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SUMMARY

The development and application of transonic small-disturbance codes at NASA Ames Research Center for
computing two-dimensional flows, using the code ATRANZ, and for computing three-dimensional flows, using
the code ATRAN3S, are described Calculated and experimental results are compared for unsteady flows about
airfoils and wings, including several of the cases from the AGARD Standard Aeroelastic Configurations In
two dimensions, the results include AGARD priority cases for the NACA 64A006, NACA 64A010, NACA 0012, and
MBB-A3 airfoils In three dimensions, the results i1nclude flows about the F-5 wing, a typical transport
wing, and the AGARD rectangular wing Viscous corrections are included in some calculations, including
those for the AGARD rectangular wing For several cases, the aerodynamic and aeroelastic calculations are
compared with experimental results

SYMBOLS

b semichord of wing

C full chord of wing

C°h sectional 11ft coefficient due to plunging mode
C;1 sectional 11ft coefficient due to pitching mode
th sectional moment coefficient due to plunging mode
Cmq sectional moment coefficient due to pitching mode
k reduced frequency based on chord

H semspan of the wing

M,M_ free-stream Mach number

U flutter speed

X, sectional distance, measured i1n semichords, from the elastic axis to the mass center
u wing-section-to-air-mass density ratio

4 disturbance velocity potential

“h bending natural frequency
reference frequency

w pitching natural frequency

1 INTRODUCTION

In the last decade, there have been extensive developments in computational, unsteady transonic aero-
dynamics (Refs 1 and 2) This growth 1n computational methods was 1n response to a need by engineers for
computer codes with which to study fundamental aerodynamic and aeroelastic problems 1n the critical tran-
sonic regime For example, because the transonic flight regime provides the most effictent aircraft cruise
performance (Refs 3 and 4), transomic flow fields constitute one of the most intensely studied problems in
fluid dynamics  Most large commercial aircraft cruise in the transonic regime However, the current total
cost (Ref 5) of developing a modern transport aircraft 1s so large that 1t puts most of the resources, as
well as the future reputation, of a company at risk Computational flurd dynamics (CFD) provides a new
tool that in combination with the use of test facilities such as wind tunnels, provides aerodynamic design
1nformation with which to reduce this risk at the earliest possible phase of aircraft development

One of the major tasks 1n developing a new transport that involves unsteady transonic flow 1s the
flutter analysis of the supercritical wings Experiments have shown {Ref 6) that dips in the flutter
boundaries for wings occur at transonic Mach numbers and that such dips are especially severe for super-
critical wings This occurrence of instabilities at lower dynamic pressures in the transomic regime 1s
attributable to the motion of the shock waves that are present on the wings (Ref 7) Proper modeling of
the physics of such moving shock waves requires that the CFD methods solve nonlinear partial differential
equations for regions of mixed subsonic and supersonic flow At the present time, the most advanced codes
use the small-disturbance, transonic potential equation, these codes are being used for generic research
n aeroelasticity Currently, codes are being developed that use the more exact full-potential equation
In comparison, for steady flows, practical applications use full-potential codes, and there 15 extensive
development of Euler codes
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The successful development and application of the two-dimensional code LTRANZ (Ref 8), which solves
the unsteady, transonic, small-disturbance potential equation using a time-integration method, and the
availability of faster computers with larger memories made possible the development and use of the three-
dimensional code XTRAN3S (Ref 9) In this code, the alternating direction 1mplicit (ADI), finite-
d1fference scheme (Ref 8) 1n LTRAN2 was extended to three-dimensional flow over wings In this conserva-
tive method, shock waves move 1n a time-accurate manner The XTRAN3S code can also perform static and
dynamic aeroelastic computations by simultaneously i1ntegrating the aerodynamic and structural equations
of motion This code 1s being used for both aerodynamic and aeroelastic applications (Refs 10-13)

Several efforts are 1n progress to develop two-dimensional and three-dimensional codes based on a
full-potential theory (Refs 14-20) The reason for going to the more exact full-potentral formulation
from the approximating, small-disturbance one 1s to remove the accuracy limitations in the latter The
removal of these limitations may be necessary to adequately model the flow over supercritical wings, and
also to handle large perturbations 1n the flow However, by using the full-potential formulation, the
major advantage of simplicity (1mposing boundary conditions Tnherent in the small-disturbance theory) 1s
lost Modeling a complex geometry (such as a wing, body, and nacelle) 1s fairly easy 1n small-disturbance
theory, for the full-potential theory, however, the resultdant computational meshes are quite complex
This feature 1s one reason why full-potential codes are not as well developed as the small-disturbance
potential codes

This report describes the development and application of transoric small-disturbance codes at NASA
Ames Research Center for computing two-dimensional flows, using the code ATRAN2, and three-dimensional
flows, using the code ATRAN3S  Comparisons of calculated and experimental results are presented tor
unsteady flows about airfoils and wings, including several of the cases from the AGARD Standard Aeroelastic
Configurations In two dimensions, the results i1nclude AGARD priority cases for the NACA 64A006,
NACA 64A010, NACA 0012, and MBB-A3 ai1rfoils In three dimensions, the results include flows about the
F-5 wing, a typical transport wing, and the AGARD rectangular wing Viscous corrections will be 1ncluded
1n some calculations, including those for the AGARD rectangular wing For several cases, the aerodynamic
and aeroelastic calculations are compared with experimental results Brief descriptions are also given
of recent 1mprovements of the algorithms used 1n these codes, 1ncluded are the addition of high-frequency
terms and more accurate differencing in ATRANZ, and grid 1mprovements 1n ATRAN3S for fighter-aircraft-type
wings

2 ALGORITHM DEVELOPMENTS AND FLOW-FIELD CALCULATIONS  TWO DIMENSIONS

In this section we shall describe algorithm and code mprovements to the NASA Ames code LTRAN2 and
then present comparisons of computed results and experimental data for the AGARD airfoils (Ref 21) The
LTRAN2 code was introduced 7 years ago (Ref 8) Since then, 1ts use has become routine (Refs 1 and 2)
1n generating unsteady, transonic air loads for oscillating airfoils, particularly for use in applications
to aeroelasticity (Refs 22 and 23) During those 7 years, there have been many tmprovements in the accu-
racy, capability, stability, and efficiency of LTRAN2  Improvements in accuracy include the addition of
h1gh-frequency terms 1n the boundary conditions (Ref 24) and the governing equation (Ref 25), the 1nclu-
s1on of viscous effects (Refs 26-28), and the use of second-order-accurate spatial differencing (Ref 29)
Wind-tunnel wall modeling (Ref 30) and supersonic free-stream (Ref 31) capabilities were added The
stabil1ty of the code was 1mproved by using monotone algorithms (Ref 32), and, finally, the efficiency of
the code was 1mproved by using nonreflecting far-field boundary conditions (Ref 33)

The improvement in stabil1ty with the monotone algorithm 1s shown 1in Fig 1 (Ref 32) The older
method can become unstable at sonic expansion points and hence require a much smaller time-step for stable
calculations (12 times smaller 1n this case)

The 1mprovement 1n accuracy with second-order spatial differencing 1s shown 1n Figs 2 and 3 (Ref 29)
for flow with type-B shock-wave motion  Because of the large excursion 1n the shock wave, which the
second-order method describes more accurately (Fig 2), the unsteady pressures (F1g 3) are more accurately
described over a large portion of the airfoil by the second-order method

Figure 4 (Ref 25) shows the improvement 1n accuracy with the 1nclusion of high-frequency terms
This modification did not require the addition of a third level of computer storage, as did previous
methods, which can be an advantage especially when the method 1s extended to three-dimensional algorithms
With the 1nclusion of these high-frequency terms 1n LTRAN2, the code 1s now valid at all frequencies
This version of the NASA Ames code 1s destgnated ATRANZ code

To account for viscous effects, two procedures are available 1n ATRAN2, a viscous-ramp method and a
lag-entrainment method (Refs 27 and 28) For 1nviscid calculations, ATRANZ2 solves the unsteady, transonic,
small-disturbance potential equation (Refs 25 and 32)

KiMZspy + 2KMIn e = [0 - MD) = (v + DMDe Jo, 0,0 M
The viscous corrections are implemented by modifying the inviscid airfoil tangency conditions, as well as
the downstream wake conditions 1n the lag-entrainment method The viscous-ramp procedure 1s a phenomeno-
logical method 1n which a priori determined shape-changes simulating the viscous displacement effects are
incorporated 1nto the inviscid procedure Here the interaction between the shock and boundary layer 1s
modeled by placing a wedge-nosed ramp at the base of the shock to obtain the reduced shock pressure rise
The lag-entrainment equations are based on the boundary-layer assumption that the normal extent of the
viscous region 1s small when compared with airfoil or wake thickness By integrating the governing partial
drfferential equations 1n the normal direction and suitably modeling the requisite relationships, a set of
three first-order ordinary differential equations, Tlag-entrainment equations," 1s obtained References 27,
28, 34, and 35 provide details on these methods and their use 1n ATRAN2




2 1 NACA 64A010 Airfoil

See Ref 34 for details on the procedures for generating the computed results Unsteady 1nviscid,
wedge, and lag-entrainment solutions were obtained by forcing the airfo1l to undergo sinusoidal motion and
then integrating the flow equations in time, starting from the corresponding steady-state solutions A
Fourier analysis of all three solutions was performed for pressure distributions for the third cycle of
oscillation, and the real and 1maginary parts of the first Fourier component were extracted These results
were plotted after defining the pressure as

