Investigation, Development, and Application of Optimal Output Feedback Theory

Volume II—Development of an Optimal Limited State Feedback Outer-Loop Digital Flight Control System for 3-D Terminal Area Operation

John R. Broussard and Nesim Halyo

CONTRACT NASI-15759
AUGUST 1984
Investigation, Development, and Application of Optimal Output Feedback Theory

Volume II—Development of an Optimal Limited State Feedback Outer-Loop Digital Flight Control System for 3-D Terminal Area Operation

John R. Broussard and Nesim Halyo
Information & Control Systems, Incorporated
Hampton, Virginia

Prepared for
Langley Research Center
under Contract NAS1-15759

NASA
National Aeronautics
and Space Administration
Scientific and Technical Information Branch
1984
The investigation described in this report was performed by Information & Control Systems, Incorporated (ICS) under Contract Number NAS1-15759 for the National Aeronautics and Space Administration, Langley Research Center, Hampton, Virginia. This work was sponsored by the Applied Controls Branch of the Flight Control Systems Division. Mr. Richard M. Hueschen served as Technical Representative monitoring this contract. Use of trade names or names of manufacturers in this report does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.
ABSTRACT

This report contains the development of a digital outer-loop three-dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.
TABLE OF CONTENTS

FOREWORD ... iii
ABSTRACT ... iv
LIST OF TABLES vii
LIST OF FIGURES viii

I. INTRODUCTION 1
 A. ORGANIZATION OF THE REPORT 4

II. PLANT MODEL .. 5
 A. AIRCRAFT OPEN-LOOP DYNAMICS 5
 B. GUST MODEL .. 6
 C. ACTUATOR DYNAMICS 7
 D. INNER-LOOP CONTROL SYSTEM 9
 E. OUTER-LOOP COMPLEMENTARY FILTERS 12
 F. DISCRETE REPRESENTATION 13

III. DIGITAL FLIGHT CONTROL SYSTEM 16
 A. OUTER-LOOP TRACKING 16
 B. PROPORTIONAL-INTEGRAL-FILTER CONTROL LAW 17
 C. OPTIMAL OUTPUT FEEDBACK 19
 D. WAYPOINT PATH CONSTRUCTION SUMMARY 22
 E. LONGITUDINAL COMMAND MODEL CONTROL SYSTEM 23
 F. LATERAL COMMAND MODEL CONTROL SYSTEM 25

IV. CONTROL DESIGN AND NONLINEAR SIMULATIONS 29
 A. OUTPUT FEEDBACK AND DESIGN VALUES 30
 B. GAIN SCHEDULING AND CLOSED-LOOP EIGENVALUES 32
 C. ALTITUDE CAPTURE SIMULATION 34
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>D. CAS CAPTURE SIMULATION</td>
<td>35</td>
</tr>
<tr>
<td>E. HORIZONTAL PATH CAPTURE.</td>
<td>35</td>
</tr>
<tr>
<td>F. WIND SHEAR SIMULATION</td>
<td>36</td>
</tr>
<tr>
<td>V. FREQUENCY DOMAIN EVALUATION</td>
<td>38</td>
</tr>
<tr>
<td>A. SINGULAR VALUES AND BODE PLOTS</td>
<td>39</td>
</tr>
<tr>
<td>B. EFFECT OF SAMPLE RATE</td>
<td>40</td>
</tr>
<tr>
<td>C. EFFECT OF AIRSPEED</td>
<td>41</td>
</tr>
<tr>
<td>VI. CURVED TRAJECTORY SIMULATION</td>
<td>42</td>
</tr>
<tr>
<td>A. LONGITUDINAL DYNAMICS</td>
<td>42</td>
</tr>
<tr>
<td>B. LATERAL DYNAMICS</td>
<td>43</td>
</tr>
<tr>
<td>VII. CONCLUSIONS AND RECOMMENDATIONS</td>
<td>45</td>
</tr>
<tr>
<td>A. CONCLUSIONS</td>
<td>45</td>
</tr>
<tr>
<td>B. RECOMMENDATIONS</td>
<td>46</td>
</tr>
<tr>
<td>APPENDIX A GAIN SCHEDULES</td>
<td>47</td>
</tr>
<tr>
<td>APPENDIX B LONGITUDINAL AND LATERAL SOFTWARE</td>
<td>55</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>66</td>
</tr>
<tr>
<td>LIST OF SYMBOLS</td>
<td>68</td>
</tr>
</tbody>
</table>
LIST OF TABLES

TABLE 1. SCALES AND VARIANCE FOR GUST MODELS .. 75
TABLE 2. COMMAND MODEL PARAMETERS .. 75
TABLE 3. SENSOR PARAMETERS ... 76
TABLE 4. SQUARE ROOT OF MATRIX DIAGONAL FOR LONGITUDINAL CONTROL
 SYSTEMS .. 77
TABLE 5. SQUARE ROOT OF MATRIX DIAGONAL FOR LATERAL CONTROL
 SYSTEMS ... 78
TABLE 6. CLOSED-LOOP MAPPED EIGENVALUES .. 79
TABLE 7. SAMPLE OF CLOSED-LOOP EIGENVALUE VARIATION WITH AIRSPEED 83
TABLE 8. MINIMUM SINGULAR VALUES FOR LON2, 5 sps, SCHEDULED GAINS 85
TABLE 9. MINIMUM SINGULAR VALUES FOR LON2, 20 sps, SCHEDULED GAINS 85
TABLE 10. MINIMUM SINGULAR VALUES FOR LAT1, SCHEDULED GAINS 86
TABLE 11. MINIMUM SINGULAR VALUES FOR LON1, 5 sps, SCHEDULED GAINS 86
TABLE 12. MINIMUM SINGULAR VALUES FOR LON3, 5 sps, SCHEDULED GAINS 87
TABLE 13. MINIMUM SINGULAR VALUES FOR LAT1, 5 sps, SCHEDULED GAINS 87
TABLE 14. LAT2 FREQUENCY DOMAIN PROPERTIES, 5 sps, SCHEDULED GAINS,
 Δδ_a LOOP OPEN, Δδ_r LOOP CLOSED ... 88
TABLE 15. CURVED TRAJECTORY FLIGHT CONDITIONS ... 89
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 1</td>
<td>INNER-LOOP, OUTER-LOOP CONTROL SYSTEM BLOCK DIAGRAM.</td>
<td>90</td>
</tr>
<tr>
<td>FIGURE 2</td>
<td>AILERON/SPOILER INNER-LOOP CONTROL SYSTEM BLOCK DIAGRAM.</td>
<td>91</td>
</tr>
<tr>
<td>FIGURE 3</td>
<td>YAW DAMPER AND RUDDER ACTUATOR MODEL BLOCK DIAGRAM.</td>
<td>92</td>
</tr>
<tr>
<td>FIGURE 4</td>
<td>AUTOThROTTLE INNER-LOOP CONTROL SYSTEM BLOCK DIAGRAM.</td>
<td>93</td>
</tr>
<tr>
<td>FIGURE 5</td>
<td>ELEVATOR INNER-LOOP CONTROL SYSTEM BLOCK DIAGRAM.</td>
<td>94</td>
</tr>
<tr>
<td>FIGURE 6</td>
<td>COMPARISON OF OPTIMAL AND GAIN SCHEDULED GAINS.</td>
<td>95</td>
</tr>
<tr>
<td>FIGURE 7</td>
<td>ALTITUDE CAPTURE.</td>
<td>96</td>
</tr>
<tr>
<td>FIGURE 8</td>
<td>ALTITUDE CAPTURE SIMULATION, 5 sps OUTER-LOOP</td>
<td>97</td>
</tr>
<tr>
<td>FIGURE 9</td>
<td>CAS CAPTURE SIMULATION, 5 sps OUTER-LOOP.</td>
<td>99</td>
</tr>
<tr>
<td>FIGURE 10</td>
<td>HORIZONTAL PATH CAPTURE.</td>
<td>101</td>
</tr>
<tr>
<td>FIGURE 11</td>
<td>LAT1 HORIZONTAL CAPTURE, 5 sps OUTER-LOOP.</td>
<td>102</td>
</tr>
<tr>
<td>FIGURE 12</td>
<td>WIND SHEAR ENVIRONMENT.</td>
<td>103</td>
</tr>
<tr>
<td>FIGURE 13</td>
<td>WIND SHEAR SIMULATION.</td>
<td>104</td>
</tr>
<tr>
<td>FIGURE 14</td>
<td>WIND SHEAR SIMULATION: THROTTLE RESPONSE.</td>
<td>106</td>
</tr>
<tr>
<td>FIGURE 15</td>
<td>CONTROL SYSTEM BLOCK DIAGRAM FOR FREQUENCY DOMAIN EVALUATION.</td>
<td>107</td>
</tr>
<tr>
<td>FIGURE 16</td>
<td>LON2 THROTTLE LOOP FREQUENCY RESPONSE USING SCHEDULED GAINS, OUTER-LOOP SAMPLE RATE = 5 sps</td>
<td>108</td>
</tr>
<tr>
<td>FIGURE 17</td>
<td>LAT1 RUDDER LOOP FREQUENCY RESPONSE USING SCHEDULED GAINS, OUTER-LOOP SAMPLE RATE = 5 sps</td>
<td>108</td>
</tr>
<tr>
<td>FIGURE 18</td>
<td>LON2 AND LAT1 SIGMA PLOTS USING SCHEDULED GAINS, OUTER-LOOP SAMPLE RATE = 5 sps</td>
<td>109</td>
</tr>
<tr>
<td>FIGURE 19</td>
<td>LON2 ELEVATOR LOOP FREQUENCY RESPONSE USING SCHEDULED GAINS, OUTER-LOOP SAMPLE RATE = 5 sps</td>
<td>110</td>
</tr>
<tr>
<td>FIGURE 20</td>
<td>LAT1 AILERON LOOP FREQUENCY RESPONSE USING SCHEDULED GAINS, OUTER-LOOP SAMPLE RATE = 5 sps</td>
<td>110</td>
</tr>
<tr>
<td>FIGURE 21</td>
<td>LAT1 BODE PLOTS USING OPTIMAL OUTPUT FEEDBACK GAINS.</td>
<td>111</td>
</tr>
<tr>
<td>FIGURE 22</td>
<td>LON2 BODE PLOTS USING OPTIMAL OUTPUT FEEDBACK GAINS.</td>
<td>112</td>
</tr>
<tr>
<td>FIGURE 23</td>
<td>HORIZONTAL CURVED TRAJECTORY PROFILE.</td>
<td>113</td>
</tr>
</tbody>
</table>
LIST OF FIGURES (CONCLUDED)

