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Abstract
The numerical scheme based on the Legendre-tau approximation is proposed
to approximate the feedback solution to the linear quadratic optimal control
problem for hereditary differential systems. The convergence property is
established using Trotter ideas. The method yields very good approximations
at low orders and provides an approximation technique for computing closed-
loop eigenvalues of the feedback system. A comparison with existing methods

(based on "averaging" and "spline" approximations) is made.
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INTRODUCTION

This paper is the continuation of the study [9] on the use of Legendre-tau
approximation for functional differential equations (FDE) and concerns the
problem of constructing feedback solutions to linear quadratic regulator
problems for hereditary systems. This problem has received a rather extensive
study and we refer to [14], [2] and [4] for the summary of the earlier
contributions. Our approach is based upon the ploneering work of Banks -
Burns [2] who clarified the idea of approximating fDE by systems of finite
dimensional ordinary differential equations and applied it to optimal control
problems; i.e., the convergence of a particular numerical scheme (so-called
“averaging” approximation) 15 established, using the Trotter-Kato theorem of
linear semigroups. Recently, Gibson [8] has developed the approximation
theory for the Riccati equations associated with a hereditary system and
aﬁplied it to the averaging.approximation scheme.

The purposes of this paper are: (i) to apply the basic idea developed in
[9] to the linear quadratic regulator problem, (ii) to prove convergence of
numerical approximations of the feedback control 1laws and, (iii) to
demonstrate the feasibility of our numerical schemes,

For the multiple point delay case, the solution to the algebraic Riccati
equation (ARE) has jump ‘discontinuities as shown in [8]. With this
consideration, an extended version of the scheme described in [9] is developed
for such a case in Section 3. As pointed out in [9] and will be diséussed in
Sections 3 and 5, the tau approximation differs from the standard Galerkin
approximation and because of this, the theory developed in [8] needs to be

modified to prove convergence of approximate solutions to ARE.




An important question that arose in [8] was concerned with the preserva-
tion of exponential stability under approximation (i,e., conjecture 7.1 in
[81). At this time, we have not been able to answer this question for the
Legendre-tau approximation. However, some of the numerical computations for
several examples indicate that the conjecture holds for the tau approximation.
Moreover, the related property (i.e., the uniform boundedness of approximate
solutions to ARE) is proved for certain special cases in Lemma 5.4. The other
discussion contained in [8] is to argue the strong convergence of approximate
solutions to ARE. Under the same condition as given in Lemma 5.4, one can
prove it for the tau approximation. However, instead of arguing this, we
state a rather interesting result in Theorem 5.1. It says that if a sequence
of approximate solutions to ARE converges weakly to the solution to ARE, then
the closed loop system which results from the approximate feedback control law
is exponentially stable for sufficiently large orders of approximation.

As will be discussed in Section 6, the tau method may offer considerable
improvements over other methods (e.g., those discussed in [4], [8]) and it
gives a good approximation to the closed loop eigenvalue.

The following 1is a brief summary of the contents of this paper. In
Section 2 we review the equivalence results between FDE and abstract Cauchy
problems on the product space R’ x L2 ahd results on the regulator problem
for hereditary differential systems. In Section 3 we introduce the numerical
scheme based on the Legendre-tau approximation for the multiple point delay
case and the basic convergence of approximate semigroups using the Trotter-
Kato theorem. In Section 4 we show how one can use the numerical scheme
described in Section 3 to obtain the feedback solutions. In Section 5 we

state the basic convergence property of approximate solutions to ARE.




Finally, in Section 6 we present numgrical results and compare these results
for those obtained by other methods [4], [8]).

Throughout this paper the following notation will be usede r > 0 stands
for the largest delay time appearing in the FDE. The Hilbert space of K'-
valued square integrable functions on the interval [a,b] is denoted by
Lz([a,b];EP). When the underlying space and interval can be understood from
the context, we will abbreviate the notation and simply write Lo,
L;OC([O,w);Iﬁ), or L%oc, is the space of R'-valued locally square integrable
functions on the semi~infinite interval [0,«). HK is the Sobolev space of
K'-valued functions £ on a compact interval with £(k=1) absolutely
continuous and f(k) £ L2. We denote by Z ﬁhe product space
! x Lz([—r,O];IP). Given an element z € Z, n ¢ B' and ¢ ¢ L, denote the
two coordinates of z : z = (n,$). The bracket <*,*>; stands for the inner
product in the Hilbert space H, and the subscript for the underlying Hilbert

space will be omitted when understood from the context. [+l denotes the norm

for elements of a Banach space and for operators between Banach space, while

*| denote the Euclidean norm in F.

If X and Y are Banach spaces, then the space of bounded operators from
X to Y 1is denoted by [ (X,Y). ©D(A) denotes the domain of a linear
operator A. X1 denotes the characteristic fun;tion of the interval I,
Fianlly, for any function ¢ of independent.variable 8, we shall use $ or

%§-¢ to denote the derivative of ¢ with respect to 6,




2. RICCATI EQUATIONS
v
In this section, we state the type of problems to be considered and recall

some results on the linear quadratic regulator problem for hereditary

differential systems.

Given (n,$) € Z and u e Léoc([O,w), ®'), we consider the initial value
problem
d 0 ,
I x(t) = /] du(e) x(t + 6) + Bu(t), (2.1)
-r

X(O) =n, X(e) = ¢(e), 0 € [—r,O),

where M 1is a matrix-valued function of bounded variation on [-r,0] with .

the form
) ;
() = A, x,_ (8) + A(s)ds (2.2)
i=0 1% 61’0] -r
with 0 = 60 < 91 { eee (L Bz = r. Ay and A(*) are mxn matrices, the

elements of the latter being square integrable on [-r,0]. Alternatively, for

t>0
0 L ' 0
] au@)x(t +8) = ) Ay x(t -8 + [ A(@)x(t + 8)do.
-r i=0 : -r

It is well known [2], [5], [6] that for (n,$) €¢ Z and u € L;oc, (2.1)

admits a unique solution x ¢ LZ([-r,T];IP) N xwlco,11; ) for any T > 0,

and that (2.1) can be formulated as an evolution equation on 2

-37 z(t) = Az(t) + Bu(t), t>0 (2.3)

where z(t) = (x(t), x(t + -)) €eZ2, t>»0 and u = (Bu,0) ¢ Z for




u € R The infinitesimal generator A is defined by
D) ={(n,$) €2 | n=¢(0) and § ¢ L,} (2.4)
and for (4(0),¢) € D(A) ' -

0
A($€0),8) = ([ du(8)9(8),4). (2.5)
-r
The Cp-semigroup generated by A on Z will be denoted by {S(t) t > 0}.
Consider the optimal control problem on a finite interval [0,1] : for
given initial (n,$) € Z,
T 2 2 2
minimize J(u;[0,T]) = [ [ICx(t)l + |u(t)] )dt + |Rx(T)|“, (2.6)
0
over u € L2([0,T];19) subject to (2.1). Here C and R are pxn

matrices. Within the framework of (2.3), (2.6) can be written as
T 2 2 2
J) = [ (|cz)]|?+ [ult)]9)dt + [Rz(T)|
0

where (C(n,$) = Cn and R(n,$) = Rn for (n,$) € Z. It then follows from

[1], [7] that the optimal solution w0

to (2.6) is given by

wWO(e) = 8% 1(e)2%), t>o0 (2.7)

where 1II(+) 1is the unique solution, within class of non-negative (definite)

self-adjoint operators for which <(lI(t)z,z> 1is absolutely continuous on




[0,T], of the Riccati equation

%E-<H(t)z,z> = =2< Az,I(t)z> + < B" M(t)z, B N(t)z> - <Cz,Cz>

for all =z e D(A) (2.8)

n(T) = R*R ,

and z0(t) satisfies the evolution equation

&%) = (A-8* BI(r)) 20(t), >0 | (2.9)

2%(0)

(n,4).

