pro-
posed. These elements have the réquired square-root singularity incorporated
in their formulations. Some of the singularity elements proposed are
described below.

Regular Displacement Models:

An element with the shape of an arbitrary pentahedron, with 6 nodes, was
proposed by Tracey (refs. 24, 25) and was used in reference 26 (see Fig. 3(a)
and 3(b)). With this element, the crack front is modeled with discrete linear
segments. Usually about 8 singularity elements around the crack front aré
used in symmetric crack problems (ref. 26). The remainder of the solid ié
modeled with 8-noded isoparametric hexahedrons (refs. 24-32). The singular
pentahedron element is of the nonconforming type.

Stern and Becker (ref. 33) and Blackburn and Hellen (ref. 34) proposed a

6-noded and 15-noded singular element (see Figs. 3(c) and 3(d)). The 15-noded



element is a pentahedron with curved sides with 6 corner nodes and 9 midside
nodes...Because of the curved sides the crack front can be approximated with
parabolic arcs. References 33 and 34 used 6 and 4 singularity elements,
~ regpectively, around the crack front for symmetric crack problems. This
singularity element 1is compatible with the standard 20 noded isoparametric
elements that are used to model the remainder of the solid.

Enriched Displacement Models:

Benzley (ref. 35) proposed the concept of enriched singularity elements
for 2-D crack problems. The enrichment process can be explained as follows.
Consider an isoparametric quadrilateral at a crack tip. The displacement

functions assumed for this element are like

4 4
u(x,y) = Z Njuj and v(x,y) = Z va.‘l (5)
=1 =1

where u and v are the displacements at any point inside the element. The
uy and vy are the displacements at node j. Nj is the shape function.
Benzley proposed to "enrich" the element by adding the near field displace-

ments from the exact solution at the crack tip as

4 4
u(x,y) = Z Njug+Kp(Qp - Z N, Qp,
j=1 =1 @

(6)

4

+ Krp{Qra ~ D Ny Qg
=1 ¢

and similar equation for the v-displacements. In equation (6), K; and Kqg

are the unknown stress—-intensity factors, Ga are the values of Q evaluated

at the node «a.



The Q functions in equation (6) are chosen to be the near field

displacements at a crack tip as,

_2(1 + V) [r Olx~-1 20
Qy ———E————,[EE cos = [' + sin %]

=2(1+v)_r_ O ijxk+1 _ 2 9
QIV E 27 sin 2 [. cos é]

N

(7

_2(1+v>{r 0 [+ 1 2 0
QIIu == F V2= sini- 3 + cos 5—]

2(1 + v) /5;_ 0f_ x~-1 2
———E 1 cos E’ 2 + sin 7]

Q1v

where « =3 - 4v for plane strain and (3 - v)/(1 + v) for plane stress. The
r and 6 are the polar coordinates with their origin at the crack tip.
Equations 7 represent the displacement components along x- and y-directions

in mode-I and mode-II (refs. 4, 6).

The displacement interpolation functions as described by equation 6 do
not maintain interelement compatibility. Benzley suggests multiplication of
the last two terms in equation (6) by functions which are zero on.the element
boundaries which adjoin the regular elements. Thus, Benzley's enriched ele-
ment would be a compatible element and, therefore, assures monotonic conver—
gence. The stress—intensity factors K and Ky are unknowns -in addition
to the uodal displacements. Thus, the enriched elements have the advantage
that no other methods of extraction of stress—intensity factors are necessary
after the finite-element solution is obtained. This concept of the enriched
elements was used by Gifford and Hilton to develop a 12-noded quadilateral
element for 2-D crack problems (ref. 36), and by Hilton et al. to develop‘a

15-noded pentahedron element with curved faces (refs. 37-39) for 3-D crack
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problems. The stress—intensity factors K;, K;yy, and Kyy; are unknowns in
addition to the nodal displaceménté and will be available when the finite-
element solution 1s obtained.

Quarter-Point Elements:

Henshell and Shaw (ref. 40) and Barsoum (refs. 41, 42) proposed that by
displacing the midside nodes from their normal position in an 8-noded quadri-
lateral isoparametric element, one can simulate a square-root singularity at a
corner node. They showed that the necessary position of the displaced node
should be at a distance of one-quarter of the length of the side from the
corner node where the squafe-root singularity 1s needed. Henshell and Shaw
(ref. 40) suggested using an 8-noded element and 20-noded quarter—point ele-
ments as in Figures 3(e) and 3(f) for 2-D and 3-D problems, respectively.
Barsoum (refs. 41, 42) suggested collapsing one side of an isoparametric ele-
ment to form a triangular element with quarter—point nodes as in Figure 3(g)
and collapsing one face of a 20-noded isoparametric element to form a 15-noded
pentahedron element with quarter-point nodes as in Figure 3(h) for 3-D prob-
leﬁs. These quarter—point elements are attractive because of the ease with
which they can be implemented in a general purpose program. These elements
are extensively used by Ingraffea and his coworkers (refs. 43-46), Hechmer
and Bloom (ref. 47), and Wu (ref. 48).

Hybrid Elements:

In addition to the elements described_above, two types of hybrid sin-~
gularity elements were also developed. They are the stress—hybrid and
displacement—~hybrid elements. The advantage of these singularity elements
is that the stress—intensity fac&ors K;, Kyp, and Kypy are obtained as

a part of the solution.
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Pian and Moriya (refs. 49, 50) proposed assumed stress—hybrid elements.
In these elements, the stress singularities are represented by the stress-
intensity factors Ky, Kyp, and Kyrr and the near field 2-D stress solu-
tions at the crack front. Other assumed stress terms are simple polynomials
which satisfy equilibrium and the stress~free conditions on the crack faces.
In addition, displacements along the element boundaries are assumed such that
they are compatible with the standard elements. The complementary energy is
minimized to‘obtain the element stiffness. Following the procedures laid out
by Pian and Moriya, Kuna (ref. 51) developed a 20-noded hexahedron (assumed
stress singularity) element. The crack froﬁt is appréximated by linear seg-
ments and each segment is surrounded by a group of four singularity elements
for the general case and two for tﬁe symmetric case (refs. 49-51).