Cp =, (Re sin t - Imcos .t)

where . 1s the amplitude of oscillation Unsteady aerodynamic coefficients were computed, based on the
third cycle, for selected values of reduced frequencies Using these coefficients, flutter speeds were
computed by the U-g method, following the procedure described 1n Ref 34  Two degrees of freedom,
pitching and plunging, were assumed for the aerocelastic model

In Refs 36 and 37, steady and unsteady aerodynamic results for the NACA 64A010 airfor1, obtained 1n
the Ames 11- by 11-Foot Transonic Wind Tunnel, are given for various flow conditions In this study,
results are computed and compared with wind-tunnel results at a Reynolds number of 12 6 x 10% for Mach 0 796
and a mean angle of attack of -0 21 The airfo1l configuration 1s taken from the AGARD report (Ref 21)

Figure 5 shows the lower-surface, steady-pressure distributions obtained by computations and the
experiment  The viscous-ramp and the lag-entrainment methods compare better in predicting the shock loca-
tion than does the 1nviscid method Unsteady aerodynamic results were optained for the pitching motion of
the a1rfo1l at the five reduced frequencies—-0 05, 0 102, 0 202, 0 302, and O 404 - that were considered 1n
the experiment The 1nviscid and viscous-ramp calculations used 720 time-steps per cycle, the lag-
entrainment method required 8000 In Fig 6, the plots of the magnitude and the corresponding phase angle
of the 11ft coefficient versus the reduced frequency are shown, and F1g 7 shows the magnitude and phase
angle of the moment coefficient about the leading edge as a function of the reduced frequency

For k =0 101 and O 404, Fourier analyses of all three solutions were performed for lower-surface
pressure distributions for the third cycle of oscillation, and the real and imaginary parts of the first
Fourier component were extracted A comparison of these results with experiment 1s shown 1n Figs 8 and 9
In general, the viscous solutions, particularly the lag-entrainment solution, are closer to the experimental
results than 1s the i1nviscid solution

Using the U-g method, flutter speeds were computed based on the unsteady aerodynamic coefficients
obtained by the computations and the experiment They were computed by assuming the elastic axis at the
quarter chord, a = -0 5, the mass center at the midchord, Xy = 0 5, and the ratio of plunge-to-pitch
natural frequencies /., =01 In F1g 10, the nondimensionalized flutter speed U, and the corre-
sponding reduced frequency k, are shown versus the airfoil-to-air-mass density ratio, u  Flutter speeds
obtained by the lag-entrainment solution are closer to those of the experiment than are the other two solu-
tions  In general, all three theoretical methods compare fairly well with the experiment 1n the reduced
frequency, 1t 1s also observed that viscous effects have a tendency to reduce the flutter speed

Figure 11 1s a time-history of the computed lower-surface pressures for the 1nviscid flow during the
third cycle of motion Notice the motion of the shock wave and the change 1n shock strength To simulate
the shock motion correctly, the governing equation was solved in conservative form Also notice the osc11-
lations 1n pressures at the leading edge, which are due to the use of airfo1l coordinates from the experi-
mental model (Ref 36)

2 2 The MBB-A3 Airfoil

For this airfo1l (Ref 34) results were computed and compared with those of experiment (Ref 38) at a
Reynolds number of 6 x 10° for a Mach number of 0 765 and a mean angle of attack of 1 5° (the design condi-
tions for the airfo1l) As was done in Ref 38, the Mach number and the angle of attack considered for
computations were 0 7557 and 1 30°, respectively, thus matching the flow conditions 1n the wind tunnel
The airfo1l configuration 1s taken from the AGARD report (Ref 21)

Figure 12 shows the comparison of the steady-state pressure distributions for the upper and the lower
surfaces  The lag-entrainment solution compares well with the experiment The wedge solution 1s closer to
the experiment than the inviscid solution Steady 11fts obtained by inviscid, viscous ramp, lag-entrainment,
and the experiment are 0 6667, 0 6433, 0 5377, and 0 5190, respectively

Unsteady aerodynamic results (Ref 34) were obtained by pitching the airfoil about the midchord with
an amplitude of 1 0° for four reduced frequencies, 0 05, 0 10, 0 15, and 0 20 The unsteady 1nviscid,
viscous-ramp, and lag-entrainment solutions were obtained starting from the corresponding steady-state
solutions obtained earlier For all the cases considered, three cycles were required during which the
transients disappeared and a periodic solution was obtained The 1nviscid and viscous-ramp calculations
used 720 time-steps per cycle, and the lag-entrainment used 8000

For k = 01, a Fourier analysis of all three solutions was performed for the upper-surface pressure
distributions for the third cycle of oscillation, and the real and 1maginary parts of the first Fourier
component were extracted A comparison of these results 1s shown 1n F1ig 13 Using the U-g method,
flutter speeds (Ref 34) were computed based on the unsteady aerodynamic coefficients obtained by the three
methods The viscous methods 1ncreased the flutter speeds, but the reduced frequencies were essentially
the same as those for the inviscid method

2 3 NACA 006 Airfoil

Three AGARD cases (cases 6, 8, and 10 1n Ref 21) were computed for the NACA 006 airfoil and compared
with experimental data (Ref 37) The computations were made using the experimental parameter given 1n
Ref 37
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For case 6, the values used were M, = 0 853, the dynamic flap amplitude &g =11, k =0 12, and the
mean flap angle ¢, = 0 16  The nunber of time-steps per cycle was 720 for all the remaining two-
dimensional results Only the 1nviscid and viscous-ramp methods were used for the remaining results
because of the extremely small time-step size reguired for the lag-entrainment method

Figure 14 shows the comparison of pressures for the lower surface for steady flow, and F1g 15 shows
the unsteady comparisons for the lower surface For all the remaining cases, the unsteady computational
results were taken from the third cycle of motion Figure 16 shows a time-history of the lower-surface
pressures for the inviscid results for the third cycle of flap motion Notice the motion of the shock
wave and the change 1n 1ts strength It essent1ally disappears during a portion of the cycle, that 1s,
type B shock-wave motion This case demonstrates the need for a time-accurate formulation of the computed
results Finally, notice the weak ridge and valley caused at the three-quarter chord location owing to
the flap motion

For case 8 (Ref 21), M, = 0877, k =0 118, 85 =113, and &, = 015 Figure 17 shows the compari-
sons of steady pressures for the lower surface, and F1g 18 shows the unsteady flow comparisons The
steady calculations predict too strong a shock wave, and this overprediction 1s carried over to the unsteady
results, which show the effects of the shock motion As noted in Ref 37, these differences can be par-
t1ally ascribed to wind-tunnel-wall interference In previous calculations (Ref 8) on this airfoil with
an oscillating flap, similar differences were found between calculations and experiment, for the cases of
type A, B, and C shock-wave motion  For those cases, calculations that included wind-tunnel-wall simula-
tions (Ref 30} also 1ndicated that the differences might be due tu wind-tunnel-wall interference

Figure 19 shows a time-history of the inviscid results Notice the motion of the shock wave and the
changes at the flap hinge location  Figure 20 shows the variation in the 11ft coefficient, C, during the
third cycle of motion In comparison with harmonic approximations, zero through the first harmonic and
zero through the fourth harmonmic, Fig 20 shows that the variation 15 described by the first harmonic
Figures 21 and 22 show the variations in lower shock position and strength during the third cycle, where
the shock strength 1s taken to be the difference 1n pressure coefficients across the shock wave The
shock-position variation 1s essenti1ally simply harmonic, whereas the shock-strength variation contains
higher harmonics This variation 1n shock position requires a method that allows the shock to move over
the airfoil

For case 10 (Ref 21), M_ =0 879, k = 0 468, 85 =108, and &5 =001 Figure 23 shows the com-
parisons of steady pressures and F1g 24 shows the unsteady flow comparisons for the lower surface As 1n
case 8, the calculations overpredict the shock strength 1n the steady flow, and the effects are carried
over 1nto the unsteady flow comparisons Notice the effects of i1ncreasing the frequency 1n comparing
Figs 18 and 24 At the higher frequency, the shock motion 1s less and the real part of the pressure
coefficients has a dip upstream of the shock wave  Figure 25 shows a time-history of the 1nviscid results
For this relatively high frequency, there 1s 11ttle shock-wave motion, as can be seen by comparing
Figs 19 and 25

2 4 NACA 0012 Airforl

For the NACA 0012 airfoil, most of the cases (Ref 21) required large mean angles of attack or large
changes 1n the angle of attack that are typical for helicopter applications The only case that appears
to be within the capability of the small-disturbance formulation 1s case 5 As we did for the previous
airfo1l, we have chosen to use the experimental parameters (Ref 37) for computing this case to compare
with experimental data For case 5, M_ = 0 755, k = 0 1628, the mean angle of attack oy = 0 016°, and
the dynamic pitch angle ag =2 51° The airfoil 1s pitching about the quarter-chord and that 1s where
the moment coefficients are computed