Now we consider the optimal control problem on the infinite interval. For

given initial data z = (n,$), minimize the cost functional
J(u,z) = [ ([Cz(£)]? + Ju(t)]?)de, (2.10)
0
subject to (2.3).

Definition 2.1.

(i) (A,B) 1is stabilizable if there exists a bounded operator K such

that A - BK generates a uniformly exponentially stable semigroup.

(11) (C,A) 1is detectable if (A*, ¢*) is stabilizable.




Remark 2.2. For hereditary differential systems, the condition (ii) is

equivalent to

n
o

z € D(A), Az = Az and (z

for A e ¢* imply that 2z = 0., Moreover, (ii) holds if

rank[A(X)T, CT] =n for all A e ¢*

0

where A(\) =AI - | du(B)exe.

-r

An operator II € [(Z) is a solution of the algebraic Riccati equation

(ARE) if

2<Az,Iz> - <B* Niz, B* Iz> + <Cz,Cz> = 0

for all z € D(A). (ARE)

The next theorem follows from [7], [17].

Theorem 2.3.

(1)

(ii)

If (A,B) is stabilizable, then (ARE) has a self-adjoint, non-

negative solution.

If (C,A) is detectable, then (ARE) has at most, one self-adjoint,

non¥negative solution. Moreover, if 1 denotes the sald solution,

then A - BB* i} geﬁerates a uniformly exponentially stable

semigroup.




(11i1) If (A,B) is stabilizable and (C,A) is detectable, then (ARE) has

a unique self-adjoint, non-negative solution and the optimal control

to (2.10) is given by

w0ty = - 8% 120, (2.11)

where zo(t) is the mild solution to

&%) = & - 88* M)

22(0)

1
N
.

In what follows, we assume that condition (iii) in Theorem 2.3 holds and

recall some of the important results due to Gibson [8].

Theorem 2.4. If N is the self-adjoint, non-negative solution to (ARE),

then

Tz ecp®™.

Note that DCA*) consists of elements (y,¥) € Z for which
L
z(8) = 9(8) - } AT X y 1s absolutely continuous on [-r,0] with
1 X(-0,,0]

i=1
z(-r) = 0, [16]. If we write N as a matrix of operators on Z = E' x Lys

I = R - (2.12)




where HOO is a non-negative, symmetric nxn matrix, Hlo(-) is a square
0l 10*
integrable matrix function on [-r,0], I =1 and
01 0 10,,.T
M ¢ =) WT(8) ¢(e)de, ¢ € L,,
-r
and Hll is a non-negative, self-adjoint operator on Ly, then from (2.11)

0

the optimal control u” may be written as

0
wOce) = -BT(M%0 x¢e) + J m0e)T x(e+o0)ao).
-r

From Theorem 2.4 we have

Theorem 2.5. Hlo(') is piecewise absolutely continuous on [-r,0] with

the jump conditions at -Si, 1<1i<2-1

(_ei)+) _ HlO((_ei)—) - AT HOO.

. 1

10(

Also,

19y = A';': 100,

Let us define an operator on ZxZ
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with D(H) = D(A) xD(A*). Then

Theorem 2.6. H is closed and densely defined and has compact

resolvent. For a complex number A with Re X < O,

Aeo (A-BB*I)  if X e o (H).

The algebraic and geometric multiplicities of A as an eigenvalue of

A - BB* I are finite and are identical to the respective multiplicities of

A as an eigenvalue of H. Moreover, A is an eigenvalue of H if

det A(A) = 0 where

0
¢ [ aue)T M| .

-r

3. LEGENDRE-TAU APPROXIMATIONS

As pointed out in Section 2, for the multiple point delay case, HlO(O)
has jump discontinuities. If we were to try to approximate the solution to
Hlo(-) using a series of polynomials on [~r,0], we would observe the so-
called Gibbs phenomena. To avoid this difficulty, we proceed as follows. For

simplicity of exposition we deal with the system of the form;




-]]-

d

aE-x(t) = 4 x(t) + A x(t + (-el)+) + A, x(t - 8

9)

0
+ [ A(8) x(t + 6)d8 + Bu(t), (3.1)

-r

with -r = -62 < -61 < 0.

Alternatively, if z(t,0) = x(t + 6), then

] ]
sz-z(t,e) = sz-z(t,e), -r<6<0 (3.1a)

0
2(t,=0,) + A, z(t,-r) + [ A(8) z(t,8) + Bu(t).

d
EE-z(t,O) = A0 z(t,0) + A 1

1

(3.1b)
The approximate solution zN(t,B) is assumed to be represented as
Nee,0) = § (1) (o) @ + ) b o) (8), (3.2)
SRR My " X X(-8,,0] o kP Xf=r,=0,1"772 27050
where
p (@) = p ((20 +8))/0)),
(2) -

for 0< k< N and {pk}k>0 are the Legendre polynomials on [-1,1]. Note

that (8/39)ZN is given by the following as an element in 1l
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/

N

N «(1)
==z (t,0) = ) (2/8)a (t) p, ’(8)x (8)
30 k=0 17%k k (=6,,0]
N - (2)
+ kzo (2/8,)b, (t) py O (r,-0,]
N N
(1) (2)
+ (1 a()p 7)) - ¥ b(t)p°’(8)) 86 - 8.),
(k=0 G k oo K k ) 1
where Al = 61; A2 = 62 - 91, and &8(e) is the delta function. The

underlying ideas of the tau method for approximating (3.1) are: (i) equating

(3.1a) in the sense that

] N ) N
<§E z (t,8) - 55 2 (t,0), f>L2 =0 (3.3)
for all )
N-1 ' N
1) (2)
fe{felL, | £= ) p( X¢o + ) B, p X a B, & B}
2 oo &Pk X(=8,,01 T L0 Pk P [-r,=0,1" %" "k ’

and (ii) imposing (3.1b) on the approximate solution- zN(t,e). From (i) we

obtain (2N+1) equations;

S a e) = (/) (sa), , 0 <k < N-1
(3.4)
N
S b (8) = (2/8,) (Sb), + Z (DY 2 - b)(2K+)/8,, O<k<N.

i=0

where - S 1is the matrix representation of the derivative 3/36 (i.e., if the
vector a is associated with a series of Legendre polynomials whose

coefficients are the components of a, then the components of Sa give the
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Legendre coefficients of the derived series), and is given by

0 1 0 1 0 oo 1 0
0 0 3 0 3 oo 0 3
0 0 0 5 0 oo 5 0
S = : . : (:) I (3.5)
0 0 0 0 0 LX) 2N=-3 0
0 0 0 0 0 vee 0 2N-1

for N even. Here I 1is the nxn identity matrix and (:) denotes Kronecker

product. From (ii) we obtain an equation for ay, i.e.,

d 3 0 N
L () a®) =) w©aNe,0 + b
k=0 -r
or
d N1y 0 N
It aN(t) = - kzo dc ak(t) + f dp(e) z (t,e) + Bu(t). (3.6)
= -r

