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Introduction

The purpose of this study is to examine the potential benefits and

costs of optimizing both the structural stiffness and the active control

of aircraft in a rational manner. The ultimate goal of this effort is

to arrive at a unified treatment of structural and active control design

for the stability augmentation of flexible aircraft.

Three separate efforts have taken place during the past six months

of effort. The first effort is an exhaustive literature evaluation in

the area of passive tailoring for aircraft performance. During this

effort, several valuable and previously unrecognized tailoring studies

were uncovered. This survey was combined w~th similar work by Mssrs.

M.H. Shirk and T.J. Hertz of the Air Force Wright Aeronautical Labora-

tories to produce a paper presented at the 25th AIAA Structures, Struc-

tural Dynamics and Materials Conference in Palm Springs, California in

May 1984.

The second effort involved the identification of a mathematical

technique to be used for aeroservoelastic tailoring studies. A promising

candidate method has been identified and is described in the following

section.

Finally, two analytical models, one elementary, the other sophisti-

cated, have been developed to illustrate the potential for aeroservo-

elastic tailoring. Both models have essential features of "real-world"

hardware, yet the physical understanding is not buried in a myriad of

detail. These models are also described in the next section.
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The Use of Structural Gains as Design Parameters

There are two major obstacles to simultaneous treatment of the struc-

tural stiffness design optimization problem and the active controls

problem. The first difficulty arises because of the dissimilarity of

design variables in the two problems. This difficulty has been overcome,

at least at the elementary level, by the selection of a characteristic

set of nondimensional parameters for beam-like and plate-like structures.

The state space model of an aeroelastic system can be written as:

	

x = Ax +	 Bu	 (1)

	

y = Cx	 (2)

with x as the n-dimensional state vector, u is an m-dimensional control

vector and y is the output vector, while A,B and C are constant coeffi-

cient matrices. If a linear, full-state feedback control law exists, of

the form,

	

u = -Gx	 (3)

then the modified system equations are:

z = (A-BG)x	 (4)

On the other hand, the equations for a structural system with passive

control may be written as:

z = Ax - ',Ax	 (5)

where ^ is a nondimensional parameter related to stiffness cross-coupling

provided by structural tailoring and A is a muc'ification to the A matrix

provided by changes in the stiffness matrix.
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Equation 5 resembles Eqn. 6 in that

*Ax - BGx
	

(6)

If there are several variables, 0 i , corresponding to tailored bays of a

wing for instance, Eqn. 6 becomes

jo i A i x = BGx	(7)

Theoretically, one should be able to construct a structural modification

in terms of * i Ai to furnish the same equivalent (in terms of eigenvalues)

system as the actively controlled system. A major problem arises, however,

because the elements of A are not free parameters while the elements of

G are. Thus, standard optimal control procedures (for instance, pole

placement) do not have an obvious adaptation. Attempts at such adaptations

over the past six months have not proved productive.

Fortunately, a methid developed by Newson and Gilbert offers at

least a preliminary approach to the simultaneous design problem. If

the cross-coupling parameter ^ is treated as a design parameter that is

held fixed during the control design, its effect on the control system

performance can be assessed by employing optimal sensitivity techniques.

With this technique, a cost functional, J, is minimized to obtain the

"optimal" control law for the system. The parameter 4, is then treated

as a design variable so that the change in J with respect to ^ can be

computed usirg an adaptation of the Newson/Gilbert approach. This

adaptation is described in the Appendix to this report. In addition,

the sensitivity of other aspects of the control law design to * may

be assessed.

3
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An Elementary Model for Aeroservoelastic Optimization

To study the problem of aeroservoelastic optimization, one may begin

either at an advanced or an elementary level. The operative term would be

"state-of-the-art." Reviews of the literature and past experience have

convinced us that a first look at aeroservoelastic optimization (ASEO) should

begin with an example that is simplistic, but meaningful. The model chosen

is shown in Figure 1. This model consists of a typical section free to

pitch and plunge as a rigid body. The design variable * is, in this case,

equal to e/b. The dimension e/b measures the distance between the static

aerodynamic center at the quarter-chord and the plunge spring position on

the airfoil. For a fixed ratio R = K a/Kh and with the airfoil c.g. position

fixed, the divergence speed of the fixed root airfoil declines with increas-

ing e/b. On the other hand, the flutter speed increases with increasing

e/b. This provides a design trade-off situation for which an optimum value

of e/b exists to maximize the aeroelastic stability of the system.

:f the airfoil is attached to a fuselage element that is, in turn, free

to pitch and plunge, the situation becomes more interesting because the

value of a now determines the attitude stability of the aircraft and values

of a that maximize the stability of the fuselage/wing combination may differ

significantly from those which were found for the wing alone.

The addition of the control surface to the model provides additional

design options. With R fixed the control effectiveness is unchanged by

changes in e/b. Thus any design benefit or degradation is unrelated to

control effectiveness in this idealization.

For fixed values of the system structural and inertial parameters,

an optimal control law may be generated. A sensitivity analysis will then

..	 i
4

i

I

I
i
Irt

I

i

5



-	 °

s

OF POOR QJALii1(

NOW

i

i

^b

I^

11

0f0
W

a
0
CJ

.-r

L

LL

1

6

; I



J
	

,I

be performed to assess the effect of a change in e/b (de/b) on the active

control of the vehicle. From this information, a new value of a will L.:

selected, together with new control parameters. One possible limiting

case of this procedure is that the active control could disappear entirely,

meaning that passive control is sufficient to handle the stability problem.