The displacemeﬁt formulation for hybrid elements is similar to that of
the stress formulation. In the displacement formulation, however, one assumes
a compatible displacement field within the element as well as another set of
independent displacements and tractions on the boundaries of the element. The
singular stress field in the elgment‘is incorporated by the stress-intensity
factors (Ky, Ky, and KIII) and the near field displacements at a smooth
crack front as given in reference l4. (Note that the near field solution for
the displacements for the 3-D case can be obtained by superposition of all
three modes under plane-strain conditions with k = 3 - 4y). On the element
boundaries, displacements are assumed which are compatible with standard
ad joining elements. A modified variational principle (ref. 52) 1is used to
obtain the element stiffness matrices of these singularity elements. Tong and
Atluri (ref. 52) and Atluri and Kathiresan (refs. 53-59) developed and exten-
sively used these displacement-hybrid singularity 20-noded hexahedron ele-

ments. The crack front can be approximated by parabolic arcs and each arc is
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surrounded by a group of four singularity elements for the general case and

two for the symmetric case (ref. 59).

Ve

Boundary-Integral Equation (BIE) Method

Any linear elasticity problem can be solved using two second-order tensor
kernels defined onbtﬁe boundary (refé. 60-64). These kernels depend only on
the configuration being analyzed. These two kernels allow the calculation of
displacements and tractions at the boundary by an integral equation. The
interior displacements and stresses can then be calculated in terms of the
two kernels, the boundary displacements, and boundary stresses.

The BIE method uses the reciprocal theorem of elasticity together with
the solution of a point load in a .infinite solid. The reciprocal theorem
relates the known point load solution to the solution of the desired problem.
In the numerical solutions by the BIE method, the boundary of the solid is
modeled with elements similar to the 2-D finite elements. Therefore, 3-D
modeling of a solid is reduced to 2—D modeling of.boundary surfaces. However,
in contrast to the finite—element analysis, the matrix involving the linear
algebraic simultaneous equations obtained in the BIE method is not symmetrical
and is fully populated. Also, the BIE method is inferior to finite-element
method when stresses at many points inside the solid are desired (ref. 62).
But; the BIE method is gaining popularity for 3-D problems. Two-dimensional
elements like the 2-D finite elements including quarter—point elements can be
used along the crack front.

The BIE method has been widely used by Cruse (refs. 62, 65), Heliot et al.
(refs. 66, 67), Cruse and Wilson (ref. 68), Harris and Lin (ref. 69), Cruse
and Vanburen (ref. 70), and Lange (ref. 71), for problems of through cracks

and surface cracks in plates and cylindrical vessels.
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Mixed Methods

As pointed out earlier, finite-element analyses of 3-D crack problems
involve large number of degrees of freedom because of refined meshes along the
crack fronts. Further, modeling and data input become difficult and the num-
ber of equations can exceed the capacity of average computer systems. There-
fore, several techniques of reducing degrees of freedom have been proposed.
These techniques use either several finite-element solutions or combine two
different methods, one of which is usually a finite-element solution. The
mixed methods that have been proposed are

1. Superposition of analytical and finite element methods

2. Stress-difference method

3. Discretization error method

4. Alternating method

5. Finite element - alternating method
An excellent summary and comparisons of the first three methods can be found
in reference 20. For completeness all these three methods are presented in
the appendix. 1In this section the widely used alternating method and the

finite element—alternating method are discussed.

Alternating Method

The alternating method (refs. 72-74) uses two basic analytical elasticity
solutions for infinite and semi-infinite solids. The first solution, Solu-
tion 1, is that for an elliptical crack in a infinite solid; the crack faces
are subjected to variable normal loads (refs. 15, 72). The second solution,
Solution 2, is that of an uncracked semi-infinite body subjected to uniform
normal and shear stresses over a rectangular portion of the free surface

(ref. 75).
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The analytical solution to the problem of an elliptical crack in an
infinite solid, Solution 1, with normal loading on the crack faces was
obtained by Shah and Kobayashi (refs. 72, 73). 1In this work, however, the
variation of the loading normal to the crack faces is limited to a cubic

function in the x- and z-coordinates (see Fig. 1) as

0y(x,0,2) = Agy + Agyx + Agyx® + Ayz? + Ajyxz + Agax (8)

The stresses and the stress~intensity factor may be computed directly from a
lengthy set of equations involving elliptical and Jacobian elliptical inte-
grals if the constants Aij in equation (8) are knoﬁn.

The alternating method 1s an iterative method in which stresses on the
exte;nal surfaces of the so0lid and the crack faces are>reduced to zero by
alternating between Solution 1 and Solution 2. The logic for the iterative
steps is explained in the flow chart in Figure 4. In this method, the exter—
nal surfaces of the solid are modeled by rectangular regions. The stresses in
eachrof these rectangular regions due to Solutions 1 and 2 are evaluated for
each iteration and are used as shown in Figure 4.

Shah and Kobayashi (refs. 72, 73) modeled the front and back faces with
rectangulaf domains as shown in Figure 5. Very similar rectangular domain
idealization was used by Smith (ref. 74). Detailed discussion on the
approaches in references 72-74 can be found in the evaluation by McGowan
(ref. 22). |

This method needs only coarse idealizaéions of the front and back faces
and, hence, the number of degrees of freedom in the problem are small. Fur-

ther, the stress~intensity factors are directly obtained as a part of the

solution.
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Finite-Element-Alternating Method

As noted earlier, the alternating method uses the analytical solution
(refs. 11, 15, 72) for an embedded elliptical crack in an infinite solid.
This analytical solution has been limited to cubic variation of normal pres-
sure on the crack surfaces. Recently, a general solution procedure has been
derived (ref. 16) for the problem of an infinite elastic medium with an
embedded elliptical crack in which the the faces of the crack are subjected
to arbitrary variations of normal and shear tractions. Nishioka and Atiuri
(ref. 17) presented a more detailed solution and a general procedure for the
~evaluation of the required elliptic integrals found in the solution of
reference 16.

Utilizing this analytical solﬁtion, Nishioka and Atluri (refs. 76, 77)
proposed a finite—-element-alternating method. The procedure is summarized in
Figure 6. A very similar procedure was used by Browning and Smith (ref. 78)
and Smith and Kulgren (ref. 79) except that they used the analytical solu;ion
of references 15 and 72. |

This method needs only coarse finite element models because the singular-
ity at the crack front is modeled by the analyticél solution. Further, the

stress—intensity factors are directly obtained as a part of the solution.