Hence, from (3.4) and (3.6) we obtain a system of ordinary differential

equations for col[b0,°°°,bN,ao,--°,aN):

= A + BY u(t) (3.7)

B = (epy @ DB,

N N
where a = col(ao,al,---,aN), g™ = col(bo,b1,°",bN) and
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Consl = col (0,0,°+,1) € BY2, 15 we define the matrices J(l), J(2) and

g by

7N+ 1 N
= [u, u, °°*° ,u] (:) I

5D

N+ 1
- ] /ij//’ ‘\\\N
J [u, u, *°**, u, (~1) u] (:) I

with u = col(l,3,*¢*,2N+1) and,

wne
]

(0 -1, =3, eee , = Eigillg (:) I s

then AV ig given by AN = Ag + AE where,
1
Z—'(ZS - J(1)) Kl 3€2)
2 2
N _
AO =

and
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with
0
D =(a, + (DX A)+ [ a®) ptere
k 0 1 ~6 k
1
and -8
k 1 (2)
F, = (F1)7 A, + | A(®) p, (0)d8, for 0 < k < N. .
-r
Note that in the case when 6, = r, the approximation scheme described

1

above for (3.1) is exactly the same as that given in [9].

introduce

the orthogonal projection QN on Z. For any z = (n,d), QN is defined by

N-1 N
N (1) (2)
Q z=(n, ) a p, "(8)x + J b, p 7 (8)x ,
( Lo T P (-6,,01 7 L) Pk Pk [—r,—GI])
where -
1
b, = 22;1 i ¢(6)pﬁ2)(9)de, 0<k<N,
-r
2%k+1 O (1)
a, = 5, je $(8)p, *(8)do, 0 < k < N-1,

1

and, we define the projection operator N on 2z by

L'z = Q" z + a0, Pil) X(-el,ol)

N-1 N-1
N R

k=0 k=0 ¥

Immediately, one can obtain the following lemma.

(3.8)

(3.9)

(3.10)
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Lemma 3.1 If (n,$) = N z, then ¢(0) =n. For N> 1,
N N N N N

L Q =1L and QN L"=Q. (3.11)

Moreover, if

N N
N (1) (1)
Lz = p, (0), p X +
kZO ak( k k (-61,0]) kZO

0 (2) )

b (05 py X[-r,-ell

i

and

N-1 N
N \ 1 2
2= 1wl 5 1 o)+ 10 O+ L w0 BT X0 ),

then we have

N T T
Q (bo’...’bN’ ao’...’aN—l’ aN) = (bo’...’bN’aO’...’aN—l’n)

where |

As shown in [9], the tau method can be interpreted as follows. Let

zN(t) = (zN(t,O), zN(t,-)) A “(3.12)
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where zN(t,°) is given by (3.2). Then zN(t), t > 0 satisfies

N 42N + LY Bu(e) (3.13)

d _N
EF z (t)

zN(O)

[
-
N
L

From (3.11), the approximating solution

Py =¥ Ny, >0 (3.14)
satisfies
gE-ZN(t) = AV o) + Bult) (3.15)
;N(O) = QN Z.
where
AN = VAL,

The following lemma concerns the question of stability of the tau
approximation for (3.1). Following an idea in [2], we define the norm | “g

on Z by

2 0 2
Izl = [n]“+ [ |6|° g(8)de for z = (n,$) € 2,
-r

where g 1s the piecewise constant function on [-r,0] defined by

1, > [-r’—el) :
g(8) = (3.16)
2, 8 € (—61:0]
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Lemma 3.2, Let {SN(t), t > 0} be the semigroup on zN generated by

AN = QVALN, Then there exists a positive constant ® such that

IISN(t)ltg < emt, t > 0.

Proof: Let us consider the inner product <',°>g on Z:

0
2 <¢1’¢2>

<(n1)¢1),(n2;¢2)>g = <n1,n
It suffices to show that AN - wI 1is dissipative on Z with the norm
lell ; i.e., for all =z e Z,

g

<AN z, z>g <vwﬂzﬂg.

Let

(n)¢) = LN z = (n)- z ak,pk X(_el’ol + E bk p£2) X[_r’_el])’

where ap, b, are given by (3.8) - (3.10) and let (n,9) = QN Z. Since Py

is orthogonal to all polynomials of degree at most N-1, it follows from
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(3.4), (3.6), and (3.7) that

-8
0 1
AN 2, g = < au(0)6(0), w> + [ <h(8),4(8)>d0

-r -r
0 ] N i .

+2 ) <9(0),4(00>d0 + <] (=17 ay - b)) I b (3.18)
-9, i=0 k=0

Note that

+ N k
$€0) =n, ¢((-8)7) = Z b and $((-8)7) = ] (-1

Then the right-hand side of (3.18) becomes

_.<I dn(8)6(6),6(0)> + —-(|¢( -el)'l2 - 16¢-0)]|?) + |90 |? - |¢(<-ei *

=T

+ (8" 608 P7)> = [o((-0)7)|?
+ 0
= <Ay $(0) + A 6((-8)7) + A, 6(-v) + [ A(8)$(8)d8,4(0)>
-r

-5 1601 = 3 [o(=0)") = 6(=6)7) 1% = 2 [o((-0 ") + [0(0)|?

1 ,,T 1,,T 2
< (1+ |ag] +5 |A] Al +5]A, A]) [6¢O)]
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0 0
() 1a@|? @) 2 (f 3|2 a8)? [s(0)]

-r -r

N 2 2
< wh zl T < wlzl
Q g g

where

1 ,T 1 ,T. 1
w=1+ |A0] tz |A1 A1| t 5 |A2 A2| + 5 nA(-)nL2,

and we used the relation: 2<x,y> < [xlz + |y|2 for x,y ¢ K', and the fact

the QN is symmetric w.r.t. <-,°>g = inner product. (Q.E.D)

To establish convergence for the tau approximation, we will use the

Trotter-Kato theorem (see Theorem 4.6 in [10]).

Theorem 3.3. Let S(t) and SN(t), N> 1 be Cy-semigroups acting on a

Banach space X with infinitesimal generators A and AN respectively.

Assume that the following conditions are satisfied:

(i) (stability). There exists a constant ® such that

IIS(t)IIX < e® and HSN(t)IIX < ewt, t » 0.




(11) (consistency). There exists a subset = contained in

o

AN N o(AY)  which together with (AL - 4) for some A > 0 1is dense
N=1
in X and such that AN ¢ =A¢ for all ¢ e€p as N+ =

Then for all ¢ € X,

1SN(E)6 - S(E)o1 » 0,

uniformly on bounded t-intervals.

In our discussions X 1is the Hilbert space Z -equipped with the inner
product (3.17). We will prove the consistency of the tau approximation in

Section 5 (see Lemma 5.2).

Remark?$ Although we will not pursue the details here, one can prove that
*
the adjoint semi-groups SN(t) also converge strongly to S*(t) uniformly on

bounded t-intervals.

4. AN APPROXIMATION SCHEME FOR THE RICCATI EQUATION
In this section, we discuss an approximation scheme for the regulator
problem (2.10) based upon the Legendre-tau approximation.

Let us consider the Nth approximate problem to (2.10)

©o

Minimize Ju,2) =/ (] czMe)|? + Juce)]? at, (4.1)
0

subject to (3.15):
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%E-;N(t) = APy + 8wy,

[}
N2
n
2
N
L]

2(0)

It follows from Theorem 2.3 that if (AN, B) 1is stabilizable and

detectable, then there exists a unique solution N to (ARE)N:
AH* ¥+ 1V AN -1V 8" 1Y + e = (),
and the optimal solution to (4.1) is given by
oMoy = -8 1 e
where ;N(t), t > 0 satisfies
£ = -8 1HN(e)

2N(0)

L]
N
.