Figure 26 shows the comparison of steady pressures for the upper surface Figure 27 shows comparisons
at the eight times, during the cycle of motion, for which the experimental data (Ref 37) were given
Figure 28 shows a time-history of the inviscid results  For this high dynamic pitch angle, F1g 28 shows
the creation, large motion, and disappearance of a strong shock wave  Figures 29-33 show the variations,
during the third cycle, of the 11ft coefficient Cp, of the quarter-chord moment coefficient Cpy, of the
drag coefficient Cq, of the upper shock position, and of the upper shock strength  Figure 29 shows that
CL s described adequately by the first harmonic  Figure 30 shows that Cp requires higher harmonics
for an adequate description Figure 31 shows that Cq 1s adequately described by the harmonics through
the second, recall that for the drag, 1ts fundamental harmonic 1s twice the first harmonic of the motion
Figure 32 displays the shock-position variation and the portion of the cycle where the shock disappears
Finally, F1g 33 shows the strong variation 1n shock strength, over the portion of the cycle where the
shock disappears, there are no marks for actual shock strength

No results are shown for the NLR 7301 airfo1l Calculations showed poor agreement with experiment
Because of the thickness (16 5%) and leading-edge bluntness of this airfoil, 1t 1s probably outside the
capability of the small-disturbance formulation

3 ALGORITHM DEVELOPMENTS AND FLOW-FIELD CALCULATIONS  THREE DIMENSIONS

In this section, we shall describe the progress to date that has been made i1n a program at Ames
Research Center for developing and applying an efficient computer code for calculating unsteady transonic
flows 1n three dimensions We have chosen to develop further and to apply the XTRAN3S code, which was
developed by Borland et al (Refs 39-41) under contract to the United States Air Force

The choice of XTRAN3S was based on several considerations First, XTRAN3S was a direct extension of
LTRAN2 to three dimensions Hence, the successful results produced by LTRANZ led us to expect that
XTRAN3S would be an efficient and accurate tool for studying three-dimensional flows Like LTRAN2, the
governing equation that 1s solved by XTRAN3S 1s the unsteady, transonic, small-disturbance equation 1n con-
servation form The use of the small-disturbance equation has the advantage of allowing the use of simple
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computational grids for the unsteady flow about complex geometrical configurations, such as a wing, body,
and canard, with, for example, moving control surfaces Since the algorithm relies on shock-capturing to
account for the location and movement of shock waves, the equation 1s solved 1n conservative form, other-
wise, erroneous shock locations and speeds will occur

The development of the Ames version of XTRAN3S, which 1s called ATRAN3S, proceeded as described below,
where each of four developments 1s described 1n a separate subsection that also includes computational
results The first effort was an aerodynamic and aeroelastic study (Refs 10 and 11) to compare XTRAN3S
calculations with experimental data The purpose of that effort was to validate results obtainable from
the code, as well as to determine the proper choice of numerical parameters, such as time-step size, in
order to obtain accurate results In that first study, the simple case of a rectangular wing was examined

The next step (Ref 12) was to apply the code to a transport-type wing, characterized by a high-aspect
ratio, large-taper ratio, and small sweep angle A flutter-analysis comparison was made with experimental
data More recently (Refs 42 and 43), a study was made of the severe case of a fighter-type {(F-5) wing,
characterized by a low-aspect ratio, small-taper ratio, and large sweep angle Finally, a study (Ref 44)
was made of the effects of viscosity and modes on the transonic aerodynamic and aeroelastic characteristics
of wings The AGARD rectangular wing, as well as a typical transport wing, were examined The latter two
studies required that algorithms be developed For the fighter wing, a new computational grid was devel-
oped 1n order to stabilize the calculations In the study of viscous effects, the manner of 1nteracting
the viscous and 1nviscid calculations was modified to eliminate numerical fluctuations 1n the pressure
profiles at the shock locations

3 1 Aerodynamic and Aeroelastic Study Rectangular Wing

In this first study, XTRAN3S calculations for a rectangular wing were compared with experimental data
The purpose was to validate XTRAN3S

Aerodynamic_equations of motion- Many forms of the small-disturbance equations have been developed
for computing the transonic flow field about wings (Refs 26 and 45) In this analysis, the modified
unsteady, three-dimensional, transonic small-disturbance equation 1s used

= 2 2
Rogy * Boyp = (Boy + Fol + Bof), + (o, + Hoo )y + (o)),

where ¢ 1s the disturbance velocity potential, A = M2, B = 2M2, E = (1 - M2), F = -(1/2)(y + 1)M2,

G = (1/2)(y - 3)MZ, and H = -(y - 1}M2

For the results shown 1n this section, the low-frequency form of this equation was solved by setting
A to zero and using corresponding boundary conditions. The corresponding computer code, LTRAN3, was the
earlier version of XTRAN3S and was the only version available at the time of this study (Ref 11) The
code 1s based on a time-marching, finite-difference scheme following the first-order-accurate alternating
direction 1mplicit (ADI) algorithm A detailed description of the procedure 1s given in Ref 39 For
details on the computational grid and the convergence criteria for the steady calculations, see Refs 10
and 11

Unsteady aerodynamic pressures were computed by forcing the wing to undergo a sinusoidal modal motion
and 1ntegrating the aerodynamic equation of motion in time The modal motion assumed was the same as that
simulated in the experiments For all the cases studied here, 1t was found that about three cycles of
motion with 360 time-steps per cycle were sufficient to obtain a periodic aerodynamic response Periodicity
was tested by comparing the responses of the second and third cycles The magnitudes and phase angles of
the unsteady pressure jumps and corresponding force coefficients were computed using the third cycle

Aeroelastic equations of motion- Generalized coordinates (Refs 10 and 11) were used in deriving the
aeroeTastic equations of motion In this analysis, two generalized coordinates h(t,y) and «(t,y), which
correspond to bending displacement and torsional rotation of the elastic axis of the wing, respectively,
were chosen as representative of the fluttering wing The generalized coordinates h(t,y) and a(t,y) can
be expressed as

hly,t) = h{t)f{y) ,»  aly,t) = 3(t)e(y)

where h(t) and a(t) are unknown functions of time, and f(y) and 6(y) are assumed semirigid modes For
further details on the aercelastic equations of motion, see Refs 10 and 11

The aeroelastic parameters and sign conventions for a typical section of the wing are shown 1n Fig 34
It 1s assumed that the wing 1s ri1gid 1n the chordwise direction, and that the amplitudes of oscillation are
small It 1s also assumed that the principle of superposition of atr loads 1s valid, even in the presence
of shocks The validity of this assumption has been shown for two-dimensional cases both by experiment
(Ref 36) and theory (Ref 23), provided the shock wave does not introduce separation and that the shock
motion 1s small

Flutter solution procedure- A procedure based on the U-g method (Ref 46) was used to determine the
transonic flutter boundaries Unsteady aerodynamic coefficients required 1n this work were the generalized
11ft and moment coefficients owing to modal mottons corresponding to a pure bending mode f(y) and a pure
torsional mode 6(y) For the U-g method, unsteady aerodynamic coefficients, Cop, Cyo, Cmh, and Cpy are
required as a function of reduced freguency for each mode 1In this analysis, the coefficients were com-
puted at three reduced frequencies, and they were 1nterpolated by a Lagrange interpolation scheme Since
a low-frequency assumption was used 1n LTRAN3, the reduced frequencies considered were less than 0 4 (based
on full chord)

Results Comparison of aerodynamic pressure coefficients- In Ref 47, experimental investigations
were conducted on an unswept rectangular wing The wing had an aspect ratio of 3 with a 5%-thick biconvex
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airfoi1l section Both steady and unsteady pressures were measured Unsteady pressures were measured while
the wing was oscillating 1n 1ts first bending mode

In Ref 11, steady and unsteady pressures from LTRAN3 were compared with the experimental data at
Mach numbers of 0 7 and 0 9 for four span stations located at 0%, 50, 70 , and 907 semispan  For unsteady
computations, the same bending mode that was measured 1n the experiment was also simulated 1n the code
These results were also compared with corresponding data obtained 1n Ref 47 1n which linear aerodynamic
theory, based on the kernel function method, was used In the following results, the magnitude of the
unsteady pressure jump 15 scaled by the induced angle of attack corresponding to the amplitude of the tip
displacement, and the phase angle 1s defined as positive 1f the pressure leads the bending displacement
The magnitude and phase angle from LTRAN3 correspond to the first fundamental harmonic 1n a Fourier series
decomposition of the pressure time-history

In F1g 35, steady-pressure curves are compared between experiment and LTRAN3 at M =09 at four
spanwise stations The two sets of curves compare fairly well Except at the root section, pressure
coefficients and shock locations obtained by LTRAN3 are 1n close agreement with those obtained from the
experiment The discrepancies at the root section can be attributed mainly to the boundary layer on the
wall, which was not considered 1n LTRAN3

In F1g 36, magnitudes \ACPI and phase angles ¢ of the unsteady pressure jump obtained by LTRAN3,
experiment, and kernel-function method are plotted at the 70% semispan station for M =09 and k. =0 26
In general, the two sets of curves obtained by LTRAN3 and experiment compare fairly well Peaks 1n pres-
sure Jumps occur at almost the same locations for both LTRAN3 and experiment As expected, linear theory
results do not compare favorably, etther with LTRAN3 or experiment, 1n the vicinity of shock

Results Comparison of flutter boundaries- Reference 48 reports an experimental investigation of the
transonic flutter characteristics of unswept rectangular wings with aspect ratios of 5, and with circular-
arc sections at various thickness ratios and Mach numbers See Refs 11 and 48 for details of the experi-
mental models

