
NASA ContractorReport 172396

ICASE REPORT NO. 84-30
NASA-CR- 172396
19840022748 '

]

ICASE
SINGULAR VALUE DECOMPOSITION WITH

SYSTOLIC ARRAYS

llse C. F. Ipsen

Contract No. NASI-17070

July 1984

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING

NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

rl_ " LIBRALqYCOPY
National Aeronautics and ,_7;_ 9, "_ 1984
Space Administration

Langley Research Center LANGLEYRESEARCHCENTER
Hampton,Virginia 23665 LIBRARY,NASAHAMPTON,VIRGINIA



i' 3 1176 00518 1723 iF



SINGULARVALUEDECOMPOSITIONWITH SYSTOLICARRAYS

llse C. F. Ipsen
Yale University

Abstract

Systolic arrays for determining the Singular Value Decomposition of

a mxn, m ) n, matrix A of bandwidth w are presented. After A has been

reduced to bidiagonal form B by means of Givens plane rotations, the

singular values of B are computed by the Golub-Reinsch iteration. The

products of plane rotations form the matrices of left and right singular

vectors.

Assuming each processor can compute or apply a plane rotation, O(wn)

processors accomplish the reduction to bldiagonal form in O(np) steps,

where p is the number of superdlagonals. A constant number of processors

can then determine each singular value in about 6n steps. The singular

vectors are computed by reroutlng the rotations through the arrays used for

the reduction to bidiagonal form, or else "along the way" by employing another

rectangular array of O(wm) processors.

Research was supported in part by the Office of Naval Research Contract

N000014-82-K-0184 and in part by the National Aeronautics and Space
Administration under NASA Contract No. NASI-17070 while the author was in

residence at the Institute for Computer Applications in Science and

Engineering, NASA Langley Research Center, Hampton, VA 23665.
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Introduction

A singular value decomposition (SVD) of a m×n matrix A, m > n,

consists of a factorlzatlon

A = U E VT,

where U and V are orthogonal matrices and E is a nonnegatlve

diagonal matrix.

The SVD is an indispenslble tool for rank determination and

handling of rank deficiencies, a more detailed account of its

mathematical properties can be found in [6]. As for its applications in

signal processing, Spelser and Whltehouse have presented its usefulness

in adaptive beamformlng and data compression [13].

With the advent of VLSl technology it seems now feasible to perform

a SVD in real-tlme. A number of papers have recently dealt with

algorithms for SVD of dense matrices amenable to implementation on

systolic arrays. An O(n2)-processor singular value array of [4] relies

on a version of Hestenes" method where intermediate quantities are not

completely updated; a formal convergence proof is not provided. Brent

and Luk [I] construct an array for a one-slded orthogonallsatlon method

due to Hestenes which uses a linearly connected mesh of O(n)

processors and O(mn) steps to determine a singular value or else a

two-dimenslonal O(mn) processor array with a non-planar inter-

connection structure and time O(n log m). The method is quadratically

convergent; experience suggests that 6 to I0 iterations per singular

value provide for sufficient numerical accuracy. In [2] a similar
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architecture of O(n 2) processors implements a cyclic Jacobl method for

the SVD in O(m + n log n) steps. With the addition of QR and matrix

multiplication arrays, the generalised SVD for matrices A E Rmxn and

B € Rp×n is computed in 0(% log n) steps on 0(£ 2) processors,

£ > m,n,p [3]. With reference to the previous works Schrelber [12]

suggests a method to cope with problems that do not match the array

size. In [II] he proposes a kn-processor design which reduces a dense

matrix to upper triangular form of bandwidth k+l in time O(mn/k). A

k(k+l)-processor array from [8] is used to implement a SVD iteration for

(k+l)-diagonal matrices (analogous to the Golub-Reinsch iteration for

bldlagonal matrices) in time 6n + O(k). For k = O(n I/2) this amounts

to processor and hardware requirements of 0(n3/2).

The systolic designs to be discussed are based on those in [8] and

are thoroughly specified in [I0]. They compute the singular values of a

banded matrix A by first reducing A to bldiagonal form B and then

computing the singular values of B. A VLSI implementation for the same

problem was already proposed in [7]; this paper, however, substantially

improves the bandwidth reduction array: it has become much simpler and

is now also able to deal with problems not matching the hardware

dimensions. The matrices of left and right singular vectors, UT and

V, are generated by accumulating the products of plane rotations.