FIGURE 24. LON1 CURVED TRAJECTORY PERFORMANCE, 5 sps. 114
FIGURE 25. LON2 CURVED TRAJECTORY PERFORMANCE, 5 sps. 115
FIGURE 26. LON3 CURVED TRAJECTORY PERFORMANCE, 5 sps. 116
FIGURE 27. LAT1 CURVED TRAJECTORY PERFORMANCE, 5 sps. 117
FIGURE 28. LAT1 CURVED TRAJECTORY PERFORMANCE, 20 sps 118
FIGURE 29. LON1 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 5 sps. 119
FIGURE 30. LON2 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 5 sps. 120
FIGURE 31. LON3 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 5 sps. 121
FIGURE 32. LON2 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 20 sps. 122
FIGURE 33. LON1 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 20 sps. 123
FIGURE 34. LAT1 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 5 sps. 124
FIGURE 35. LAT1 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 20 sps. 125
FIGURE 36. LAT2 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 20 sps. 126
I. INTRODUCTION

To meet the higher volume aviation requirements projected for the 1980 - 1990 period, NASA is conducting research and development under the Advanced Transport Operating Systems (ATOPS) Program at the Langley Research Center. The major effects of higher volume will be felt in terminal area operations. The goals of the ATOPS program include increased efficiency in the utilization of an airport's terminal area airspace, optimization of aircraft and airport operations, and safe take-off and landing in most types of weather conditions.

An important step in the achievement of these goals is the development of technology and system design procedures which provide the ability to fly specified curved paths with high accuracy during the radio navigation (RNAV) and Microwave Landing System (MLS) phases of the flight. In an effort to achieve the ATOPS goals, Ref. 1, has developed an advanced digital flight control system synthesis procedure using the concept of optimal stochastic limited state feedback. This report is the application of the synthesis procedure in Ref. 1, to the design of an outer-loop digital flight control system for the ATOPS research aircraft. The digital control system is designed to process guidance information from external sources and aircraft aerodynamic and kinetic information from onboard aircraft sensors in order to command control effectors so that the aircraft flies arbitrary curved paths. The three-dimensional curved paths are generated by waypoints supplied by the pilot or a flight schedule. The commercial jet follows the path and a specified calibrated airspeed profile without regard to positional timing errors along the path. The advanced autopilot described in this report is viewed as a three-dimensional radio navigation (3-D RNAV) outer-loop digital flight control system. The airspeed profile could be selected so as to achieve some 4-D objectives, however, without much difficulty.

The block diagram in Fig. 1b is a simplified depiction of the way the control system in this report should be implemented. The digital control system is composed of an inner-loop operating at 20 samples per second and an outer-loop control system operating at either 20 sps or 5 sps. The inner-loop control system feeds back accelerometer and rate gyro signals in order to stabilize the aircraft's "fast" dynamics such as the short period, Dutch roll and roll modes, (Ref. 2). The inner-loop system used here was previously designed using classical control design techniques, and is taken as is in this study. The outer-loop control system processes information about the aircraft's slower responding dynamics, such as vehicle attitude and geographical position, to perform a variety of functions. Examples of outer-loop control functions include flight path angle select, pitch attitude control wheel steering, altitude select, horizontal path tracking, heading select and the 3-D curved path tracking autopilot designed in this report. The inner-loop, outer-loop terminology used in Fig. 1 is often employed in what is historically referred to as "classical" control structure synthesis methodology.

NASA has previously researched and flight tested a three-dimensional area navigation (3-D RNAV) path tracking control system described in Ref. 3. The control design discussed in Ref. 3 is arrived at primarily using the
classical control synthesis methodology previously mentioned. The classical control system has a structured Laplace transform (s-domain) block diagram configuration. Control modules such as gain elements, wash-out filters, low-pass filters, complementary filters, integrators and signal limiting operations are used throughout the block diagrams. The control loops operate in a decentralized manner (no roll angle feedback to rudder except during decrab, no pitch attitude feedback to throttle, etc., ...). The inner-loop and outer-loop control designs discussed in Ref. 3 are implemented digitally using the Tustin transform.

The control design presented in this report uses the modern control approach. The outer-loop control design is synthesized directly in the discrete-time domain by minimizing a quadratic performance index defined by a weighted sum of mean-square steady state responses and controls. The inner-loop control system used with the outer-loop design consists of the primary feedback paths of the inner-loop design discussed in Ref. 3.

The inner-loop control system discussed in Ref. 3 has a simple block diagram structure and is straightforward to implement. The inner-loop control system has been extensively analyzed and successfully flight tested. Some inner-loop control elements are eliminated when the inner-loop control system is modeled and combined with the aircraft model in order to perform the outer-loop control system design in this report. The integrity and stability characteristics of the reduced inner-loop control system are retained, however. Imposing a predefined control structure that is not to be altered in the modern control approach, is a problem that is both practical to solve and is a better representation of control design philosophy practiced in industry.

The modern control state-space methodology is often synonymous with the full state feedback Linear Quadratic Gaussian (LQG) approach to control design. A quadratic performance index is minimized to yield feedback paths from all states to all controls. Unmeasured or unavailable states are estimated using a full order Kalman filter that should vary with flight condition. The use of the full state feedback LQG method for the outer-loop design would cause the inner-loop control design to be altered. The meaning of inner-loop/outer-loop would be vague if the full state feedback LQG approach were to be used for the 3-D RNAV control problem.

In order to design the outer-loop control system, a departure is made from the full state feedback LQG approach. The quadratic cost function is minimized using a control system restricted to use limited state feedback. Reference 1, presents the theoretical development of the optimal stochastic limited state feedback approach. Reference 1 also formulates and proves the convergence of a new numerical algorithm which determines an optimal limited state feedback gain. Sufficient conditions for the existence of the gain are also presented. The advantages of using optimal limited state feedback in the outer-loop control system are as follows:

- Only chosen states are used for feedback purposes. The inner-loop control system remains unaltered as desired.
• Estimates of all states are not required. A time-varying Kalman filter with its associated complexity and real-time implementation requirements is not used.

• Low-order filters such as analog prefilters and digital complementary filters can be included in the aircraft design model and their effect on control performance is accommodated when the control gains are computed.

• Actuator dynamics and gust dynamics can be included in the aircraft design model, their effect on control performance is taken into account when the quadratic cost is minimized, but their states are not fed back and hence do not have to be measured or estimated.

• There is no separation of stochastic performance and closed-loop performance for optimal limited state feedback even though all noise sources are assumed to be white Gaussian noise. Increasing the measurement noise on some feedback variables causes the corresponding feedback gains to be reduced when the quadratic cost function is minimized.