Ris model has most of the structural dynamic characteristics of an

actual vehicle. The potential for strong rigid body/wing interaction

exists, as does '6he capability of studying the differences between control-

ling the stability of the wing itself (in a fixed fuselage condition) and

the wing/fuselage combination. The most serious limitation of this model

is the limited number of degrees of freedom.

This analytical model does have advantages. It is a valuable learning

tool, uncluttered by a myriad of numbers. Each step of the ASEO procedure

is easily understood and interpreted in light of the substantial amount 	
i

of information available on 2-D sections.

Because of the limitations of the 2-D model, the kU procedure will
t

be exterided to a realistic wing with a structurally tailored span. In

this case the cross-coupling parameter p is the design variable. As

before, the objective will be to improve overall performance in light of

lessons learned with the 2-D model.

k
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Appendix

Optimal Control and Sensitivity Derivatives

for the Redesign Problem

The aeroelastic equations of motion may be written

X = AX + Bu .	 (B.1)

If the control is a linear, measurement feedback control, then

u = GMX	 (B.2)

where,	 M = state measurement matrix (i.e. z = MX)

and	 G = feedback gain matrix.

Then the control-augmented system matrix is

A+ = A + BGM, so	 (B.3a)

X = A+X .	 (6.3b)

The subscript "plus" sign denotes augmentation.

A quadratic cost function, used in linear regulator design, is

(21)

f' (X*C*QCXJ - 	 + u*Ru]dt	 (B.4)
0

where,	 C = output matrix (i.e. y = CX),

Q = output weighting matrix,

and	 " = control weighting matrix

The well known solution for the optimal control that minimizes J,

subject to the constraint, eqn. B.I. is

k
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u	 R -1 B*PX	 (B.5s)

	

or,	 GM - -R-1 B*P	 (B.5b)

where P is the solution to the steady-state matrix Riccati equation,

PA + A*P + C*QC - PBR-1 B*P = 0	 (B.6)

For computation of sensitivity derivatives, it is assumed that the

optimal control, eqn. B.5a, has been determined for a baseline configur-

ation and that the weighting natrices used in this determination, Q and

R, are "frozen" (i.e. insensitive to the design parameters, p i , so that

-BBp - 0, and ap

	

i	 — = 0). Also, the control input matrix, B, is considered
>

to be dependent upon the type and geometry of the control being used, and

not upon the design parameters. So, 
BB 

= 0, also. Since the cost
Bpi

function, defined in eqn. B.4, is what determines the optimality of the

control design, it will also be the measure by which subsequent

redesigns are Judged.

First, the cost function is decomposed into its reg ulation and

control parts,

J = j  + Ju 	(B.7)
Now,

ix = X*SXXo 	 (B.8a)

where S  satisfies

SXA+ + A+Sx + C*QC - 0	 (B.8b)

	

and	 Ju = X*SuXo 	 (B.9a)

fh
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where Su satisfies

Su A
+ + A

+S
u + PBR-1 B*P = 0
	

(B.9b)

x  is the initial condition (time, t, is zero) on the state vector.

The regulation cost sensitivity with respect to p i is found by

differentiating egns. B.8a and B.8b so that

aJ	 as
X Xo 

api 
Xo 	(B.lOa)

B
pi	 i

as
where px satisfies

i

as	 as	 aA	 aA*

apx A+ + A+ apx + (Sx ap i  .L QC 
+ C*Q
 

ac ) 0	 (B. 10b)

	

i	 i	
p	

i	 i

Similarly, the control cost sensitivity can be found from

aJu 
= X* 

aSu 
X	 (B. 11a)

ap i 	 o ap i o

as
where 

api 
satisfies

asu A + A* aSu + (
S a + +

 ?A
+ S + ap BR-1 B*P + PBR-1B* 

aP ) 0

	

ap i +	 + ap i 	 u ap i 	ap i u	 ap i 	api

(B.11b)

Then, in general, any desired change in the costs can be effected within

the theoretical limits of the parameters, p i (and provided there are a

sufficient number. NP, of parameters), as

eJx
NP	 as

	

iI1Xo 
api Xoep i	(B.12n)

J:



A

NP	 DS
and	 eJu s 	

a 
u Xoepi(B.12b)! , X*

 pi

Since only first order derivatives are being used, it would be wise if

the Bp i 's are kept small throughout the redesign iterations.

To complete this derivation, it is necessary to obtain expressions

for ap+ and ep , found in eqns. B.10b and B.11b, which are as yet
i	 i

undetermined. By first different-sting the Riccati equation, eqn. B.6,

and using the definition for A+ , eqn. B.3a, and the solution for GM,

eqn. B.5b, an equation that car be solved for 
ap 

can be obtained, namely,
t

aP A 
+ A*

aP + aC* 
QC 

+ 
C*Q 

aC + P aA + A* P) - 0	 (B._3)
ap. +	 + op.

	 ( .LC*-ap	 ap	 ap	 ap
t	 t	 i	 i	 i	 t

Equation B.13 is similar to one derived in (22) except that the Q, R.

and B matrices are assumed insensitive to p i , and the output matrix, f,

is included explicitly. Note that 
2L 

is known (see sect'ons 2 and 3).

aC
api	 aA+

It is assumed that ap is known.* Then, 
ap 

can be found from
i	 i

aA

aP+ = ap - BR-1B* 
aP	

(B.14)
i	 t	 i

T
The output matrix, C, can either be insensitive (i.e. 2p = 0), or be

i
some other known function of the parameter. For instance, if the output
to be regulated, y = CX, consists of internal structural loads, then
C will resemble some portion of the structural stiffness matrix.
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