After a description of the SVD algorithm in the next section, a

review of the systolic designs in [8] will be given. It is followed by

a discussion of systolic arrays for bandwidth reduction and singular

value domputatlon for bldiagonal matrices.
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2. Singular Value Decomposition

The singular value decomposition (SVD) of a matrix A _ Rmxn,

m > n, is

uTAv = diag(ol,...,On) ,

where U _ Rm×m and V € Rnxn are orthogonal matrices and

diag(ol,...,o n) is a nonnegatlve diagonal matrix. The columns of U(V)

constitute the left (right) singular vectors of A, and oi are the

singular values.

The eigenvalues of ATA are the squares of the singular values of

A:

vT(ATA)v g( 2 2)= dia oi,...,o n .

Hence, computation of the singular values of A can be performed by

computing the eigenvalues of ATA.

The QR algorithm for computing the elgenvalues of a symmetric

matrix A _ Rn×n is based on the decomposition of A into an

orthogonal (Q-I = QT) matrix Q and an upper triangular matrix R,

A --QR.

It is most efficient when the original matrix A is first reduced to

trldlagonal form T (tij = 0 for i < j-I or i > j+l). With TO = T

an iteration of the QR method takes the form
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Ti - Si+lI = Qi+iRi+l, Ti+1 = Ri+iQi+1 + Si+lI

or,

T
Ti+1 = Qi+iTiQi+l•

If the scalar si+1 is chosenas the eigenvalueof the trailing2x2

submatrix closest to t(i) then this element will converge to annn

eigenvalue of A at least quadratically. Once t(i) is "close"to
n,n-I

zero t(i)nnis a good eigenvalueapproximation. In that case, Ai is

deflated (its trailingrow and column are disregarded)and the procedure

is repeatedto find the next eigenvalue.

Having formulated the SVD as an eigenvalue problem a straight-

forwardapproachfor its computationwould be to first reduce the matrix

A to bidiagonalform B (bij= 0 for i > j or i < j-l), and then to

compute the eigenvaluesof T = BTB via

VT TV = dlag(a_, ,_2n)
• .e •

Then V is the matrix of right singularvectors and the left singular

vectors are obtained from the QR decomposition of AV. Yet, the

explicit formationof BTB squares the conditionnumber of the problem

and numericallyresultsin loss of information.

Golub and Reinsch present an alternativemethod which avoids the

explicit formation of the matrix product [5]. If T has nonzero

offdiagonalelements,Q1 is an orthogonalmatrix and
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T
T1 --QI TQI'

it can be shown, e.g. [6], that QI and TI are uniquely determined by

the first column of QI" Furthermore, if P is an orthogonal matrix

with the same first column as Q1 and pTTp is reduced to tridiagonal

form

T2 = (FQ2)r T(FQ2),

then ITII = IT2[. Consequently, the singular values of B can be

determined by iterations of the following form (B0 = B),

Let Pi+I be orthogonal with the same first column as Qi+I

Compute ci+ I = BiPi+ 1

Reduce BiPi+ I to bidiagonal form Bi+ I.

The effect of the shift si+ 1 is now concentrated in the matrix Pf+I

and the above procedure is known as the "implicitly shifted" version of

the QR method. Deflation takes place as for eigenvalue computations.

Hence, the singular values of A are computed in two steps:

(I) Reduce A to bidiagonal form B

(2) Perform the above iterations on B until the required

singular values are found.
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3. _stolic Arrays for _ve_ Rotatio_

The purpose of an orthogonal matrix in this context is to stably

reduce a matrix to a certain structured form by selectively introducing

zero elements. It was shown in [8] that a VLSl implementation of Givens

plane rotations would, unlike Householder transformations for example,

require only nearest neighbour data communication. Thus, all orthogonal

matrices will be products of plane rotations, where each rotation zeroes

a single matrix element as follows:

P= , c +s = I,
S C

P I x2 x ...

.oo xk _ x

= , k) I,

1 Y2 "'" Yk Y2 "'" Yk/

where

if Yl = 0 then x_ = Xl, c ffiI, s ffi0,
!

!x2 2else x_ = 1 + YI' c = XllXi, s = Yl/X[ , (PI)

x[ = cxi + sYi, y[ = -sxi + cYi, 2 ( i ( k, (P2)

It is assumed that each, equation (PI) and (P2), takes one "time step".

Two kinds of processorsare needed to realiserotations,one to execute

(PI) and anotherfor (P2), see Figure i.
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Given a matrix A _ Rmxn •, m ) n, its diagonal consists of the

elements all , I • i • n, the_kth subdiagonal of ak+i,i, 1 < i • m-k,

and the kth superdiagonal of ai,k+i, 1 • i < n-k. In the sequel,

only band matrices of bandwldth •w = p + q + 1 will be considered where

subdiagonal q ) 0 is the leftmost nonzero subdiagonal and •super-

diagonal p > 1 is the rightmost nonzero superdiagonal. Consequently,

either m = n or m = n + q.