Line-Spring Model
The line-spring model (LSM) was originally proposed by Rice and Levy'
(ref. 80) for the analysis of surface crack problems. The 3-D crack problem
is reduced to a 2-D plate (or shell) theory problem. Consider the surface~
crack configuration like Figure 2(a). Figure 7(a) shows the cracked plane of
this plate. The surface-cracked configuration is idealized as a through-the-
thickness center crack of length 2c in a plate with a series of line springs

across the crack faces (see Fig. 7(b)). The remote loads N and M_, on the

-]
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surface-cracked plate are applied to the plate in Figure 7(b). The surface
crack in Figure 7(a) has an uncracked ligament of t -~ a(x) at any distance
x from the center (a(x) describes the depth of the gurface crack at any
distance x from the center). The 2-D idealization must account for the
transmission of membrane loads N, and M, across the crack faces. That
is, the stiffness of the line springs should vary with the coordinate x. To
determine the stiffness of these springs the following procedure was followed.
Due to the external loads, the middle surface of the plate on one side of
the line spring displaces by an amount & and rotates an angle «, relative
to the other side. The values of § and a at any point are considered to
be functions of the membrané loads and bending moment per unit length which

are transmitted across the spring at that location, x. Then, the stiffness

of the spring at x 1s the inverse of the compliance matrix which relates

{6} and (N} as

8CE) N(E) )
= [c(®)] (9

a(E) M(E)

where E = x/c. Rice and Levy (ref. 80) proposed that the compliance of these
springs (Eq. 9) can be obtained from a plane-strain solution of a single-edge
cracked plate (Fig. 7(c)) of width t and crack length a subjected to an
axial force N and bending moment M per unit thickness. Note that the com—
pliance is a function of the crack depth.

At each x-location, the crack-depth a(x) 1is first established. Then,
for this crack depth the compliance matrix [C] of equation (9) is calculated
from the single-edge crack solution with an edge-crack a(x) in a plate of

thickness t. Inverse of the compliance matrix [C] will yield the desired

17



stiffness matrix of the line—spring at that x-location. This procedure is
used to determine the stiffnesses of the line-springs from x = -¢ to x = c.
These line-spring elements are then used across the faces of the center-
crack (see Fig. 7(b)). The center-cracked plate with the line-springs across
its crack faces is then subjected to the remote loads N, and M_. The solu-
tion of this boundary value problem yields the relative displacements &(x)
and a(x). From these displacements the loads N(x) and M(x) at any sta-

tion x can be calculated by equation (9). The stress—intensity'factor

KI(x) i1s then calculated from

t

Ky (x) = WEI(%&)N—S‘L» r(222) __wgﬂ (10)

The functions F; and Fy are obtained from the plane-strain solutions for a
single-edge cracked plate in tension and bending, respeétively (refs. 4-6).
The boundary value problem of Figure 7(b) was solved using the finite-
element method by German et al. (ref. 81) and using integral equations in
references 80 and 82-85. With this model, German et al. (ref. 81), Parks
et al. (ref. 82), Delale and Erdogan (refs. 83, 84), and Rice (ref. 85)
analyzed the surface crack in plates and cylindrical vessels.
A model very similar to the line-spring model called the slice-synthesis
model was developed by Dill and Saff (ref. 86). They also applied this model

to surface cracks in plates.

EXTRACTION OF STRESS-INTENSITY FACTORS
After the boundary-value problem is solved, one has to extract the
stress—intensity factors from the solution. In some formulations using the
finite—-element method, the stréss-intensity factors are included in the ele-

ments as the unknown parameters. In such cases, the stress-intensity factors
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are available when the boundary-value problem is solved. The enriched ele-
ments (refs. 35-39), the stress—hybrid elements (refs. 49-51), and the
displacement-hybrid elements (refs. 52-55) give stress—intensity factors
directly from the solution.

When other elements are used, however, the stress—intensity factors must
be extracted from the finite-element solution. Three methods are wi&ely used.
They are the crack-opening displacement (COD) method, the force method, and

the virtual-crack extension method. These methods are briefly discussed

below.

Crack-Opening Displacement Method
In this method, the COD just behind the crack front is compared to the
corresponding 2-D case to evaluate the stress—intensity factor. If r is
the radial distance measured normal from the crack front at station i (see

Fig. 8), then the 2-D solution assuming plane strain gives

2
vaigl__-_l)_.x r_.

E IV2g (1)
where v 1s the one-half of the COD at a distance r from the crack front.
In the COD method, two approaches are used. In the first approach,
Approach 1, the crack—-opening displacement at the node next to the crack front
is used in equation (11) to calculate Ky. In the second approach,
Approach 2, the COD values at various distances from the crack front are used
to calculate apparent stress—intensity factors, Kap’ Linear regression is
used on the Kap against r plot (Fig. 8(b)) to compute the value of Ky at

the 1ntercept,' r=0.
The first‘approach, utilizing one node, 1is extensively used with quarter-

point elements (refs. 42-48), the conventional finite-element method
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(refs. 18-20) and singularity elements (ref. 87). The second approach is
used with singularity elements (refs. 34, 40, 88).

The main disadvantage of this method is that one has to assume a state of
stress, either plane stress or plane strain. The stress—intensity factors
calculated from the assumption of plane stress and plane strain differ by a
factor (1 - vz), the plané-strain assumption yielding the higher value. The
factor (1- vz) translates to a 9 percent difference for a Poisson's ratio of
0.3. Most analysts prefer to use the plane-strain assumption all along the

crack front and the plane-stress assumption in the region where the crack

meets the free surfaces.

Force Method

In this method, the forces ahead of the crack front and normal to the
crack plane are used to evaluate stress—intensity factors.

In contrast to the near-field displacements at the crack tip (in the 2-D
case), the near field stresses ahead of the crack tip are identical for plane
stress and plane strain. Therefore, use of the 2-D stress solution ahead of
the crack tip would eliminate the assumption of either plane stress or plane
strain. However, the accuracy of stresses in a finite element solution is not
as good as that for displacements. But the accuracy of nodal forces computed
in a finite—-element solution is the same as that of displacements. Therefore,
Raju and Newman (refs. 26 and 27) used the finite—element forces ahead of the
crack front and normal to the crack plane, and compared these forces to those
obtained by integrating the near-field stresses from the 2-D solution. The
stress—intensity factor is evaluated, as in the COD metﬁod, by plotting the
Kap against radial distance r from the crack front and extrapolating to
r=0 as in Figure 8(b). The method thus avoids the assumption of plane sgtress

or plane strain. This method was extensively used in references 26-32.

20



Virtual Crack Extension Method
In this method, the strain-energy release rate (G) for the cracked con-
figuration is calculated and then the K values are evaluated from G. The
‘strain—energy release rate is obtained by taking the difference in the strain

energy of the structure divided by incremental crack length Ac, G = = AE.

Ac
In the conventional finite-element analysis, this reqﬁires two runs with crack

.lengths ¢ and c + Ac.

