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Abstract
In this article we review recent results concerning numerical simulation
of shock waves using spectral methods. We discuss shock fitting techniques as
well as shock capturing techniques with finite difference artificial
viscosity. We also discuss the notion of the information contained in the
numerical results obtained by spectral methods and show how this information

can be recovered.
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Introduction

In the last decade spegtral methods have been used very successfully in
the numerical simulations of incompressible flows. Spectral methods have also
emerged as a major tool in computational meteorology. This has led many
researchers to look into the possiblity of applying spectral methods to
simulate compressible flows that are of interest to aeronautical engineers.
The aim of this article is to give a brief review of the major developments in
this field in the last few years. In particular we would like to discuss the
notion of the information that is contained in the numerical result. We argue
that spectral methods yield more information about the exact solution than low
order methods. This information is hidden in the form of numerical
oscillations when the exact solution 1is discontinuous or contains extreme
gradients. The structure of these wiggles depends on the nature of the
discontinuity and, in some cases, a very accurate solution can therefore be

extracted.

2. Spectral Methods

There ére basically two steps in obtaining a numerical approximation
uy(x) to a solution u(x) of a differential equation. First, an appropriate
finite or discrete respresentation of the solution must be chosen. This may
take the form of an interpolating function between the §a1ues u(xj) at some
suitable points x. or a series coefficient in the finite representation

J

N
u (x) = ) ¢, (x) (2.1)
N =0 % %




with given expansion functions ¢k(x). The second step is to obtain equations
for the discrete values uN(xj) or the coefficients ap from the original
equations. This second step involves finding an approximation for the
differential operator in terms of the grid point values of uy or,
equivalently, the expansion coefficients. For example, the pseudospectral

Chebyshev approximation to the equation

|x] <1

e
]
(=

(2.2)

u(x,O) = uo(x), \l(l,t) = h(t)

is obtained in the following manner. For a given time t we assume that

{uN(xj,t)} is known where xj = cos LA . We then interpolate these values

N
to get
N
uN(x,t) = jZo uN(xj,t) gj(x) (2.3)
where
it (4 = =T € =y =2
gj(x) = 2 c.(x -x,) °? .
N h| h| c, =1, 0<j <N

Note that gj(xk) =§ Equivalently, since

jk*
Tn(xj) Tn(X)

(&
n

N
2
g.(x) =< ]
J N n=0

where T (x) = cos(n cos™l x) 1is the Chebyshev polynomial of degree n, one




gets
N
uN(x,t) = ) a Tn(x)
n=0
(2.4)
N
2 J Tin/N .
an = p N .2 u(x"t) _Cﬂ%_/_)_ ’ j= O’DOI’N.
n j=0 J

The next step is to differentiate (2.3) to get the system of ordinary

differential equations

allN(xk,t) N |
T — jéo SHENRSTHC RN RN W
(2.5)
auN
3T (¥p»t) = h'(¥)
or using (2.4)
Buy (%) N N-1
at = nEO a T!(x) = nXO b T (%), 3= 1,°%%N
(2.6)
auN
3t (xo:t) = h'(t)
where
1
bN = 0, bN-]. = 2N aN, bn = e bn+2 + 2(n+]_)an+1 .

n

Equations (2.5) and (2.6) are, in fact, identical. Equation (2.5) points out
the possibility of applying the pseudospectral Chebyshev method by mulitplying
the vector u(xj,t) by the matrix g&(xn) whereas the asymptotically

efficient implementation of (2.6) is by using a Fast Fourier Transform.




In general, consider the system of equations

L(u)
(2.7)

u(t=0)

Uo,

where L 1is a nonlinear operator that involves only spatial derivatives. In
spectral methods we define a finite dimensional subspace By which is the
space of polynomials (or trigonometric polynomials) of degree N, and a
projection operator Py that maps the original space to Bye An example of
such a Py 1is given in (2.3). 1In fact, given a function £f(x), =1 < x < 1,
then (2.3) defines P, £ = g f(x.)gj(x). |

s J
j=0
We then seek a solution uy belonging to By such that

auN
3t = By vy,
(2.8)
uN(t=0) = PN uo.

For a more complete description of spectral methods we refer the reader to
(31, [6].