In Refs 10 and 11 results obtained from LTRAN3 and from experiments were compared for four cases
(1) 6% thick at M =0 715, (2) 6% thick at M = 0 851, (3) 6% thick at M = 0 913, and (4) 4% thick at
M = 0 904 These cases were selected so that Mach numbers ranging from a no-shock case to a strong-shock
case were 1ncluded Based on studies using LTRAN3, the Mach numbers considered 1n the experiment did not
include a moderate-shock case for the 6%-thick model Thus, a case from the 4%-thick model was selected

Based on the unsteady aerodynamic coefficients obtained from LTRAN3, flutter boundaries were computed
by the U-g method In Fig 37, results from LTRAN3 are plotted as a curve of flutter speed and corre-
sponding reduced frequency versus wing-air-mass-density ratio for a 6%-thick model at M =0 715 The
corresponding curve obtained by the linear code NASTRAN 1s given 1in the same figure The experimental
results available for a wing-air-mass-density ratio of 36 72 and a reduced frequency of 0 232 are also
shown

Similar results were obtained for the other three cases Results for the four cases are given in
Table 1 From this table 1t can be seen that the flutter speeds obtained by LTRAN3 are greater than those
obtained by experiment On the other hand, the reduced frequencies obtained by LTRAN3 are lower than
those obtained by the experiment, except for case 1  With the increase in Mach number, both LTRAN3 and
the experiment show an increase 1n flutter speed, a decrease 1n reduced frequency, and an 1ncrease in
density ratio  Comparisons are better at lower Mach numbers Differences are quite significant at
M=0904 and M =0 913 These differences can be mainly attributed to the discrepancies between the
aerodynamics of LTRAN3 and the experiment rather than to the flutter modeling

3 2 Flutter Analysis of a Transport Wing

The next step 1n evaluating the code XTRAN3S was to apply 1t to a flutter analysis of a transport-type
wing {Ref 12) A search of the literature (Ref 12) available at that time revealed an appropriate set of
experimental data with which to make comparisons in a Japanese report (Ref 49) The model configuration
1s shown 1n Fig 38 It has an aspect ratio of 8, a taper ratio of 0 4, a quarter-chord sweep of 20°, and
a NACA 65A012 airfo1l section See Ref 12 for a description of the model's structural and mass data

Steady and unsteady flows were calculated 1n the region of the transonic dip i1n the flutter boundary
1n the experimental data at Mach numbers of 0 75, 0 8, 0 825, and 0 85 Figure 39 shows the steady-flow
pressure coefficients at M = 0 85 The flow 1s supersonic over a large portion of the wing and terminates
1n a shock at approximately the 65% chord line There were no aerodynamic data in Ref 49 with which to
compare, although 1n Ref 12 comparisons were made with a standard code for steady flows and showed good
agreement

Unsteady aerodynamic coefficients were calculated for the first three uncoupled vibration modes They
were the first bending, second bending, and first torsion modes for a swept-wing beam model of the struc-
ture  For each mode and Mach number, the wing was osciilated sinusoidally for three cycles at reduced fre-
quencies that bracketed the expected flutter-reduced frequency Approximately 1200 time-steps per cycle
were used for these calculations Figure 40 shows a comparison with linear theory for a reduced frequency
k =0 121 (near flutter) and a Mach number of O 85 for the first bending mode There are substantial dif-
ferences because of the transonic effects The larger leading-edge moment coefficients from XTRAN3S 1ndi-
cate a rearward shift of the aerodynamic center caused by the 11ft contribution of the shock-wave motion

Using these unsteady aerodynamic data, a flutter analysis was performed, using the U-g method
(Ref 46) Figure 41 shows comparisons of flutter boundaries obtained from XTRAN3S, a doublet lattice
analysis, and the experimental data The XTRAN3S results agree better with experiment than do the linear
theory results  Results for XTRAN3S are shown at Mach numbers of 0 75, 0 80, and 0 825 No flutter was
predicted at Mach 0 85



3 3 F-5 Wing Analysis

Analysis- For nonrectangular wings, such as the F-5 wing, XTRAN3S used a sheared coordinate system,
Z,m»%, 1N which the shearing occurs in the plane of the wing (Fig 42), where

X - xLE(y)

elx,y) = ;;ETyT-:';IEij s ny) =y, t(z) = 2z (3)

After applying the transformation, Eq (2) 1s transformed to
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The finite-di1fference computations are done 1n the ¢,n,z coordinate system, as indicated 1n Fi1g 42

This conventional shearing transformation, as given by Eq (3), 1s simple and adequate for wings with
small sweep and large taper ratio (Refs 9-13) However, for wings with low aspect ratio, high sweep,
and small taper ratio, such as fighter wings, use of this shearing transformation produces unstable calcu-
lations  Since the transformation given by Eq (3) 1s only a function of the local chord, computational
flow regions in the physical domain depend on the wing planform For delta-type wings, Eq (3) yields
highly skewed flow regions and thus large discontinucus values for the metrics, &y, near the upstream-
and downstream-flow boundaries  The metric ¢, appears as a coefficient of the Cross derivatives 1n the
governing equation, as given by Eq (4) Also, the far-field boundaries 1n the physical domain are not
aligned with the flow directions These combined factors can make the flow computations unstable, as was
the case for the F-5, AV-8B, and DAST ARW-2 wings (Ref 13)

The flow domain generated by Eq (3) w11l be 11lustrated for the F-5 wing Figure 43 shows the plan-
form of the F-5 wing which has an aspect ratio of 2 98, a taper ratio of 0 31, and a leading-edge sweep
angle of 31 92° The computational flow region that was obtained by using the shearing transformation,
given by Eq (3),1s shown 1n Fig 44  From this figure, the large skewness of the grid lines, which
causes large gradients for the metrics near the flow boundaries, can be observed In fact, the scale 1n
F1g 44 1s stretched 10 to 1 1n the y (or vertical) direction So the actual skewness 15 10 times worse
than shown Also the kinks (1 e , discontinuities) in the upstream and downstream boundary grid lines are
10 times worse than shown It 1s at the downstream boundary at the location of the kink i1n the coordinate
Tine (1 e , at the wing tip span station) that numerical 1instabilities originate in the calculations for
the F-5 wing

A modified shearing transformation was developed (Refs 42 and 43) that eliminated these numerical
instabilities  Like Eq (3), the modified transformation maps the physical wing 1nto a rectangle, as 1ndi-
cated 1n Fig 42 Away from the wing, the modified transformation has the following characteristics
(1) far-field boundaries are independent of the wing planform and aligned with respect to the free-stream
direction, (2) smooth first and second derivatives occur for values of the metric quantities, particularly
near boundaries, and (3) grid lines are clustered near the leading and trailing edges Figure 45 shows
the computational flow region for the F-5 wing that was obtained by the modified shearing transformation
Detailed comparisons of the metric quantity £y for the two methods are given in Ref 43 The new trans-
formation, along with other improvements 1n XT%AN3S, has been 1ncorporated 1nto the Ames version of this
code, which 1s called ATRAN3S

Results- In Ref 43, using the new transformation technique, steady and unsteady aerodynamic results
were computed for the F-5 wing at M = 0 80, 0 90, and 0 95 and were compared with experimental measure-
ments (Ref 50)

Figure 46 shows plots of steady pressure results obtained at M = 0 9 for the mid-semispan station
by the two transformation methods and experiment In spite of using a time-step size of 0 001, results
from the conventional shearing transformation eventually diverged Also, those results were highly 1naccu-
rate after 4000 time-steps, as 11lustrated 1n Fig 46 The computations diverged sometime after 4000 time-
steps and before 6000 time-steps With the modified shearing transformation, a converged solution was
obtained by using 2000 time-steps of size 0 01 In Fig 46, 1t can be seen that the Tatter method compares
well with the experiment Plots of steady pressure distributions for four span stations obtained by the
mod1fied transformation and the experiment are given 1n Fig 47 Comparisons are generally good at all
span stations

Figure 48 shows the modal motion used 1n the NLR experiment The wing 1s pitching about an axis
located at the 50% root chord, and the pitching axis 1s normal to the wing root Figure 49 shows plots of
the real and 1maginary values of the upper-surface pressures at four span stations obtained by the modified
shearing transformation and the NLR experiments at M =09 These results were obtained for the wing
oscillating at a frequency of 40 Hz

The same modal motion used 1n the NLR experiment was simulated in the code Results from the code
were obtained by forcing the wing to undergo a sinusoidal modal motion for three cycles with 1200 time-steps
per cycle, during which time the transients disappeared and a periodic response was obtained Because of
the instabilities encountered during the steady calculations, no attempt was made to use the conventional
shearing transformation
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3 4 Effects of Viscosity and Modes

Analysis- In the final study (Ref 44), ATRAN3S was used to examine the effects of viscous corrections
on the aerodynamics about wings and the effects of including higher structural modes 1n addition to the
fundamental bending and torsion modes 1n transonic aeroelastic analyses  Two wings were studied, a rec-
tangular wing, with a NACA 64A010 airfo1) section, and a swept wing, with an MBB-A3 supercritical airfoil
section  Viscous effects on both wings were analyzed by employing the viscous-wedge and lag-entrainment
methods  Aeroelastic analyses were performed and the effects of including the first two bending and tor-
sion modes 1n the analysis were determined Results from this work show that the i1nclusion of viscous
effects 1ncreases the flutter speed for the two wings studied For the rectangular wing, the fundamental
modes were sufficient to determine the flutter speed, but the second torston mode was required for an
accurate aeroelastic analysis of the swept wing

