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Abstract

The numerical scheme based on the Legendre-tau approximation is proposed

to approximate the feedback solution to the linear quadratic optimal control

problem for hereditary differential systems. The convergence property is

established using Trotter ideas. The method yields very good approximations

at low orders and provides an approximation technique for computing closed-

loop elgenvalues of the feedback system. A comparison with existing methods

(based on "averaging" and "spllne" approximations) iS made.

Research was supported by the National Aeronautics and Space Administration
under NASA Contracts No. NASI-17070 and NASI-17130 while the first author was

in residence at ICASE, NASA Langley Research Center, Hampton, VA 23665.

i





INTRODUCTION

This paper is the continuation of the study [9] on the use of Legendre-tau

approximation for functional differential equations (FDE) and concerns the

problem of constructing feedback solutions to linear quadratic regulator

problems for hereditary systems. This problem has received a rather extensive

study and we refer to [14], [2] and [4] for the summary of the earlier

contributions. Our approach is based upon the pioneering work of Banks -

Burns [2] who clarified the idea of approximating FDE by systems of flnlte I

dimensional ordinary differential equations and applied it to optimal control

problems; i.e., the convergence of a particular numerical scheme (so-called

_averaglng ° approximation) is established, using the Trotter-Kato theorem of

linear semlgroups. Recently, Gibson [8] has developed the approximation

theory for the Riccatl equations associated with a hereditary system and

applied it to the averaging approximation scheme.

The purposes of this paper are: (1) to apply the basic idea developed in

[9] to the linear quadratic regulator problem, (ll) to prove convergence of

numerical approximations of the feedback control laws and, (ill) to

demonstrate the feasibility of our numerical schemes.

For the multiple point delay case, the solution to the algebraic Riccatl

equation (ARE) has jump discontinuities as shown in [8]. With this

consideration, an extended version of the scheme described in [9] is developed

for such a case in Section 3. As pointed out in [9] and will be discussed in

Sections 3 and 5, the tau approximation differs from the standard Galerkln

approximation and because of this, the theory developed in [8] needs to be

modified to prove convergence of approximate solutions to ARE.
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An importantquestion that arose in [8] was concernedwith the preserva-

tion of exponential stability under approximation (i,e., conjecture 7.1 in

[8]). At this time, we have not been able to answer this question for the

Legendre-tauapproximation. However, some of the numerical computationsfor

several examples indicate that the conjecture holds for the tau approximation.

Moreover, the related property (i.e., the uniform boundedness of approximate

solutionsto ARE) is proved for certainspecialcases in Lemma 5.4. The other

discussioncontainedin [8] is to argue the strong convergenceof approximate

solutions to ARE. Under the same conditionas given in Lemma 5.4, one can

prove it for the tau approximation. However, instead of arguing this, we

state a rather interestingresult in Theorem 5.1. It says that if a sequence

of approximatesolutionsto ARE convergesweakly to the solution to ARE, then

the closed loop system which resultsfrom the approximatefeedback controllaw

is exponentiallystable for sufficientlylarge orders of approximation.

As will be discussedin Section 6, the tau method may offer considerable

improvementsover other methods (e.g., those discussed in [4], [8]) and it

gives a good approximationto the closed loop elgenvalue.

The following is a brief summary of the contents of this paper. In

Section 2 we review the equivalenceresults between FDE and abstract Cauchy

problems on the product space _ x L2 and results on the regulatorproblem

for hereditarydifferentialsystems. In Section3 we introducethe numerical

scheme based on the Legendre-tauapproximationfor the multiple point delay

case and the basic convergenceof approximatesemlgroupsusing the Trotter-

Kato theorem. In Section 4 we show how one can use the numerical scheme

described in Section 3 to obtain the feedback solutions. In Section 5 we

state the basic convergence property of approximate solutions to ARE.
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Finally, in Section 6 we present numericalresults and compare these results

for those obtainedby other methods [4], [8]).

Throughoutthis paper the followingnotationwill be used. r > 0 stands

for the largest delay time appearingin the FDE. The Hilbert space of _n_

valued square integrablefunctionson the interval [a,b] is denotedby

L2([a,b];_). When the underlying space and intervalcan be understoodfrom

the context,we will abbreviatethe notationand simplywrite L2,
LlOC. _loc
2 _[0,_);_n),or u2 , is the space of _n-valuedlocallysquare integrable

functionson the seml-lnfinlteinterval [0,_). Hk is the Sobolevspace of

_-valued functions f on a compact interval with f(k-l) absolutely

continuousand f(k) s L2. We denote by Z the productspace

_n x L2([-r,0];_n). Given an element z £ Z, q _ _n and _ € L2 denote the

two coordinatesof z : z = (n,_). The bracket <'''>H standsfor the inner

product in the Hilbert space H, and the subscriptfor the underlyingHilbert

space will be omittedwhen understoodfrom the context. H., denotes the norm

for elements of a Banach space and for operatorsbetweenBanach space,while

I'I denote the Euclideannorm in _n.

If X and Y are Banach spaces,then the space of boundedoperatorsfrom

X to Y is denoted by i (X,Y). _(A) denotes the domain of a linear

operator A. XI denotes the characteristicfunction of the interval I.

Fianlly, for any function @ of independentvariable 8, we shall use $ or

_-_-_ to denote the derivativeof _ with respectto 8.
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2. RICCATI EQUATIONS

In this section, we state the type of problems to be considered and recall

some results on the linear quadratic regulator problem for hereditary

differential systems.

.loc,
Given (n,_) _ Z and u _ L2 _[0,_), ]Rn), we consider the initial value

problem
0

d

_-{ x(t) = f d_(8) x(t + 8) + Bu(t), (2.1)
-r

x(O)= n, x(e) = €(e), e € [-r,O),

where _ is a matrlx-valued function of bounded variation on [-r,0] with

the form

£ 8

_(8) = _ Ai X(_81,0](8 ) + f A(s)ds (2.2)i=0 -r

with 0 = e0 < 81 < "'" < 8£ = r. Ai and A(-) are mxn matrices, the

elements of the latter being square integrable on [-r,0]. Alternatively, for

t) 0
0 £ 0

d_(O)x(t + O) = _ Ai x(t - Oi) + _ A(O)x(t + 8)d8.-r i=0 -r

.loc
It is well known [2], [5], [6] that for (_,_) _ Z and u _ u2 , (2.1)

admits a unique solution x g L2([-r,T];Rn)N HI([0,T];Rn) for any T ) 0,

and that (2.1) can be formulatedas an evolutionequationon Z

d z(t) = Az(t) + Bu(t) t ) 0 (2.3)

where z(t) = Cx(t), x(t + .)) g z, t > 0 and u = (Bu,0) _ Z for
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u _ _m. The infinitesimal generator A is defined by

O(A) = {(q,_) € Z ] q = _(0) and $ € L2} (2.4)

and for (_(0),_) _ D(A)

0

--(J dp(0)+(0),$). (2.5)
-r

The C0-semlgrou p generated by A on Z will be denoted by {S(t) t > 0}.