In terms of the Legendre coordinate system,

N-1

~N (1

z (t) = )} a ()0, p X¢_ )
oo K k ( 61,0]

S (2)
+ne), Q)+ 1 b ()0, py

X .
k=0 ['r"ell)

It then follows from Lemma 3.1 and (3.7) that

,ANy is

(ARE)N

(4.2)
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~N T
E(t) = (bO’...’bN’ a ’...’aN—l’ n)-, t>0

satisfies

S =T Vo) + N w(o), (4.3)

~

€,

~N

£7(0)
where ZN = QN AN(QN)—I and E is the vector representation of QN z in
terms of Legendre coordinates. AN, BN 'QN are given in Section 3. Thus we
can write (4.1) as

-]

Minimize J0(u,E) =) (| W) + u(t)]?)de (4.4)
0

N

subject to (4.3), where C. = CN(QN)'—l with

CN = ( @ ICI Cl"'lC) e ]Rpx2n(N+1).
nx(N+1)

N

Hence the optimal solution u" to (4.1) can be also given by

oNe) = -@NT N e,

where EN satisfies the matrix Riccati equation

AT N+ N - N NEHT N+ @HTE - . (4.5)
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1f (AN,B) is stabilizable and (C,AN) is detectable, then (4.5) has a unique,
symmetric, non-negative definite solution and it can be computed effectively
by Potter”s method (e.g., [13], [11]) which involves the eigenvalue-

eigenvector decomposition of the matrix

ZN -BN(BNIT
B = (4.6)
-(EN)T EN —(XN)T .
SN

Let us define the matrix I by

2 = AN N AN
where
N _ R T T A
A = dtag(— o0tts qET ottt e T 0 T T e 0 L

and define the matrices Ui i 0 < i,j < 2N+l by
’

o3y = (e ® )T N (e @ 1), (4.7)

where e; 1s the ith unit vector in 18N+2; i.e., e, = (0, cee ,0,1,0--'0)T.

NG

Lemma 4.1. Suppose GAN,B) is stabilizable and (C,AN) is detectable.

Then for z = (n,$) € Z, N 2 = (y,¥) with
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0 N-1 =0 M

(1) (2)
s, ko (0. roner) i (0)6(8)d0 + {r kzo (0. B (0)6(8)a8,

and

N-1 0 N1

1
v©®) = I [(ogpmy, 0t/ L (95 k+N+l)P£ JONOLL
i=0 ’ -91 k=0 ’

N
IR ORI LS IOUOTUL iGN
-r k=0 ’ 1,

N 0 N-1 (1)
5 Qo o+ ] (o )Py (8)4(8)d0

L4 - =
i=0 61 k=0

_el N
(2) (2)
+f 1 (o, ) B7T(8)$(0)dB]RI T T(OIX [ g 1>
-r k=0 i’k k i [ o 61]

where the symbol () stands for 2N+1, 0 = 0Oyy. onype

Proof: It is known [17] that

N

<I Z,Z>Z = <2N E, §> ]R'Zn(N+1) = min JN(u)

for all z ¢ Z, where T is the vector representation of QN z. Since ZN

and HN are symmetric,

<HN lezz>z = <EN E1’E2> ﬁn(N"‘l) (4'8)
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for all zi = (ni,¢i) € Z, 1 = 1,2, where Ei is the vector representation of

QN zl for 1 = 1,2. Note that

N,-1 »>1 i i _i.T
wH g =(8,a, ¥), i=1,2,
where for 1 = 1,2
_91
i _ i (2)
Bk-f $7(9) Py (6)de
-r
i 0 4 (1)
@ = [ ¢7(8) P, 7 (8)de (4.9)
-5
1
Yi=ni.
Then
N ~1 2 1 1 1 SN, 2 2 2. T

Now, 1f TN(n,61) = (y,¥), then

0 -8

a1y, (07,675, = <n’y> + [ <4?(8),0(0)5d0 + [ <p%(0),
-61 -r
Equating (4.8), we obtain
N-1 N
1 1 1
y=on + ] (o Jop + 1 (o, )8
i ekl )% T L0 ek Pk

and
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N-1 N-1

e 1

1
¥ iZO (Ogamar, resmer) %

N
17.(1)
+ ) (o )1
Lo LMt X(-e),0]

N : N-1

EPRCAR IR ,

(o Ja
o , oo b ikl K

N
) (°1,k)8i] Py X[-r,-6,1’

k=0

which completes the proof along with (4.9). (Q.E.D.)

Corollary 4.2. The optimal solution oV o (4.1) can be written in the

operator form:

aNeey = kY 2Ny,

KN ¢ Lz, ®) is given by

0

kN 4 = BT(ngo n+ néo(e)T $(8)a8), for z = (n,4) € Z,
-r

where
00
HN =0,
and
N-1
10 (1)
n.°(8) = (o JR(8) x,
N 1=0 14N+1,¢/7 4 ( 61,0]
+ g (o, )B¢¥ (o) x - —r<0<0
i{=0 i,*’"1 ["rn"ell’ ) ’
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*
Proof: Since B (n,¢) = BT n, the corollary follows from Lemma 4.1 and

(4.2). (Q. E. D.)

Remark: For single point delay cése, we are able to prove that if (A,B)
is stabilizable ((C,A) is detectable), then for sufficiently large N (AN,B)
is stabilizable ((C ,Abb is detectable), which will be discussed in the
forthcoming paper. The proof 1is based upon the characterization of

detectability in Remark 2.2.

5. CONVERGENCE PROOF

In this section we discuss the convergence property of HN. It is easy

to show that for k » 2

y . 0 k
D% = D(A%) e {(4(0),6) € 2 | $€0) = [ du(6)4(8) and ¢ e H'},
-r
(5.1)

and is dense in Z. Let us introduce the graph norm on Dk;

k
tzt . = ¥ uAi zﬂg for z ¢ pk.
D 1=0

Note that ¢l K < Nzh

for all z = (4(0),¢) € Dk.
H D :

k

Theorem 5.1: If {HN} is uniformly bounded on Z and ((C,A) is

detectable, then
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(1) i converges weakly to I which is the unique solution to ARE,

(11) there exists an integer N, such that if N > Ny, then

1SNy < Me Ut

for some positive constants M and w, where {SN(t), t > 0} 1is the

semigroup on Z generated by A - B(BN)* N,

Proof of (i): Since {HN} is uniformly bounded on Z, by Theorem 6.5 in

[8], there exists a subsequence {II J}  which converges weakly to some non-
negative, self-adjoint operator I, If (C,A) is detectable, then from
Theorem 2.3, ARE has at most, one non-negative, self-adjoint solution. Hence,

we only need to show I satisfies ARE. Without loss of generality we can

N converges weakly to I, Note that for N > 1, HN satisfies

(ARE)N,  Since dim(R™) < = B * HN converges strongly B* 1. It now

assume that I

follows from Lemma 5.2 that

2<Az,z> - <B* Nz,B* Nz> + <(Cz,Cz> = O, (5.2)

for all =z ¢ Dz.

Since p? = D(Az) is dense in D(A), a simple limit argument shows that (5.2)

holds for all z € D(A); i.e., I 1is a solution to ARE.