Viscosity can play an 1mportant role 1n both the aerodynamic and aerocelastic characteristics of wings,
as 1ndicated 1n Ref 34, where the two-dimensional code, LTRAN2 (viscous) was used to study airfoils In
transonic flow, viscous effects can alter the shock location and strength  These changes in the pressure
distribution along the chord will also influence the aeroelastic characteristics of the wing The ATRAN3S
code was modified to 1nclude the effects of flow viscosity (Ref 471) Two models are used to account for
the viscous effects 1n ATRAN3S The viscous wedge 15 an empirical method and the lag-entrainment nethod
1s based on a set of integral boundary-layer equations These methods are the same as those first incor-
porated 1nto LTRAN2 (viscous) (Refs 28 and 41) The same viscous equations used 1n two dimensions are
applied stripwise along the span to yileld a three-dimensional correction

This viscous-wedge method 1s two dimensional and 1s applied to the wing at each spanwise coordinate
Deta1ls of the computations can be found 1n Ref 44 A two-dimensional shock profile was used to deter-
mine the placement of the wedge 1n this study, as opposed to the three-dimensional shock profile discussed
in Ref 41 This change was made to help reduce oscillations in the pressures obtained when using the
viscous methods

Solutions obtained using the original viscous corrections contained high-frequency oscillations 1n
the unsteady air loads An investigation 1nto this problem determined that the shock sweep angles computed
for the viscous-wedge corrections did not change smoothly across the span, but i1nstead jittered 1n some
span regions, as well as with time-step, at some span locations Also, 1t was determined that the use of
these shock sweep angles to determine the shock location was not consistent with the method of locating
the shock wave for use 1n the type-dependent differencing that 1s used 1n the 1nviscid calculations To
correct this 1nconsistency, the shock location at each span station was determined by only using flow-field
values along that span station This new method of determining the shock location was then used to place
the viscous wedge on that span section  As shown 1n Ref 44, large fluctuations 1n the pressure profile
at the shock location were eliminated when the new method was used

For some calculations, the wedge model alone 1s sufficient for accurate determination of the unsteady
viscous pressure distributions  For other calculations, however, a more exact analysi1s 1S required to
model the viscous effects To do this, the wedge correction 1s used along with a set of i1ntegral boundary-
layer equations, the lag-entrainment equations, to perform viscous calculations downstream of the shock
wave, 1ncluding the downstream wake In this method 1t 1s assumed that viscous regions are small relative
to the wing or wake thickness Details of the two methods are given 1n Refs 28, 34, and 41

In this study, the aeroelastic equations of motion for a cantilever wing were formulated using an
assumed mode method (Refs 46 and 51) The superposition of the bending and torsion natural modes was
used to describe the deflection shape of the wing at flutter It was assumed that the amplitude of oscil-
lation was small, this was done so that the transonic aerodynamics from each mode of motion could be super-
posed (Ref 23) For detai1ls on the aeroelastic equations of motion, see Ref 44

A three-dimensional U-g type flutter analysis was used to obtain the flutter boundaries In this
study, the first two bending and torsion modes were chosen to describe the motion of the low-aspect-ratio,
rectangular, centilever wing Previous studies have shown that the fundamental modes are sufficient to
determine the flutter speed of a rectangular wing in subsonic flow For comparison, the first two bending
and torsion modes were also used for the swept wing

The generation of the aerodynamic data was performed separately from the aeroelastic analysis  First,
ATRAN3S was used to generate the steady and unsteady aerodynamic data by prescribing the wing motion
These data were then 1nput i1nto the aeroelastic equations of motion to solve for the flutter speed The
unsteady solutions were obtained by forcing the wing to oscillate sinusoidally as the aerodynamic equation
of motion was i1ntegrated 1n time To obtain a steady solution, the amplitude of motion was set to zero
The unsteady viscous calculations were restarted from corresponding steady-state solutions For unsteady
calculations, three cycles of motion were sufficient for the transients to die out and for a periodic solu-
tion to be obtained For most inviscid calculations, 360 time-steps per cycle were used Viscous calcula-
tions typically required 720 time-steps per cycle for the wedge calculations and 2160 time-steps per cycle
for the lag-entrainment calculations Unsteady aerodynamic coefficients, based on the third cycle, were
used to compute flutter boundaries for inviscid and viscous calculations For the rectangular wing,
unsteady calculations were made for four modes at four different Mach numbers and from three to six reduced
frequencies for each Mach number Also the inviscid and the two viscous methods were considered Only
lTimted results were computed for the swept wing

Results Rectangular wing with NACA 64A010 ai1rfo1l- One of the two wings considered in this study
was the AGARD rectangular wing with an aspect ratio of 4 and a NACA 64A010 airfoil cross section Aero-
dynamic and flutter results were computed for the rectangular wing at M = 0 8 and at zero angle of
attack, which 1s one of the AGARD suggested flow conditions (Ref 52) In addition, calculations for the
same wing were made at M =070, M = 085, and M =0 90 to determine the effects of Mach number on
three-dimensional aeroelastic calculations First, steady-state pressure distributions were obtained for
the 1nviscid, wedge, and lag-entrainment methods The steady wedge calculations were restarted from the
steady 1nviscid solution, and the steady lag-entrainment calculations were restarted from the steady wedge
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solution  Figure 50 shows the steady pressure profiles for the inviscid flow at M = 0 85 Figure 51
shows the steady pressure distribution for the three methods at the 60°, semispan station and at three

Mach numbers  The code diverged when the lag-entrainment method was used at M = 0 90, so no results were
obtained for those conditions  The forward displacement of the shock and reduction in strength are char-
acteristic of viscous flow These trends are consistent with those shown 1n two dimensions for the same
airfo1l It can be seen that the lag-entrainment method shows no deviation from the wedge for this par-
ticular wing

The first and second bending and first and second torsion natural modes were selected to accurately
model the motion of the wing to obtain unsteady aerodynamic coefficients Calculations were made at
reduced fregquencies, based on full chord, from 0 1 to 0 6 The maximum deflections were 3 44° for the
torsion modes and 10, of the chord for the bending modes The wing was constrained to pitch about the
midchord Figure 52 shows the magnitude of the unsteady local 11ft coefficient and the corresponding
phase angle versus span for the rectangular wing at three Mach numbers Results are shown for 1nviscid
and for both the wedge and Tag-entrainment viscous correction methods for the first torsion mode at a
reduced frequency of 0 4 As expected from two-dimensional studies (Ref 34), the 11ft coefficients
ocbtained by the viscous methods are lower than those calculated using the 1nviscid method, however, the
magnitude of the 11ft using the wedge correction shows 1ittle change over the 1nviscid method The phase
angles show a significant change for both viscous methods

As mentioned earlier, the flutter boundaries were determined using a three-dimensional U-g method
0f primary 1nterest in thi1s study were the aeroelastic characteristics of the rectangular wing related to
the effects of the structural modes and flow viscosity  Four combinations of the first two pure bending
and torsion modes were considered First, only the first bending and first torsion modes were included
Then the second modes of each type were added individually Finally, all four modes, namely, first bend-
1ng, second bending, first torsion, and second torsion, were all included in the solution For the modal
analysis, the wing was configured so that the elastic axis and center of mass were located at 45% and 60%
of the chord, respectively, aft of the leading edge A1l other aercelastic parameters were set to repre-
sent a typical wing For the rectangular wing, the first bending and torsion modes were sufficient to
determine the flutter speed (Ref 44) The flutter frequency 1n all cases 1s very close to the first
bending frequency, which explains the dominance of the first bending mode Figure 53 shows the deflection
of the wing at flutter It closely resembles the first bending mode Many of the aeroelastic parameters
were varied to see 1f any effect of the higher modes could be obtained, Tittle to no effect was seen
Only when very unrealistic values were used was any significant effect of modes noticed At all Mach
numbers, the first bending and torsion modes are all that are required for an aeroelastic analysis of a
small-aspect-ratio, unswept, rectangular wing 1n subsonic or transonic flow

The effect of flow viscosity 1s an tmportant factor to consider when computing the flutter boundaries
of a wing 1n transonic flow Viscosity can have a noticeable effect on the aerodynamic forces acting on
the wing and, hence, on the flutter boundaries Viscous calculations were made at three Mach numbers,
M=080,M=085, and M =090 For each Mach number, aerodynamic coefficients were calculated over a
range of reduced frequencies from 0 1 to O 6 and for the same four structural modes discussed earlier
The wedge and lag-entrainment viscous methods were used At M = 0 85, the flow was transonic and the
shock was well defined The 11ft coefficients calculated with viscous corrections included were slightly
beTow the 1nviscid calculations This 1s the trend that was anticipated because i1t corresponds to trends
shown for two-dimensional airfoils This small reduction 1n force, coupled with significant changes 1n the
phase angles, contributes to the higher flutter speeds shown for the viscous methods 1n Fig 54 (Ref 44)
A well-defined transonic dip can be seen in Fig 54, with the lowest flutter speed occurring between
M=085 and M =0 90