Consider the optimal control problem on a finite interval [0,I] : for

given initial (q,_) € Z,

T

minimize J(u;[0,T]) = f (lCx(t)[2 + ]u(t)12)dt + ]Rx(T)]2, (2.6)
0

over u E L2([0,T];I_m) subject to (2.1). Here C and R are pxn

matrices. Within the framework of (2.3), (2.6) can be written as

T

J(u) = f ([Cz(t)[ 2 + [u(t)]2)dt + [Rz(T)I2
0

where C(q,_) = Cn and R(n,_) = Rq for (q,_) s Z. It then follows from

[I], [7] that the optimal solution u0 to (2.6) is given by

u0(t) = -B* K(t)z0(t), t _ 0 (2.7)

where _(.) is the unique solution, within class of non-negative (definite)

self-adjoint operators for which <_(t)z,z> is absolutely continuous on
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[0,T], of the Riccati equation

d__ _l(t)z,z> = -2< Az,_(t)z> + < B* H(t)z, B* _(t)z> - <Cz,Cz>dt

for all z _ D(A) (2.8)

H(T)= R*R ,

and z0(t) satisfies the evolution equation

d___ - B*
dt z0(t) = I A B_(t)) z0(t), t > 0 (2.9)

z°(0)= (n,,).

Now we consider the optimal control problem on the infinite interval. For

given initial data z = (n,_), minimize the cost functional

J(u,z) = f (ICz(t)l 2 + lu(t)12)dt, (2.10)
0

subject to (2.3).

Definition 2.1.

(1) (A,B) is stabilizableif there exists a boundedoperator K such

that A - BK generatesa uniformlyexpbnentlallystable semlgroup.

(ii) (C,A) is detectable if (A*, C*) is stabilizable.
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Remark 2.2. For hereditary differentialsystems, the condition (ii) is

equivalentto

z _ D(A), Az = Iz and Cz = 0

for I £ 6+ imply that z £ 0. Moreover, (ii) holds if

rank[A(1)T,r_ _ CT]"= n for all l ¢+

0
where A(1) = II - f d_(8)ekS.

-r

An operator K _ L(Z) is a solution of the algebraicRiccati equation

(ARE) if

2<AZ,_z>- <B* Hz, B* Hz> + <Cz,Cz>= 0

for all z e D(A). (ARE)

The next theorem follows from [7], [17].

Theorem 2.3.

(i) l___f(A ,B) is stabilizable,then (ARE) has a self-ad_oint,non-

nesativesolution.

(li) If (C,A) is detectable,then (ARE) has at most, one self-ad_oint,

non'negativesolution. Moreover,if H denotes the said solution,

then A - BB* _ generates a uniformly exponentially stable

semigroup.
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(iii) If (A,B) is stabilizable and (C,A) is detectable, then (ARE) has

a unique self-ad_oint, non-negative solution and the optimal control

to (2.10) is given by

u0(t) = - B* _z0(t), (2.11)

where z0(t) is the mild solution to

d__z0(t)= (A - BB* H)z0(t)dt

z0(0) = z.

In what follows, we assume that condition (iii) in Theorem 2.3 holds and

recall some of the important results due to Gibson [8].

Theorem 2.4. If _ is the self-ad_oint, non-negative solution to (ARE),

then

z = D(A*).

Note that N(A*) consists of elements (y,_) _ Z for which

T

z(e) = _(e)- i=l_Ai X(-0i'0] y is absolutely continuous on [-r,0] with

z(-r) = 0, [16]. If we write _ as a matrix of operators on Z = _n × L2 ;

_00 H01]

R = , (2.12)

_I0 Ell
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where H00 is a non-negatlve, symmetric nxn matrix, HI0(-) is a square

integrable matrix function on [-r,0], _01 = HI0 * and

0

HO1 _ = _ IIlO(e)T _(e)de, _ € L2,
-r

and HII is a non-negatlve, self-adjolnt operator on L2, then from (2.11)

the optimal control u0 may be written as

0

u0(t) = -BT(H 00 x(t) + f Hl0(e) T x(t+e)de).
-r

From Theorem 2.4 we have

Theorem 2.5. HI0(') is piecewise absolutely continuous on [-r,0] with

the jump conditions at -el, 1 ( i ( %-1

H10((_el)+)_H10((_el)-)=AITH00.

Also,

T H00.
Hl0(-r) = A%

Let us define an operator on ZxZ
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with D(H) = D(A) xD(A*). Then

' Theorem 2.6. H is closed and densely defined and has compact

resolvent. For a complex number _ with Re _ < 0,

€ c (A -BB*_) if _ _ c (H),

The al_ebraic and _eometric multiplicities of % as an eigenvalue of

A - BB _ are finite and are identical to the respective multiplicities of

as an ei_envalue of H. Moreover, % is an ei_envalue of H i__f

det A(%) = 0 where

3. LEGENDRE-TA_J APPROX_TIONS

As pointed out in Section 2, for the _Itiple point delay case, HI0(.)

has jump discontinuities. If we were to try to approximate the solution to

_I0(.) using a series of polynomials on [-r,0], we would observe the so-

called Gibbs phenomena. To avoid this difficulty, we proceed as follows. For

simplicity of exposition we deal with the system of the form;
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ddt x(t) = A0 x(t) + A1 x(t + (-el)+) + A2 x(t - e2)

0

+ f A(e) x(t + e)de+ Bu(t), (3.1)
--r

with -r = -e2 < -e I < 0.

Alternatively, if z(t,e) --x(t + 8), then

a z(t,e) aa'-t = _-_z(t,e), -r ( o • 0 (3.1a)

d 0
d--_z(t,O) = A0 z(t,O) + A1 z(t,-e I) + A2 z(t,-r) + f A(B) z(t,e) + Bu(t).

-r

(3.1b)

The approximate solution zN(t,B) is assumed to be represented as

N N (2) (e), (3.2)
zN(t'e) = k=O_ ak p_l)(e)x(_el,O](e) + k=0_ bk Pk (0)X[-r,-el]

where

p_l)(8) = pk((28 + 81)/81),

p_2)(e) = pkI(28 + el) + e2 - el)/(e2 - el)),

for 0 • k • N and (Pk}k_0 are the Legendre polynomials on [-I,i]. Note

that (a/ae)z N is given by the following as an element in H-l:
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N

8"T_ zN(t'8) = k=0[ (2/Al)ak(t) _k(1)(8)X(-81,0](8)

N

"(2)(e)X
+ k=0[ (2/A2)bk(t) Pk [-r,-81]

N N

k=0 k--0

where A 1 = 81 , A2 = 82 - 81, and 6(.) is the delta function. The

underlying ideas of the tau method for approximating (3.1) are: (1) equating

(3.1a) in the sense that

_2

<_ zN(t,8) -_ zN(t,8), f>L2 = 0 (3.3)

for all

k N (2)N-1 I) + _ 8k p 8k s llnI,
f € {f _ L2 [ f = k=0_ ak p X(-81'0] k=0 X[-r'-81 ]'ak'

and (ii) imposing (3.1b) on the approximate solution zN(t,8). From (i) we

obtain (2N+I) equations;

I_ ak(t) = (2/AI) (Sa)k, 0 < k • N-I (3.4)
bk(t) (2/A2) (Sb)k + _ ((-I) i ai - bi)(2k+l)/A2, 0 • k • N .i=0

where S is the matrix representation of the derivative 2/28 (i.e., if the

vector a is associated with a series of Legendre polynomials whose

coefficients are the components of a, then the components of Sa give the
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Legendre coefficientsof the derivedseries),and is given by

0 I 0 I 0 .-. 1 0
0 0 3 0 3 ... 0 3
0 0 0 5 0 ... 5 0

s: : : : I (3.5)

0 0 0 0 0 ... 2N-3 0
0 0 0 0 0 ••• 0 2N-I

m

for N even. Here I is the nxn identitymatrixand Q denotesKronecker

product. From (ii)we obtainan equationfor aN, i.e.,

N 0

d___dt( _" ak(t)) = f d_(8)zN(t'fl) + Bu(t)
k=0 -r

or

N-I 0

--dtdaN(t) = _ _ _d ak(t) + f d_(O) zN(t,8)+ Bu(t). (3.6)k=0 -r

Hence, from (3.4) and (3.6) we obtain a system of ordinary differential

equations for col(b 0,.'',b N,a0,''',aN):