• There is an increased flexibility in choosing a control structure when using optimal output feedback. Each control loop can be designed individually in a hierarchical approach using different measurements for each loop closure. LONL, an outer-loop longitudinal control system which is discussed later, is designed using the hierarchical approach.

• The control law can also be designed in an integrated manner, i.e., the various controls work in cooperation to achieve the desired maneuvers. All other outer-loop control systems designed in this report are formulated using the integrated approach.

• The new numerical algorithm discussed in Ref. 1 can be applied to relatively large order plant models without difficulty. The largest plant model used in this report has 18 states.

• The proportional-integral-filter (PIF) control structure can be used in the outer-loop design.

The PIF structure in incremental form has been successfully flight tested as discussed in Refs. 4 and 5. DIALS in Ref. 6 was successfully flight tested using a PIF-like structure in position form. The PIF structure accommodates computation delay, has good high-frequency roll-off characteristics, uses integral control and allows command generator tracking theory, Refs. 7 and 8, to be used. The theoretical derivation of the optimal output feedback PIF control system used in this report has not appeared elsewhere.
The outer-loop control system discussed in this report may be flight tested using the ATOPS B-737 aircraft, a small commercial jet transport. Control of the aircraft is provided by commands to the elevator, ailerons, rudder, throttle, spoilers, stabilators and flaps. Based on experience gained during the flight tests of autopilots discussed in Ref. 4, more than one outer-loop control system design is presented for both the longitudinal and lateral dynamics. The primary difference between the designs are the gain elements and the way the command errors are constructed. The control structure remains the same. Multiple designs increase the probability of success and allow for inflight comparisons between gain sets as an indication of the direction of improved pilot acceptance.

A. ORGANIZATION OF THE REPORT

The state-space control system design model is discussed in Chapter II. Linear continuous-time models are presented for individual subsystems. The subsystem models are combined into a large order design model representation. The procedure for representing the design model in discrete-time is summarized. The inner-loop control system operates at 20 samples per second (sps). Outer-loop designs are performed for 20 sps and 5 sps. In the later case, the digital control system is implemented multirate, although only single-rate synthesis techniques are used in this report.

Chapter III begins with a short summary of the optimal output feedback problem and the solution presented in Ref. 1. The outer-loop PIF control system causes the aircraft to follow a curved path in the terminal area. Chapter III discusses how this is accomplished. A waypoint path construction procedure, derived and investigated in Ref. 9, generates a smooth path using specified waypoints and a spherical earth assumption. A command model is constructed, as in Ref. 4, which can generate the important attributes of the path, i.e., height profile, roll profile and airspeed profile. The command model follows the path; the outer-loop control system forces the aircraft to follow the command model.

The control designs and time-domain evaluation are presented in Chapter IV. The gains are designed at eight flight conditions. The gains are scheduled using calibrated airspeed (CAS) as the independent variable. The scheduled gain designs are simulated and evaluated using a full nonlinear six-degree of freedom (6-DOF) simulation.

A frequency domain evaluation of the outer-loop PIF control system designs are presented in Chapter V. Sigma plots, Ref. 10, and Bode plots are graphically portrayed and discussed. Chapter VI shows the performance of the control system, inner-loop and outer-loop, along a curved descending trajectory in the terminal area. Chapter VII summarizes the report and suggests areas where further developments could improve optimal digital implementable control systems. The product of the control design effort is software subroutines that can be programmed onboard the flight computer. Appendices A and B present the FORTRAN control subroutines used in the nonlinear simulation.
II. PLANT MODEL

The application of the linear optimal stochastic output feedback control synthesis procedure to outer-loop control design requires mathematical models for the aircraft, wind disturbances, actuator dynamics, outer-loop filters and inner-loop control system dynamics. This chapter provides a summary of the models and the state variable definitions. Further documentation of the actuator dynamics and inner-loop dynamics are provided in Refs. 11 and 12.

A. AIRCRAFT OPEN-LOOP DYNAMICS

The nonlinear equations of motion of the aircraft are determined by constructing kinematic relationships between aircraft translation and angular position states and by applying Newton's Second Law to the dynamics of the vehicle. A body-fixed axis system is used in this report. The origin is located at the body center of mass, and is fixed in orientation with respect to the vehicle. The body x-axis extends forward out the vehicle's nose, the y-axis extends out the right wind, and the z-axis extends out the bottom of the vehicle.

The aircraft dynamics fall into the general state equation

\[\dot{x} = f(x, u) \]

by noting that aerodynamic forces and moments are functions of aircraft states, \(x \), controls, \(u \), and to some extent the state history. A linear time-invariant model representation is required to perform the control design. The model is determined by modeling small changes in aircraft motion due to small changes in control position.

The linearization procedure is performed by the construction of a Taylor series expansion representing the nonlinear equations about some nominal trajectory:

\[\dot{x} = \dot{x}_0 + \Delta x + \text{Higher Order Terms} \]

\[= f(x_0, u_0) + \left. \frac{\partial f}{\partial x} \right|_{x=x_0} \Delta x + \left. \frac{\partial f}{\partial u} \right|_{x=x_0} \Delta u + \text{Higher Order Terms} \]
Here, the subscript "0" indicates the nominal value and the prefix "Δ" denotes a small perturbation. All except first-order terms are then neglected by arguing that the higher-order terms are small compared to linear terms. The results of this procedure are separated into a nonlinear equation describing the nominal trajectory and a linear equation defining their perturbation motion dynamics,

\[\dot{x}_0 = f(x_0, u_0) \] \hspace{1cm} (4)

\[\Delta \dot{x} = A \Delta x + B \Delta u \] \hspace{1cm} (5)

The linear model is further separated by noting that the lateral-directional dynamics and the longitudinal dynamics tend to decouple for straight and level flight. The states in \(\Delta x \) for the lateral-directional dynamics are ordered \(\Delta v, \Delta r, \Delta p, \Delta \phi, \Delta \zeta \) and \(\Delta c \). The states are, respectively, y-axis velocity, yaw rate, roll rate, roll angle, track angle error and cross track error. The states in \(\Delta x \) for the longitudinal dynamics are ordered \(\Delta u, \Delta \omega, \Delta q, \Delta \theta, \Delta z \) and are, respectively, x-axis velocity, z-axis velocity, pitch rate, pitch angle and z-axis position. The control system is to operate as a three dimensional path tracking system (i.e., \(\Delta c, \Delta \text{CAS} \) and \(\Delta h \) are to be regulated to zero) hence, longitudinal horizontal path error, \(\Delta x \), is not included in the model and is not regulated to zero by the control system. The state, \(\Delta h \), is the vertical height from the earth's surface to the aircraft's cg. For small pitch angles, \(\Delta z \) and \(\Delta h \) are essentially equal in magnitude.

Eight linear aircraft models are used to design the control system. The aircraft is trimmed for straight and level flight at 1524 m (5,000 ft) and 8,500 lb. The eight different CAS values used are 62 mls (120 kt), 69 mls (135 kt), 77 mls (150 kt), 85 mls (165 kt), 93 mls (180 kt), 124 mls (240 kt), 139 mls (270 kt), 154 mls (300 kt). Flaps are positioned as a function of CAS for each flight condition as shown in Appendix B.

B. GUST MODEL

The predominate random disturbance affecting the aircraft dynamics is wind gusts. The wind gusts can be modeled using the well-known Dryden spectrum. The modeling effort consists of using spectral factorization methods to obtain a dynamical system which generates a random process having the specified power spectral density when driven by a white noise process. The gusts affect the body-axis aircraft velocities. Rotational gusts around the aircraft are ignored. The transfer functions for the gust dynamics are as follows:

\[u_g = \sigma_u \left[\frac{L_u}{V_{TAS}} \right]^{\frac{1}{2}} \left(\frac{\sqrt{2}}{1 + \frac{L_u}{V_{TAS}} s} \right) \] \hspace{1cm} (6)
In the gust models, v_{TAS} is the true airspeed, L_u, L_v, and L_w are the scales of turbulence, and σ_u, σ_v, and σ_w are the variance of the gust. The scales and gust variances are shown in Table 1.

A state-space realization of Eqs. 6 to 8 is

$$
\begin{bmatrix}
\Delta u_g \\
\Delta v_g \\
\Delta w_g
\end{bmatrix}
= H_w \Delta w_g
$$

(9)

$$
\dot{\Delta w} = A_w \Delta w_g + B_w \Delta w_g
$$

(10)

Where

$$
\Delta w^T = [\Delta \eta_u \Delta \eta_v \Delta \eta_w]
$$

(11)

Δw is a vector of independent Gaussian white noise process with unit variance. Combining Eq. 10 and Eq. 5 yields the aircraft model

$$
\Delta \dot{x} = A \Delta x + B \Delta u + E \Delta w
$$

(12)

As new states are added to the design model representation, the vector Δx and matrices A, B and E are increased appropriately in dimension. It should be, clear however, that A in Eq. 5, Eq. 12 and Eq. 32 are of course, not equal.

