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SINGULAR VALUE DECOMPOSITION WITH SYSTOLIC ARRAYS

Ilse C. F. Ipsen
Yale University

Abstract

Systolic arrays for determining the Singular Value Decomposition of
a mxn, m > n, matrix A of bandwidth w are presented. After A has been
reduced to bidiagonal form B by means of Givens plane rotations, the
singular values of B are computed by the Golub-~Reinsch iteration. The
products of plane rotations form the matrices of left and right singular

vectors.

Assuming each processor can compute or apply a plane rotation, O(wn)
processors accomplish the reduction to bidiagonal form in O(np) steps,
where p is the number of superdiagonals. A constant number of processors
can then determine each singular value in about 6n steps. The singular
vectors are computed by rerouting the rotations through the arrays used for
the reduction to bidiagonal form, or else "along the way" by employing another

rectangular array of O(wm) processors.

Research was supported in part by the Office of Naval Research Contract
NOO0O14-82-K-0184 and 1in part by the National Aeronautics and Space
Administration under NASA Contract No. NAS1-17070 while the author was in
residence at the Institute for Computer Applications in Science and
Engineering, NASA Langley Research Center, Hampton, VA 23665.
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Introduction
A singular value decomposition (SVD) of a m*n matrix A, m > n,
consists of a factorization

A=UTZI VT,

where U and V are orthogonal matrices and I 1is a nonnegative
diagonal matrix.

The SVD 1is an indispensible tool for rank determination and
handling of rank deficiencies, a more detailed account of its
mathematical properties can be found in [6]. As for its applications in
signal processing, Speiser and Whitehouse have presented its usefulness
in adaptive beamforming and data compression [13].

With the advent of VLSI technology it seems now feasible to perform
a SVD in real-time. A number of papers have recently dealt with
algorithms for SVD of dense matrices amenable to implementation on
systolic arrays. An O(nz)-processor singular value array of [4] relies
on a version of Hestenes” method where intermediate quantities are not
completely updated; a formal convergence proof is not provided. Brent
and Luk [1] construct an array for a one-sided orthogonalisation method
due to Hestenes which uses a 1linearly connected mesh of 0(n)
processors and O(mn) steps to determine a singular value or else a
two-dimensional 0(mn) processor array with a non-planar inter-
connection structure and time O(n log m). The method is quadratically
convergent; experience suggests that 6 to 10 iterations per singular

value provide for sufficient numerical accuracy. In [2] a similar




architecture of O(n2) processors implements a cyclic Jacobi method for
the SVD in O(m + n log n) steps. With the addition of QR and matrix
multiplication arrays, the generalised SVD for matrices A € R™®  and
B ¢ RPM ig computed in 0(2 log n) steps on 0(22) processors,
2 > myn,p [3]. With reference to the previous works Schreiber [12]
suggests a method to cope with problems that do not match the array
size. In [11] he proposes a kn-processor design which reduces a dense
matrix to upper triangular form of bandwidth k+1 in time O(mn/k). A
k(k+1l)-processor array from [8] is used to implement a SVD iteration for
(k+l)=-diagonal matrices (analogous to the Golub-Reinsch iteration for
bidiagonal matrices) in time 6n + O(k). For k = 0(n1/2) this amounts
. to processor and hardware requirements of 0(n3/2).

The systolic designs to be discussed are based on those in [8] and
are thoroughly specified in [10]. They compute the singular values of a
banded matrix A by first reducing A to bidiagonal form B and then
computing the singular values of B, A VLSI implementation for the same
problem was already proposed in [7]; this paper, however, substantially
improves the bandwidth reduction array: it has become much simpler and
is now also able to deal with problems not matching the hardware
dimensions. The matrices of left and right singular vectors, uT  and
V, are generated by accumulating the products of plane rotations.

After a description of the SVD algorithm in the next section, a
review of the systolic designs in [8] will be given. It is followed by
a discussion of systolic arrays for bandwidth reduction and singular

value computation for bidiagonal matrices.




2. Singular Value Decomposition
The singular value decomposition (SVD) of a matrix A e Ran,

m>» n, is

uTAV = diag( )

ag ol’.."on ’

where Ue R® and v e RV are orthogonal matrices and
diag(al,...,on) is a nonnegative diagonal matrix. The columns of U(V)
constitute the left (right) singular vectors of A, and o, are the

singular values.,

The eigenvalues of ATA  are the squares of the singular values of
vI(aTayyv = diag(of,...,oi).