BN Q I)B,= (e2N+2

= • 8Nwhere aN col(a0,al," -,aN), = col(b0,bl,...,bN) and
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e2N+l = co£(0,0,...,I) _ _N+2. If we define the matrices j(1), j(2) and

by

/N+ I_

j(1)[uu u] Q

f. N+ 1_j(2)
= [u,-u, "', u, (-I)N u] @ I

with u = Coi(1,3,''',2N+I) and,

[ s 110 -I -3, "'" N(N+I)) @ I_ 2

then AN is given by AN N AN= A0 + where

I I j(2) 1

N

AO=

and

© (D -
F0 ••• FN DO ••• DN
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with
0

Dk = (A0 + (-i)k AI) + f A(8) p(1)(e)d8
-8

1

and -8
I

= (2)(e)dS,_ for 0 ( k _ N.
Fk (-11k A2 + f A(61 Pk

-r

Note that in the case when 81 = r, the approximationscheme described

above for (3.1) is exactly the same as that given in [9]. Let us introduce

the orthogonalprojection QN on Z. For any z = (n,_),QN is definedby

N-I (kl) N (k2)(8)X[_r,_81QN z = [n,k=0[ak P (8)X(-81,0] + k=0[bk P ])'

where -81

2k+l _ @(e)p_2)(e)d8, 0 _ k _ N, (3.8)
bk - A2 -r

0 _i)(e 02k+l f @(8)p )d8, k _ N-I, (3.9)

ak = A"--_ -81

and, we define the projection operator LN on Z by

LN z = QN z + aNI0 , pil) X(-81'0] )

N-I N-I

N y ak p(kl)(o) n _ ak. (3.10)a =n - u -- -
k=0 k--0

Immediately, one can obtain the following lemma.
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Iem 3.1 If (_,_) LN= z, then _(0) = n. For N _ I,

LN QN = LN and QN LN = QN. (3.11)

Moreover, if

N N

LN (I) (i) (2)
z = _ ak( ' Pk X(-el,0] ' Pk [-r,-e I]

Pk (0) ) + _ bk(0 X )
k=0 k=0

and

N-I N

_1) )+_(1©). _ _(o (2) )
QN z = I ak(0' P X(-81,0] Pk X[-r,811k=0 k=0

then we have

_NIb0,''',b N, a0,''',aN_ I, aN )T = Ib0,''',bN,a0,''',aN_l,n) T

m

where I (Di I

_N = I •
0

I
i :

(D I 0
I 1 1 ... 1

As shown in [9], the tau method can be interpreted as follows. Let

zN(t) = IzN(t,0), zN(t,.)) e Z (3.12)
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where zN(t, -) is given by (3.2). Then zN(t), t ) 0 satisfies

d---zN(t)= LN AzN + LN Bu(t) (3.13)dt

zN(0) LN

From (3.11), the approximating solution

_N(t ) = QN zN(t), t ) 0 (3.14)

satisfies

d _N(t ) = AN _N(t) + Bu(t) (3 15)_-£

_N(0 ) QN go

where

AN= QNALN .

The following lemma concerns the question of stability of the tau

approximation for (3.1). Following an idea in [2], we define the norm II IIg

on Z by
0

_zn = [nl2 + f I_I2 g(8)d8 for z = (n,_) € Z,
g -r

where g is the piecewise constant function on [-r,0] defined by

I I, 0 _ [-r,-O1)

g(0) = (3.16)

2, 0 € (-01,0]
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I.emma3.2. Let {sN(t), t > 0} be the semlgroup on ZN generated by

AN = QN AL N. Then there exists a positive constant _ such that

SN _t(t)II < e , t • 0.
g

Proof: Let us consider the inner product <-,.> on Z:
g

0

<(nl,_l),(n2,@2)>g = <nl n2>En + f <@I,_2> . g(e)de.' -r R" (3.17)

It suffices to show that AN - ml is dissipative on Z with the norm

"'"g; i.e., for all z g Z,

< mgzn2
<AN z, Z>g g.

Let

N N
(1) (2)

(_,@) = LN z = (n, k=0_" ak Pk X(-el,O] + k=01 bk Pk X[-r,-el])'

where ak, bk are given by (3.8) - (3.10) and let (q,_) = QN z. Since PN

is orthogonal to all polynomials of degree at most N-I, it follows from
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(3.4), (3.6), and (3.7) that

0 -81

<AN z, z> = <f dp(B)@(B), n> + J <_(e),@(0)>de
g

-r -r

0 N N

+ 2 J <_(0),_(8)>d8 + < [ ((-I)I aI - bl) _ bk>. (3.18)
-B i=O k=01

Note that

N N

€(0) = n, (F((-OI)-)= I. bk and (F((-OI)+)= l (-1)k ak.
k=0 k=0

Then the rlght-hand slde of (3.18) becomes

0

: 4 d_(e)¢(e ) ,¢(o)> + i (l+((-e)-12 - I+(-r)l2) + I+(o)12- I+C(-e)+)12
2 1 1

-r

+<.C('-el)+),.C(-e_)-)>- I.C(-el)-)12

0

= <A0 _(0) + A1 @((-el)+)+ A2 ¢(-r) + ] A(e)¢(e)d8,¢(0)>
-r

1 2 1
2 I+(-r)l 2 [+((-el)+)- @C(-B1)-)[2 1 2 2..... _ l_PC(-el)+)l+ I.(o)I

1 [A1 A11+ 1 T 2< 11+ IA01+_ _[A2A2I) I.(o)1
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0 0

+ Cf ]A(e)J2 de)I/2 If IS(e)]2 dS)I/2 I.(0)I
-r -r

_NQN zll2 < _Bzll2 ,
g g

where

I I 2T I At)L2-- 1 + IA0[ +7 [A All +7 IA A2[ +7

and we used the relation: 2<x,y> _ [x12 + ly[2 for x,y _ _n, and the fact

m

the QN is symmetric w.r.t. <','>g inner product. (Q.E.D)

To establish convergence for the tau approximation, we will use the

Trotter-Kato theorem (see Theorem 4.6 in [I0]).

Theorem 3.3. Le____tS(t) and sN(t), N ) I be C0-semisroups actln_ on a

Banach space X with infinitesimal $enerators A an__d AN respectively.

Assume that the followln_ conditions are satisfied:

(1) (stability). There exists a constant _ such that

NS(t)H X _ emt and usN(t)N X < e_t, t ) 0.
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(ii) (consistency). There exists a subset _ contained in

D(A) N N D(A N) which together with (%1 -A) for some % > 0 is dense
N=I

N
in X and such that A _ -A$ for all _ _D as N + _.

Then for all _ _ X,

HsN(t)_ - S(t)_ll + 0,

uniformly on bounded t-intervals.

In our discussions X is the Hilbert space Z equipped with the inner

product (3.17). We will prove the consistency of the tau approximation in

Section 5 (see Lemma 5.2).

Remark: Although we will not pursue the details here, one can prove that

the adjoint semi-groups SN(t) also converge strongly to S*(t) uniformly on

bounded t-intervals.

4. AN APPROXIMATION SCHEME FORT HE RICCATI EQUATION

In this section, we discuss an approximation scheme for the regulator

problem (2.10) based upon the Legendre-tau approximation.