Spectral methods are global in nature, i.e., in order to get an expression
for %E'UN we use all the grid points xp, k = 0,***,N (see (2.5)). Together
with the choice of the points Xp this explains their high order accuracy.
The accuracy of spectral methods depends on the total number of points N, and

the number of smooth derivatives of u. For smooth flows, great savings of




computer storage and time is gained by using spectral methods since only a
small number of grid points is required to get the same accuracy obtained by

other methods.

3. Spectral Methods and Shock Waves

The use of any formal high order method for the numerical simulation of
flows with shocks poses theoretical and practical problems. The error
estimates obtained for spectral methods depend on the smoothness of the
solution and it is not clear at all that any degree of accuracy can be
achieved for discontinuous solutions. On the one hand, it has been proven
that for linear problems, high accuracy can be maintained within spectral
methods far away from the discontinuity; on the other hand, it may be thought
that for nonlinear problems the overall accuracy in the presence of
discontinuities is limited to first order. However, in [10] Lax has argued
that more information about the solution is contained in high resolution
schemes, even in the nonlinear case. In fact, Lax has shown that the e-
capacity of the set of approximate solutions is closer to the €=-capacity of
the set that includes the projections of exact solutions if the numerical
scheme is a high order scheme. Typically, when a spectral method is used to
simulate flows with shocks it yields an oscillatory solution. The
oscillations are global, that is they occur not only in the neighborhood of
the shock but all over the flow field. Several methods of overcoming these
oscillations were suggested,. Historically, the first attempts to get

nonoscillatory results concentrated on using finite difference type artificial




dissipation. Taylor, et al. [15] used the method of Boris and Book of adding
diffusion and antidiffusion terms for some model problems. Sakell [12] has
checked a version of the Von Neumann-Richtmyer artificial dissipation for the
wedge flow problem. Cornille [2] has used a version of the Lax~Wendroff
scheme with inherent dissipation. Zang and Hussaini [16] simulated slightly
viscous flows and treated the viscosity term by finite differences. Two real
life flows were simulated using the above ideas. Reddy [11] introduced
Fourier representation in the azimuthal direction in the three-dimensional
Navier-Stokes code of Pulliam and Steger. In this problem there is enough
dissipation coming from the discretization in the other directions. Reddy
reports substantial improvement over the finite difference code. Streett [14]
simulated transonic flow around an airfoil. His code is a full potential
algorithm with retarded density. His results indicate that for subsonic
flows, spectral methods are superior to the finite difference codes, whereas
for transonic flow they are comparable. The results obtained by these methods
indicate that a highly structured flow field is well-represented along with
the front of the shock. However, the shock profiles are smeared and the
accuracy in the smooth part of the flow is perhaps no longer spectral.

A different approach advocated first by Hussaini, Salas and Zang [9] is to
fit the shock. This approach has been used to simulate various physical
problems, most of them concerned with shock wave interactions. Since they were
interested in the behavior of the flow on only one side of the shock, a
coordinate transformation was employed so that the shock wave became a
coordinate boundary. The Rankine-Hugoniot conditions were used both to

determine the flow variables immediately upstream of the shock and to




determine the shock position. Since all the physical quantities on the
downstream of the shock were prescribed the flow variables on the upstream
side were obtained from the Rankine-Hugoniot relations. Note that the shock
boundary is supersonic and therefore all the quantities must be specified and
no special boundary treatment is necessary. The fluid motion was modeled by
the two-dimensional Euler equation in nonconservation form. Also a spectral
filtering in which the high modes were filtered every fifty time steps was
employed to avoid nonlinear instability. Beautiful results were obtained for
various shock interactions and for the blunt body problem.

In the third approach proposed in a forthcoming paper by Abarbanel and
Gottlieb, the oscillations are being used to recover accurate information
about the solution. Oscillations may arise from different sources; e.g.,
incorrect treatment of the boundaries in hyperbolic systems; nonlinear
instabilities, etc. Usually these oscillations build up and finally cause
explosive instabilities. One interesting class of numerical oscillations
occur when flows with extreme gradients or local discontinuities are
simulated. This type of oscillations does not cause instabilities even after
many time steps. It has been observed (see [7]) that the wiggles are caused
by the fact that the mesh is not fine enough to resolve the sharp gradients.
In the case of a finite gradient a local refinement of the mesh often gets rid
of the wiggles. For a very impressive demonstration of this fact, see [17].
Of course for a shock wave, no refinement of the mesh can remove the
oscillations.