Parks (ref. 89) and Hellen (ref. 90) proposed similar algorithms which
require only one run at crack length c. The 2-D problem is first solved by
a finite-element method. Then the crack length c¢ 1s incremented.by amount
Ac. When the crack length is c¢ + Ac, nodes within, but not on the contour
Iy (see Fig. 9), get shifted by an amount Ac. However, all nodes within and
on the contour Ty simply get shifted by Ac and therefore suffer no change
in energy. The only change in the energy is due to changes in the element

configuration between contours Ty and Tj. Therefore, the strain-energy

release rate is

G =3 {“}TEE (k] gy pe - [k]cﬂ f) (12)

where {u} are the displacements obtained from the original loading and with
a crack length of c¢. The [k]c+Ac and [k], are the assembled stiffness
matrices of.elements between the contours Iy and T;. They are calculated
wifh coordinates corresponding to crack lengths ¢ + Ac and c¢. The stress-

intensity factor Ky can be calculated from G by the relations
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for plane stress
(13)
S
=5 (1 - v') for plane strain
In this method, the crack extensions Ac can be very small, of the order of
1073 to 1075 times the crack length c. For 3-D analysis, the extension is
straightforward and is discussed in detail in references 89 and 90. Again,
to obtain the stress—intensity factor by this method, an assumption of either
plane stress or plane strain needs to be made because of equation 12.
The virtual crack extension method was extensively used by Hall et al.

(ref. 21), McGowan and Raymund (ref. 23), Hellen (ref. 90), and Blackburn and

Hellen (ref. 34).

COMPARISONS

The methods outlined earlier were used to obtain stress—intensity factors
for various cracked solids. Broad comparisons between different methods are
not possible because the investigators did not work identical configura;ions
and loading. However, the following specific configurations susjectéd to
tensile loading have been studied by numerous investigators.

1. Compact specimen

2. Semi-elliptical surface crack in a plate

3. Semi-elliptical surface crack In cylindrical pressure vessels

4. Quarter—elliptical corner cracks from holes

The solutions for each of these configurations will be compared in this

section.
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Compact Specimens

Compact specimens shown in Figure 10 represent the simplest 3-D configu-
rations with cracks. These specimens have through—-the-thickness cracks with
straight crack fronts. Several investigators have analyzed these configura-
tions with varying degree of success. All investigators showed that the
stress-intensity factor, Ky, at the midplane of the specimen is higher than
that at the surface. However, the K; value at the midplane computed‘by
various investigators disagreed by as much as 9 percent. In reference 87,‘
Tseng reviewed these results. Table 1, taken from reference 87, summarizes
the results. A recent result for configuration of Type C (see Fig. 10) is
added to the table. This table presents the nondimensional stress—intensity
factor, F,.obtained by various investigators normalized by the F value
obtained froq plane-strain collocation methods. Based on the results in
Table 1, Tseng concluded that (1) COD method using Approach 1 yields accurate
results, (2) superposition and 15-noded singular elements are reliable, and
(3) pronounced error may result unless care is taken in selecting the type of
éingularity element.

Tseng's conclusion 3 was based'on the lower values of F at thé midplane
calculated by Tracey (ref. 25), Raju and Newman (ref. 26), and Kathiresan
(ref. 59). The reason for these lower values, however, is not because of the
singularity eleﬁents used but because of the inadequacy of the finite-element
model to represent the bending that occurs in the compact specimen. In refer—
ence 91, Raju and Newman analyzed the compact specimen Type C (see Fig. 10).
(Note that the Type C configuration has a different height H compared to
Type A and Type B configurations.) They refined the mesh on a z = constant
plane ‘in a 2-D analysis until they were within 2 percent of the plane-strain

value. Then they performed a convergence study in the thickness direction in
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a 3-D analysis to model one-quarter of the specimen. Table 2 presents the
results of the convergence study. The F value at the midplane from the
2-layer model differed from that with the 8-layer model by only 1 percent.
Therefore, the modeling on a 2z = constant plane is more important in this
problem than the modeling in the thickness direction.

Table 3 presents the effect of thickness of the specimen. Surprisingly,
'the specimens with W/B = 5 énd W/B = 1 gave nearly same F values at the
midplane and these values are slightly lower than that for W/B = 2. There-
fore, there appears to be a slight thickness dependence on the F value at the
midplane. |

The two configurétions, Type A and Type B, analyzed by the investigators
in Table 1 corresponds to the one with W/B = 2. For this configuration,
Tsehg (ref. 87) showed that the maximum F value for the finite-thickness
compact specimen should be about 8 percent higher than the plane strain value.
Similar conclusion was reached by Raju and Newman (ref. 91) using Type C con-
figuration with W/B = 1. Therefore, it appears that most of the available
singularity elements and K-evaluation procedures can yield accurate results
provided the finite-element models can adequately represent the bending that
occurs in the compact specimen. Furthermore, for the same accuracy some
singularity element models need fewer degrees of freedom compared .to other

singularity element models.

Semi-Elliptical Surface Crack in a Plate
The second three-dimensional cracked configuration studied by several
investigators is that of a semi-elliptical surface crack in a finite plate
(Fig. 2(a)). Several investigators worked the problem of a semicircular
(a/c = 1) surface crack, with shallow crack depths, that is, a/t < 0.2.

Pian and Moriya (ref. 50) used stress—hybrid singularity elements. Tracey
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(refs. 24, 25) used the 6-noded singularity element with COD method using
Approach 1. Blackburn and Hellen (ref. 34) used a 15-noded singularity
element and the virtual crack extension method. Yagawa and Nishioka (ref. 92)
ugsed the superposition method. These solutions are in excellent agreement
with one another. Ando and Yagawa (ref. 20) reviewed and compared various
solutions by mixed methods for this problem. The results by various methods
show qualitative agreement but the stress—intensity factors differed in some
cases by more than 10 percent.

Iﬁ 1979, Newman (ref. 93) reviewed the solutions for the surface crack
problem oBtained by analytical methods, experimental methods, and by engineer-
ing estimates. He limited the review to the solutions which were applicable
to wide ranges of crack shapes (0.2 < a/c < 1) and sizes (0 < a/t < 0.8). The
analytical methods reviewed were: alternating method (refs. 72-75,‘78, 94),’
line-spring model (ref. 80), and the finite element method (refs. 27, 29).

For shallow cracks, a/t < 0.3, and near semi-circular cracks, 0.6 < a/c < 1,
the stress intensity factor at the maximum depth point (¢ = w/2) by various
methods showed good agreement (5 percent) with one another. However, for
deéper cracks, a/t > 0.3, and for semi-elliptical cracks, 0.2 < a/c < 0.6, the
stress-intensity factors by various methods showed considerable disagreement
(20 to 80 percent). Newman (ref. 93) attributed some of the discrepancies
between the results to the impropér prescription of boundary conditions.