Let us consider the Nth approximate problem to (2.10)

Minimize jN(u,z) = f I] czN(t)[ 2 + [u(t)[2 dr, (4.1)
0

subject to (3.15):
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dzN(t) = AN zN(t) + BN u(t)dt

zN(o) z QN

It follows from Theorem 2.3 that if (AN , B) is stabilizable and (C,AN) is

detectable, then there exists a unique solution _N to (ARE)N:

(AN)* _N + HN AN _ _N BB* _N + C*C = O' (ARE)N

and the optimal solution to (4.1) is given by

uN(t) = __ _N _N(t ) (4.2)

where _N(t), t _ 0 satisfies

d _N(t ) = (AN *- BB _N)_N(t)

zN(o) = _.

In terms of the Legendre coordinate system,

N-I

zN(t) = k--O_" ak(t)IO' p(kl)X(-el'0])

N

k=O X [-r'-81 ] "

It then follows from Lemma 3.1 and (3.7) that
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_N(t ) = (b0,...,bN ' a0"'''aN-l' _)T, t > 0

satisfies

d _N(t ) = _N _N(t ) + BN u(t) (4.3)dt

_N(0)

where _N = fiN AN(iN)-1 and _ is the vector representation of QN z in

terms of Legendre coordinates. AN' BN fiN are given in Section 3. Thus we

can write (4.1) as

Minimize jN(u,_) = f (I_N _N(t)12 + lu(t) 12)dt (4.4)
0

subject to (4.3), where _N = cN(fN)-I with

= px 2n(N+l )cN ( (D Icl cl-"Ic)
nx (N+I)

Hence the optimal solution uN to (4.1) can be also given by

uN(t) = -(BN) T iN _N(t),

where EN satisfies the matrix Riccati equation

(_N)T zN + zN _N _ EN BN(BN)T EN + (_N)T _N = @. (4.5)
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If (AN,B) is stabillzable and (C,AN) is detectable, then (4.5) has a unique,

symmetric, non-negatlve definite solution and it can be computed effectively

by Potter's method (e.g., [13], [II]) which involves the elgenvalue-

elgenvector decomposition of the matrix

_N _BN (BN)T ]

HN = (4.6)

_(_N) T _N _(_N) T .

Let us define the matrix iN by

iN = AN EN AN

where

A2 A2 A2 A1 A1 A1

AN = dlag(--r "''' 2k+l ''''' 2N+I ' 1 ''''' 2k+l ''''' 2-_ ' I),

and define the matrices ol,j, 0 g i,j g 2N+I by

Oij --(ei+ I G I)T IN (ej+1 @ I), (4.7)

where ei is the ith unit vector in _N+2; i.e., ei = (0, "-" ,0,,I,0'''0)T.
.I

Lemma 4.1. Suppose (AN, B) is stabillzable and (C,A N) is detectable.

HNThen for z = (n,¢) _ Z, z = (y,_) with
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-e

0 N-I p(l 1 M
y = an + f _ (_-,k+N+I) k )(e)_(e)de + f _ (_.,k)P(2)(0)_(0)d B,

-el k=0 -r k--0

and

N-I 0 N-I

_(0) = _ [(Oi+N+I .)q + _ _ IOi+N+l,k+N+l)e(kl)(B)_(B)dB
i=0 ' -01 k=0

-e
I N

+ _ I (ai+N+l,k)P(k2)(e)_(e)dB]e_I)(B)X(-BI,0]-r k=0

N 0 N-I (kl)(0+ [ [(_i,")n + J _ (_i,k+N+l)P ).(e)de
i=0 -B 1 k=0

-el N

+s r. (<,.,,,<)-r k=0

where the symbol (') stands for 2N+I, _ = _2N+I,2N+I"

Proof: It is known [17] that

_IN z,z>z = <EN _, _> _nCN+l) = mln jN(u)

for all z _ Z, where _ is the vector representation of QN z. Since £N

and _N are symmetric,

<HN zl Z2>z = <EN _I,_2> _nCN+l) (4.8)
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i
for all z = (hi,@ i) _ Z, i = 1,2, where _i is the vector representation of

QN zi for i = 1,2. Note that

(AN>-1 _i = (8#, _ei, yi)T, i = 1,2,

where for i = 1,2

-8
I

i Pk(2)(e)de8k -- _ _i(8)
-r

0
i

ak = f @i(8) P_l)(fl)d8 (4.9)

1

yi i

Then

1 2
<zN El, _2> = (81, _a , yl) _.N(82_, _a , y2)r.

Now, if HN(nI,_ I) = (y,_), then

0 -8

<_N(nl,$1),(n2,@2)>2 = <n2,y> + f <_2(8),_(8)>d8 + _ <$2(e),
-81 -r

Equating (4.8), we obtain

N-I N

k--0 k=O

and
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N-I N-I

_(0)= I [(_i..+I.)nl. Z (%...ik+..i)_i=O ' i=O

N

k=0

N N-I

+ Z [(ci,.)nI + [ (Ci,k+N+l)Cki=0 k=0

N

+ k:0_" (Ci'k)81] p_2)X[-r'-@l]'

which completes the proof along with (4.9). (Q.E.D.)

Corollary 4.2. The optimal solution uN to (4.1) can be written in the

operator form:

uN(t) = _KN _N(t).

KN E L(Z, _m) is given by

0
_Tr_00 I0 )TKN z = B [_N n + _ _N (8 _(8)d8), for z = (_,_) _ Z,

-r

whe re

00
= O

IIN ,

and
N-1

]IN (8) = i=0[ (Oi+N+l' ")P 1)(e) x(-el'0]

N

+ i=OZ(oi,.)Pi(2)(8)X[_r,_@l], -r < 0 < O,

[
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* BTProof: Since B (n,#)= n, the corollary follows from Lemma 4.1 and

(4.2). (Q. E. n.)

Remark: For single point delay case, we are able to prove that if (A,B)

is stabilizable ((C,A) is detectable),then for sufficientlylarge N (AN,B)

is stabilizable ((C ,AN) is detectable), which will be discussed in the

forthcoming paper. The proof is based upon the characterization of

detectabilityin Remark 2.2.

5. CONFERGENCEPROOF

In this sectionwe discuss the convergenceproperty of HN. It is easy

to show that for k ) 2

0

Dk = DCAk) = {(_(0),_) _ Z I $(0) = _ dB(8)_(8) and @ € Hk},
-r

(5.1)

and is dense in Z. Let us introducethe graph norm on Dk;

k

llZ_Dk= i--0[llAizuz2 for z _ Dk.

"zN for all z = (_(0),#) E Dk.
Note that H_aHk Dk

Theorem 5.1: l__f{KN} is uniformly bounded on Z an___dd(C,A) is

detectable,then
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(1) HN conver_es weakly to H which is the unique solution to ARE,

(ll) there exists an integer NO such that if N _ NO, then

HsN(t)il < Me-_t

for some positive constants M and _, where {sN(t), t > 0} is the

semlgroup on Z senerated by A - B(BN) * EN.

Proof of (i): Since (EN} is uniformly bounded on Z, by Theorem 6.5 in
N.

[8], there exists a subsequence {K J} which converges weakly to some non-

negative, self-adjoint operator E. If (C,A) is detectable, then from

Theorem 2.3, ARE has at most, one non-negative, self-adjolnt solution. Hence,

we only need to show H satisfies ARE. Without loss of generality we can

. _N satisfiesassume that KN converges weakly to _ Note that for N ) I,

(ARE) N. Since dlm(R m) < _ B * _N converges strongly B* _. It now

follows from Lemma 5.2 that

2<Az,_z> - <B* Hz,B* Hz> + <Cz,Cz> = 0, (5.2)

for all z E D2.

Since D2 = D(A 2) is dense in D(A), a simple limit argument shows that (5.2)

holds for all z _ D(A); i.e., E is a solution to ARE.