A QR decomposition of a matrix A does not increase the bandwidth;

for each eliminated subdiagonal a new nonzero superdiagonal is •filled

in, so • R has bandwidth w with p+q superdiagonals.

For oan overview on systolic arrays for the QR factorlzation the

reader is referred to [8]. There a linearly connected mesh of w

processors, call it LQ, removes the qth, outermost, subdiagonal of A:

each of its elements is removed by an appropriate rotation, (PI), which

is then applied to the corresponding pair of rows, (P2). The product of

T
these rotationsforms an orthogonalmatrix Q1 and •

T
R1 = Q1A, :

where R1 has p + 1 superdlagonals. The first, leftmost,processor

of the llnearmesh repeatedlycomputes (PI)while the w - 1 succeeding

processors to its rlght •eachcompute (P2), see Figure 2. The matrix A

is input by diagonals, the qth subdlagonal enters processor I, the

diagonal processor q + 1 and the pth superdlagonalenters the right-

most, wth, processor. On outputthese diagonalsare shiftedone place



to the left, the (q-l)st subdiagonal exits from processor I, the

diagonal from processor q and the (p+l)st superdiagonal from processor

w. The rotations flow to the right until they leave processor w. The

time from the first input to the last output is 2n steps if m = n and

2(n+q-l) if m > n.

The QR decomposition of a band matrix with q subdlagonals,

accomplished by routing the matrix through q successive LQ-meshes,

takes 2(n+q-l) steps. The ith mesh encountered removes the (q-i+l)st

subdlagonal.

Elimination of a superdiagonal is achieved by nmltlplying from the

right by an orthogonal matrix, which is the product of rotations to be

applied to the columns of A, so

L2 = AQ_,

where L2 has q + 1 subdlagonals. The data lines of the processors

are reversed and the corresponding linear mesh, call it LH, is a

"mirror image" of the one for subdlagonal elimination. The processor

computing (PI) is now the rlghtmost, wth processor, and it sends the

rotations travelling towards the left. The reduction to lower

Hessenberg form (in the upper triangular part only the first super-

diagonal is nonzero) of a square matrix A is accomplished by sending

A through p - I successive LH-meshes; this takes 2(n+p-2) time

steps.

In general, k subdiagonals (superdlagonals) of A are eliminated

in 2(n+k-l) steps by sending A through k successive LQ- (LH-)

meshes.
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In the sections to come, the systolic arrays will be described in

terms of the linear meshes, LH and LQ, eliminating superdiagonals and

subdiagonals, respectively, - rather than processors eliminating

individual matrix elements. The subscript Q (from QR) will be

connected with removal of subdlagonals, while H (from lower Hessenberg

form) is associated with elimination of superdiagonals.

4. Systolic Arrays for Reduction to Bidiagonal Form

To keep hardware to a minimmum, an algorithm for bandwidth

reduction will be chosen that does not increase the number of nonzeroes

per row (even temporarily).

The algorithm for a reduction to bidiagonal form of a banded matrix

A to be presented here basically proceeds in two stages, removal of q

subdiagonals followed by removal of p-I superdiagonals (since m > n,

subdiagonal removal decreases the order of the matrix, as well as the

computation time and should be performed first). It will be assumed

that the bandwidth of A does not exceed the size of the LQ- or LH-

meshes, otherwise partitioning strategies have to be applied, see [9].

As for the first stage,

Compute the QR decomposition of A0 = A, R 1 = UIAoT

Remove the filled-in superdiagonals, HI = RIV I

Let A1 consist of the first n rows of HI
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•For i = 1 ... [n/p] _

T
Compute the QR decomposition Ri+1 = UI+IAi

Removethe filled-insuperdlagonals,Hi.1 = Ri+IVl

Let Ai+ll be Hi+1 without its leading p rows and

columns.

The first two steps essentially reduce the problem size from m×n to

nxn, i.e., the QR decomposition causes the last q rows of R1 to

become zero. During the loop, the QR decomposltion, whlch eliminates

the zeroes in the lower triangular part, is followed by removal of the

filled-ln superdlagonals. This will restore the previously eliminated

subdlagonals - save their p leading elements. •Thus, dlsregardlng the

leading p rows and columns the whole •process is repeated on the

remaining matrix until the subdlagonal part has totally disappeared.