In 1976, at a workshop at Battelle's Columbus Laboratory three "Benchmark
Problems for Three-Dimensional Fracture Analysis" were proposed (ref. 95) for
use as standards for comparing analysis methods. One of the benchmark prob-
lems, Benchmark Problem 1, was the problem of a semi-elliptical surface crack
in a finite plate. Only a few analysts have worked the wide range of param—

eters suggested by Hulbert (ref. 95). Atluri and Kathiresan (refs. 53, 54)
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used a dispiacement—hybrid singularity element. Raju and Newman (refs. 27, 29)
used the 6-noded singularity element and a force method to evaluate the stress-
intensity factors. McGowan and Raymund (ref. 22) used the macro-element
approach (ref. 21) in conjunction with the virtual crack extension method for
extracting stress-intensity factors. Heliot et al. (ref. 96) used the
boundary-integral method with the COD method (Approach 1). Shah and Kobayashi
(refs. 72, 73) and Smith and Sorensen (ref. 94) used the alternating method.
These six solutions were critically evaluated and reviewed by McGowan in
reference 22. McGowan's comparison of various solutions for crack shape of
a/c = 0.5 and a crack depth of 0.75 is shown in Figure 11. For fﬁis deep
crack and a shallow crack (a/t = 0.25) there is good agreement among the six
different solutions. In particular, the finite-element solutions of refer-
ences 27, 29, 53, and 54 and the boundary-integral equation method (ref. 96)
solutions were in very good agreement (5 percent) with one another. Based
on these comparisons, McGowan suggested a best estimate curve and a band of
3 percent for the stress-intensity factor distributions along the crack front
(see Fig. 11).

| Since the review by McGowan, as pointed out earlier, Nishioka and Atluri
(ref. 17) used the finite-element-alternating method and analyzed the bench-
mark problem. Their results showed excellent agreement with the benchmark
estimate of McGowan. Very recently, Wu (ref. 48) analyzed the benchmark
problem with quarter—point elements using the COD method (Approaches 1 and 2).
He compared his results for a/c = 0.5 and a/t = 0.25 and 0.75 with the
benchmark estimate of McGowan. Excellent agreement is reported in refer—
ence 48. Wu also compared his results with the interpolated values from

reference 29. For the majority of cases, the agreement is excellent (1 to
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3 percent). For the special case of a/c = 0.2 and a/t = 0.8, Wu's results
were 10 to 15 percent lower than those of reference 29.

The surface crack problem with a élightly different configuration than
the benchmark problem was also analyzed with the line-spring models. German
et al. (ref. 81), and Parks et al. (ref. 82) analyzed surface cracks with
a/c = 0.2 and 0.667 with a/t ratios from 0.2 to 0.8. Delale and Erdogan
(ref. 83) and Dill and Saff (ref. 86) analyzed surface cracks with a/c = 0.2
and a/t = 0.4 to 0.8. The results of references 81 and 82 at the deepest
point are in very good'agreement (4 percent) with those of reference 27. The
differences between the results of (ref. 81 or 82) and (ref. 27) increase near
the free surface (¢ = 0). Aléo, the results for the shallow cracks are in bet-
ter agreement than those for the deep cracks. Furthermore, for a/c = 0.667,
the agreement is not as good as those for a/c = 0.2. The largest disagree-
ment wés.observed when a/c = 0.667 and a/t = 0.2. This is not surprising
since this configuration taxes the assumptions made in the line-spring model.
Delale and Erdogan (ref. 84) and Dill and Saff (ref. 86) compared their
results with those of Raju and Newman (ref. 27). Again very good agreement
(3 percent) is observed for all three a/t ratios. Table 4 summarizes the
normalized stress intensity factors at the deepest point (¢ = w/2) of a semi-
elliptical crack with a/c = 0.2 obtained by the three line-spring models and

compares with those of references 27 and 29.

Semi-Elliptical Surface Cracks in Cylindrical Pressure Vessels
The third 3-D crack configuration studied by several investigators is
that of a semi-elliptical surface crack in a cylindrical pressure vessel (see
Fig. 12). The configuration extensively studied is a cylinder of R/t = 10
with an internal surface crack with a/c = 1/3. This is a standard configura-

tion recommended by the ASME Boiler and Pressure Vessel Code.
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In contrast to the Benchmark Problem 1, several investigators chose to
load the crack faces. They applied four crack face distributions, uniform,

linear, quadratic and cubic, to the crack faces as
o5 = (z/a)d for j=0,1, 2,3 (14)

where 2z 1s measured from the crack mouth toward the crack front (see

Fig. 13(c)). The stress-intensity factors are expressed as

Ta =
Ky Jﬁ_:Gj for j=0,1, 2, 3 (15)

The influence coefficient Gj corresponds to the jth stress distribution.

Several investigators obtained the influence coefficients Gj for each
of the jth crack face loadings. McGowan and Raymund (ref. 23) used the
macroelement approach with the virtual crack extension technique for evaluat-
ing the stress—intensity factors. Atluri and Kathiresan (refs. 56, 57) used
the displacement-hybrid singularity element. Raju and Newman (refs. 31, 32)
used the 6-noded singularity element and the force method to evaluate the
stress-intensity factors. Heliot et al. (ref. 67) used the boundary-integral
equation method and the COD method (Approach 1). Nishioka and Atlﬁri
(ref. 77) used the finite element-alternating method. A typical finite
element model for this problem (ref. 31) is shown in figure 13.

Figure 14 compares the influence coefficient distributions obtained in
references 23, 31, 32, and 67 for a deep crack, a/t = 0.8, for various crack
face loading distributions. The influence coefficient distributions of
reference 67 agreed very well with those of references 31 and 32. The maximum
discrepancy is about 2 percent. The finite element results of reference 23

are within 8 percent of the results of Heliot et al. (ref. 67). Similar
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agreement between these three investigators were also noted for a/t = 0.5 in
reference 32. The finite-element—altefnating method was also applied to this
configuration in reference 76. The influence coefficients obtained with this
method agreed well with those reported in references 32 and 67 for both
a/t = 0.5 and 0.8. Atluri and Kathiresan (ref. 56) using the displacement-
hybrid singularity element analyzed the same configuration but with internal
pressure loading. Their stress-intensity factors were about 7, 8, and nearly
0 percent, lower than those in reference 67 for a/t = 0.25, 0.5 and 0.8,
respectively.