Proof of (il): First of all, we note that A = A - BB* H generates a

uniformly exponentially stable semlgroup {_(t), t _ 0} on Z; i.e., there

exist positive constants M and _ such that
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US(t), < Me -_t, t > 0. (5.3)

For z _ D(A)

(A-BB* llN)z= _z - -B(B* ]I-B* IIN)z.

Thus,
t

sN(t) = S(t)z + ] _(t-s) B(B* H - B* _N) sN(s)zds,
0

for all z _ Z. (5.4)

For t ) r, we may write (5.4) as

t

sN(t)z = S(t-r)z + f _(t-s)B (B* _ - B* HN) sN(s)zds, (5.5)
r

with

r

= _(r)z + f S(r-s) B(B* n - B* _N)sN(s)zds. (5.6)
o

From [5] we have that S(r)z € D(_) for all z and US(r)z, < Y1 _ZlIz for

some positive constant YI" If

t

z(t) = Ix(t),x(t+')) = _ S(t-s)Bu(s)ds, t ) 0,
0

then x(t) g HI([-r,T]; I_) for any T ) 0 and satisfies

0
d x(t) = _ d_(e)x(t+8) - BBT _00 x(t)_F

--r

i °- BBT HI0(8)T x(t+8)d8+ Bu(t)
-r

o
_ d_(81 x(t+S) + Bu(t).
--r
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Hence for u _ L21°C([o,-); _n), z(t) _ D(_) and

t 0

f S(t-s) u(s)ds = If d_(8)x(t+0), _(t+')), (5.7)
0 -r

where

0

_(t) = f d_(8) x(t+8) + Bu(t), t > O,
mr

and

_(t) = 0 for t < O.

Here we note that

0

Ill d_x(" +0 )11 _; Y2 Ilxu- (5.8)
-r L2([a,b], ]Rn) L2([a-r,b], _n)

0

for b ) a ) 0, where Y2 = f Id l. Since [HN} is uniformly bounded, it
-r

now follows from (5.6) and (5.7) that _ £ D(A~) for all z _ Z and

(i) (5.9)

for some positive constant Y3" From (5.5) and (5.7), sN(t) z e D(_), t ) r

for z _ Z and

t

_sN(t)z = _(t-r)_ + _ _ _(t-s)BFN[_sN(x)z)ds, (5.10)
r

where FN : Z + I_m is given by

FN = (B* _ - B* EN)_-I.
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Since 0 I P_(_)' (_)-I exists and moreover, it is compact [17]. Note that

(FN)* = (_*)-I(_ B - _N B) _ L( _m, Z).

Since EN B converges weakly to EB as N + _ and (_)-I is compact,

(FN)* converges strongly to zero. Hence, the finite dlmenslonallty of _m

implies

u(FN)*M = IIFNII+ 0 as N + _,

i.e., for any _ > 0 there exists an integer N0(_) such that IIFNII< € for

N > N0.

For z _ Z, let us define the Z-valued function BN(t), t _ r by

6N(t) = _ sN(t)z.

Then from (5.7) and (5.10)

0

BN(t) = S(t-r)A_ + I f d_(e)x(t+0), ¢(t+-)),
-r

where for t > 0

0

¢(t) = f d_(e)x(t+e) + BF N 6N(t)
-r

and

t

(x(t),x(t+.)) = J _(t-s)BF N BN(s)ds, t > r (5.11)
r
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with x(t) = 0, t < r. Now from (5.8), for T > r

T T T

If flBN(t)ll2dt)I/2 _ flA_ll( f flS(t-r)fl2 dt) I/2 + T2 ( f ix(t)l2 dt) I/2
r r 0

T t dt] 1/2+ T 2 (f f Ix(s){ 2 ds J

r t-2r

T t 2 1/2
+ {B{ ,FN,, If f flBN(s)fl as at) ,

r t-r

and from (5.3) and (5.11),

I_/(2_)I12)llA_U

T

+ IBIflFNflI_ Y2 (I + (2r)I/2) + (r)ll2)If gBN(s)fl2 ds)I12
_0 r

where we used Fubini's theorem and Young's inequality. Thus, from (5.9)

T :_2 2 flzll2 211FNII2 y2 fTf _BN(t)II2 dt _ _--)Y3 + flBN(s)ll2 ds,
r _ r

where

y = {B{ (_72(1 + (2r) I/2) + (r)I/2).

If we choose _ such that 2_2 T24 1/2, then it follows that for T > r

^:_2 2 2
T 2 dt _ z_i--Jy3 flzflz.ggN(t)gN

® r

Note that sN(t)z = _-I BN(t), t > r and _-I _ /(Z). Hence, for T > r



-34-

T
2 ^rM2_~ 2 2 2

S IIsN(t)zfl dt _ z/_-JT 3 II_--IIIHzflZ •
r

It now follows from Lemma 7.4 in [8] that there exists positive constant M

and m such that

flsN(t)ll_ Me-rot, t > 0 for N > N0(_). (Q.E.D.)

Lemma 5.2. II(AN - A)zll + 0 as N +

for all z m Dk, k > 2.

To prove this lemma, we need the following technical lemma.

Lemma 5.3. Let us define the projection operator pN of L2[-I,I] by

N

pN f = _ fk Pk
k=0

1
2k+l

fk - 2 f f(x) Pk(X)dx.-I

Then for any positive integer m, there exists a constant K such that

[pN f(±l) - f(±l)[ < KN-m + 112 ;Ifll
Hm

and

d
f[ _ KN-m + 5/2 llfll

[d_ (pN f)(±l) -_-_ Hm.
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Proof: Note that for k > 1, Pk satisfies

IPk + k(k+l)P k = 0,

where is the differential operator:

= d d f).(If)(x) _-_ ((I - x 2) _x

Thus for k _ 1 and f E HI

1 1

2k+l fl f(x) IPk dx = 2k+l f (I - x2) d d
fk = - 2k(k+l) 2k(k+l) d-_Pkd-_ fdx"

Using the relation

d _ k(k+l) ( - ek_l) , (5.12)(I - x2) _-_ Pk 2k+1 Pk+l

we obtain
I

1
fk = _ _ (ek+l - Pk-1) _-_fdx.d

-I

It then follows that

N I

a -- 1
(pN f)(±l) = _ (±l)k k a0 + (21- I _ _ ) f (Pk+l - Pk-I )_dx-

k=0 k:even k:odd -1

If N is even, then
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I 1 •
I 1

- PN1rfdx(pN f)(±l) = a0 _ f (Pl ± P0)_dx + _ f (PN+I ±-i -I

I I 1

1 _I _I _ (PN+I ± PN )_dx= _ fdx - f (x ± l)_dx +
-I -I

1
l

= f(±l) + _ J (PN+I ± PN)_dx" (5.13)
-I

Similarly, for N odd,

1 1
(pN f)(±l) f(±l) +_ J (PN ± PN+I )_dx" (5.14)

-I

If m = 2k+l, k > 0, then

1 1 I

PN fax = I I k 1 k •
N(_I) ) _ ([k pN) fdx = I N(N+I) ) -lJ PN( [kf)dx"-i -i

And, if m = 2k+2, k > 0, then

l 1

N__ ) d d] PN fdx --(- k+l f (l_x2) d-xe d-x (Ik f)dx
-i -I

and uslng (5.12)

1

= (__]k I _ d2N$I _ (PN+I PN_I ) d-x ([k f)dx.
-I

Since [k is a dlfferentiable operator of order 2k with polynomials,

coefficients on [-i,I], there exists a constant ck for k _ 0 such that
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nLkfll € ck IlfU
H2k+l

and

. nd
dx (Lk _)11 _ ck nfll

H2k+ 2•

0

Now, the first inequality of the lemma follows from (5.13) and (5.14).