Inclusion of the viscous corrections resulted in about a 10% i1ncrease in flutter speed The 1increase
1n flutter speed 1s a direct result of the viscous corrections causing a reduction in the magnitude of the
11ft coefficient A higher flutter speed does not always follow from a reduction in magnitude of the 11ft
because the change 1n phase angle must also be considered when one 1s trying to anticipate flutter trends
The wedge correction required 1i1ttle more computational effort than the 1nviscid method, but yielded an
increase in flutter speed, as 1s depicted 1n F1ig 54 The lag-entrainment method on the other hand,
required 6 to 8 times the computing time to obtain a converged, stabili1zed solution The results obtained
using the lag-entrainment method were about the same as the wedge correction provided It 1s noted that
the wedge calculations were performed at 720 time-steps per cycle, and the lag-entrainment calculations
were performed at 2160 time-steps per cycle Both of these are substantially less than were used 1n the
earlier two-dimensional calculations reported i1n Ref 34

Results  Swept wing with MBB-A3 airfoi1l- This swept wing with an MBB-A3 ai1rfoil section was chosen
to represent a typical transport-type wing It has a full-span aspect ratio of 8, a taper ratio of 0 4, a
leading-edge sweep angle of 25°, and an MBB-A3 supercritical airfoil section Because of the complex geom-
etry, the computing time required per case was twice that required for similar calculations on the rectangu-
lar wing  Aerodynamic and flutter calculations were made inviscidly, as well as by using the wedge and
Tag-entrainment viscous corrections at a Mach number of M =0 85 As was done for the rectangular wing,
steady-state data were computed, and then the unsteady runs were restarted from the corresponding steady-
state data files

The first bending, first torsion, second bending, and second torsion modes were incorporated into the
flutter analysis of the swept wing (F1g 55) Again, the deflections of the wing were computed for each
mode at 507 wing Tocations to describe the deflection shapes i1n the transonic code It can be seen that
the modes, despite the sweep and taper, are very similar to the corresponding modes for a cantilever beam
To obtain a converged 1nviscii solution, 720 time-steps per cycle were required, 1440 and 2880 time-steps
per cycle were required for the viscous wedge and lag-entrainment methods, respectively Calculations were
made at k =04, 05, 06, and 0 7 for all three methods

Figure 56 shows the 1nviscid steady-pressure distribution across the swept wing for M = 0 85 The
steady pressure across the chord, at the 60% semispan location, 1s shown 1n Fig 57 for all three methods
and for both the upper and lower surfaces The viscous wedge shows a shock which has moved forward of the
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1nviscid shock and 15 much weaker The lag-entrainment correction causes the shock to move still farther
forward For this wing and airfo1l section, the lag-entrainment method does show a significant change
from the viscous wedge method

Flutter calculations were performed on this wing at M = 0 85, the results are shown 1n Table 2
Here again, the primary modes dominate the flutter solution For this wing, however, the second torsion
mode does cause a noticeable change 1n the flutter speed When the second bending mode was added to the
primary modes, only an insignificant change 1n the flutter speed was noted, but when the second torsion
mode was added, the flutter speed decreased by about 5% It was expected that the torsion modes would
play an important role 1n this analysis because of the sweep of the wing The first two torsion modes can
be seen along with the first bending mode in Fig 58

4 CONCLUDING REMARKS

Two computer codes, ATRAN2 and ATRAN3S, were used to compute unsteady transonic flows about airfoils
and wings, and the results were compared with experimental data Both codes solve the unsteady, transonic
small-disturbance equation 1n conservative form, and viscous corrections are made through the use of
elther the viscous wedge or lag-entrainment methods The ATRANZ code computes two-dimensional flows about
airforls, and ATRAN3 computes three-dimensional flows about wings

The comparisons with experimental data showed good agreement, 1n general, and included several of the
test cases from the AGARD Standard Aeroelastic Configurations For some cases, aeroelastic calculations
were made, and the transonic dip in the flutter boundary was demonstrated For the transport-type wing,
expermmental flutter data were available, and the calculated results were in good agreement with them
For some airfoi1l cases, including the NACA 0012 airfo1l, during the airfoil motion there were large varia-
tions 1n the location and strength of the shock waves These cases demonstrated the need for codes to
solve the governing equations 1n conservation form 1n order to accurately simulate the unsteady flow

Several improvements in the algorithms were described, 1ncluding improvements for high-frequency
accuracy, numerical stability, and second-order spatial differencing accuracy for ATRANZ, the grids for
fighter-type wings and viscous-inviscid algorithm interactions for stability for ATRAN3S were also improved

These calculations demonstrate that ATRAN2 and ATRAN3S are ready for use by aerodynamicists and aero-
elasticians 1n practical applications 1nvolving unsteady transonic flows for which the limitations of small-
disturbance theory are valid
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Table 1 Comparisons of flutter speed and corresponding reduced frequency between
LTRAN3 and experiment

THICKNESS DENSITY REDUCED FREQUENCY  FLUTTER SPEED
RATIO RATIO wef/U U/bw,
CASE MA4CH NO % m/mpb? LTRAN3 EXPT LTRAN3 EXPT
1 0715 6 3672 0 250 0232 430 383
2 0851 6 58 72 0120 0162 560 455
3 0913 6 74 65 0045 0122 880 494
4 0904 4 7517 0085 0138 660 370

Table 2 Flutter speeds for various modal

combinations

swept wing, M = 0 85

MODES

INVISCID WEDGE

LAG
ENTRAINMENT

FIRST BENDING

FIRST TORSION 21237 28507 2 2066
FIRST AND SECOND
BENDING 21240 2 8504 22057
FIRST TORSION
FIRST BENDING
FIRST AND SECOND 20666 29511 21856
TORSION
FIRST AND SECOND
BENDING
FIRST AND SECOND 20670 29502 21850
TORSION
10 M., = 080
[l °
T kt = 75
| —— LTRAN2 MG
6 — —LTRAN2
C, -4
-2
}l 1 kt=213° M_=0854 — 2ND ORDER
o TV - ::‘jc;?m= 0358 ——— 1ST ORDER
| f 8}
2 -
(a) _6
{ i t 1 r
4 e
_4F \
10 bt = 96 \ c*
LTRAN2 DIVERGED _a} P
-8
-6 CP 0
Cp- 8 2
OSCILLATING FLAP
-2 iF ———
C:ﬁ\) 8 =64 sinlkt)
6 =1°
0 x=075 %171
2 8
4 () L L 1 1 ] 10 J - - - 1 1
0 2 4 6 8 10 0 2 4 6 8 10
X X
Fig 1 Comparison of algorithms using the mono- Fig 2 Comparison of first- and second-order methods

tone Godunov switch LTRANZ2-MG and nonmonotone
switch LTRAN2, plots of upper-surface pressure
coefficients of a NACA 64A010 airfo1l {(experi-

mental mo
M, = 0 80

del ordinates) in pitching motion

for unsteady flow about a NACA 64A006 airfo1l with
oscillating trailing-edge flap, type-B shock-wave
motion, 1nstantaneous pressure-coefficient plots for
upper surface kt = 213°
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Cp = b4 Cp sin{kt - o) —— 2ND ORDER —~— 1ST ORDER
hp=1 kdt=3° CLi=330 Cpt=331
_ _ oy =50° oL = 49°
M_=0854 k =0358 Cp - 105 Cam =108 @ PRESENT RESULTS (REF 25)
om=-177 oM = -180° O BASIC LTRAN2 (REF 8)
A LTRAN2 HI (REF 24)
—— LINEAR THEQRY
PITCHING MOMENT
0 Aa DDA
-1k
eyt
S
< -3F
_4F
m]
-5 i 1 1 A 1 F IR |
90 - 3
g -
< oT— 3 2
° 90 AN 921 (]
_ = 475 0
_180 4 1 1 L J
2 4 6 8 10 0 2 4 6 8 1 121416
X REDUCED FREQUENCY
Fig 3 Unsteady upper-surface pressure-coefficient Fig 4 Real and 1maginary components of pitching-

plots (amplitude and phase) of the first harmonic

moment coefficients for an airfoil oscillating 1n

component for the case in Fig 2 pitch M =07, a=0q, sin.ut
NACA 64A010 AIRFOIL
6
= =- = 10
M. = 0796 o, =021 R =126~ NACA 64A010 AIRFOIL
INVISCID My = 0796 a, =-021 R =126 x 108
— — VISCOUS RAMP
- ——— LAG ENTRAINMENT 15 - INVISCID
0, P EXPERIMENT E ~— -— VISCOUS RAMP
‘6" ———— LAG ENTRAINMENT
aT N ®  EXPERIMENT
Pl
= L
3810 Py
ak -
25
w =
o e T—IT
5 1 ) L -~
40
g
© 30+
w
-
2 2
<
w
2
Lo °
a
i 1 1 J
0 1 2 3 4
x/c REDUCED FREQUENCY
Fig 5 Comparison of lower-surface steady- Fig 6 Comparison of plots of 11ft coefficient

pressure distributions, theories and experiment
NACA 64A010 airfotrl, M = 0 796

versus reduced frequency, theories and experiment
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INVISCID
= N —=-— VISCOUS RAMP
g 4 —— =— LAG ENTRAINMENT
wi ) ®  EXPERIMENT
[al™™ ~
ow3 ~ ~
-0Q ~
- 0O ~o
g Z 2 * o -
s
%] ——— ——
4 L
o ———
=,
'S
o [ ®
0 1 1 1 —
210
200
190
g
©
4 180
o
z
¢
W 170
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<
I
2 160
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140 1 1 n .
1 2 3 4
REDUCED FREQUENCY
Fig 7 Comparison of plots of moment coefficient