The line-spring model was also used to analyze the cylindrical vessel
configuration. German et al. (ref. 81) analyzed a cylindrical vessel
(R/t = 10) subjected to internal pressure. They compared their solution for
a/c = 1/3 and a/t = 0.2 and 0.8 with that of Newman and Raju (ref. 31). At
the mﬁximum depth point (¢ = m/2), the results agreed within 3 percent for
a/t = 0.2 and within 1 percent for a/t = 0.8. Delale and Erdogan (ref. 83)
analyzed the same cylindrical vessel subjected to internal pressure with a
'longitudinal surface crack with a/c = 0.2 and a/t = 0.2 and 0.8. At the
deepest point of the crack (¢ = w/2), their solution is about 5 and 9 percent
higher thaq that of reference 31 for a/t = 0.2 and 0.8, respectively.

The complex configuration of a semi elliptical surface crack in a
cylinder appears to be well analyzed by various methods. The agreement

between several investigators is good.

Quarter-Elliptical Corner Cracks from Holes
A configuration that is more complex than the previous three, is that of
a quarter—elliptical corner crack emanating from a hole. Figure 2(c) shows
the configuration studied by several investigators. Shah (ref. 97) use& the

alternating method and enginering estimates, Smith and Kulgren (ref. 79) used
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finite-element~alternating method, Kathiresan (ref. 59) used the displacement
hybrid-singularity element, Heéhmer and Bloom (ref. 47) used quarter-point
elements with the COD method (Approach 2). Raju and Newman (ref. 28) analyzed
the configuration with 6-noded singularity elements and obtained the stress-
intensity factors by the force method. Recently, Nishioka and Atluri

(ref. 76) applied the finite~element-alternating method to the corner crack
configuration.

For a quarter-circular corner crack (a/c =1, a/t = 0.5, and R/t = 0.5)
figure 15 compares the stress-intensity factors obtained by several investi-
gators. Smith and Kulgren's (ref. 79) results in this figure were obtained
from interpolation between their results of a/c = 0.75, 1.5 and 2.0. Their
results and the results of Raju and Newman (ref. 28) are in very good agree-
ment (less than 5 percent). The results of Shah (ref. 97) and Kéthiresan
(ref. 59) are about 10 percent and 15 percent lower than those of refer—
ence 28, respectively.

Hechmer and Bloom (ref. 47) analyzed a shallower crack (a/t = 0.2) than
that discussed in Figure 15 and their results are about 10 to 20 percent
higher than the corresponding results of reference 28 (see Fig. 8(a) of
ref. 28).

The cormer cracks in Figure 2(c) tend to grow faster along the hole
boundary rather than on the front face under cyclic loading. Therefore, the
stress-intensity factors for cracks with a/c > 1 are important. Raju and
Newman (ref. 28) and Nishioka and Atluri (ref. 76) analyzed one such case.
They analyzed the configuration of quarter elliptical cormer cracks with
ale = 2, R/t = 0.5 for three crack depths, and a/t = 0.2, 0.5 and 0.8 wunder
pin loading. The pin loading was assumed to be applied by normal stresses on

‘the hole boundary, o, (see Fig. 16) as

n

30



o, = %%E-sinz 0 (16)

where P 1is the total applied force acting in the y-direction over the arc
from 8=0 to x. The comparison of the stress—intensity factors by these
two methods is shown in Figure 17. (The results of Raju and Newman in
Figure 17 for a/t = 0.2 and 0.5 are corrected results. The originial .
results of reference 28 for these crack depths with a/c = 2 were in error
due to a computer input error.) Fair agreement is observed between the two
sets of results except near the region, where the crack intersects the edge of
_ the hole (¢ = w/2). The drop-off of the stress—intensity factors of refer-
ence 28 was attributed to the bdundary-layer effect and is discussed in
references 27-29.

Raju and Newman (ref. 28) used about 9000 degrees of freedom in their
finite element model while Nishioka and Atluri (ref. 76) used about
1400 degrees of freedom in the finite-element—alternating method. The
accuracy of the two solutions appears to be comparable. The efficiency of
the new finite—element-altérnating method appears to be attributable to the

complete énalytical solution of references 16 and 17.

CONCLUDING REMARKS
In the design of damage tolerant structures, complex three-dimensional
(3-D) configurations with cracks are encountered. Forva safe design, accurate
stress—-intensity factor solutions are needed. Until the early 70's, the com-
plex 3-D configurations were approximated as two-dimensional (2-D) configura-
tions. However, recent advances in the methods to solve the 3-D boundary-
value problems and the development of large, fast computers have lead to more

accurate modeling of these complex configﬁtations. In this paper, various
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methods that are available to solve 3-D boundary-value problems and the tech-
niques used to obtain mode-I stress—-intensity factors are reviewed.

The most widely used method is the finite-element method. Several types
of singularity elements were proposed for 3-D crack problems. The most
attractive of these appears to be the family of quarter—point elements. These
elements can be easily implemented in general purpose programs. In general,
the major difficulty with the finite-element methods is the effort involved
in modeling the solid. But even this difficulty is being circumvented by the
recent advances in automatic mesh generators. On the other hand, the
Boundary—integral equation (BIE) method needs only modeling of the surfaces
of the solid and so is gaining popularity.

The line-spring model appears to be the fastest way to obtain good
estimates of the stress-intensity factors. However, this model requires a
specialized program. Recent literature shows that some versions of general
purpose programs like ADINA have the line-spring elements in their library of
finite elements.

The most accurate solution at the minimum cost appears to be provided by
the finite-element-alternating method. The success of the method is due to
the recent analytical solution of an embedded elliptical crack subjected to
arbitrary pressure loading. Again, the major disadvantage is that this'method
needs a specialized computer program module for the analytical solution.
Presently, such a module is not available to the general user. However,
investment of time and effort in the development of the module is certainly
worthwhile.‘ A further disadvantage of this method is that it isg applicable
only to crack shapes which are elliptical or part elliptical.

After the stress analysis of a 3-D crack problem is completed, the

stress-intensity factor needs to be extracted from the solution. Several
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investigators have proposed singulatit& elements which yield stress—intensity
factors as a part of the solution. These elements are the enriched elements,
stress-hybrid and displacement-hybrid elements. However, with other finite-
element ﬁethods and the BIE method, three methods are generally used to
extract the stress-intensity factors. They are the crack-opening displacement
(COD) method, the force method, and the virtual crack-extension method. Of
the three, the COD method and the virtual crack extension method are widely
used. In fact, comparisons between various stress-intensity fac£or solutions
~ for several 3-D crack problems show that all three methods yield nearly iden-
tical solutions when plane-strain conditions exist at the crack fronts.