To better understand the origin of the oscillatory solution, consider the

model equation




(3.1)
u(x,0)

H(x,xz)

where H(x,xz) is the Heaviside function

H(x,xz) =0 x < X,
H(X,Xz) =1 X > x,

m
Xz = cos ﬁ-(£+-bQ ), % 1integer.

When (3.1) is discretized by the pseudospectral Chebyshev method we get as the

initial condition

N
uN(x,O) = S(x,xz) = kzo Ak Tk(x) (3.1a)

where Tp(x) 1s the Chebyshev polynomial of order k, and

1 1
A0 =ﬁ(2 +1/2), AN=ﬁsin n(L +1/2)
_1 kw 1 kn _
Ak—ﬁsin-—N(£+/2)/sin-m, 1 <k < N-1,

At the grid points, xj = cos I%

S(xj,xl) = H(Xj,xz)’




Thus, no oscillations occur. However, after the numerical solution is
convected by equation (3.1), it becomes oscillatory. This 1s because
initially it is oscillatory between the grid points (see Fig. 1). Observe

that the oscillations disappear when the discontinuity is exactly in the
middle between two grid points. This demonstrates the fact that the structure
of the oscillations provides information about the position and magnitude of

the shock.
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In general, consider (2.7) - (2.8) where now L 1is a linear operator
and uy 1s discontinuous. From the last example it is clear that uy does
not approximate well Py u since Py u coincides with wu at the grid

points. We introduce an auxiliary equation

v _
a—t— Lv

(3.2)
v(t=0) = PN ug.

For fixed N, v 1s a smooth function in contrast to the solution u of
(2.7). We argue that uy approximates (at the grid points) v rather than

u. In fact from (2.8) and (3.2) one gets

%E-(u - By v) = By LR (u, - By V) + By L(By v = v)
(3.3)
(uN - Py v)(t=0) = 0.
Thus
t
uy = By v =] [exp By LR (t - T)][PN L(By v(1) = v(1))]dr.
0

The operator exp PN LPN(t - 1) 1is bounded. This is, in essence, the notion
of stability. The term

Py L(Py v - v)
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is small because v 1is a smooth function. This shows that wuy approximates
Py v, hence at the grid points uy approximates v.

In the last example we have demonstrated the fact the v 1is, in general,
oscillatory. It is therefore no surprise that wuy 1is oscillatory. It is
also clear that the structure of the oscillations may be used to extract a
better approximation to wu.

We will demonstrate now the possibility of extracting information from an
oscillatory solution even in the nonlinear case. The physical problem is the
well-known wedge flow. A plate is inserted in a uniform flow, and an oblique
shock develops. The time dependent Euler equations in two-space dimensions
were discretized by the pseudospectral Chebyshev method in space with
a 9x9 grid and a modified Euler scheme was used for the time discretization
(see [5]). Since we are interested in the steady state only, the accuracy of
the time integration is of no importance. In order to be sure that a steady
state is reached the code was run until all the physical quantities did not
change to 11 significant figures over a span of 100 time steps. The values of
the density in the steady state at the grid points together with the grid

polints themselves are given in Fig. 2.

1.862 1.851 1.869 1.871 1.837 1.865 1.892 1.885 1.878 1,
1.862 1.870 1.867 1.820 1.870 1.954 1,899 1.803 1.759 .961
1.862 1.854 1.852 1.904 1.877 1.770 1.782 1.864 1.900 .853
1.862 1.871 1.876 1.812 1.838 1.969 1.975 1.884 1.841 _ .691
1.862 1.848 1.842 1.935 1.899 1.703 1.710 1.890 1.984 «5
1.862 1.883 1.894 1.729 1.832 2.429 2.994 3.255 3.316 «308
1.862 1.808 1.810 2.387 3.133 3.375 3.224 3.054 3.002 146
1.862 2.115 2.868 3.288 3.176 2.965 3.006 3.136 3.187 .038
1.862 3.083 3.046 2.975 3.087 3.108 3.024 3.013 3.016( 0

0 .038 «146 .308 o5 691 .853 961 1.