Proof of (ii): First of all, we note that A = A - BB* 1 generates a

uniformly exponentially stable semigroup {S(t), t > 0} on Z; i.e., there

exist positive constants M and ® such that
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~

- 1SCe)n < et t » 0.

For z ¢ D(A)
(A -BB* 1Y)z = Xz - - B@* 11 - B* 1M)z.
Thus,
sN(e) = B(t)z + jt 3(t-s) BB* 1 - B8* 1) sN(s)zds,

0
~for all z e Z.

For t » r, we may write (5.4) as

t
sN(t)z = B(e-r)7 + | S(t-s)B B* 1 - B* 1) sN(s)zds,
r

with

r
> = 3(r)z + [ S(e-s) B(B* 1 - 8* 1V)sN(s)zds.
0

From [5] we have that E(r)z e D(K) for all =z and 1S(r)zl < Y

some positive constant e If
£ .
z(t) = (x(t),x(t++)) = [ S(t-s) Bu(s)ds, t >0,
0

then x(t) € Hl([—r,T]; R') for any T » 0 and satisfies

0
| du(®)x(t+8) - B
-r

4 x(t)

T .00
I3 B™ I X

(t)

0
- 887 [ m%e)T x(c+0)de + Bu(t)
-

0
| du(e) x(t+6) + Bu(t).
-r

(5.3)

(5.4)

(5.5)

(5.6)

ﬂz“z for
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Hence for u € L%°°([o,m); K, z(t) ¢ D(Z) and

t 0
A [ S(t-s) u(s)ds = (J du(8) x(t+0), w(t+)), (5.7)
0 -r
where
0 ~
Y(t) = [ du(8) x(t+6) + Bu(t), ¢t > O,
-r
and
Y(t) =0 for t <O.
Here we note that
0 I~
1) dux(e+0)1 - <y, lxl (5.8)
-r LZ([a,b],]Rn) L,([a-r,b], B")

0
for b > a > 0, where Y2 = f Idu]. Since {HN} is uniformly bounded, it
-r
now follows from (5.6) and (5.7) that z € () for all z € Z and

1z8 < Ylzl (5.9)

D) 2’

for some positive constant Y3. From (5.5) and (5.7), SN(t) z € p(z), t>r

for z € Z and

t
AsV(t)z = B(e-0)AT + ~ [ F(t-s)pFN(AsN(x)z)ds, (5.10)
r

where F : zZ+ ' is given by

= @* 1 -8* tHR~L,




Since O % Pa(A), (7()-1 exists and moreover, it is compact [17]. Note that
* ~k -
" = @) as -1V ) e (B, 2).

Since N B converges weakly to IIB as N > « and (K)-l is compact,

N o*

(FN) converges strongly to zero. Hence, the finite dimensionality of ¢
implies

*
H(FN) M= HFNH +0 as N +» o

i.e., for any € > 0 there exists an integer No(e) such that HFNH < g for
N> NO.

For z e Z, let us define the Z-valued function BN(t), t>r by
Nty = X sN(e)z.
Then from (5.7) and (5.10)

0
8N(t) = B(e-r)Az + ([ du(O)x(t+8), w(t+e)),
-

where for t > O

0 . N N
$(e) = [ di(®)x(c+0) + BF" B'(t)
-r

and

Ea N N -
(x(t),x(t+)) = [ S(t-s)BF B (s)ds, t>r (5.11)
r .
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with =x(t) =0, t < r. Now from (5.8), for T > r

T T T
(J 18¥en2ae) 2 < axmn( f 13ce-nn? a)l/? + v, Ix(©)]? at)'/?
r 0

r

T t
sy, (I ] Ix()]* as ar)'/?

r t=-2r

+ |B] 1N (f f 18%(s)12 as ae)'/2,
r t=-r

and from (5.3) and (5.11),

< (H/2)Y?) i3

~ T
+ |B| 1FMH (g.y2(1 + 2ol?y + (r)l/z)( [ 18Ne)? ds.)”2
w

r

where we used Fubini”s theorem and Young”s inequality. Thus, from (5.9)

T ~2
[ ueNenl at < ()v3 1zl + 1?4 f 18Y(s)1? ds,
r w

where

~

v = 18] Ry, + o+ @),
= |

2

If we choose € such that 2¢ 72< 1/2, then it follows that for T > r

T ~2
N 2 My 2 2
[ B (e)y dt < z(irgy3 hzl.

®r

'Note that SN(t)z = K—l BN(t), t>r and K_l e L(Z). Hence, for T > r
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T ~2
/ 1sV(e)zn? ae < Z(E-Jyz X102 g2
- 5 3 Z

It now follows from Lemma 7.4 in [8] that there exists positive constant M

and ® such that
1sY(en < Me™F, €30 for N> Ny(e). (Q.E.D.)
Lemma 5.2. "(AN -A)zl 0 as N+
for all z e Dk, k> 2.

To prove this lemma, we need the following technical lemma.

Lemma 5.3. Let us define the projection operator PN of L,[-1,1] by

.
P f = £ P
k=0 k "k
£ = 2kt jl £(x) P, (x)d
k z K XX

Then for any positive integer m, there exists a constant K such that

™+ 1/2 gy

|PY £(x1) - £(21)] < kN
Hm

and
-m + 5/2

LEn .
g

d

d ,.N
IEE (P~ £)(x1) - a;-fl < KN
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Proof: Note that for k > 1, Pk satisfies

L + k(k+1)Pk =0,
where is the differential operator:

LHG =& (a-xH L 1),

Thus for k» 1 and f ¢ Hl

2k+1

1
_ 2k+1
£ =~ D {1 £(x) LP, dx

1
2. d d
2k (k+1 {1 (1 -x7) 3z By g fdx-

]

Using the relation

_ 2y d = k(k+l) -
1 -2 5 B = o (Puer = Pee1) (5.12)

we obtain
1
=1 _ d
e 7{1 (P = Piey) g Edx-

It then follows that
(" ] ek o SO S S B )i
P £)(x1) = (£1)  a = a, + (5 x> P, - P _.)fdx.

k=0 0 " 2 r.oven 2 kiodd -1 Kb k=l

If N is even, then
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' 1 1 .
N ~ 1 . 1
(P" £)(£1) = ay - 5 {1 (P, & By)idx + {1 (Pyyy * By)fdx
- L L o L ]
- 71- fdx --2-{1 (x £ 1)fdx +-,Z{l (Pyyq * By)fdx
p ! .
= £(1) + 5 {1 (Pysp £ By)fdx. (5.13)
Similarly, for N odd,
eV £)e1) £(21) + 1 11 (P, + P_. )Ed (5.14)
2., N T N .
If m= 2k+l, k > 0, then
L 1 vk bk s 1 k1 ke
{1 PN fdx = (— m) {1 (L PN) fdx = (- N—(-ﬁ-m) {1 PN( L*f)dx.
And, if m = 2k+2, k > 0, then
jl P fdx = (= wree) ¥ jl (=% L p L (* #a
N FoX N(N+1) LT & & x

-1

and using (5.12)

1

_ (- 1 k 1 _ d k o

= (- wwy) = {1 (Pyyp = Byp) ¢ & £)dx
Since Lk  is a differentiable operator of order 2k with polynomials,
coefficients on [-1,1], there exists a constant C for k > 0 such that
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k ¢
™ £ < e "f"H2k+1

and
d k -
HEE-(L )1 < ck Hf“H2k+2.
Now, the first inequalify of the lemma follows from (5.13) and (5.14).
To prove the second inequality, we note that
N

d N
— (P £)(1) = )] (F1) =
dx - Lo 2 %77,

1
REID o =1 1 eDR ) e, ax.
-1

I~ 2

0

Then the same arguments as above enable us to obtain the second inequality.