Hence, computation of the singular values of A can' be performed by
computing the eigenvalues of ATA. |

The QR algorithm for computing the eigenvalues of a symmetric
matrix Ae R is based on the decomposition of A into an

orthogonal (Q"1 = QT) matrix Q and an upper triangular matrix R,

It is most efficient when the original matrix A is first reduced to
tridiagonal form T (tij =0 for 1< j-1 or i > j+l). With Tp=T

an iteration of the QR method takes the form




Ti = 51417 = QiRiers  Tyep = Ryp)Quep + 5441

or,

T
Tier = U T3y

If the scalar Si41 1s chosen as the eigenvalue of the trailing 2x2
(1)

submatrix closest to tnn then this element will converge to an

(1)

is "close" to
n,n-1

eigenvalue of A at least quadratically. Once ¢t
zZero tﬁi) is a good eigenvalue approximation. 1In that case, Ay 1s
deflated (its trailing row and column are disregarded) and the procedure
is repeated to find the next eigenvalue.

Having formulated the SVD as an eigenvalue problem a straight-

forward approach for its computation would be to first reduce the matrix

A to bidiagonal form B (bij 0 for 1> 3j or i < j-1), and then to

BIB via

compute the eigenvalues of T

<3
=

2 2
diag(ol,...,on).

Then V is the matrix of right singular vectors and the left singular
vectors are obtained from the QR decomposition of AV, Yet, the
explicit formation of BIB squares the condition number of the problem
and numerically results in loss of information.

Golub and Reinsch present an alternative method which avoids the
explicit formation of the matrik product [5]. If T has nonzero

offdiagonal elements, Q, 1is an orthogonal matrix and




T
T)=Q T,

it can be shown, e.g. [6], that Q; and T; are uniquely determined by
the first column of Q. Furthermore, if P 1is an orthogonal matrix
with the same first column as Q; and PITP 1s reduced to tridiagonal

form

Ty = (PQy)T T(PQy),

then lT1| = rrzl. Consequently, the singular values of B can be

determined by iterations of the following form (BO = B),

Let Py, be orthogonal with the same first column as Q4
Compute Cy,; = ByPyyy

Reduce ByP;,; to bidiagonal form Bj,;.

The effect of the shift 8i41 1s now concentrated in the matrix Py
and the above procedure is known as the "implicitly shifted" version of
the QR method. Deflation takes place as for eigenvalue computations.

Hence, the singular values of A are computed in two steps:

(1) Reduce A to bidiagonal form B

(2) Perform the above iterations on B until the required

singular values are found.




3. Systolic Arrays for Givens Rotations

The purpose of an orthogonal matrix in this context is to stably
reduce a matrix to a certain structured form by selectively introducing
zero elements. It was shown in [8] that a VLSI implementation of Givens
 plane rotations would, unlike Householder transformations for example,
require only nearest neighbour data communication. Thus, all orthogonal
matrices will be products of plane ro;ations, where each rotation zeroes

a single matrix element as follows:

P = s kA> 1,
where

if vy = 0 then x7 =%, c= 1, s =0,

1
else x7 =/ X2 + y? c=x/x7, s =y, /x7 (p1)
1 17 e 1% 8.7 0% e
x£'= gxi + SYy» ‘yi = -sx; + ¢y, | 2 <1 f k, (P2)

It is assumed that each, equation (Pl) and (P2), takes one "time step".
Two kinds of processors are needed to realise rotations, one to execute

(P1) and another for (P2), see Figure 1.




Given a matrix Ae R°®, m > n, its diagonal consists of the
elements aj4, 1 < i < n, the kth subdiagonal of agyq f» 1< 1 <k,
and the kth superdiagonal of ay ki 1 <1< n-k. In the sequel,
only band matrices of bandwidth w =p +q + 1 will be considered where
subdiagonal q > 0 is the leftmost nonzero subdiagonal and 'super4
diagonal p > 1 1s the rightmost nonzero superdiagonal. Consequéntly,
either m=n or m=n + q.

"A QR decomposition of a matrix A does not increase the bandwidth;
for each eliminated subdiagonal a new nonzero superdiagonal is filled
in, so- R has bandwidth w -with p+q superdiagonals.