To prove the second inequality, we note that

d N

d_x (pN f)(±l) -- _ (¥1)k k(k+l) ak 1 N 1k=0 2 = _ _" (_I)k f (Lf)Pk dx.k=0 -I

Then the same arguments as above enable us to obtain the second inequality.

(Q.E.D.)

Proof of Lemma 4.2: From the definition (3.7) of LN

N LNz = z = (_N(0),_N)

_pN €(1) (2)
= ×(-e 1,01 + € ×[-r,-Ol]'

where
N

,(11 = _. ak ek(11 on (-81,01,k=0

€(2) N p_2)= _ bk on [-r,-e1]
k=0

and {ak} and {bk} are given by (3.8) - (3.10). It then follows from (3.4)

and (3.6) that
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AN z = (aN, _N)

with
o

nN = J d_(8)_N
--r

cN $(1)×(-el'0]+ $(2)= X[_rl,_el ]

2k+l

+ (_(I) _(2) N e(2)(-81)- (-el))I A2 X[_r,_81]k=0

Thus, for z € _(A)

= U(AN - A)zU _ US(I)'- $IIL2[_81,0] + 115(2) - SnL2[_r,_81]

N 2k+I]I/2
+ I.(1)(-ei)- .(2)(-el)I([

k=0 A2 _

0

+ If d_(e)(_N(e)- $(0))I
-r

= 61 + _2 + 63 + _4 " (5.15)

Here, we note that

€(I) = _(I) + (€(0) - _(1)(0))p_I) on [-81,0], (5.16)

where

N-I (kl) [-81'01"_(I) = _ ak P on
k=0
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For z = (_(0),#1 € D(A),

0

J -
--r

= A1[@(1)(-8I) - @(-81))+ A2(_(2)(-r)- _(-r))

0 -0

+ f A(8)(_(I) - _)de + f 1 A(8)_(2) _ _),

-81 -r

where from (5.16)

_(I)(-0 I) = _(i)(-0 I) + (±I)N I_(1)(O) - _(0)).

It then follows that

64 ([AI[ [[_(1)(-el)-_(-01)I + J_(1)(0)-#(0)J)+ JA2[ [#(2)(-r)-_(-r)I

+ _A(')nL2 In:(1)-_RL2[_el,0] + ,#(2)-_,L2[_r,_81]).

It now follows from Lemma 5.3 and Lemmas 3.1 - 3.2 in [9] that

[64]( K((2[AI[+ ]A2J)N-k+ 1/2 + 2hA( ) N-k) "zt'
• nL2 I)k

< K4 N-k+1/2 Hzgl)k .

From Lemma 3.2 in [9]
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-k+ 3/2
62 _ K2 N llzll_k.

From (5.16)

6 1 < U_ (I) _IIL2[_Ol,0 ] + 4N(N+I)]I_(1)(0) - €(0)I

where we used the fact t_at

I

] I_N(O)I2 dO = N(N+I).
-I

It then follows from Lemma 5.3 and Lemma 3.2 in [9] that

61 _ KI N-k+ 3/2 llzllDk.

Since

I€(I)(-oi) - €(2)(-Ol) [

I+(1)(-Ol) - +(-Ol) I + I_(2)(-Ol) - +(-oi) I

< 15(1)(-"Ol) - @(-Ol)1+ 15(1)(o) - @(o)1+ 1@(2)(-Ol) - @(-Ol)1,

it follows from Lemma 5.3 that

63 < K3 N-k+ 3/2 IIzH k"
D
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Hence from (5.15)

_(AN -A) zllZ < K N-k+ 3/2 Hzll k ) 2,
_k'

where K is independent of N. (Q.E.D.)

The next lemma concerns the uniform boundedness of {EN} in Theorem 5.1

(i).

Lemma 5.4. Consider the system wlth the form

£

dd__{x(t) = _ Ai x(t - ei) + Bu(t). (5.17)
i=0

If the pair (A0,B) is controllable and the range of B contains the range

of Ai, 1 ( i < £, then [EN} is a uniformly bounded sequence on Z.

Proof: For simplicity of exposition we consider the case, £ = 2. The

approximate solution zN(t) = (zN(t,0), zN(t,.)) _ Z of initial value problem

(5.17) satisfies

I d zN(t,0) = A0 zN(t,0) + AI zNIt,(-el)+ ) + A2 zN(t,-r) + Bu(t)

(5.18)

a a
_ zN(t,e) =_-E zN(t,8) -r < e _ 0

where the second equation holds in the sense of (3.3). Since (Ao,B) is

controllable, then there exists an m×n matrix K such that the matrix
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(Ao-BK) has distinct negative real elgenvalues %1' 1 < i < n with

max %i < -3/2. Since the elgenvalues of (A0-BK) are distinct, there
l<i<n

exists a nonsingular matrix P such that

P-I(A 0 - BK)P = A = dlag(%l,.-.,In).

Let us consider the feedback control low to (4.1):

_(t) = -KzN(t,O) - (BT B)-I BT (A1 zN(t,(-81)+ ) + _ zN(tl , -r)). (5.19)

Then (5.18) has the closed loop equation;

d m

_-_zN(t,O) = (A0 BK)zN(t,0),

(5.20)

_ zN(t,8) =-_ zN(t,8).

If zN(t) = IP-I zN(t,o), p-I zN(t .)), t ) O, then in(.) satisfies

d---zN(t,O ) = AzN(t,0)dt

^N 8 ^N

_t z =_z .2@

By using the same arguments given in the proof of Lemma 3.1, we obtain
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1 d ;IQNzN(t)n2 • <Az(t,O) zN(t,0)> + l;N(t,0)I22 dt g '

_± l;N(t,(_o)+)2_½1 N(t_r)122 I

_I 2 2 2
• _ (IzN(t,0)] + izN(tl(-01)+[ + [zN(t,-r)[ ),

3
where we used the fact that A •-_ I. Integration of this with respect

to t yields

IIQN zN(t)il2 - ;iQN zN(0)ll2
g g

t

• -f IlzN(s,0)l 2 + IzN(s,(-el)+)I 2 + izN(s,-r) 12)ds,
0

for all t > 0. Thus, for all t > 0

t t

f izN(s,0) i2 ds, f IzN(s,(-@l)+)l 2 ds,
0 0

and

t ^N p-T p-1 2

fo lz (s'-r)12ds • ItQN zN(0)fl2g• llzfl2g• Omax ( ) flZflg•

gzlt2 • 2flzlt2, it now follows from (5.9) and (5.20)Since
g i.

O9

_qlN z,z> • jN(u,z) = f ([czN(t,0)l2 + lu(t)[2)dt< 6 nzn2
0

for some positive constant B. Since ]IN is nonnegative, self-adjoint, for

N _ I, EN • BI. (Q.E.D.)
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6. NUMERICAL EXAMPLES AND CONCLUSIONS

In this section, we discuss some numerical examples which demonstrate the

feasibility of the Legendre-tau method for approximating the optimal feedback

solution. We only consider examples of optimal control on the infinite

interval. We solved the Riccatl equation (4.5) for the matrix EN using

Potter's method. All computations were performed using MATLAB developed by

Cleve Moler [12] which provides easy access to matrix software developed by

LINPACK and EISPACK projects.

The Nth feedback control is given by

0
T- 00 I0

uN(t) = -B [HN x(t) + J HN (e)T x(t + e)de), (6.1)
--r

00 and I0 EN
where HN HN are given in terms of the coefficients of in

00 H00
Corollary 4.2. The strong convergence of HN to H implies HN + and

O0 and
HNIO + HI0 in L2([_r,0]; ]_×n). We also discuss below how closely HN

I0 approximate the conditions described in Theorem 2.5 and how closely theHN

elgenvalues of the Nth Hamlltonlan matrix HN in (4.6) approximate the closed-

loop elgenvalues of A - BB* H.