(Q.E.D.)

Proof of Lemma 4.2: From the definition (3.7) of LN

2 = 1N z = (4%(0),0%)

N _ (D) (2)
P Xee 00 T O Xpor,-0 0
where
¢(1) = g P(l) on (-6,,0]
oo k Tk 177
¢(2) = g b P(z) on [-r,-6.]
Lo D B »~9)

and {a,} and {b} are given by (3.8) - (3.10). It then follows from (3.4)

and (3.6) that
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with

N
(1) (2) 2k+1 (2)
+ (6880 - 6" (-0)) I P X[er,-
( 1 1 k=0 Az k [-r, 911

Thus, for =z € D(A)

(2) _ 3

1y
- ¢“L2[-r,-61]

AN - 5 (1) _ g b
§ = 1(A Azl < 1¢ ¢“L2[-91,0] + ¢

N
+ |¢(1)(_el) - ¢(2)(_el)l(k20 E%ilal/z

0 N
+ |f au(®)(o(8) - $(8))]

-r

= 51 + 52 + 63 +5, .

Here, we note that

oD =5 4 (b0 - TV @){? on 18,00,

where

N-1

~(1) (1)

¢ = 2 a, P on [-e ,0]’
o0 k "k 1

(5.15)

(5.16)
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For z = (¢(0),4) € D(A),

0 N
J au(e)(e7(8) - ¢(8))

-r

= 8,600 - 60-0)) + 8,(6P (=) - 4(-1))

0 -8
+ fe a@FD - 4)as + [ L a@)(6P® - 4),

1 -

where from (5.16)
6P 0) = TP -0 + @)Y P - 4(0).
It then follows that

8, < 18,1 (BP0 -0 | + 5P 00-40)[) + [a,] 1P (=r)-0¢-n) |

+aaen, (gD (2)

»y + 19 % =g 1)
2 Lz[—61’0] Lz[—r’ 61])

It now follows from Lemma 5.3 and Lemmas 3.1 - 3.2 in [9] that

-k + 1/2

-k
|§4| < K((2|A] + [a,])N + 21A()1 NTT) dzl

2 pk

e 1
<K NK'2 g
4 Dk

From Lemma 3.2 in [9]
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Nkt 3/2 Izl

From (5.16)

~(1) e e (1)
8§, < 19 - ¢“L2[-61,0] + /N(NHD) [(¢°77(0) - ¢(0)|

where we used the fact tﬁat

1
[ IBg(e)]? do = Nw1).
1

It then follows from Lemma 5.3 and Lemma 3.2 in [9] that

5, <K N 32

! o
Since

(2)(

(1
[o°77(-0,) = ¢ "7 (-8 )|

< 480 - ac-0)] + 6P ¢-0)) - oc-0))]
< FWP ) —o-apl + TP - 00| + [6P=0)) - 4c-0))],

it follows from Lemma 5.3 that

§. < K, N K32,

k.




41~

Hence from (5.15)

NEF 32y, o k2,

1N - A) 21, <K
g )

where X 1is independent of N. (Q.E.D.)

‘s

The next lemma concerns the uniform boundedness of. {HN} in Theorem 5.1

(1).

Consider the system with the form

Lemma 5.4.

A
j—t x(t) = 120 A, x(t = 8,) + Bu(t). (5.17)

is controllable and the range of B contains the- range

If the pailr (AO,B)
of Ay, 1€1¢<2, then {HN} is a uniformly bounded sequence on Z.

The

Proof: For simplicity of exposition we consider the case, £ = 2.

approximate solution zN(t) = (zN(t,O), zN(t,')) € Z of initial value problem
(5.17) satisfies

2N(e,-1) + Bu(t),

4 zN(t,O)

N N +
I Ay z (£,0) + Az (t,(-el) ) + A,

(5.18)

%; 2(t,0) =§T 2N (e, 9) r<8<0

where the second equation holds in the sense of (3.3). Since (Aj,B) is

controllable, then there exists an mxn matrix K such that the matrix
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(Ap=BK) has distinct negative real eigenvalues Ai’ 1<i<n with

max Xi < =3/2. Since the eigenvalues of (AO-BK) are distinct, there
1<i<n

exists a nonsingular matrix P such that
-1
P (A; = BK)P = A = diag(X},***,2 ).
Let us consider the feedback control low to (4.1):
Al

u(e) = ka"(e,0) - 8" B BT (4, (t,-0)%) + 4, Lt ). (5.19)

Then (5.18) has the closed loop equation;

%E-zN(t,O) = (A0 - BK)zN(t,O),
(5.20)
gz-zN(t,e) = ga-zN(t,e).

If zN(t) = (P-l zN(t,O), P-1 zN(t,')), t > 0, then z'(+) satisfies

d °N
E z (t,O)

AzN¢e,0)

3 N_3 °N
ot 3 ¢

By using the same arguments given in the proof of Lemma 3.1, we obtain
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%’%E 1Qy zN(t)ﬂ; < <Az(t,0), z(t,00> + |2N(t,0) ]2
1 |°N +y2 1N 2
-5 |2 (t,(-8)7)% - 5|z (t,-1)]

< --;—“;N(t,O)IZ + |;I‘I(t:1(—el)"'|2 + |zN(t,-r)|2),

where we used the fact that A < --% I. Integration of this with respect

to t yields
1Y 2ZNen? - QN 2Noyi?
g g
EooN 2 |°N +12 , |°N 2
< =J (]z(,0)|" + |z (s,(—el) )+ |z (s,-r)|“)ds,
0
for all t > O. Thus, for all t > 0

t . t .

[ 12%s,001% as, [ 12N(s,-8")|? as,
0 0

and

2

t A ~
[ 12%s,=r)]? ds < 1" zN(O)ﬂz <izlco (p T
0

P_l) 1z .
max g

2

79 it now follows from (5.9) and (5.20)

Since "2“2 < 20zl

a¥ 2,2 < NG, = [ (Jee,0]% + [S(e)[%)ae < 8 1215
0

for some positive constant 8. Since HN is nonnegative, self-adjoint, for

N> 1, Y < BI. _ (Q.E.D.)




.

6. NUMERICAL EXAMPLES AND CONCLUSIONS

In this section, we discuss some numerical examples which demonstrate the
feasibility of the Legendre—-tau method for approximating the optimal feedback
solution. We only consider examples of optimal control on the infinite
interval. We solved the Riccati equation (4.5) for the matrix ZN using
Potter”s method. All computations were performed using MATLAB developed by
Cleve Moler [12] which provides easy access to matrix software developed by
LINPACK and EISPACK projects.

The Nth feedback control is given by

0

u(e) = -BT(m00 x(e) + [ 10 (0)F x(t + 0)d0), (6.1)
-r
00 10 N
where HN and HN are given in terms of the coefficients of I in
Corollary 4.2. The strong convergence of HN to I implies HOO > HOO and

N

H;O > Hlo in Ly([-r,0]; IPxn). We also discuss below how closely Hgo and
nio approximate the conditions described in Theorem 2.5 and how closely the

N
eigenvalues of the Nth Hamiltonian matrix N in (4.6) approximate the closed—

loop eigenvalues of A - BB* 1.