For -an overview on systolic arrays for the QR factorization the
reader is referred to [8]. There a linearly connected mesh of w
processors, call it Lq, removes the qth, outermost, subdiagonal of A:
each of its elements is removed by an appropriate rotation, (Pl), which
is then applied to the corresponding pair of rows, (P2). The product of

these rotations forms an orthogonal matrix Q% and
N
R1 = QlA’ :

where R; has p + 1 superdiagonals. The first, leftmost, processor
of the linear mesh repeatedly computes (P1) while the w = 1 succeeding
processors to its right ‘each compute (P2), see' Figure 2. 'The matrix A
is input by diagonals, the qth subdiagonal enters processor 1, the
diagonal processor q + 1 and the:pth superdiagonal enters the right-—

most, wth, processor. On output these diagonals are shifted one place




to the 1left, the (q-1)st subdiagonal exits from processor 1, the
diagonal from processor q and the (p+l)st superdiagonal from processor
w. The rotations flow to the right until they leave processor w. The
time from the first input to the last output is 2n steps if m = n and
2(n+q-1) 1if m > n.

The QR decomposition of a band matrix with ¢ subdiagonals,
accomplished by routing the matrix through q successive LQ-meshes,
takes 2(n+q-1) steps. The ith mesh encountered removes the (q-i+l)st
subdiagonal.

Elimination of a superdiagonal is achieved by multiplying from the
right by an orthogonal matrix, which is the product of rotations tb be
applied to the columns of A, so

T
L2 = AQZ’

where L, has q + 1 subdiagonals. The data lines of the processors
are reversed and the corresponding linear mesh, c¢all it Ly, is a
"mirror image" of the one for subdiagonal elimination. The processor
computing (P1) is now the rightmost, wth processor, and it sends the
rotations travelling towards the left. The reduction to lower
Hessenberg form (in the upper triangular part only the first super-
diagonal 1is nonzero) of a square matrix A 1s accomplished by sending
A through p = 1 successive Ly-meshes; this takes 2(n+p=2) time
steps.

In general, k subdiagonals (superdiagonals) of A are eliminated
in 2(n+k-1) steps by sending A through k successive LQ- (LH-)

meshes.




In the sections to come, the systolic arrays will be described in
terms of the linear meshes, Ly and Lq, eliminating superdiagonals and
subdiagonals, respectively, - rather than processors eliminating
individual matrix elements. The subscript Q (from QR) will be
connected with removal of subdiagonals, while H (from lower Hessenberg

form) 1s associated with elimination of superdiagonals.

4. Systolic Arrays for Reduction to Bidiagonal Form

To keep hardware to a minimmum, an algorithm for bandwidth
reduction will be chosen that does not increase the number of nonzeroes
per row (even temporarily).

The algorithm for a reduction to bidiagonal form of a banded matrix
A to be presented here basically proceeds in two stages, removal of q
subdiagonals followed by removal of p-1 superdiagonals (since m > n,
subdiagonal removal decreases the order of the matrix, as well as the
computation time and should be performed first). It will be assumed
that the bandwidth of A does not exceed the size of the LQ- or Ly-
meshes, otherwise partitioning strategies have to be applied, see [9].

As for the first stage,

Compute the QR decomposition of A = A, R, = UJA

0 1 10
Remove the filled-in superdiagonals, H; = R;V;

Let Al consist of the first n rows of Hl
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 For i=1... [n/p]

T A

Compute -the QR decomposition Ri+1 = Ui+1 1

Remove the filled-in superdiagonals, Hj;; = Ry;1Vy
Let Aj4; be Hy;, without its leading p rows and

columns.

The first two steps essentially reduce the problem size from mxn to

nxn, i.e., the QR decomposition causes the last q rows of Ry to
become zero., During the loop, the QR decomposition, -which eliminates
the zeroes 1n the lower triangular part, is followed by removal of the
filled-in superdiagonals. . This will restore the previously eliminated
subdiagonals - save their p leading elements. - Thus, disregarding the
leading p rows and columns the whole process is repeated on the

remaining wmatrix until the subdiagonal part has totally disappeared.

After [n/p] such iterationms,

Atasplet = Ulazprit *+* U1 A YL 4 Vinspa
is an upper. triangular matrix ([x] denotes the smallest integer equal to
or greater than x). On an array with q LQ—meshes followed by q Ly~
meshes, all meshes being of size w, stage 1 takes time proportional to
2n2/p. If on the ‘order of n. LQ-meshes are available so that
uninterrupted pipelining is possible, the computation time comes to

about 4nq/p steps.
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During the second stage, n-2 1iterations are necessary to reduce

the ‘upper triangular matrix A[ﬁ/p]+1' to bidiagonal form B. The

iterations are similar to the ones above.