After [n/p] such iterations,

T T

A[n/p]+ 1 = U[n/p]+ I ... UI A VI .;. V[n/p]+ I

is an upper triangular matrix ([x] denotes the smallest integer equal to

or greater than x). On an array with q LQ-meshes followed by q LH-

meshes, all meshes being of size w, stage I takes time proportional to

2n2/p. If on the •order of n• LQ-meshes are available so that

uninterrupted pipelining is possible, the computation time comes to

about 4nq/p steps.
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During the second stage, n-2 iterations are necessary to reduce

the upper triangular matrix A[n/p]+ 1 to bidiagonal form B. The

iterations are similar to the ones above.

For i = [n/p]+l ... [n/p]+n-I

Reduce Ai to lower Hessenberg form Hi+ i = AiV i

T

Remove the filled-in subdiagonals, Ri+ 1 = Ui+iHi+l

Let Ai+ 1 be Ri+ I without its leading row and column.

Eventually,

T UT
B = U[n/p]+ n ... [n/p]+2 A[n/p]+l V[n/p]+2 "'" V[n/p]+n"

The corresponding array comprising p-i LH-meshes succeeded by p-I _-

meshes, each of size p+l, completes stage 2 in 2n2+O(np) steps.

The example in Figure 3 illustrates several steps in the reduction

to bidiagonal form of a matrix with three subdiagonals and two super-

diagonals. Given an array for stage I with 2wq processors and one for

stage 2 with 2(p2-i) processors the reduction to bidiagonal form takes

2n2+O(n2/p) steps. If O(n) such arrays are available the time

reduces to 4np + O(nq/p).

For the computation of the singular vectors, the rotations forming

T

the Ui are rerouted through the LQ-meshes and applied to a mxm

identity matrix, while rotations forming the Vi are input into LH

meshes to be applied to an nxn identity matrix. Since U and V are
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generally full matrices, they have to be determined by inputting sub-

matrices of order w/2 [7] that "fit into" the LQ- and LH-meshes.

Alternatively, another rectangular 2(m-l)w processor array as in [II]

may be employed to which rotations are input as soon as they have left

the LQ- and LH-meshes; the computation of the singular values and

vectors can thus proceed concurrently.

5. AM ore Flexible Array for Reduction to Bidiagonal Form

Instead of having different arrays for stages 1 and 2, essentially

one array can be shared by both of them. It consists of two separate

parts, one succession of max(p,q) LQ-meshes of size w and another

one containing the same number of LH-meshes of the same size. During an

iteration of stage 1 the matrix is first entered into the LQ-part and

thereafter into the LH-part. This order is reversed in stage 2.

But now the size of the meshes may be wider than the actual

bandwidth of the matrix. Yet, the matrix _ast be entered "leftbound"

into the LQ-part and "rlghtbound" into the LH-part, so that the doomed

sub- or superdlagonal enters the processor computing (PI). Hence,

before entering the LH-part the matrix may have to be aligned to the

right, and possibly to the left before input to the LQ-part. Three

different cases can occur.

If p - 1 = q, no alignment is necessary in stage i, since the

bandwidth is equal to the size of the meshes, while the number of meshes

correspond s to the number of subdiagonals to be removed. During stage
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2, the matrix has to be shifted by q places during each transition

between LQ- and LH-parts and vice versa.

If p - 1 < q, no alignment occurs during stage I. During stage 2,

though, q - (p-l) meshes are idle, i.e., they generate only identity

rotations. Consider the reduction to Hessenberg form. After having

traversed the first p - I LH-meshes , the first superdiagonal is in the

wth processor, the reduction is completed. However, the remaining

q - (p-l) meshes shift the matrix further to the right, each by one

place, so it is "squeezed" out of the array to the right. To properly

enter the LQ-part it therefore has to be shifted to the left - by the

distance it was squeezed out, which is q - (p-l), plus the distance

between the outermost, (p-l)st, subdlagonal and the first processor,

i.e., w - (p+l). Thus, after leaving the LH-part the matrix must be

shifted w + q - 2p places to the left before entering the LQ-part. It

must be shifted the same distance to the rlght after output from the LQ-

part. Figure 4 illustrates this situation.

If q < p - I, consider the QR decomposition in the first stage.

After the first q LQ-meshes have been traversed, the remaining

p - 1 - q meshes will squeeze the matrlx out to the left, one place per

mesh. To enter the LH-part , the matrix is shifted to the right - by

p - q - 1 places, equalling the distance by which it was squeezed

out. During the second stage shifting occurs by q places.