Example 6.1, (Gibson [8], Example 8.1)

Consider the scalar differential equation
& x(t) = x(t) + x(t=1) + u(t), (6.2)

and the performance index of (2.6) is
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(-]

J(u,(n,9)) = J (xz(t) + uz(t))dt. (6.3)
0
00 10, (T -
For each N, HN is a scalar and HN () ¢ LZ([-I,O];R) and B =1 in
(6.1). Table I shows the numerical results for Hgo and the expansion
coefficients of H;O, i.e.,
N-1
106) = § o B (20 + 1), -1<6<0,
N k=0 k

and how closely we have approximated the boundary condition (2.14).

Table.I
N 2 4 6 8
ngo 2.8139 2.8094 2.8094 2.8094
k=0 1.4222 1.4267 1.4267 1.4267
1 -1.0844 -1.0438 -1.0438 -1.0438
2 0.2919 0.2919 0.2919
3 -0.0424 -0.0420 -0.0420
{aﬂ} 4 0.0046 0.0046
5 -0.0004 -0.0004
6 2.3 x 107
7 1.2 x 107°
5 8

|ng° - néo(-1)| 0.3074 0.0046 2.3 x 10” 5.3 x 10”




-

For comparison, the following are obtained using the average (AVE) scheme

[8] and the linear spline (SPL) scheme [4].

00 _
H74(AVE) = 2.8130

00
HBZ(SPL) 2.8091.
‘Note that both schemes have not fully converged vyet. However, for the
Legendre~tau method, the result for N = 4 appears to give a fairly good

approximation of the optimal feedback; e.g.,

00 .00 -7

[m,~ - mg | = 4.4 x 107,

10 .10 -3

im0 - nif = 1.5 x 107°.
4 8 'L,[-1,0] 1.5 x

Table II compares H;g(e)(AVE) and Hio(e)(L—T) where L-T denotes the

Legendre—tau approximation.
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Table II

10 10 -2
HH74(9) (AVE) - II4 (8) (L-T)IIL = 1.9 x 10

2
8 nég(e) (AVE) 1,2(6) (L~1)

0.0 0.6435 0.6323
0.1 0.7273 0.7225
0.2 0.8258 0.8273
-0.3 0.9607 0.9519
-0.4 1.1023 1.1013
-0.5 1.2694 1.2807
-0.6 1.4965 1.4951
-0.7 1.7315 1.7497
-0.8 2.0480 2.0494
-0.9 2.3748 2.3994
-1.0- 2.7541 2.8048

The oscillatory behavior exhibited by the spline approximation to Hlo

[4] has not been observed for the Legendre-tau approximation.

Table III shows the eigenvalues X? of uN which give the relatively
small equation error [det Z(Ag)l where Z(X) is given by (2.5); i.e., in
this example

AQA) = A-1- e-k)(k F1+ed) -1,

In the table, the numbers inside ( ) stand for the corresponding equation

errors |det A(A)| to the eigenvalues A?.
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Table III
N 2 4
i=1 -1.4032 ~1.4011
(.019) (1.9 x 10°%)
o
2 -1.6351 & 4.1627
(.38)
N 6 8
o i=1 -1.4011 ~1.4011
1 -11 -15
(3.2 x 107 (2.4 x 10712)
i=2 -1.6343 + 4.1827 -1.8343 % 4.1827
(8.2 x 10'4) (4.5 x 1077
i=3 ~2.4284 + 10,6698
(2.3)
N 16
i=1 -1.4011
(1.2 x 10'14)
(6.7 x 10714
1=3 -2.4256 + 10,6890
(2.1 x 10719y
1=4 -3.1695 + 23.3811

(4.5 x 10°%)
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Example 6.2. (Gibson [8], Example 8.3)

We consider the problem of minimizing

Jw) = [ () + 33 + o3r))a,
0

(6.4)

subject to the harmonic oscillator with delayed restoring force and delayed

damping given by

d2

dt

5 y(8) + L y(e=1) + y(t - 1) = u(e).

If we define =x(t) ¢ i3 by

x(t) = (y(t), 3 3 y(e)T,

then (6.4) and (6.5) are equivalent to

I(u;(n,)) = [ (|x(e)]? + w?(r))ae

o

and

respectively.
The optimal control in feedback form is
00

u(t) = X (£) = Mgy %,(t)

0 10 10
- {1 (“,12(9) x,(t +08) + T p(8) x,(t + 8))de

(6.5)

(6.6)
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where Hog . and ng j(9) are the (i,j)—-elements of the matrix I

-3 b el 4

10(6), respectively. The Nth feedback control law is

00 OO

ul(e) = - My 21 %1 (8) = T 55 %,(6)
jo 0 10
- | Uy,12 ) %) (€ +0) + Ty 99(8) x,(t + 6))ds

Note that if we define E(t) € ® by
£(t) = (y<c), = y(e) + ye)’,
then (6.4) and (6.5) are equivalent to

A(uws &0) = (5T q £ + u’())at,

o

with

and

d -1 1 0 0 0
EE'E(t) = , &(t) + , E(t = 1) + u(t),
-1 1 0 -1 1

respectively. Here, the initial conditions

7 = (0,0)T and £,(8) = 0, -1<6c<0,

00

and

(6.7)

(6.8)

(6.9)

(6.10)




~-5]-

yleld &(t) = 0, t » 0, regardless of the initial function gl(e), -1 <6 <0,
Hence, for the initial conditions in (6.10) and any initial history 51(-),
the optimal control is u(t) = 0, t > O. Therefore, the optimal control

u(t) must have the form
ut) = - 1°0 £ (¢) - 700 & () - fo 710 (6) £, (¢ + 8)d8.  (6.11)
21 °1 ,22 72 -1 »22 1 * *
where T corresponds to the minimization problem to (6.8) and (6.9).

Note that Ez(t) = xl(t) + xz(t), t > 1. Hence, it follows from (6.6)

and (6.11) that

10 _ _10
URVERUPTY
Similarly,
0 - plo N> 1.

N,12  'N,22°

Numerically, we have the results in Table IV.
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Table IV
00 _ 2.1407 1.2988 100 _ 2.1387 1.2963
2 1.2988 1.8611 4 1.2963 1.8579
100 _ 2.1387 1.2963 100 _ 2.1387 1.2963
6 1.2963 1.8579 8 1.2963 1.8579
N 2 4 6 8
=0 -0.8846 -0.8821 -0.8821 -01.8821
1 0.8971 0.8969 0.8969 0.8969
2 -0.0835 -0.0835 -0.0835
3 -0.0031 -0.0030 -0.0030
{ag} 4 0.0014 0.0014
5 -0.0001 -0.0001
6 2.4 x 107°
7 2.4 x 1077
mi0e) - a7 1% o0.2182 0.0024 1.3 x 107 3.5 x 1078
Ny N1 10
In the Table IV, {ak} are the expansion coefficients of HN 12(6);
k=0 ’
i.e.,
N-1
10 _ N _
nN,lz(e) = ) a, B (20 + 1), 1 < 6 < 0.
k=0
Note that
00 00 -7
|n4 - I | =6.3x10 ",
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10 10 _ -4
IIII4’12 - H8,12"L2 = 4,8 x 10 .,
Again, one can see that the result for N = 4 gives a fairly good

approximation. For comparison, the following are obtained by AVE and SPLINE

schemes: _
00 2.1034 1.2574
H22 = (AVE)
| 1.2574 1.8123
00 2.1389 1.2963
H16 = . (SpPL)
1.2963 1.8576

10 10
Table V compares H22,1,2(e)(AVE)’ ((8], p. 137) and H4’1’2(9)(L—T).