Example 6.1. (Gibson [8], Example 8.1)

Consider the scalar differential equation

d x(t) = x(t) + x(t-l) + u(t) (6.2)dt

and the performance index of (2.6) is
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J(u,(n,_)) = f (x2(t) + u2(t))dt. (6.3)
0

00 is a scalar and H_0(.)TFor each N, HN s L2([-I,0];R) and B _ 1 in

00 and the expansion(6.1). Table I shows the numerical results for _N
I0

coefficients of HN , i.e.,

N-I

k=0

and how closely we have approximated the boundary condition (2.14).

Tablel

N 2 4 6 8

00 2.8139 2.8094 2.8094 2.8094
EN

k=0 1•4222 1.4267 1.4267 1•4267

I -I.0844 -1. 0438 -I. 0438 -i •0438

2 0.2919 0.2919 0.2919

3 -0.0424 -0. 0420 -0 •0420

{_} 4 0.0046 0.0046

5 -0. 0004 -0.0004

6 2.3 x 10-5

7 1.2 x 10-6

inoo 1o-II N (-I) I 0.3074 0.0046 2.3 x 10-5 5.3 x 10-8
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For comparison, the following are obtained using the average (AVE) scheme

[8] and the linear spllne (SPL) scheme [4].

00
H74(AVE) = 2.8130

00
_32(SPL) = 2.8091.

Note that both schemes have not fully converged yet. However, for the

Legendre-tau method, the result for N = 4 appears to give a fairly good

approximation of the optimal feedback; e.g.,

[IfO0 - IIO01 : 4.4 x I0-7,

aR_0 - _I0 a
8 L2[-I,O] = 1.5 x 10-3

Table II compares H74(e)(AVE) and _ 0(e)(L-T) where L-T denotes the

Legendre-tau approximation.
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Table II

lO R_o(e) =iIH74(e)(AVE) - (L-T)IIL2 1.9 x 10-2

10
8) (AVE) _0(8) (L-T)8 _64(

0.0 0.6435 0.6323

-0.I 0.7273 0.7225

-0.2 0.8258 0.8273

-0.3 0.9607 0.9519

-0.4 1.1023 1.1013

-0.5 1.2694 1.2807

-0.6 1.4965 1.4951

-0.7 1.7315 1.7497

-0.8 2.0480 2.0494

-0.9 2.3748 2.3994

-I.0 2._541 2.8048

The oscillatorybehavior exhibitedby the spllne approximationto RI0

[4] has not been observedfor the Legendre-tauapproximation.

N of HN which give the relativelyTable III shows the elgenvalues li

small equation error Idet A(I[)I where A(%) is given by (2.5); i.e., in

this example

A(%) = I% - 1 - e-%)(X+ 1 + e_) - I.

In the table, the numbers inside ( ) stand for the correspondingequation

N
errors Idet A(_) I tO the elgenvalues _i"



-48-

Table Ill

N 2 4

i=l -1.4032 -1.4011

(.019) (1.9 x 10-6 )

2 -1.6351 ± 4.1627

(.38)

N 6 8

{_} i=I -1.4011 -1.4011

(3.2 x I0-II) (2.4 x I0-15)

i:2 -1.6343 ± 4.1827 -1.8343 ± 4.1827

(8.2 x 10-4) (4.5 x 10-7)

i=3 -2.4284± 10.6698

(2.3)

N 16

i=l -1.4011

(1.2 x 10-14)

i=2 -1.6344 ± 4.1827

(6.7 x 10-14)

i=3 -2.4256± 10.6890

(2.Ix I0-I0)

i=4 -3.1695± 23.3811

(4.5 x 10-4)
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Example6.2. (Gibson[8],Example8J3)

We considerthe problemof minimizing

J(u) = f (y2(t) + y2(t) + u2(t))dt, (6.4)
0

subject to the harmonic oscillator with delayed restoring force and delayed

damping given by

d2 d

--y(t) +_-{ y(t-l) + y(t - I) = u(t). (6.5)
dt2

If we define x(t) g _ by

x(t) = (y(t) d y(t))T,'_-£

then (.6.4) and (6.5) are equivalent to

J(u;(n,_)) = f (Ix(t)[ 2 + u2(t))dt
0

and

[0] [00] [0]d__ x(t) = x(t) + x(t - I) + u(t),
dt 0 0 -I -I i

respectively.

The optimal control in feedback form is

u(t) O0 O0 x2(t)= - ff21 xl(t) - R,22

0

10 (t + O) + II_ 0 O))dO, (6.6)-J (ff,12(O) x I 2(0) x2(t +-i
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where _00 H I0 (e) are the (i,j)-elements of the matrix _00 and
,i,j and ,i,j

_I0(8), respectively. The Nth feedback control law is

uN(t) = - H00N,21xl(t ) _ H2200x2(t )

0 I0 I0 x2(t + e))de. (6.7)- S IEN,12 (8) xl(t + e) + HN,22(8)-I

Note that if we define $(t) g _ by

_(t) = (y(t), _y(t)d + y(t))T,

then (6.4) and (6.5) are equivalent to

GO

J(u; (_,_)) = S ($(t) T Q $(t) + u2(t))dt, (6.8)
0

with

Q -- ,
- 1

and

[111[001 [01d _(t) = , $(t) + , _(t - I) + u(t), (6.9)
dt -I 1 0 -i 1

respectively. Here, the initial conditions

= (0,0)T and _2(e) = 0, -I € e ( 0, (6.10)
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yield _(t) £ 0, t • 0, regardless of the initial function _i(8), -I _ 8 _ 0.

Hence, for the initial conditions in (6.10) and any initial history _i(.),

the optimal control is u(t) = 0, t • 0. Therefore, the optimal control

u(t) must have the form

_'=00 =00 0 I0_u(t)
= - _,21 _I (t) - n,22 _2 (t) - J _,22 (8) _I (t + 0)d0. (6.11)-I

where _ corresponds to the minimization problem to (6.8) and (6.9).

Note that _2(t) = Xl(t) + x2(t) , t • I. Hence, it follows from (6.6)

and (6.11) that

i0 I0

H,I 2 = H,22.

Similarly,

HI0 I0
N,12 = HN,22' N • I.

Numerically, we have the results in Table IV.
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Table IV

oo[2.14o71.2988oor2.13871.29631If2 = 1.2988 1.8611J ]14 = [1.2963 1.8579J

oo18o ooi oI[1.2963 1.8579 [[8 = 1.2963 1.8579J

N 2 4 6 8

k=0 -0. 8846 -0. 8821 -0. 8821 -01 •8821

1 0.8971 0. 8969 0.8969 0.8969

2 -0. 0835 -0 •0835 -0. 0835

3 -0. 0031 -0. 0030 -0. 0030

{4} 4 0.0014 0.0014

5 -0.0001 -0.0001

6 2.4 x 10-6

7 2.4 x 10-7

N1 T 00[n 0(O) -A 1 nN I 0.2182 o.oo24 1.3 x 10-5 3.5 x i0-8

N-1
_ NI 10 e);

In the Table IV, LakJ are the expansion coefficients of HN,12(k=0
i.e.,

N-I

n10 (el= [..a_ Pk(28 + I) -I ( 0 • O.N,12 k=O

Note that

- ] =6.3x I0
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I0 I0 IIL2 4.8 x 10-4.II_4,12- H8,12 =

Again, one can see that the result for N = 4 gives a fairly good

approximation. For comparison, the following are obtained by AVE and SPLINE

schemes:

00 [2.1034 1.2574]H22 = 1.2574 1.8123J (AVE)

00HI6 = .2963 1.8576J (SPL)

I0 i0

Table V compares H22,1,2(e)(AVE), ([8], p. 137) and H4,1,2(e)(L-T).