Ii><
|

Figure 2
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Note that at the stations: xg = 1; x; = .9619; X9 = +85355, the jump takes
place between the grid points y = .3086 and Y = 5, whereas the
corresponding correct shock location is y = .434 for X0y ¥ = 4417 for Xq
and y = .370 for Xg. Note also that the oscillatory behavior of the density
is very similar to the behavior of Py v, the solution of (3.2) at the grid
points (see Fig. 1).
We therefore fit a step-function of the form d; + dy S(y,yz) where

S(y,yz) is defined in (3.la) to the numerical results p(y) 1in Fig. 2, at

any station Xjs regarding d;, dp and & as unknowns. This yields three

equations
d1 fO + d2 f1 = S1
d1 f1 + d2 f2-= 82 (3.4)
d1 f4 + d2 f3 = S3
where
N 1 N 2 1
fo = N: fl = g S(yJ’yf,) F.' ’ f2 = Z S(y:j’yz) E_';
j=0 h| j= k|
N N
9 1 39S 1
£5= ) S(y,y,) =5 s(vssy,) — 3 £,= ) w5 (vy5y,) =
3 §=0 3’7’8’ of j*’2 cj 4 j=0 2 Vi cj
g ( 1 N 1
s, = p(y.) = S, = ) o(y,)s(y.,y,) =
1 =0 j cj 2 j=0 j j’’s cj
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$3=  o(y,) 37 (v5:7,)-

J

Y
R T
£, £, S, | =0 (3.5)
£, £35S

Surprisingly, from (3.5) we recover the correct location of the shock at each
x-station within the fourth significant digit. In this sense the information
is indeed hidden in the form of oscillationms.

It should be noted that in (3.4) we do not use the point values of
p(y) but rather the quantities S1» Sg, S3 which are equivalent to the

integral of p(y) against 1, S(y,yz) and %f S(y,yl). If p(y) approxi-

mates well the first N modes of the solution .pext(y)’ then
. $(y)
| ey -0 () ==L==0

-1 ext ’——'1 _ y2

where ¢(y) 1is either 1 or S(y,yg) or %% (y,yz). This may be the reason
for the highly accurate values of the location of the shock obtained by (3.4).

Finally, we would like to describe another way of recovering correct point
values from an oscillatory approximation. For simplicity we consider the

spectral Legendre method although this idea has been generalized to other
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spectral methods. Our approach is motivated by the work of Mock and Lax (see
[10]).

Suppose that f(x) is a C  function at |x| < 1 except for one point
of discontinuity. Suppose also that f(x) has the following expansion in

terms of the Legendre polynomials
-]
£(x) = } P,_(x)
ook k

and that

N
£(x) = } P, (x).
N oo k ok

Even for large N, fx(x)  1is an oscillatory function. Let y be a point such

that £(x) 4is C  in the interval y-€ < x € yte, Let

P
@ -eH% [ (DR (R (E)  |g]<1 £ =Y

€ k=0 €
P(x) = .

0 ] > 1

It is clear that
1 1 1
] £0GW(x)dx = [ £(x)P(x)dx + [ (£ = £)vdx.
-1 -1 -1
The function ¢(x) has the expansion

Y(x) = ) b P (x)
k=0 k "k
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and since V¥(x) has gq-1 continuous derivative the function wN(x)
g
Po(x) = P, (x)
N k=0 bk k

approximates V with high accuracy. Moreover, since ¢N(x) is a polynomial

of degree N

1
£l(fN - £)ydx = {l(fN - £)(v = wg)ax < BE = .0 Wy - Pl

(q-1)
<Kn_w___-1_“—.
Nq

The last estimate can be found in [1].

It is therefore clear that

/ £y ¥ dx = | b dx + E,

where E; 1s small. Moreover,

1 1 P
| £Govnax = | £(ree)1-E)T ] (2Kk+1)P, (0IP, (E)dE.
-1 -1 k=0

Let

g(E) = £(y + eE)(1- £ .

g(€) 1is a ¢® function for |E| <1 and therefore has a rapidly converging

expansion of the form
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gE) = § o P (E).
k=0“k k

Therefore
1 P P
[ g®) L (2+DP (0P (E)dE = | ¢, P, (0)
-1 k=0 k=0
=g(0) - ) ¢ =f£f(y) +E,.
k=p+1 k 2
This shows that
fdede

approximates £(y) to a high order of accuracy. This filter had been
successfully used by Gottlieb and Gruberger for several problems.

In conclusion we have demonstrated that numerical solutions obtained by
spectral methods contain information about the correct solution that may be

extracted to yield a high order approximation in the regular sense.
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