Table V
10 10 ~ -2

Myy 1,2(8)(AVE) - “4,1,2(9)(L—T)HL2 = 7.0 x 10

10 10
0.0 -0.1152 -0.0719
=0.1 ~0.2247 -0.2033
=0.2 -0.3449 -0.3462
=0.3 -0.4750 ~-0.5003
0.4 -0.6147 -0.6652
=0.5 -0.7631 -0.8404
=0.6 -1.0013 -1.0257
=0.7 -1.1698 -1.2206
-0.8 -1.3455 ~1.4247
=0.9 -1.5278 -1.6378
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In this example, the closed-loop eigenvalues of A - BB* I are roots of

the characteristic equation det A(A) = 0, where

- T
A AL - AO - e A1 -BB
AA) =
-1 Al + A0 + e A1
0 1 0 0 0
A = s A = and B =
0 0 0 1 -1 -1 1 .

Table VI lists the eigenvalues A§ of HN which lie in the left half plane

of C and give the relatively small equation error Idet A(AE)].
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Table VI
N 2 4
1=1 1.3983 ~1.3893
{xf} (.0342) (3.3 x 10°9)
1=2 -0.7358 + 1.22074i —0.7339 & 1.22351
(.0277) (3.4 x 1079
N 6 8
i=1 -1.3893 ~1.3893
{xﬁ} (5.4 x 10°11 (3.9 x 10~ 1%
1=2 -0.7339 & 1.22351 -0.7339 & 1.22351
(6.2 x 10711y (2.1 x 10714y
1=3 ~2.0927 = 7.43951 -2.0890 % 7.4619

(78.1).

(.474)

Example 6.3 Here we deal with the equation which has multiple point delays

with the cost functional

J(u’(n )¢)) =

-]

/ (xz(t) + uz(t))dt.

0

x(t) + 2x(t=-1) + x(t=-2) + u(t), (6.12)
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For each N, the Nth feedback control law is

0
W(e) = =100 x(e) - [ 1:.0(0) x(t+6)do,
-2

where Hgo is a scalar and Héo(o) € L3([—2,0]; R) is given by

110y = qu bY p (26 + 3) (8) + N-z-l Np (20 + 1) (8)
N Tl k Pk X[-2,-1] i Ok K X(-1,01""""

Table VII shows the numerical results for Hgo and néo(e) and_ how

closely we have approximated the jump condition (2.13) and the boundary

condition (2.14)
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Table VII

N 2 4 6 8
00

nd 3.2159 3.2074 3.2073 3.2074
by 1.5306 1.5246 1.5244 1.5243
b, ~1.220 -1.2205 ~1.2214 -1.2216
by 0.3295 0.3990 0.3972 0.3969
by -0.0583 -0.0590 -0.0595
by, -0.0002 ~0.0050 -0.0049
bs ~0.0008 ~0.0001
b ~0.0011 ~0.0001
by ~0.0005
bg -0.0002
aq 3.3767 3.3911 3.3914 3.3914
a, ~2.8081 ~2.6999 ~2.7004 -2.7006
a, 0.8479 0.8477 0.8478
ay ~0.1119 ~0.1092 ~0.1094
a, 0.0083 0.0080
as ~0.0018 ~0.0009
a6 ~0.0002
ay 0.0004

ma0¢-2) -0 o0.1352 0.0047 6.0 x 107 6.2 x 1072
100, _ 1+
IHN ((_1) )
100, (- N
=Ty (1)) = 2]
0.8865 0.0090 2.0 x 107 8.7 x 107>
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We have the function values of néo(e) in Table VIII.

Table VIII

0 H;O(e) nzo(e) néo(e) néo(e)
-2.0 3.0807 3.2026 3.2067 3.2074
-1.9 2.6586 2.6892 2.6879 2.6877
-1.8 2.2761 2.2518 2.2492 2.2498
-1.7 1.9331 1.8834 1.8830 1.8831
-1.6 1.6297 1.5769 1.5769 1.5784
-1.5 1.3658 1.3252 1.3280 1.3277
-1.4 1.1415 1.1213 1.1229 1.1233
-1.3 0.9567 0.9583 0.9574 0.9581
-1.2 0.8114 0.8292 0.8266 0.8265
-1.0 0.6396 0.6451 0.6443 0.6440
-1.0 6.1848 7.0508 7.0587 7.0587
-0.9 5.6232 5.9500 5.9477 5.9482
-0.8 5.0615 5.0047 5.0025 5.0031
-0.7 '4.4999 4,2014 4.2026 4,2025
-0.6 3.9383 3.5267 3.5303 3.5298
-0.5 3.3767 2.9671 2.9706 2.9704
-0.4 2.8150 2.5094 2.5103 2.5106
-0.3 2.2534 2.1399 2.1375 2.1378
-0.2 1.6918 1.8454 1.8413 1.8411
-0.1 1.1301 1.6123 1.6111 1.6107
0.0 . 0.5685 1.4272 1.4360 1.4362
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In this example, the closed loop characteristic equation is given by

A = (A =1-2" -+ 1+ 280 + D) -1 =0,

Table IX shows the eigenvalues of B in the same manner as before.
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Table IX
N 2 4
>\N
! -1.5217 -1.5174
(.2172) (3.0 x 107°)
xg 0.9524 & 2.4826 i ~0.9028 £ 2.5445 i
(2.090) (.0031)
Ay ~0.6103 & 5.0272 i
(.8349)
N 6 8
AN -1.5174 -1.5174
1 ~10 14
(6.9 x 10710) (6.0 x 10714y
Ag ~0.9029 % 2.5445 i ~0.9029 & 2.5445 1
(7.0 x 10°7) (4.6 x 10°11y
A} ~0.5890 % 5.0114 1 -0.5889 & 5.0114 1
(.0030) (2.7 x 1078
xﬂ ~1.3588 % 8.7500 1 -1.3159 & 8.7703 1
(10.18) (0.1018)
Ag ~1.0595 & 11.4781 i

(4.108)
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The numerical results presented here reveal that numerically one has
strong convergence of HN for the Legendre-~tau approximation. At this time,
we hve not been able to prove the strong convergence of HN in the general
case (except for certain special cases described in Lemma 5.4). It requires a
careful study of the asymptotic behavior of the spectra of N, However, the
efficiency of the numerical schemes is most important from the practical point
of veiw. We observe, from the numerical results of this section, that the
Legendre-tau method provides faster convergence and better approximation at
low orders (i.e., small N) than the AVE and SPLINE schemes. In the above
examples, the results corresponding to N = 4 give a fairly good
approximation of the optimal feedback gain.

As further evidence of the usefulness of the Legendre-tau approximation,
one can use it as an approximation technique for computing closed-loop
eigenvalues of the feedback system. Note that eigenvalues close to the -origin
are approximated quite well at low orders on the above examples.

From these observations, we believe the Legendre-tau approximation scheme
offers one of the favorable methods for construction of feedback gains. 1In
future investigations, our efforts for constructing feedback gains for delay
systems will be combined with the approach\to finite-order compensentor design
for distriﬁuted parameter systems [15], developed by J. M. Schumacher to
develop a design procedure for the construction of compensentors for delay

systems.
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