For i = [n/p]+l ... [n/p]l+n-1
Reduce A; to lower Hessenberg form Hy,; = A;Vy
_ T
Remove the filled-in subdiagonals, Ri+1 = Ui+1Hi+1
Let A4y4; be Ryy; without its leading row and column.

Eventually,

T T

B = Uta/pl4n *** Uln/pl+2 Auspl+l Vin/pl+2

ces V[n/p]+n'
The corresponding array comprising p-1 Ly-meshes succeeded by p-1 LQ—
meshes, each of size p+l, completes stage 2 in 2n2+0(np) steps.

The example in Figure 3 illustrates several steps in the reduction
to bidiagonal form of a matrix with three subdiagonals and two super-
diagonals., Given an array for stagevl with 2wq processors and one for
stagé 2 with 2(p2-1) processors the reduction to bidiagonal form takes

2n2+0(n2/p) steps. If O(n) such arrays are available the time

reduces to 4np + 0(nq/p).

For the computation of the singular vectors, the rotations forming
the Uz are rerouted through the LQ-meshes' and applied to a mxm
identity matrix, while rotations forming the V; are input into Ly

meshes to be applied to an nxn identity matrix. Since U and V' are
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generally full matrices, they have to be determined by inputting sub-
matrices of order .w/2 [7] that "fit into" the Ly~ and Ly-meshes.
Alternatively, another rectangular 2(m~1)w processor array as in [111
may be employed to which rotations are input as soon as they have left
the LQ- and Ly-meshes; the computation of the singular values and

vectors can thus proceed concurrently.

5. A More Flexible Array for Reduction to Bidiagonal Form

Instead of having different arrays for stages 1 and 2, essentially
one array can be shared by both of them. It consists of two separate
parts, one succession of max(p,q) LQ—meshes of size w and another
one containing the same number of Ly-meshes of the same size. During an
iteration of stage 1 the matrix is first entered into the LQ—part and
thereafter into the LH—ﬁart. This order is reversed in stage 2.

But now the size of the meshes may be wider than the actual
bandwidth of the matrix. Yet, the matrix must be entered '"leftbound"
into the LQ—part and "rightbound" into the Ly—part, so that the doomed
sub~ or superdiagonal enters the processor computing (Pl). Hence,
before entering the Ly-part the matrix may have to be aligned to the
right, and possibly to thevleft before input to‘the LQ-parﬁ. Three
different cases can occur.

If p -1 = q, no alignment is necessary in stage 1, since the
bandwidth is equal to the size of the meshes, while the number of meshes

corresponds to the number of subdiagonals to be removed. During stage
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2, the matrix has to be shifted by 'q places during each transition
between LQ- and Ly—parts aund vice versa.

If p=-1<q, no alignment occurs during stage l. During stage 2,
though, q - (p-1) meshes are idle, i.e., they generate only identity
rotations. Consider the reduction to Hessenberg form. After having
traversed the first p = 1 Ly-meshes, the first superdiagonal is in the
wth processor, the reduction is completed. However, the remaining
q - (p~-1) me#hes shift the matrix further to the right, each.by one
place, so it is "squeezed" out of the array to the right. To properly
enter the LQ-part it therefore has to be shifted to the left - by the
distance it was squeezed out, which is q - (p-1), plus the distance
between the outermost, (p-l)st, subdiagonal and the first processor,
i.e., w = (p+l). Thus, after leaving the Ly-part the matrix must be
.shifted w + q = 2p places to the left before entering the LQ-part. It
must be shifted the same distance to the right after output from the LQ-
part. Figure 4 illustrates this situationm.

If q < p - 1, consider the QR decomposition in the first stage.
After the first q LQ-meshes have been traversed, the remaining
p - 1 - q meshes will squeeze the matrix out to the left, one pla;e per
mesh. To enter the Ly-part, the matrix is shifted to the right - by
p - q.- 1 places, equaliing the distance by which it was squeezed
out. During the second stage shifting occurs by q places.