In general, despite the complexity of some crack configurations, com
parisons between the available methods have shown that accurate mode-I étress—
intensity factors can be obtained. The choice of a particular method is
govérned only by the availability of computer programs and resources to obtain
the solution. As analyses of the 3-D crack configurations are completed, com~
pendia of stress—intensity factors like the ones'that are available for 2-D
configurations, can be developed. With the advent of supercomputers, and with
the reduction and anticipated reduction in computing costs, guch compendia.
appear to be within the researchers' reach. 'Some investigators have already
made efforts in this direction. The compendia can help engineers design

structural components which are safe, economical and damage tolerant.
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APPENDIX

Mixed Methods
The following three mixed methods are presented in this appendix.
1. Superposition of analytical and finite element methods.
2. Stress-difference method.

3. Discretization error method.

Superposition of Analytical and Finite Element Methods

Yamamoto and Sumi (refs. 98, 99) proposed the use of the method of
superposition of analytical and finite element solutions. 'The singular part
of the solution around a crack froanis expressed as a linear combination of
analytical solutions. The stress—intensity factor is determined by a linear
combination of finite element and analytical solutions. Referencesg 98 and 99
applied the fechnique to compact specimens, round bars with circumferential
cracks, and surface cracks in plates.

Yagawa and Nishioka (ref. 92) divide the total solid into two regions:
the inner region and the outer reglon. The inner region Vi, 1is the region
which surrounds the crack front and the remainder of the solid is represented

by the outer region Vo The displacements in the two regions are

MORONFTETE
and (17)

oD = a4 5 4y v

where §(0) ang §(1) are the usual finite element displacements and @ are

the displacements due to the analytical solution (s).
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The displacements u are taken as the product of plane-strain solutions
in planes normal to the crack plane (in r,9® coordinates) and a power series

in s, the coordinate along the crack front.

§ = £(a)G(r,0) = [Z amsm]ap(r,e) (18)

m

The generalized displacements an, 6(0), and 6(1), are the unknown displace-
ments in the problem. ' These are determined by minimizing the total potential
energy of the system.

Yamamoto and Nishioka (ref. 92) applied this method to the embedded -

penny-shaped crack and semi-circular surface crack problems. They showed good

comparisons with known solutions.

Stress-Difference Method

In this method, successive finite—-element solutions are used to obtain
stress—intensity factors (ref. 100). Two finite-element solutions with
identical mesh patterns are obtained, one with no crack (i.e., crack com-
pletely cloéed) and the other with the crack. Let the stress g be the

stress in an element at a hypothetical crack tip in the solid with no crack

(crack completely closed). With the same finite element model, let be

di:ip
the stress in the same element in the solid with the crack. The stress dif-
ference (Otip - og) at the crack-tip element is assumed to be related to the
stress—intensity factor. Two problems A and B are solved with this proce-
dure. Then, for the two problems A and B the stress—difference ratio

(otip - og)A/(cfip - og)B will be nearly equal to the ratio of stress-

intensity factors KA/KB at that location. Therefore, if one of the stress-

intensity factors is known the other can be calculated. Reference 100 showed
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good agreements for a limited number of 2-D and 3-D problems with known

solutions.

Discretization Error Method

In this method, a combination of conventional finite-element solution and
the discretization error of the mesh subdivision is used to determine stress-
intensity factor (ref. 101). The finite element solution, £, can be repre-
sented as the sum of the exact solution, fexs and the discretization error,

provided that the round-off error is negligible. _Reférence 101, assumes that

3 -ij
£=foxt > A N A (19)
e I

where Aj and Nj are the amplitude of the error and the number of elements,
regpectively. The 6j are positive parameters relating to the discretization
error due to Nj(j =1, 2, 3). As the singularity around a crack front is, 1in

general, particular to the directions X; and x, (see fig. 18) 5x3 may be

much larger than 6x1 and &, . Therefore, equation (19) reduces to

2

-5 -5
bS] ) :
f=fex+Ax1Nx +A N | (20)

1 2 0%

Yagawa et al. (ref. 101) further assume that 6x1 = 5x2 = 8 and that the

ratio le/NXZ is a constant. Equation (20) then reduces to
= -6
f=f,,+AN (21)
Similarly, the stress—intensity factor can be expressed as

= -6
K=K+ AN . (22)
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The unknowns are Kaxs A, and &. To determine K,, from equation (22),
three finite-element solutions are obtained with three different mesh sizes
Ny, Np, and N3 resulting in three stress-intensity factors K;, K;, and

K4, respectively. The unknowns Koxr A and & can then be determined by

using the three equations,

ex ¥ A N;G, i=1,2,3 (23)

Ky =K
The above procedure is repeated at various stations along the crack front to
obtain the stress—intensity factor distribution. The stiffness derivative
method (ref. 89) is used to evaluate the K values needed in equations (22)
and (23).
The discretization error method requires only coarse models. Refer-
ence 101 applied the method to through crack and surface crack problems and

showed good agreement with earlier solutions.
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Table 1.~ Comparison of Stress—Intensity Factor Solutions
by Various Investigators for Compact Specimens

KIB,/W .
F = 7 B= 7 s v=0.3
collocation
Degrees
Investigator(s) { C/W Element K-evaluation of 2-D 3-D
Type method Freedom | plane at
strain | midplane
Tracey [25]a 0.5 | 6-noded singular | COD Approach 1 1980 0.94 0.99
Réju & Newman 0.5 6-noded singular | Force Method 1875 - 0.99
[26]4
Tseng & Berry 0.5 15-noded singular | COD Approach 1 1497 0.99 1.08
[87]2 COD Approach 2 | 1497 0.95 1.05
Bloom & van 0.5 | 20-noded COD Approach 2| 1200 0.97 1.035
Fossen [88]2 Quarter-point 4965 0.99 1.076
Tseng & 0.5 | 20-noded COD Approach 1| 1497 0.97 1.07
Berry [87]2 Quarter-point COD Approach 2 | 1497 0.94 1.04
de Lorenzi 0.6 | 20-noded COD Approach 2 | 4887 - 1.07
[87]b Quarter-point
Kathiresan 0.6 | 20-noded K-built in 1476 - 1.01
[59]P displ. hybrid
Pian & Moriya 0.5 | 20-noded K~built in 504 - 1.08
[50]b Stress hybrid
Yamamoto & 0.5 | 20-node Superposition 2106 0.99 1.08
Sumi [98, 99]b Isoparametric
Yagawa & 0.5 | 20-node Superposition 376 1.00 1.07
Nishioka [92]b Isoparametric
Raju & Newman 0.55| 6-noded singular | Force Method 5085 0.98 1.08