C. ACTUATOR DYNAMICS

Block diagrams for each actuator and a short description of the block diagrams are presented in Ref. 11. Only the linear perturbation dynamics are presented in this section.
In the aileron actuator system, a lead/lag filter processes the aileron position command to provide phase advance. The output of the lead/lag filter drives the aileron hydraulic value. The rate limited valve position drives the cable system that rotates the aileron surface. Cable stretch caused by increased dynamic pressure is modeled as a gain reduction of the value commanded to the aileron surface. Cable hysteresis (-0.2 deg aileron) is modeled in the nonlinear simulation. If the aileron command from the valve exceeds ~2.5 deg, then spoilers are also deflected.

Raising left or right spoilers reduces the lift on the left or right wing resulting in a lift differential and rolling moment which serves to boost the roll power. Decreasing the lift on a wing affects the longitudinal dynamics. If spoilers are deflected beyond ~3.5 deg, then a spoiler feedback loop is closed to produce a gain which decreases the original aileron command. The gain which reduces the aileron command is also a function of flap position.

The spoiler feedback and the lead/lag filter are used to eliminate a limit cycle problem that occurs when roll attitude is regulated through the aileron actuator system for the outer-loop control system discussed in Ref. 3. The spoiler feedback and lead/lag filter is also used in the outer-loop control design in this report.

A linear model of the aileron/spoiler system is as follows:

\[
\begin{bmatrix}
\Delta \dot{\delta}_a \\
\Delta \dot{\delta}_s
\end{bmatrix} =
\begin{bmatrix}
-12.38 & -1.021k_1(\delta_F)k_2(\delta_{SPR}) \\
202.6 & -20.0
\end{bmatrix}
\begin{bmatrix}
\Delta \delta_a \\
\Delta \delta_s
\end{bmatrix}
\]

\[
+ \begin{bmatrix}
1.021 + 0.510k_1(\delta_F) \\
0.0
\end{bmatrix} \Delta \delta_{AC}
\]

\[
\begin{bmatrix}
\Delta \delta_A \\
\Delta \delta_{SPL} \\
\Delta \delta_{SPR}
\end{bmatrix} =
\begin{bmatrix}
11.0 \\
1.0 + 0.0015q \\
0
\end{bmatrix}
\begin{bmatrix}
\Delta \delta_a \\
\Delta \delta_s
\end{bmatrix}
\]

The model ignores hysteresis, rate limits, position limits, and residualizes and eliminates the lead/lag filter pole. The function \(k_1(\delta_F)\) represents the effect of nominal flap position. The function \(k_2(\delta_{SPR})\) represents the gain of the spoiler feedback loop as a function of spoiler position and \(q\) is dynamic pressure. Only the right spoiler is used for design purposes but it is assumed to have positive and negative values.

The rudder dynamics are straight forward and are modeled simply as

\[
\Delta \dot{\delta}_r = -32.68 \Delta \delta_r + 2.438 \Delta \delta_{RC}
\]
\[\Delta \delta_R = 13.4 \Delta \delta_r \] (16)

The model ignores rate limits and position limits.

Throttle position commands engine thrust. Throttle position, which is limited to 0 - 60 deg, commands EPR (engine pressure ratio). The EPR command is subjected to upper and lower rate limits that vary as a function of EPR and the direction EPR is moving in. A table of look up functions is used to compute engine thrust from the value of EPR, i.e., \(\delta_T = f(\text{EPR}) \). The model for throttle becomes,

\[\Delta \text{EPR} = -\frac{1}{\zeta} \Delta \text{EPR} + \frac{a}{\zeta} \Delta \delta_{\text{TC}} \] (17)

\[\Delta \delta_T = b \Delta \text{EPR} \] (18)

The value of \(a \) is the steady state relationship between throttle position and the EPR command for the nominal flight conditions. The value for \(\zeta \) is chosen so that the resulting throttle control system design behaves well in nonlinear simulations. The \(\zeta \) value was varied from 0.2 to 2.0 seconds, with the later value becoming the one used in the outer-loop design model. The parameter, \(b \), is the perturbation linear relationship between EPR and \(\Delta \delta_T \).

The linear model for elevator is straightforward and given by,

\[\Delta \dot{\delta}_e = -23.23 \Delta \delta_e + 2.0779 \Delta \delta_{EC} \] (19)

\[\Delta \delta_E = \frac{10.76}{1.0 + 0.0023 \delta_e} \] (20)

The model includes the effect of cable stretch. The position of elevator drives the stabilator. If elevator moves above a certain computed value and remains there for a length of time, (1.2 sec), the stabilator moves in a direction which causes elevator trim to return to a neutral position. Stabilator moves at a constant rate of \(\pm 0.03 \) deg/sec or \(\pm 0.18 \) deg/sec depending on the flap position. Stabilator serves as a trimming device and a linear model is not necessary for analysis and design. Flaps are similarly used for trimming purposes at low speeds (see Appendix B) and a linear model is not necessary for analysis and design.

D. INNER-LOOP CONTROL SYSTEM

The inner-loop control system block diagrams, reported in a preliminary version in Ref. 12, are shown in Figs. 2 to 5. After an analysis of the
inner-loop designs and their interaction with modern control outer-loop structures, a number of deletions were made to arrive at a desirable inner-loop system.

All of the control loops in the autothrottle block diagram shown in Fig. 4 were eliminated. The V_{TAS} and V_{GS} feedback loop at lower left in Fig. 4 is a wind shear detection system used to advance or retard throttle in wind shears. The EPR protection system in the upper part of the figure is used to keep EPR below the maximum value $MXPR = 0.10$. The haversin washout roll function in the upper left part of the figure is used to advance throttle during turn initiation.

The output feedback outer-loop counter part to the EPR protection system is the upper limit placed on the throttle command as a function of EPR as shown in Appendix B. The response of the output feedback outer-loop control system to wind shear is shown in Section IV F. The simulations indicate that the integrated approach to autothrottle design, whereby all feedback loops (such as height error, pitch attitude error, height integral error, etc.) are feedback to throttle, causes autothrottle to react appropriately during severe atmospheric conditions. The roll crossfeed to throttle in Fig. 4 is not used and airspeed loss in a turn is not particularly noticeable.

All inner-loop elements for the elevator control system in Fig. 5 are retained except for the integrator feedback through the k_{24} gain. The outer-loop control system uses integral feedback directly on the outer-loop tracking errors. Washed-out pitch rate and vertical acceleration feedback in the inner-loop damp the short period mode. Roll squared feedback improves vertical height tracking in turns. The outer-loop control system uses individual gain scheduling as a function of CAS as well as retaining the inner-loop gain schedule shown in Fig. 5.

Roll rate feedback and the gain schedule shown in Fig. 2 are also retained in the aileron/spoiler inner-loop control system. Roll rate feedback damps the roll mode response of the aircraft. The roll angle tracking loop in Fig. 2 is deleted from the inner-loop control system. Roll angle tracking error is used directly in the outer-loop integral feedback expression. The yaw damper inner-loop control system for rudder is shown in Fig. 3. The washed-out yaw rate signal has authority to ±4 deg and serves to damp the Dutch roll mode. The yaw damper is retained in the inner-loop control system.