NACA 64A010 AIRFOIL
M, = 0796 o, =021 R =126 x 108

about leading edge versus reduced frequency,
theories and experiment

REAL PRESSURE COEFFICIENT

14-15

NACA 64A010 AIRFOIL

M, =079 o, =-021 k=0101 R =126 » 10°

o

INVISCID

— — VISCOUS RAMP
LAG ENTRAINMENT
L] EXPERIMENT

-5 n - N i L —_
151’
-
2ok
>5
o U
<u.
z25 sl
Qo
u
S
"2
@ 0
w
R
a
S S R N R . . )
0 1 2 3 4 5 6 7 8 9 10
x/c
Fig 8 Real and 1maginary parts of first Fourier

component of unsteady lower-surface pressure coeffi-

cients

k = 0 101
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NACA 64A010 AIRFOIL
M, = 0.796, o, = -0.21°, k = 0.404, R = 12.6 X 108

~——— |NVISCID
—-— VISCOUS RAMP
~=—— LAG-ENTRAINMENT

NACA 64A010 AIRFOIL
M., = 0.796, a, = -0.21°, R = 12.6 X 108

20 - o EXPERIMENT 1M
10 wy
w
ol o
o gl % -
| B Xo =
& i
o« & 7r
o
e
Eer
=) , .
g R —.— VISCOUS RAMP
-5 . L . L L L L . N 7’ "..' ———~ LAG-ENTRAINMENT
15 4} +vesss EXPERIMENT AERO.
. COEFFICIENT
3 1 i 1 1 |
a 10
o 52r
z g
< =)
z a
o] ]
g & ar
- o
L
3]
)
)
E 1 I i 1 J
. . 0 50 100 150 200 250
x/c AIRFOIL-AIR MASS DENSITY RATIO
Fig. 9. Real and imaginary parts of first Fourijer Fig. 10. Comparison of flutter speeds, theories and
component of unsteady lower-surface pressure experiment.
coefficients: k = 0.404.
MBB-A3 AIRFOIL
M., (THEORY) = 0.75657 INVISCID
M., (EXPERIMENT) = 0,765 — — VISCOUS RAMP
oo (THEORY) =1.3° ———~ LAG-ENTRAINMENT
LOWER SURFACE PRESSURES CYCLE 3 o, (EXPERIMENT) = 15° ¢ EXPERIMENT
NACA 64A010 AIRFOIL 1.95 6
My, = 0.796, oy = -0.21°, k = 0.404, R = 12,6 X 108 ““0r R=6X 10
00 S T UPPER SURFACE
75y ® e TTT e
\\ \
-.50 RN
-.25 = N
2
Cp 0 > - \‘\\ 1
(3 ST \\'
25¢ LOWER
.50 SURFACE
.75 ¢
1.00§
1.25 I Il 1 1 1 1 i 1 L i
0 1 2 3 4 5 6 7 8 9 10
x/c
Fig. 11. Time-history of lower-surface pressure Fig. 12. Comparison of upper and Tower surface
coefficients for third cycle of motion: steady-pressure distributions, theories and

NACA 64A010 airfoil, k = 0.404, experiment.
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MBB-A3 AIRFOIL
M, = 0.7557, ap = 1.3°, k = 0.1, R = 6 X 108

INVISCID

wmem = V/ISCOUS RAMP
e LAG-ENTRAINMENT

20
w
.
oz
&» w10
25 NACA 64A006, LOWER SURFACE
Eo M, = 0.853, k = 0.12
O
3
%35 0
w o
o INVISCID
—— -~ VISCOUS (WEDGE)
_10 A 1 _ 1 L 1 1 1. 1 —d
-6 ] EXPERIMENT
30r

IMAGINARY PRESSURE
COEFFICIENT

4 1 . . ) .

-10 0 2 A 6 8 1.0
x/c
Fig. 13. Real and imaginary parts of first Fig. 14. Comparison of Tower-surface steady-pressure
Fourier component of unsteady upper-surface distributions, theories and experiment: NACA 64A006,
pressure coefficients: k = 0.1. M = 0,853,

NACA 64A006, LOWER SURFACE
M, = 0.853, k = 0.12

——— INVISCID
———— VISCOUS (WEDGE)

o EXPERIMENT
LOWER SURFACE PRESSURES CYCLE 3

NACA 64A006 AIRFOIL
M, = 0.853, k = 0.12

e

IMAGINARY C_

Fig. 15. Real and imaginary parts of first Fig. 16, Time-history of Tower-surface pressure
Fourier component of unsteady lower-surface coefficients for third cycle of motion: NACA 64A006
pressure coefficients: k = 0.12. airfoil, k = 0.12.
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NACA 64A006, LOWER SURFACE
M = 0.877, k = 0.118

INVISCID

——-~— VISCOUS (WEDGE)
o  EXPERIMENT

Fig. 17. Comparison of lower-surface steady
pressure distributions, theories and experiment:
NACA 64A006, M = 0.877.

LOWER SURFACE PRESSURES CYCLE 3

NACA 64A006 AIRFOIL
M., = 0.877, k = 0.118

Fig. 19.

Time-history of lower-surface pressure
coefficients for the third cycle of motion:
NACA 64A006 airfoil, k = 0.118, M, = 0.877.

cycle:

NACA 64A006, LOWER SURFACE
Mo, = 0.877, k = 0.118

INVISCID

———- VISCOUS (WEDGE)
o EXPERIMENT

10.0

2.5

REAL Cp

-5.0 . . . —

P
-
=)

IMAGINARY C
o1

x/c

Fig. 18. Real and imaginary parts of first Fourier
component of unsteady Tower-surface pressure coeffi-

cients: NACA 64A006, k = 0.118,
NACA 64A006 AIRFOIL
M., = 0.877, k = 0.118
CYCLE 3
HARMONIC
— 0 THROUGH 4th
-—= 0 PLUS 1st
o5 ¢ *  ACTUAL
Cy , ' R
gt cr
.25 | | L " L | : | )
720 760 800 840 880 920 960 1000 1040 1080
TIME, deg
Fig. 20. Lift-coefficient variation during third

NACA 64A006 airfoil, k = 0.118, M, = 0.877.
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LOWER SHOCK STRENGTH vs TIME

LOWER SHOCK POSITION vs TIME CYCLE 3
NACA 64A006 AIRFOIL HARMONIC
M, =0877, k = 0118 —— 0 THROUGH 4th
CYCLE 3 -~— 0 PLUS 1st
HARMONIC »  ACTUAL
—— 0 THROUGH 4th
-—- 0 PLUS 1st W
»  ACTUAL ag
z 8 L
3] =] Ak
<= 7 [+ 4 «
&g w X
=3 23
29 6 9z
Cy | @
w Q 5 i R, —
20
3 I
“ 0 1 i 1 L U - O 0 : ) , |
720 760 800 840 880 920 960 1000 1040 1080 720 760 800 840 880 920 960 1000 1040 1080
TIME, deg TIME, deg
Fig 21 Lower-shock-position variation during Fig 22 Lower-shock-strength variation during third
third cycle  NACA 64A006 airfoil, k = 0 118, cycle  NACA 64A006 airfoi1l, k = 0 118, M, = 0 877
M, = 0 877
NACA 64A006 LOWER SURFACE
M, = 0879, k = 0468
INVISCID
———— VISCOUS (WEDGE)
100 [ o EXPERIMENT
o 25
O
-
<
&
NACA 64A006, LOWER SURFACE
M_ = 0879 k = 0468
INVISCID
———— VISCOUS (WEDGE)
-6 o EXPERIMENT
= 15
//O/ \
-4} N \
- C o \\ un 10
—2t SN >
c ° > z
p Q g
Q 2 5
of R o
Lo <
o =
-0
2
4 . . S -5
0 2 4 6 8 10

Fig 23 Comparison of lower-surface steady pres- Fig 24 Real and imaginary parts of the first
sure distributions, theories and experiment Fourier component of unsteady lower-surface pressure
NACA 64A006 airforl, M = 0 879 coefficients  NACA 64R006, k = 0.468
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NACA 0012, UPPER SURFACE
My = 0.755, opyy = 0.016, k = 0.1628, ¢, = 2.51

LOWER SURFACE PRESSURES CYCLE 3 -8
NACA 64A006 AIRFOIL INVISCID
M,, = 0.879, k = 0.468 Y —— —— VISCOUS (WEDGE)
-4
-27F
Cp
0
2+
4 H
6 . L 1 1 ) L 1 . . )
0 2 4 6 .8 1.0
x/c
Fig. 25. Time-history of Tower-surface pressure Fig. 26. Upper-surface steady pressure distributions:
coefficients for the third cycle of motion: NACA 0012, M = 0,755.