[91]e

8Configuration is Type A with W/B = 2.
Configuration 1s Type B with W/B = 2.
CConfiguration is Type C with W/B = 1

(see Fig.'IO).
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Table 2.- Convergence of the Finite Element Solution With Mesh

Refinement in the Thickness Direction for a Compact
Specimen - Type C (see Fig. 10)

kBl

W/B=2.0; F=—ny

P = 20.216;

Fplane strain
a/W = 0.55

Number of nodes on each Z = constant plane = 339

No. of Layers D:?:i::méf Far midplane Fmidplane

' Fplane strain
2 .3051 22.374 1.107
4 5085 22.566 1.116
8 9153 22.631 1.119
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Table 3.- Effect of Thickness on the Stress-Intensity Factor at
Midplane of a Compact Specimen (Type C) (see Fig. 10)

KB VW
F = —5 a/W = 0.55; Fplane strain = 20.216
F a F /F
W/B at midplane midplane/*plane strain
5.0 21.818 1.079
2.0 22.566 1.116
1.0 21.854 1.081

8yith 4-layer model in the thickness direction
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Table 4.- Comparison of Stress—Intensity Factor Deepest Point (¢ = 7/2)
of a Semi-Elliptical Surface Crack in a Plate Subjected to

Tension

e =02 2 =5y fls[E)

F at ¢ = =/2

Finite Element
a/t ' Method Line-Spring Models

Raju & Newman

[28] German et al. Delale & Erdogan | Dill & Saff
[81)a [84]1D [86]¢

0.4 1.359 1.404 1.365 1.425
0.6 1.642 1.692 1.635 1.655 .
0.8 1.851 1.865 1.841 1.820
8Values read from Fig. 6 of ref. 8l.

 Yalues read from Fig. 7 of ref. 84.
®Values read from Fig. A-3 of ref. 86.
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Section A-A

Fig. 1- Embedded elliptical crack in an infinite solid subjected
to remote tension.



LS

(a) Surface crack,

Fig. 2- Surface crack and corner

(b) Corner cracks at hole,

crack from hole configurations.




Two-Dimensional Versions Three-Dimensional Versions

Crack front )

(6) 3-noded element, Tracey [24] (b) 6-noded element, Tracey [24]

(d) 15-noded element,
(c) 6-noded element, Stern and Becker [33]
Stern and Becker [33] Blackburn and Hellen [34]
Hilton et al [37]

=

(e) 8-noded quarter-point element, (f) 20-noded quarter-point element,
Henshell and Shaw [40) Henshell and Shaw [403
(g) 6-noded quarter-point element, (h) 15-noded quarter-point element,

Barsoum [41] Barsoum [41]

Fig. 3- Various types of singularity elements.

52



START

STEP 1:

PRESCRIBE THE GIVEN LOADING ON THE
CRACK FACES

Y

STEP 2:

CRACK FACE STRESSES ARE NEGLIGIBLE

YES

Y NO

STEP 3:

FIT THE CRACK FACE STRESSES TO
A CUBIC POLYNOMIAL LIKE EQ. (8)

.v

STEP 4:

EVALUATE THE STRESS-INTENSITY FACTOR
FOR THE CURRENT ITERATION

y

STEP 5:

USE SOLUTION 1 TO EVALUATE THE STRESSES
ON EACH OF THE RECTANGULAR DOMAINS

ON EACH OF THE EXTERNAL SURFACES

OF THE SOLID DUE TO THE CRACK

FACE STRESESS

STEP 6:

REVERSE THE STRESSES ON THE RECTANGULAR
DOMAINS OBTAINED IN STEP 5, USE THE
SOLUTION 2 TO CALCULATE THE STRESSES ON
THE CRACK FACES AND ON EACH OF THE
RECTANGULAR DOMAINS (THE EFFECT OF ALL
RECTANGULAR DOMAINS ARE INCLUDED BY
SUMMING OVERALL RECTANGULAR DOMAINS)

STEP 7:

REVERSE THE ﬁRACK FACE STRESSES

Fig. 4- Flow chart for the alternating method.
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SOLUTION HAS
CONVERGED .,
SUM UP THE
STRESS INTEN-
SITY FACTORS
FOR ALL
ITERATIONS

STOP




> <

Back surface
rectangle grid
breakdown

Back surface

MMM

[y — —>» X
—c Front surface

Front surface
rectangular grid
breakdown

Fig. 5- Rectangular grid idealization for the front and
back surfaces in the alternating method, ref. 72.
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START

Y

STEP 1: SOLVE THE UNCRACKED BODY SUBJECTED
. TO THE GIVEN EXTERNAL LOADING BY
gSIﬂg THE FINITE ELEMENT METHOD
FEM

Y

STEP 2: USE THE FE SOLUTION TO COMPUTE THE
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CONVERGED.,
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Fig. 6- Flow chart for the finite-element-alternating method.
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(b) Center crack with line springs (c) Single-edge crack plate
across the crack faces. under plane strain,

Fig. 7- The Tine-spring model for the surface crack.
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(a) Crack front region, (b) Apparent stress-intensity factors.

Fig. 8- Crack-opening displacement method of evaluating stress-intensity factors.




Finite element

Fig. 9- Illustration of the virtual crack extension method.
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Fig. 10- Various compact type specimens analyzed.
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Fig. 11- Comparison of stress-intensity factors for a semi-elliptical
surface crack in a plate subjected to remote tension
(a/c = 0.5; a/t = 0.75).
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Fig. 12- Internal surface crack in a cylinder.
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rig. 13- Finite-element model and Toading on a semi-elliptical
surface crack in a cylinder.
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Fig. 14- Comparison of influence coefficients for an internal surface crack

in a cylindrical vessel subjected to various crack surface load
distributions (R/t = 10; a/c = 1/3; a/t = 0.8).
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Fig. 15- Comparison of stress-intensity factors for corner cracks

from a hole in a plate subjected to remote tension
(R/t = 0.5; a/c = 1; a/t = 0.5).
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Fig. 16- Corner cracks from a hole in a plate subjected to pin loading.
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Fig. 17- Comparison of stress-intensity factors for corner cracks

from a hole in a plate subjected to pin loading
(R/t = 0.5; a/c = 2.0).
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Crack front

Fig. 18- Coordinate system used for the discretization-error method.
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