Linear continuous-time models for the inner-loop control systems can be directly inferred from the block diagrams as follows:

Throttle:

\[\Delta \delta_{TC} = \Delta u_t \]

(21)
Elevator:

\[
\Delta \delta_{EC} = K_{CAS} [k_{27} \ k_{25} \ k_{22}] \begin{bmatrix} \Delta q \\ \Delta a \end{bmatrix} + K_{CAS} [k_{27} \ 0.0] \begin{bmatrix} \Delta q + \Delta v q \\ \Delta a_h + \Delta v a_h \end{bmatrix}
\]

\[+ K_{CAS} \Delta u_e \]

\[
\begin{bmatrix} \dot{\Delta q_{WO}} \\ \dot{\Delta a_h} \end{bmatrix} = \begin{bmatrix} -1.0/k_{28} & 0.0 \\ 0.0 & -1.0/k_{20} \end{bmatrix} \begin{bmatrix} \Delta q_{WO} \\ \Delta a_h \end{bmatrix} + \begin{bmatrix} -1.0/k_{28} & 0.0 \\ 0.0 & -1.0/k_{20} \end{bmatrix} \begin{bmatrix} \Delta q + \Delta v q \\ \Delta a_h + \Delta v a_h \end{bmatrix}
\]

Aileron/Spoiler:

\[
\Delta \delta_{AC} = [-k_v * k_{33}] \Delta p + k_v \Delta u_a
\]

\[
\dot{\Delta p} = [-1.0/k_{32}] \Delta p + [1.0/k_{32}] [\Delta p + \Delta v p]
\]

Rudder:

\[
\Delta \delta_{RC} = [1.0 \ 1.0] \begin{bmatrix} \Delta r_{WO} \\ \Delta r \end{bmatrix} + [\Delta u_r]
\]

\[
\begin{bmatrix} \dot{\Delta r_{WO}} \\ \dot{\Delta r} \end{bmatrix} = \begin{bmatrix} -1.0/k_{42} & -1.0/k_{42} \\ 0.0 & -1.0/k_{41} \end{bmatrix} \begin{bmatrix} \Delta r_{WO} \\ \Delta r \end{bmatrix} + \begin{bmatrix} 0 \\ \text{KYD} * k_{40}/k_{41} \end{bmatrix} (\Delta r + \Delta v_r)
\]
Combining the inner-loop control system subsystems yields

$$\dot{\Delta x}_{IL} = \Delta x_{IL} + B_{IL} \Delta y_{MEAS}$$ \hspace{1cm} (28)$$

The inner-loop discrete-time representation used in Appendix B is determined using Eqs. 39, 40 and 41 in conjunction with Eq. 28.

E. OUTER-LOOP COMPLEMENTARY FILTERS

Outer-loop filters are used to suppress sensor measurement noise and can be included in the control system design model using the limited state feedback approach. Flight tests results in Ref. 4 indicate that the vertical height complementary filter has a significant effect on closed-loop stability of the longitudinal control system. The complementary filter combines a vertical height position measurement with onboard body-axis accelerometer measurements to provide a smooth estimate of vertical position and vertical velocity. A discussion of the filter structure and design is given in Refs. 4 and 5. The discrete-time version of the third-order complementary filter used in the longitudinal outer-loop control system is

Update:

$$\begin{bmatrix} \hat{h}(+) \\ \hat{h}(+) \\ \hat{b}(+) \end{bmatrix}_k = \begin{bmatrix} \hat{h}(-) \\ \hat{h}(-) \\ \hat{b}(-) \end{bmatrix}_k + \begin{bmatrix} 0.004 \\ 0.016 \\ -0.000475 \end{bmatrix}_k \left[\begin{array}{c} h_{MEAS} - \hat{h}(-)_k \\ \end{array} \right]$$ \hspace{1cm} (29)$$

Propagate:

$$\begin{bmatrix} \hat{h}(-) \\ \hat{h}(-) \\ \hat{b}(-) \end{bmatrix}_{k+1} = \begin{bmatrix} 1 & \Delta t & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \hat{h}(+) \\ \hat{h}(+) \\ \hat{b}(+) \end{bmatrix}_k + \Delta t \begin{bmatrix} 0 \\ \Delta t/2 \\ 0 \end{bmatrix} \begin{bmatrix} a_{h,k} - \hat{b}(+)_k \end{bmatrix}$$ \hspace{1cm} (30)$$
The digital filter operates at 20 iterations per second. The state, \(b \), is an estimate of accelerometer bias. The local-level accelerometer measurement is corrected for gravity to obtain \(a_h \).

Similar filters are used to compute the horizontal \(x \) and \(y \) position of the aircraft. Flight tests in Ref. 6 indicate that including the complementary filter for \(y \) in the lateral dynamic model is not necessary. The position complementary filter is not included in the lateral model for the outer-loop control design.

The accelerometer bias estimator dynamics have little effect on the outer-loop control system. The bias state is neglected when the digital filter is expressed in analog form for inclusion in the outer-loop continuous-time design model. The analog form is

\[
\begin{bmatrix}
\hat{h} \\
\dot{h}
\end{bmatrix} =
\begin{bmatrix}
-0.8 & 1.0 \\
-0.32 & 0.0
\end{bmatrix}
\begin{bmatrix}
\hat{h} \\
\dot{h}
\end{bmatrix} +
\begin{bmatrix}
0.8 \\
0.32
\end{bmatrix} h_m +
\begin{bmatrix}
0.0 \\
1.0
\end{bmatrix} a_h
\]

\((31) \)

F. DISCRETE REPRESENTATION

Combining the linear models for the aircraft, actuators, gusts, outer-loop filters and inner-loop control system yields the outer-loop control system design model,

\[
\Delta \ddot{x} = A \Delta \dot{x} + B \Delta u + E \Delta w
\]

\((32) \)

The states in the longitudinal and lateral-directional design models are

Longitudinal:

\[
\Delta x^T = [\Delta u \ \Delta \dot{w} \ \Delta \dot{\theta} \ \Delta q \ \Delta \dot{\delta}_e \ \Delta \dot{EPR} \ \Delta \hat{h}_w \ \Delta \ddot{h} \ \Delta \dot{h} \ \Delta \ddot{m} \ \Delta \dot{m} \ \Delta \ddot{w} \ \Delta \dot{w} \]
\]

\((33) \)

\[
\Delta u^T = [\Delta u_e \ \Delta u_t]
\]

\((34) \)

\[
\Delta w^T = [\Delta v \ \Delta a_h \ \Delta \dot{u} \ \Delta \dot{w}]
\]

\((35) \)
Lateral-Directional:

\[\Delta x^T = [\Delta v \; \Delta \rho \; \Delta r \; \Delta \phi \; \Delta \zeta \; \Delta \psi \; \Delta \alpha_s \; \Delta \delta_r \; \Delta \delta_w \; \Delta \zeta_v \; \Delta \gamma_g \; v_1 \; v_2] \] (36)

\[\Delta u^T = [\Delta u_a \; \Delta u_r] \] (37)

\[\Delta \eta^T = [\Delta v_p \; \Delta v_r \; \Delta \eta_v] \] (38)

The method used to represent the plant for direct digital design of the outer-loop control system is to assume the control, \(\Delta u \), is constant over the sampling interval, \(\Delta t \); resulting in the plant representation;

\[\Delta x_{k+1} = \Phi \Delta x_k + \Gamma \Delta u_k + \Gamma_w \Delta \omega_k \] (39)

The matrices in Eq. 39 are obtained from

\[\Phi = e^{\Delta t} \] (40)

\[\Gamma = \int_0^{\Delta t} e^{As} ds B \] (41)

\[\Gamma_w \Delta \omega_k = \int_0^{\Delta t} e^{As} E_m(s) ds \] (42)

It is not necessary to know \(\Gamma_w \) and \(\Delta \omega_k \) in Eq. 39. Only the mean and covariance of the Gaussian white noise vector, \(\Gamma_w \Delta \omega_k \), are required for design.

Equation 39 is an exact discrete representation of the plant if the inner-loop control system and outer-loop filter are implemented as analog networks. The inner-loop control system and outer-loop filter are implemented digitally, hence, Eq. 39 is not an exact representation of the plant dynamics. If the outer-loop control system is designed at a slow rate (5 sps is used in Chapter V) and the inner-loop control system and outer-loop filter were modeled correctly, the control synthesis model would become multi-rate. Techniques for handling optimal, multirate, multivariable control synthesis have been determined in Ref. 13, but are outside the scope of this work. The single-rate plant model representation in Eq. 39 proved to be adequate for outer-loop control synthesis for either 20 sps or 5-sps outer-loop operation.
In Ref. 12, step response comparisons are made between Eq. 39, a linear time-invariant model, and a nonlinear simulation of the commercial jet transport dynamics with the correct discrete implementation of the inner-loop control systems. A summary of the comparisons follows:

Elevator: Good match in both actuator and inner-loop dynamics.

Rudder: Good match in both actuator and inner-loop dynamics.

Aileron/Spoiler: Adequate match which deteriorates as the control input step size increases. Highly nonlinear behavior of the aileron/spoiler actuators and vehicle aerodynamics is the likely cause of the problem.

Throttle: Poor match due to the highly nonlinear behavior of the engine dynamics.
III. DIGITAL FLIGHT CONTROL SYSTEM

This chapter presents a brief derivation of the linear part of the digital flight control system. The derivation is accomplished by formulating a tracking problem embedded in a limited state feedback, sampled-data regulator problem; then converting the limited state feedback/feedback optimal solution to a final implementable structure. A full state feedback derivation of the outer-loop control structure used in this report is presented in Ref. 4. The modifications needed for limited state feedback are shown in the following sections.