Table V

=
,I,2(8)(AVE) - H4,1,2(8)(L-T)IIL2 7.0 x 10-2

8 I0 I0
H22,1,2(8)(AVE) H4,1,2(8)(L-T)

0.0 -0.1152 -0.0719

-0.I -0.2247 -0.2033

-0.2 -0.3449 -0.3462

-0.3 -0.4750 -0.5003

-0.4 -0.6147 -0.6652

-0.5 -0.7631 -0.8404

-0.6 -1.0013 -1.0257

-0.7 -1.1698 -1.2206

-0.8 -1.3455 -1.4247

-0.9 -1.5278 -1.6378

-I.0 -1.7160 -1.8593
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In this example, the closed-loop elgenvalues of A - BB* H are roots of

the characteristic equation det _(%) = 0, where

A(%) = [%1 - A0 - e A I -BB T

I -I %1 + A0 + e% A1

I°II °IA0 = A1 = and B =
0 0 - -I .

N HN
Table VI lists the elgenvalues %i of which lle in the left half plane

of C and give the relatively small equation error Idet A(%N) I.
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Table VI

N 2 4

i=l 1.3983 -1.3893

{IN} (.0342) (3.3 x 10-6 )

i=2 -0.7358 ± 1.2207i -0.7339 ± 1.2235i

(.0277) (3.4 x 10-6 )

N 6 8

i=l -1.3893 -1.3893

{IN} (5.4 x 10-11 ) (3.9 x 10-14 )

i=2 -0.7339 ± 1.2235i -0.7339 • 1.22351

(6.2 x i0-II) (2.1 x 10-14 )

i=3 -2.0927 ± 7.4395i -2.0890 ± 7.4619

(78,1) (.474)

Example 6.3 Here we deal with the equation which has multiple point delays

d x(t) = x(t) + 2x(t-l) + x(t-2) + u(t), (6.12)

with the cost functional

J(u,(n,_)) = J (x2(t) + u2(t))dt.
0
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For each N, the Nth feedback control law is

0

00 x(t) - f H_0(8) x(t+8)de,uN(t) = - HN
-2

00 is a scalar and HI0(') _ L3([-2,0]; R) is given bywhere HN

N N-I

I0 N N Pk(28 + i) e)HN (e) -- _ bk Pk(2e + 3) X[_2,_l](e) + [ ak X(_l,0]( ,
k=0 k=0

-2,_ e €0.

00 and H_0(e) and howTable VII shows the numerical results for HN

closely we have approximated the jump condition (2.13) and the boundary

condition (2.14)



-57-

Table VII

N 2 4 6 8

00 3.2159 3.2074 3.2073 3.2074
HN

b0 1•5306 1.5246 1•5244 1.5243

bI -1.220 -1.2205 -1.2214 -1.2216

b2 0.3295 0.3990 0.3972 0.3969

b3 -0.0583 -0.0590 -0.0595

b4 -0. 0002 -0. 0050 -0. 0049

b5 -0.0008 -0.0001

b6 -0.0011 -0.0001

b7 -0.0005

b8 -0.0002

a0 3.3767 3.3911 3.3914 3.3914

aI -2.8081 -2. 6999 -2.7004 -2. 7006

a2 0.8479 0.8477 0.8478

a3 -0. I119 -0. 1092 -0. 1094

a4 0.0083 0.0080

a5 -0.0018 -0.0009

a6 -0. 0002

a7 0.0004

I]INI0(-2)- ]IO0[ 0.1352 0.0047 6.0 x 10-4 6.2 x 10-5

oo1
0.8865 0.0090 2.0 x 10-4 8.7 x 10-5
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We have the function values of _0(e) in Table VIII.

Table VIII

o °(°)  41°(6)
-2.0 3.0807 3.2026 3.2067 3.2074

-1.9 2.6586 2.6892 2.6879 2.6877

-1.8 2.2761 2.2518 2.2492 2.2498

-1.7 1.9331 1.8834 1.8830 1.8831

-1.6 1.6297 1.5769 1.5769 1.5784

-1.5 1.3658 1.3252 1.3280 1.3277

-1.4 1.141S 1.1213 1.1229 1.1233

-1.3 0.9567 0.9583 0.9574 0.9581

-1.2 0.8114 0.8292 0.8266 0.8265

-I.0 0.6396 0.6451 0.6443 0.6440

-I.0 6.1848 7.0508 7.0587 7.0587

-0.9 5.6232 5.9500 5.9477 5.9482

-0.8 5.0615 5.0047 5.0025 5.0031

-0.7 4.4999 4.2014 4.2026 4.2025

-0.6 3.9383 3.5267 3.5303 3.5298

-0.5 3.3767 2.9671 2.9706 2.9704

-0.4 2.8150 2.5094 2.5103 2.5106

-0.3 2.2534 2.1399 2.1375 2.1378

-0.2 1.6918 1.8454 1.8413 1.8411

-0.I 1.1301 1.6123 1.6111 1.6107

0.0 0.5685 1.4272 1.4360 1.4362
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In this example, the closed loop characteristic equation is given by

A(1) = (I - 1 - 2e-I - e-21)(l + 1 + 2e I + e21) - 1 = 0.

Table IX shows the eigenvalues of HN in the same manner as before.
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Table IX

N 2 4

N -1.5217 -1.5174

(.2172) (3.0 x I0-5)

N 0.9524 ± 2.4826 i -0.9028 ± 2.5445 i
_2

(2.090) (.0031)

N -0.6103 ± 5.0272 i
_3

(.8349)

N 6 8

N -1.5174 -1.5174

(6.9x I0-I0) (6.0x 10-14)

N
2 -0.9029± 2.5445 i -0.9029• 2.5445 i

(7.0 x 10-7) (4.6 x I0-II)

N

_3 -0.5890 • 5.0114 i -0.5889 • 5.0114 i

(.0030) (2.7 x 10-6)
N

k4 -1.3588 ± 8.7500 i -1.3159 • 8.7703 i

(1o.18) (o.1o18)

N -1.0595 ± 11.4781 i
15

(4.108)
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The numerical results presented here reveal that numerically one has

strong convergenceof EN for the Legendre-tauapproximation. At this time,

we hve not been able to prove the strong convergenceof EN in the general

case (exceptfor certainspecialcases describedin Lemma 5.4). It requiresa

careful study of the asymptoticbehaviorof the spectraof N. However, the

efficiencyof the numericalschemesis most importantfrom the practicalpoint

of velw. We observe, from the numerical results of this section, that the

Legendre-taumethod provides faster convergenceand better approximationat

low orders (i.e., small N) than the AVE and SPLINE schemes. In the above

examples, the results corresponding to N = 4 give a fairly good

approximationof the optimalfeedbackgain.

As further evidence of the usefulness of the Legendre-tauapproximation,

one can use it as an approximation technique for computing closed-loop

eigenvaluesof the feedbacksystem. Note that elgenvaluesclose to the orlgln

are approximatedquite well at low orders on the above examples.

From these observations,we believe the Legendre-tauapproximationscheme

offers one of the favorablemethods for constructionof feedbackgains. In

future investigations,our efforts for constructingfeedback gains for delay

systemswill be combinedwith the approachto flnite-ordercompensentordesign

for distributed parameter systems [15], developed by J. M. Schumacher to

develop a design procedure for the constructionof compensentorsfor delay

systems.
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