Moreover, in [10] it is shown that, by slight reprogramming of the
processors, one type of mesh can fulfill the functions of both LQ— and

Lg-meshes. A reduction to bidiagonal form of a matrix with bandwidth w
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is then performed on k  meshes of size at least w. = The alignment can
be limited to k places if every kth processor in a mesh is -a (Pl)

processor.

6. A Systolic Array for Computation of the Singular Values
The processor which implements the singular value computation for
bidiagonal matrices is a special case of the one for eigenvalue

computation [7]. It executes one step of the Golub-Reinsch -iteration

[51.

‘Let P{+1 be a rotation removing the (2,1) element of
T
(ByBy = 85441

Compute Cy.y = ByPy4;

Compute ‘Byj;; by reducing Cj4) to bidiagonal form.

Notice that Cj,.; differs from By only in the first two rows and
columns. One can assume, that it is computed separately and then passed
through a network, built around the processor [7,10] depicted in Figure
5, which might be viewed as a conglomerate of processors computing (P1l)

and -(P2):

Step 1: values already in cell are Ty, 8], T, 8y

. a) 1input 85

1'1 rI-
b) generate P so that P s - 1
1
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r] o r3 r, r, 0
c) compute = P
o s s3 ) Sy 83

d) output ] P and retain ?2, s, I3s 83

Step‘Z:
e) input tz; tg
) generafe Q so that (ri, ra)Q = (f;, 0)

T3

rg 0 ri

" 1" = - .
g)l compute 82, s3 s5 s3 Q

t2 t3 t2 t3

“h)  output ti, Q and retain (s;, ti, sg, tg) -
as (ry, sy, I s3) for the next operation -

of the cell.

For the singular value computation this means that in every two steps
the processor -<computes one pass through the following loop, which

generates Bi+1 (Ci+1 ’2 = Ci+1)’

Forj =2 X n_].
Generate a rotation P§ -1 to annihilate element (j,j-1)
b4

of Ci41,3

Apply it, generating a fill-in at position (j-1,j+l) of
T
P, . ,C
Jsj=171+1,]

Generate a rotation Pj—l,j+1 to annihilate position
(j-1’j+1)

Apply it, generating a fill-in at position (3+1,j) of
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T

41,541 = Bj,5-1%41,5F

j=1,j+1°

The total time to generate Biy = Ci+1,n is 2n + 2; the corresponding
network is shown in Figure 6. On the average 2 to 3 iterations are
required per singular value, bringing its computation time to 6n
steps. Note that the input ty 1s zero except in the first step.

To complete the computation of the singular values, the rotations
generated above are applied to the partially computed singular vector
matrices from the bandwidth reduction step.

The incorporation of the preceeding designs into a system computing
all the singular values is described in [7]. One remaining problem is
the efficient computation of the shift values for convergence
acceleration. Presently, values taken from the trailing end of the
matrix have to be incorporated into an orthogonal rotation which 1is
applied to the leading TOWS. Therefore it 1s not obvious how to
pipeline several singular value iterations while at the same time

maintaining quadratic (and in practice cubic) convergence.
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Figure 1. Processors for Elimination of Subdiagonals
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Figure 2. -Mesh for Subdiagonal Elimination of
Size w = 5 and Input Matrix with p = q = 2
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000 000 +++ 000
0000 000 +++ , 000
00000 000 +++ 000
000000 QR decomposition 000 ++ Fill-in removal +000
000000 - 000+ ————» ++000
000000 000 +++000
00000 00 +++00
0000 : . 0 o +++0
000
00
0

(@) Stage 1: QR Decomposition Followed by Removal of Superdiagonals.

000 00 00
000 +00 , 00 +
000 . +00 P o0 +
: Fill-in Removal
000 Reduction to> Y00 00 +
000 +00 oo+
000 Hessenberg Form Y00 00 +
00 +00 00
0 . o +0 0

(b) Stage 2: Reduction to Lower Hessenberg Form Followed by Removal of Subdiagonals.

Figure 3. Several Steps in the Reduction to Bidiagonal Form
of a Matrix withm =11, n =8, p=2, q =3
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Figure 4. Input/Output Format and Alignment for Systolic Arrays
Performing a Reduction to Bidiagonal Form in Case p-1 < q




Figure 5. Processor for the Computation of Singular Values
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Figure 6. Systolic Array for the Computation of Singular
Values with Input/Output Format
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"along the way" by employing another rectangular array of O(wm) processors.
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