A. OUTER-LOOP TRACKING

The tracking problem is formulated in Chapter I as a model following problem. The control law must cause the output of the linear aircraft model

\[\Delta y_k = H \Delta x_k + D \Delta u_k \]

(43)

to optimally track the output of a linearized command model

\[\Delta x_{m,k+1} = \phi_m \Delta x_{m,k} + \Gamma_m \Delta u_{m,k+1} \]

(44)
\[\Delta y_{m,k} = H_m \Delta x_{m,k} + D_m \Delta u_{m,k+1} \]

(45)

at the equally spaced sample times \(t_k \). The number of commands in Eq. 45 is assumed to be equal to the number of aircraft controls used for tracking purposes.

The command model input, \(\Delta u_m \), is assumed to be constant previous to \(t_k=0 \), changes at \(t_k=0 \), then remains constant thereafter. The \(\Delta u_m \) assumption results in excellent control system performance in implementation when \(\Delta u_m \) is allowed to vary slowly or intermittently. Each change in \(\Delta u_m \) is viewed as a new initial condition.

When \(\Delta y_k \) equals \(\Delta y_{m,k} \), the plant states and controls follow a trajectory, \(\Delta x_k^* \) and \(\Delta u_k^* \) which satisfy the equation, (Refs. 7, 4 and 8).

\[
\begin{bmatrix}
\Delta x_k^* \\
\Delta u_k^*
\end{bmatrix} =
\begin{bmatrix}
A_1 & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\begin{bmatrix}
\Delta x_{m,k} \\
\Delta u_m
\end{bmatrix}
\]

(46)
The feedforward matrices, A_{ij}, satisfy the solvable matrix algebraic equation

\[
\begin{pmatrix}
(\Phi - I) & \Gamma \\
H & D
\end{pmatrix}
\begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
= \begin{bmatrix}
A_{11}(\Phi_m - I) & A_{11} \Gamma_m \\
H_m & D_m
\end{bmatrix}.
\]

(47)

The algebraic equation has a solution when the plant has no transmission zeroes at one and no plant transmission zero equals a command model eigenvalue. The trajectory in Eq. 46 is not actually generated when the control law is implemented, but is useful in constructing the quadratic cost function and the \(u_m \) feedforward gain in the next section.

B. PROPORTIONAL-INTEGRAL-FILTER CONTROL LAW

The control law is synthesized using the mathematical model of perturbation aircraft motion shown in Eq. 32. The perturbation state vector of the linear time-invariant model is further augmented to contain the perturbation control and is driven by the control rate. The control position and the control rate are both weighted in the linear quadratic cost function.

Control rate weighting affects the discrete plant representation so that the discrete control system is synthesized to use one-step delayed sensor state information. The result is that a one sample period computation delay is accommodated by the control law. Integral states are also augmented to the state vector to operate on the error between the aircraft states, \(\Delta y \), and the command generator output \(\Delta y_m \). The integral states cause \(\Delta y \) to track a constant \(\Delta y_m \) in steady state if: 1) the control system is stable, 2) the integrator gain is invertible, and 3) the discrete plant has no transmission zeroes at 1.0 (i.e., the plant quad partition matrix in Eq. 47 is invertible).

Assuming that the control, \(\Delta u \), the control difference, \(\Delta \dot{u} \), and the Euler implemented integrator states, \(\Delta \xi_k \), are constant over a sampling interval, \(\Delta t \), the discrete plant representation becomes:

\[
\begin{bmatrix}
\Delta x \\
\Delta u \\
\Delta \xi_{k+1}
\end{bmatrix}
= \begin{pmatrix}
\Phi & I & 0 \\
0 & I & 0 \\
\Delta t & \Delta tD & I
\end{pmatrix}
\begin{bmatrix}
\Delta x \\
\Delta u \\
\Delta \xi_k
\end{bmatrix}
+ \begin{bmatrix}
0 \\
\Delta tI \\
0
\end{bmatrix}
\begin{bmatrix}
\Delta v_k \\
0 \\
0
\end{bmatrix}
+ \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
\Delta \omega_k
\end{bmatrix}
\]

(48)
is the state transition matrix and Γ is the control effect matrix. The matrices H and D determine the aircraft output that is integrated to produce the control law's Type 1 property.

The tracking objective of the control law is introduced into the design by defining the variables

$$
\Delta \hat{x}_k = \Delta x_k - \Delta x^*_k ; \quad \Delta \hat{u} = \Delta u_k - \Delta u^*_k
$$

and the discrete cost function

$$
J = \lim_{N \to \infty} \frac{1}{N} \mathbb{E} \left\{ \sum_{k=-1}^{N-1} \Delta x_k^T \hat{Q} \Delta \hat{x}_k + 2 \Delta \hat{x}_k^T \hat{H} \Delta \hat{v}_k + \Delta \hat{v}_k^T \hat{R} \Delta \hat{v}_k \right\}
$$

The states that are available for feedback are represented as

$$
\begin{bmatrix}
\Delta \hat{v}_k^\text{MEAS} \\
\Delta \hat{u} \\
\Delta \hat{\xi}_k
\end{bmatrix} =
\begin{bmatrix}
C & 0 & 0 \\
0 & I & 0 \\
0 & 0 & I
\end{bmatrix}
\begin{bmatrix}
\Delta \hat{x}_k \\
\Delta \hat{u}_k \\
\Delta \hat{\xi}_k
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}
$$

The states observed from the aircraft model are corrupted by white Gaussian measurement noise $\Delta \hat{v}_k$ with covariance, V. The control internal states $\Delta \hat{u}$ and $\Delta \hat{\xi}$ are noise free. The class of control laws considered are restricted to be of the form
The necessary conditions for the feedback gain in Eq. 54 to be optimal are in the next section. The derivation from Eq. 54, to the implementable control equations is the same as in Ref. 4, except for the computation of $\Delta \delta^*_k$. The star trajectory for $\Delta \delta^*_k$ is derived in Eqs. 74 to 77. Using $\Delta \delta^*_k$ as defined in Eq. 76, the implementable equations for the control law are

$$u_k = u_{k-1} + \Delta t \cdot v_{k-1} + \frac{A_{21} (x_m, k - x_m, k-1)}{2} + \frac{A_{22} (x_m, k - x_m, k-1)}{2} \quad (55)$$

$$e_{k-1} = \frac{v_{k-1} - \frac{1}{2} C_{11} x_m, k-1}{2} \quad (56)$$

$$v_{k-1} = (I - \Delta t K_u) \cdot v_{k-2} - K_y (e_{k-1} - e_{k-2}) - \Delta t \cdot K_y (y_{k-2} - y_{m, k-2})$$

$$+ (K_{um} A + K_y C A_{12} + K_u A_{22})(u_m, k - u_m, k-1) \quad (57)$$

The perturbation variables and trim variables have been eliminated in the above control law expression in incremental form, using a large number of substitutions and cancellations.

The gain, K_{um}, which feeds forward the command generator forcing function increment, is a linear combination of feedback, feedforward and Liapunov solution matrices. The effect of K_{um} is to improve the transient response of the outer-loop control system by changing closed-loop system zeroes without affecting closed-loop poles. The A_{21} feedforward gain in Eq. 55 is zero for the curved path command generator models used in this report. K_y is the limited state feedback gain which primarily stabilizes the outer-loop aircraft dynamics. K_ζ is the integrator gain and $I - \Delta t K_u$ is the control filter gain.

C. OPTIMAL OUTPUT FEEDBACK

For the plant dynamics shown in Eq. 48, the feedback gain constraint shown in Eq. 54 and the following conditions:

$$E \{ \Delta w_k \} = 0 \quad E \{ \Delta w_k \Delta_w^T \Delta_w^T \} = \sigma_{kj} \quad (58a,b)$$

$$E \{ \Delta v_k \} = 0 \quad E \{ \Delta v_k \Delta v^T \} = \sigma_{kj} \quad (59a,b)$$
The cost function in Eq. 52 can be modified as follows, (Ref. 1),

\[J(\bar{K}) = \frac{1}{2} (J_t + J_s) \]

\[J_t = \sum_{k=0}^{\infty} \frac{\Delta x_{tk}}{k^2} \cdot \frac{\hat{Q} \Delta x_{tk} + 2 \Delta x_{tk} \hat{M} \Delta v_{tk} + \Delta v_{tk} \Delta v_{tk} }{k^2} \]

\[J_s = \lim_{N \to \infty} \frac{1}{N+1} \cdot \frac{1}{N} \cdot \frac{\Delta x_{sk}}{k^0} \cdot \frac{\hat{Q} \Delta x_{sk} + 2 \Delta x_{sk} \hat{M} \Delta v_{sk} + \Delta v_{sk} \Delta v_{sk} }{k^0} \]

\[J(\bar{K}) = \frac{1}{2} \text{tr} \left\{ P(W + X_o) \right\} + \frac{1}{2} \text{tr} \left\{ \bar{K}^T (\bar{P}^T P + \hat{R}) \bar{K} \right\} \]

The notation \(\text{tr} \) denotes the trace of a matrix. \(J_t \) is the transient cost with noise sources set to zero while \(J_s \) is the average stochastic cost. The trade-off between \(J_t \) and \(J_s \) is accomplished by varying \(X_0 \) with respect to \(W \). The effect of \(X_0 \) is like adding pseudo process noise to the plant to improve control system robustness. The benefits of using Eq. 62 as the cost function are discussed further in Ref. 1 and Ref. 14.