NACA 64A006 airfoil, k = 0.468, M, = 0.879.
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NACA 0012 ——  INVISCID
My, = 0755 oy = « (THEORY) - VISCOUS (WEDGE)
aym = 0016 ap = a (EXPERIMENT) EXPERIMENT

o UPPER SURFACE
o LOWER SURFACE

o = 237

=234

Fig 27 Comparisons of unsteady pressure coefficients during a cycle of motion, theories and experiment
NACA 0012, M_ = 0 755, k = 0 1628
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UPPER SURFACE PRESSURES CYCLE 3

NACA 0012 AIRFOIL
Mo, = 0.755, k = 0.1628, «, = 2.51, oy, = 0.016

Fig. 28. Time-history of upper-surface pressure
coefficients for the third cycle of motion:
NACA 0012, M, = 0.755, k = 0.1628.

NACA 0012 AIRFOIL
M, = 0.755, o, = 2,61, k = 0.1628, o, = 0.016

CYCLE 3
HARMONIC
05 - —— 0 THROUGH 4th
’ ---- 0 PLUS 1st
*»  ACTUAL
e S
cm 0 S ';;}‘;é: ' T T 1
r\;—‘%/
".05 1 1 1 1 1 i 1 L J
720 760 800 840 880 920 960 1000 1040 108
TIME, deg
Fig. 30. Quarter-chord moment-coefficient varia-

tion during the third cycle: NACA 0012,

Mo = 0.755, k = 0.1628.

NACA 0012 AIRFOIL
M,, = 0.755, ay = 2.51, k = 0.1628, o, = 0.016
CYCLE 3
HARMONIC
— 0 THROUGH 4th
--- 0 PLUS 1st
ACTUAL

.50

»*

.25

~25

~.50 . ) L . . . : )
720 760 800 840 880 920 960 1000 1040 1080
TIME, deg
Fig. 29. Lift-coefficient variation during third
cycle: NACA 0012, M, = 0.755, k = 0.1628.

NACA 0012 AIRFOIL
M, = 0.758, o, = 2.51, k = 0.1628, o, = 0.016

CYCLE 3
HARMONIC

— 0 THROUGH 4th
--= 0 PLUS 2nd
»  ACTUAL

.02

~.01 : . . : A . A ;
720 760 800 840 880 920 960 1000 1040 1080

TIME, deg

Fig. 31. Drag coefficient during third cycle:
NACA 0012, M, = 0.755, k = 0.1628.



UPPER SHOCK POSITION vs TIME
NACA 0012 AIRFOIL
M., = 0755, o, = 251, k = 01628, o, = 0016
CYCLE 3

HARMONIC
— 0 THROUGH 4th
-—- 0 PLUS 1st
®  ACTUAL

UPPER SURFACE SHOCK LOCATION

— L i

720 760 800 840

880 920 960 1008 1040 1080
TIME, deg

F1g 32 Upper-surface shock-position variation
NACA 0012, M, = 0 755, k = 0 1628

FLOW
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POSITION OF
ELASTIC AXIS

POSITION OF
MASS CENTER
h

POSITION OF
ELASTIC AXIS

LEADING
EDGE

SECTIONA A

F1ig 34 Definition of aeroelastic parameters for
a cantilever wing

10

UPPER SURFACE SHOCK STRENGTH

720 760 800 840 880 920 960 1000 1040

Fig 33
NACA 001

UPPER AND LOWER SURFACE STEADY PRESSURE

Fig 35

14-23

UPPER SHOCK STRENGTH vs TIME
NACA 0012 AIRFOIL
M., = 0755, o, = 251, k = 01628, o, = 0016

CYCLE 3
HARMONIC
. — 0 THROUGH 4th
( -—- 0 PLUS 15t
% ACTUAL
\\
Yt {
\\ /,/
A ’
\\ __//

1080
TIME, deg

Upper-surface shock-strength variation
2, M, = 0755, k =0 1628

5% THICK CIRCULAR ARC WING
ASPECT RATIO=30
M=09
— LTRAN3
O UPPER SURFACE
O LOWER SURFACE

o g o

E-3

} EXPERIMENT

90% SEMI SPAN STATION
g

Comparison of steady pressure coefficients
LTRAN3 and experiment
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5% THICK CIRCULAR ARC WING
ASPECT RATIO = 30, K, =026 M_=09

70% SEMI SPAN STATION

— LTRAN3 —LTRAN3
— LINEAR THEORY — — NASTRAN
r A EXPERIMENT
O EXPERIMENT | RUN 6 6% THICK CIRCULAR ARC WING
— 8T O  EXPERIMENT Il RUN ASPECT RATIO = 60, M,, = 0715
]
4 2ler -
s g a4t
3 g
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« w
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E [ 1F

300 ar
e
g 5
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& 100 2 2F
« 3]
I =)
a o
T
1 1 Il 1 J 1 /| 1 1 1 1 A
o 2 a4 6 8 10 20 30 40 50 60
xle WING — AIR MASS DENSITY RATIO m
7rpb2
Fig 36 Comparison of magnmitude and correspond- Fig 37 Comparison of flutter speed and corresponding
1ng phase angle of pressure jumps among results reduced frequency results obtained by LTRAN3, experi-

obtained by LTRAN3  experiment and linear theory ment, and NASTRAN for case 1

NACA 65A012

/—\
QX AN AN ANV SN
———— VA3 i A

BALSA wOOD

18 mm MAGNESIUM PLATE

XTRAN3S

NACA 65A012

i

AR =8 -2
TR=04
4 !
G
28 mm 0
196 mm | I
i 1l
Fig 38 Code correlation model of Japanese F1g 39. Steady-state initial conditions for

transport wing Japanese transport wing M_ =0 85
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Fig 41  XTRAN3S flutter boundary for the Japanese Fig. 42.

transport wing
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FIRST BENDING MODE

DOUBLET LATTICE
XTRAN3S

LEADING EDGE MOMENT COEFFICIENTS

-20

Cp - 08

Modal aerodynamics for the Japanese transport wing
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Sheared coordinate system ¢,n,z used for
nd tapered wings
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F5 WING PLANFORM
AR = 2.98, TR = 0.31

C,=0.6396 m

PITCH AXIS
{50% C,)

|
|
|

FAIRING (0.0250 m)

Fig. 43. Dimensions of the F-5 wing.

MODIFIED SHEARING TRANSFORMATION

FLOW[}EH

Fig. 45, Physical grid (64 x 20) in x-y plane

by the modified shearing transformation.

CONVENTIONAL SHEARING TRANSFORMATION

TIP SPAN
STATION

FLow [)

X

Fig. 44. Physical grid (64 x 20) in x-y plane from
the conventional shearing transformation.

F5 WING (CLEAN), M= 0.90, « = 0°

1L 50% SEMISPAN
’ O UPPER SURFACE ]NLR

STEADY PRESSURE COEFFICIENT

{1 LOWER SURFACE | EXPERIMENT
ATRANSS, AT = 0.01
2k NEW TRANSFORMATION

2000 TIME STEPS
— — — XTRAN3S, AT = 0.001

4000 TIME STEPS

i 1 I 1 i

'30 .2 .4 6 .8 1.0
x/c

Fig. 46. Effect of transformation on steady pressures
at M= 0.90.
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5 WING STEADY C,
PER
AR =2.98 boup ‘ NLR EXPERIMENT
TR =0.31 A LOWER
M., = 0.90 UPPER l ATRAN3S
« =0 ——— LOWER
ey
Cp
.6~ | STEADY
A | 85% SEMISPAN . )
4 1
Gy
FSWING: AR =298 TR=031, LESWEEP=32°
..'6 —
A 0% 1 1 L I

Cp

-6
50%
i 1 1 3
cp A\A. ”K/
0 T
20%
6 1 .Y L J
0 2 4 6 8 1.0

x/c

Fig. 47. Comparison of steady pressures, theory Fig. 48. Unsteady modal motion of the F-5 wing.
and experiment: M = 0.90.
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F5 WING
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TR =031

M., = 090
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A {MAGINARY

] ATRAN 38

} NLR EXPERIMENT
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Fig 50 Rectangular wing steady pressure distribu-
tions M =085



14-29

-8
-4t

CP

0 "

4

M =090
) I 1 1 1 1 3 1 N
INVISCID
- WEDGE

—=——= LAG ENTRAINMENT

FIRST TORSION MODE
60% SEMISPAN STATION

5 M=090
4 w 50
§4o
2 2 ;g
w
% 1 210
5 0 o
E =
t 5 M=085
8 ar 5 50
=3t o 40
Saf <Zt 30
E w 20
5 1 210
wo To
[’z
Z
S5
4 [
INVISCID N 3
al WEDGE 2
M =080 —==- LAG ENTRAINMENT 1 2
FE L T | 1 Il ] L I
0 2 4 6 8 10 0 “ 0 4 8 121620
CHORD LENGTH
Fig 51 Rectangular wing steady pressure shown F1g 52 Magnitude of unsteady 11ft and corresponding
g
for three Mach numbers and the inviscid and vis- phase angle versus span for the 1nviscid and viscous
cous methods at 60% semispan station and o =0 methods
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Fig 53 The shape of the rectangular wing at Fig 54 Effect of Mach number and viscosity on
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Fig 56 Swept-wing steady-pressure distributions

Fig 57

Swept-wing steady pressure for the inviscid
and viscous methods 60% semispan, o =
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Fig 58 Shape of the swept wing at flutter 1s composed of the first bending and the first and second
torsion modes
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