Moreover, in [I0] it is shown that, by slight reprogramming of the

processors, one type of mesh can fulfill the functions of both LQ- and

LR-meshes. A reduction to bldlagonal form of a matrix with bandwidth w
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is then performed on k meshes of size at least w. The alignment can

be limited to k places if every kth processor in a mesh is a (PI)

processor.

6. A Systolic Array:for Computation of the Singular Values

The processor which implements the singular value computation for

bidiagonal matrices is a special case of the one for eigenvalue

computation [7]. It executes one step of the Golub-Reinsch •iteration

[5].

• =

P_+I be a rotation removing the (2,1) element of
"Le_

(B_Bi - Si+ll) -.

Compute Ci+l= BiPi+1

Compute Bi+1 by reducing Ci+1 to bldlagonalform.

Notice that Ci+I differsfrom Bi only in the firsttwo rows and

columns. One can assume, that it is computedseparatelyand then passed

througha network, built around the processor[7,10] depictedin Figure

5, which might be viewed as a conglomerateof processorscomputing(PI)

and(P2):

Step i: values already in cell are rl, Sl, r2, s2

a) input s3

b) generate P so that P =
\sI
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<r,r.0)c) compute = P

sE s_ sI s2 s3

" d) output" rl, P and retain rE, sE, r_, s_

Step 2:

e) input t2, t3

f) generate Q so that (rE, r_)Q-k (r2,,,0)

g) compute s_ s_ s_ s3 Q

tE t_/ \t 2 t3/

h) outputt_. Q andretai_ (s_, t;, s_, t_)
as (rl, Sl, r2, s2) for the next operation

of the cell.

For the singular value computation this means that in every two steps

the processor •computes one pass• through the following loop, which

generates Bi+1 (Ci+l,2 = Ci+l),

For j = 2 ... n-I

Generate a rotation P_
3,j_ I to annihilate element (j,j-l)

of Ci+l, j

Apply it, generating a fill-ln at position (j-l,j+l) of
T

PJ ,j-1 Ci+l ,j

Generate a rotation Pj-I,j+I to annihilate position

(j-l,j+l)

Apply it, generating a fill-in at position (j+l,j) of
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Ci+l ,j+l= (PT,j-ICi+I,j)Pj-I,j+I"

The total time to generate Bi+1 = Ci+l,n is 2n + 2; the corresponding

network is shown in Figure 6. On the average 2 to 3 iterations are

required per singular value, bringing its computation time to 6n

steps. Note that the input t2 is zero except in the first step.

To complete the computation of the singular values, the rotations

generated above are applied to the partially computed singular vector

matrlc_s from the bandwidth reduction step.

The incorporation of the preceedlng designs into a system computing

all the singular values is described in [7]. One remaining problem is

the efficient computation of the shift values for convergence

acceleration. Presently, values taken from the trailing end of the

matrix have to be incorporated into an orthogonal rotation which is

applied to the leading rows. Therefore it is not obvious how to

pipeline several singular value iterations while at the same time

maintaining quadratic (and in practice cubic) convergence.
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000 000+++ 000

0000 000+++ 000

ooooo ooo+++ ooo
oooooo QR decomposition ooo ++ Fill-inremoval +ooo

000000 _ 000+ _ ++000

000000 000 +++000
00000 O0 +++00

0000 0 . +++0
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O0

0

(a) Stage1: QRDecompositionFollowedby Removalof Superdiagonals.

000 O0 O0

000 +00 00+

o o o Reductionto + oo Fill-inRemoval o o +
000 +00 00+

000 Uh_ +00 00+
o o o .essenueruForm + o o o o +

O0 +.00 O0
0 +0 0

(b) Stage2: Reductionto LowerHessenberg•FormFollowedby Removalof Subdiagonals.

Figure 3. Several Steps in the Reductlon to Bidlagonal Form
of aN affix with m = II, n = 8, p = 2, q = 3
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I
I

t t

i I  0- es esI
t t

t t

3 LQ-Meshes I 3 LH-Meshes
m

t t

Stage1 Stage2

Figure 4. Input/Output Format and Alignment for Systollc Arrays

Performing a Reduction to Bidlagonal Form in Case p-1 < q
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r_ r2

t t
r1[ Ir_;

sI rE sj

t2 sj s2

P t31 IS3 -_Q
t t
t3 s3

Figure 5. Processor for the Computation of Singular Values
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Matrix elementsare representedby their subscripts.

Figure 6. Systolic Array for the Computation of Singular
Values with Input/0utput Format
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