The matrix, \(P \), in Eq. 65, satisfies the Riccati-like equation

\[P = \bar{P}_{CL}^T P \bar{P}_{CL} + \bar{C}^T \bar{K}^T \bar{R} \bar{K} \bar{C} + \hat{Q} - \hat{M} \bar{K} \bar{C} - \bar{C}^T \bar{K}^T \bar{M} \]

\(\bar{P}_{CL} \) is the stable closed-loop plant matrix,

\[\bar{P}_{CL} = \bar{P} - \bar{R} \bar{K} \bar{C} \]

The necessary conditions for \(J(\bar{K}) \) to have a minimum, are derived in Ref. 1.

The necessary conditions are:

- The gain \(\bar{K} \) must satisfy
where

\[
\begin{bmatrix} \tilde{\Pi}^T \ P \ \tilde{\Pi} + \tilde{\mathbf{K}} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{C}} \ \tilde{\mathbf{S}}^T \ + \ \mathbf{V} \end{bmatrix} = \begin{bmatrix} \tilde{\Pi}^T \ P \ \phi + \tilde{\mathbf{M}}^T \end{bmatrix} \tilde{\mathbf{C}}^T
\]

(68)

A gain which satisfies the necessary condition is not necessarily unique.

Sufficient conditions for the existence of a gain \(\tilde{\mathbf{K}} \) which minimizes \(J(K) \), with \(\tilde{\mathbf{M}} \) the zero matrix, are derived in Ref. 1. The existence conditions are:

- There must exist a gain \(\tilde{\mathbf{K}} \) so that \(\tilde{\phi}_{\text{CL}} \) is stable.
- \((\tilde{\Pi}^T \ \tilde{\mathbf{Q}} \ \tilde{\Pi} + \tilde{\mathbf{R}}) > 0, \quad (\tilde{\mathbf{C}}(\mathbf{W} + \mathbf{X}_0) \tilde{\mathbf{C}}^T + \mathbf{V}) > 0 \) \hspace{1cm} (70a, b)
- \(\tilde{\mathbf{Q}} \geq \varepsilon \tilde{\mathbf{C}}^T \tilde{\mathbf{C}} \) for some scalar \(\varepsilon > 0 \) \hspace{1cm} (71)
- \(\mathbf{W} \geq \varepsilon \tilde{\Pi} \tilde{\Pi}^T \) for some scalar \(\varepsilon > 0 \) \hspace{1cm} (72)

The existence conditions can be violated and an optimal gain may still exist.

In Ref. 4, \(\Delta \varepsilon_k^\#, \ \varepsilon \) in Eq. 51a, is determined by minimizing the performance index after the full state feedback optimal gains are determined, i.e.,

\[
\min J(\Delta \varepsilon_k^\#) \bigg|_{\Delta \varepsilon_k^\#} = \min \Delta \varepsilon_k^\#_1 \ P \ \Delta \varepsilon_k^\#_1 \bigg|_{\Delta \varepsilon_k^\#}
\]

(73)

\(P \) is the full state feedback Riccati equation solution. The minimum cost for output feedback is expressed differently from Eq. 73 as shown in Eq. 65. If a feedback gain is suboptimal with respect to full state feedback, the suboptimal cost, \(J_S(\Delta \varepsilon_k^\#_1) \) is given by,

\[
J_s(\Delta \varepsilon_k^\#_1) = \Delta \varepsilon_k^\#_1^T \ P \ \Delta \varepsilon_k^\#_1 \geq J(\Delta \varepsilon_k^\#_1)
\]

(74)

where \(\bar{P} \) is the unique, symmetric, and positive definite solution of the Lyapunov equation.

\[
\begin{align*}
\begin{bmatrix} \tilde{\Pi}^T \ P \ \tilde{\Pi} + \tilde{\mathbf{K}} \end{bmatrix} \begin{bmatrix} \tilde{\mathbf{C}} \ \tilde{\mathbf{S}}^T \ + \ \mathbf{V} \end{bmatrix} & = \begin{bmatrix} \tilde{\Pi}^T \ P \ \phi + \tilde{\mathbf{M}}^T \end{bmatrix} \tilde{\mathbf{C}}^T \\
S & = \tilde{\phi}_{\text{CL}} \ S \ \phi_{\text{CL}}^T + (\mathbf{W} + \mathbf{X}_0) + \tilde{\Pi} \ \tilde{\mathbf{K}} \ V \ \tilde{\mathbf{K}}^T \ \tilde{\Pi}^T
\end{align*}
\]

(69)
\[\bar{P} = \bar{P} + \bar{P} \mathbf{C} + \bar{Q} - \bar{Q} \mathbf{R} \mathbf{C} - \bar{Q} \mathbf{R} \mathbf{Q} \mathbf{M} \]

(75)

Note that \(\bar{P} \) and \(\bar{P} \) in Eq. 66 are equal. The value for \(\Delta \xi^* \) can be determined exactly as in Ref. 4, using \(\bar{P} \). The \(\Delta \xi^* \) equation derived in Ref. 4 is given by

\[\Delta \xi^*_k = \begin{bmatrix} 0 & A \end{bmatrix} \begin{bmatrix} \xi_m, k \\ \xi_m, k+1 \end{bmatrix} \]

(76)

where

\[A = -P_{\xi \xi}^{-1} \left[P_{\xi \xi}^T A_{12} + P_{\xi \xi}^T A_{22} \right] \]

(77)

The partitions \(P_{\xi \xi}, P_{\xi \xi}, P_{u \xi} \) of \(\bar{P} \) in Eq. 77 match the partitions of \(\Delta \xi \) in Eq. 51b.

D. WAYPOINT PATH CONSTRUCTION SUMMARY

The procedure for constructing a desired path consisting of great circles connected by arcs of circles, fixed on the surface of a rotating spherical earth, and rotating with the earth, is presented in Ref. 9. In this section, the input data needed to construct the path and the output data the path generates are summarized.

If \(N \) is the number of waypoints (\(N \) must be at least three), then at each waypoint the following is supplied,

\[\lambda(I) = \text{longitude in degrees} \]

(78)

\[\delta(I) = \text{latitude in degrees} \]

(79)

\[h(I) = \text{altitude in meters} \]

(80)

\[\text{CAS}(I) = \text{airspeed in meters/sec} \]

(81)

\[I = 1, N \]

At each interior waypoint, the following is needed

\[R_T(I) = \text{radius of the turn (meters)} \]

(82)

\[I = 1, N-2 \]
Quoting from Ref. 9, "The path is constructed by sequentially connecting each pair of waypoints by a great circle arc on the surface of the earth. At each interior waypoint, a circle is constructed by the intersection of a circular cone from the center of the earth to the surface of the earth. The radius of the circular conical base is taken to be the input turn radius at that interior waypoint. The center of the cone is chosen so that the circle is tangent to both the incoming great circle and the outgoing great circle".

The initial and final waypoints as well as each interior middle-of-the-turn waypoints are assigned a desired altitude and airspeed from Eqs. 80 and 81. The gradient in altitude and airspeed over each segment is determined by dividing the difference in altitude or airspeed by the ground track distance. Altitude and airspeed commands are smooth ramps between desired values.

After the path is constructed and the aircraft is flying the path, the following RNAV guidance parameters are generated,

- Cross track error Δ_C
- Track angle error $\Delta \zeta$
- Distance to go to the end of the leg R_L
- Time to go to the end of the leg T_L
- Desired altitude and altitude rate h_C, \dot{h}_C
- Desired airspeed CAS_C
- Desired flight path angle γ_C
- Desired bank angle in the turn ϕ_C

The bank angle command is switched to the value it should have in the turn as soon as the time to go to the great circle is less than the bank command divided by the maximum bank rate, Φ_{MAX}. At the end of the turn, the bank command is returned to zero when the time to go is less than the time to return the bank angle to zero at the maximum bank rate. Anticipatory bank angle commands decrease the cross track error.

The information in the waypoint commands shown above is used to develop the command models and the command errors in the next section. In the lateral dynamics, only command errors are available, ΔC and $\Delta \zeta$, while in the longitudinal dynamics, absolute command values are available, h_C and CAS_C.

E. LONGITUDINAL COMMAND MODEL CONTROL SYSTEM

The outer-loop control system uses a command model which is regulated by a non-linear command model control system. When the outer-loop control system is engaged, the internal states in the command model are initialized to the aircraft states. After initialization, the control law follows state trajectories generated by the command model. The command model control system is designed simultaneously with the feedback/feedforward gains in Eq. 57 to provide good ride quality and command limiting.
The longitudinal command model uses a double integration of vertical acceleration to generate the vertical path trajectory. The CAS trajectory is one integration of forward acceleration,

\[
\begin{bmatrix}
 h_m \\
 \dot{h}_m \\
 \text{CAS}_m
\end{bmatrix}_k =
\begin{bmatrix}
 1.0 & \Delta t & 0 \\
 0 & 1.0 & 0 \\
 0 & 0 & 1.0
\end{bmatrix}
\begin{bmatrix}
 h_m \\
 \dot{h}_m \\
 \text{CAS}_m
\end{bmatrix}_{k-1} +
\begin{bmatrix}
 \Delta t^2/2 & 0 \\
 \Delta t & 0 \\
 0 & \Delta t
\end{bmatrix}
\begin{bmatrix}
 \ddot{h}_m \\
 \ddot{\text{CAS}}_m
\end{bmatrix}_{k-1}
\]

(83)

The command model controls are computed using

\[
\begin{bmatrix}
 \ddot{h}_m \\
 \ddot{\text{CAS}}_m
\end{bmatrix}_k =
\begin{bmatrix}
 k_h & k_{\dot{h}} & 0 \\
 0 & 0 & k_{\text{CAS}}
\end{bmatrix}
\begin{bmatrix}
 (h_c - h_m) \\
 (\dot{h}_c - \dot{h}_m) \\
 (\text{CAS}_c - \text{CAS}_m)
\end{bmatrix}_k
\]

(84)

The variables with the c subscript are the commands from the waypoint path generator. The command model controls are magnitude limited to acceptable values \(|h_m| \leq h_{MAX}, |\text{CAS}_m| \leq \text{CASMAX} \). Flight tests of a similar vertical command model in Ref. 4 provided values shown in Table 2 for \(k_h, k_{\dot{h}} \) and the acceleration magnitude limits that pilots favor. All of the equations for the command model control system are shown in Appendix B.

The outer-loop control system detects if the command model is initialized away from the desired path and internally chooses a vertical velocity command, \(h_c = 2.53 \text{ m/s} \) (8.3 fps), to return to the path. The linear model version of Eq. 83 is used in Eq. 44. The linear model controls are assumed to be \(\ddot{h}_m \) and \(\ddot{\text{CAS}}_m \) as discussed in Ref. 4.

The construction of the command error, \(y - y_m \), fundamentally affects the control system feedback robustness properties as well as the closed-loop plant transient response to commands and disturbances. A generic longitudinal command error of the form

\[
y - y_m =
\begin{bmatrix}
 k_1 (\dot{h}_k - \dot{h}_m,k) + k_2 (\ddot{h}_k - \ddot{h}_m,k) + k_3 (\text{CAS}^2_k - \text{CAS}^2_m,k) \\
 \text{CAS}_k - \text{CAS}_m,k
\end{bmatrix}
\]

(85)
was investigated. If $k_1=1.0$, $k_2=0.0$, and $k_3=1.0/2g$, for example, the longitudinal control system causes h to track h_m and CAS to track CAS_m, but energy error and CAS error are the quantities regulated in the control system during transients. A number of combinations of k_1, k_2, and k_3 were investigated. Three designs were completed and are candidates for flight testing:

LON1: $k_1 = 1.0$, $k_2 = 0.1$, $k_3 = 0.0$
LON2: $k_1 = 1.0$, $k_2 = 10.0$, $k_3 = 0.0$
LON3: $k_1 = 1.0$, $k_2 = 20.0$, $k_3 = 0.1$

The results in Chapters IV, V and VI make comparisons between the different longitudinal command error designs.

F. LATERAL COMMAND MODEL CONTROL SYSTEM

The lateral command model operates differently from the longitudinal command model because of the different commands generated by the path guidance system in Section III D. The command model is used to smooth the horizontal path when the system is engaged. After capture, the command model states are essentially zero and the command model calculations are deactivated. The command model uses the dynamical relationship between lateral position and velocity heading and the relationship between heading and roll angle for a coordinated turn, Ref. 15,

\[
\Delta c_{m,k+1} = \Delta c_{m,k} + \Delta t \frac{V_{GS,k}}{g} \sin \Delta \zeta_{m,k} \tag{86}
\]

\[
\Delta \zeta_{m,k+1} = \Delta \zeta_{m,k} + \Delta t \frac{g}{V_{GS,k}} \tan \phi_{m,k} \tag{87}
\]

\[
\dot{\phi}_{m,k+1} = \dot{\phi}_{m,k} + \Delta t \phi_{m,k} \tag{88}
\]

The model control is $\dot{\phi}_m$. The linear model used in Eq. 44 is a linearized version of Eqs. 86 and 87 for straight-and-level flight. The linear model control is $\dot{\phi}_m$. The variable g is gravity. The variable V_{GS} is ground speed.

The control system for the nonlinear command model is

\[
\dot{\phi}_{m,k} = -k_c \Delta c_{m,k} - (k_c \frac{V_{GS,k}}{150}) \Delta \zeta_{m,k} \tag{89}
\]
The gain feeding back $\Delta \zeta_m$ varies as a function of ground speed in an attempt to keep the command model closed-loop system eigenvalues invariant with respect to changing V_{GS}. The roll rate is limited to a maximum value,

$$|\phi_{m,k}| \leq \hat{\phi}_{MAX}$$ (90)

If the aircraft is close to the desired path, i.e., $|\Delta \zeta| \leq 900$ m or $|\Delta \zeta| \leq 30$ deg, the control system uses a maximum bank angle, ϕ_{MAX1}, to turn. If the aircraft is far from the desired path, a new bank angle maximum is calculated to ensure that the capture can be performed without over-shooting the path,

$$\phi_{MAX2} = \left| \tan^{-1} \left(\frac{-V_{GS}^2 (\cos \Delta \zeta_o - 1)}{(\Delta \zeta_o - \text{SIGN}(\Delta \zeta_o) 600)g} \right) \right|$$ (91)

Equation 91 is determined by integrated Eqs. 86 to 88 for the constant bank angle that results in $\Delta \zeta = 0$ from some initial condition $\Delta \zeta_o$ and $\Delta \zeta_o$. For safety reasons, ϕ_{MAX2} cannot exceed an absolute maximum bank angle ϕ_{MAX3}. The values for ϕ_{MAX1} and ϕ_{MAX3} are shown in Table 2. If the intercept angle $\Delta \zeta_o$ exceeds 30 deg, the command model control system is activated only when the roll rate command causes the bank angle to roll away from the horizontal path, i.e., $\phi_{m,k} \Delta \zeta \leq 0.0$; a capture feature pilots favor.

The command model shown in Eqs. 86 to 88 was flight tested and the results are reported in Ref. 4. Three different command errors were flight tested

$$Y_k - Y_{m,k} = \begin{bmatrix} \phi_k \\ \Delta \hat{c}_{-k} \\ \Delta c_{-m,k} \end{bmatrix} - \begin{bmatrix} \phi_{m,k} \\ \Delta \hat{c}_{m,k} \end{bmatrix}$$ (92)

LOC2

$$Y_k - Y_{m,k} = \begin{bmatrix} \phi_k \\ \delta_{r,k} \\ a_k \end{bmatrix} - 1.0 \begin{bmatrix} 0.0 \\ k_4 (\Delta \zeta_{k,m,k} - k_5 (\Delta \hat{c}_{k,m,k})) \end{bmatrix}$$ (93)
LOC3

\[
\begin{align*}
\Psi_k - \Psi_{m,k} &= \begin{bmatrix} \phi_k \\ \delta_{r,k} \end{bmatrix} - \begin{bmatrix} 1.0 & 0.0 \\ a_k & 1.0 \end{bmatrix} \begin{bmatrix} \phi_{c,k} + \phi_{m,k} + k_7(\Delta \zeta_{k} - \Delta c_{m,k}) \\ \delta_{rm,k} \end{bmatrix} \\
&= \begin{bmatrix} \phi_k \\ \delta_{r,k} \end{bmatrix} - \begin{bmatrix} 1.0 & 0.0 \\ a_k & 1.0 \end{bmatrix} \begin{bmatrix} \phi_{c,k} + \phi_{m,k} + k_7(\Delta \zeta_{k} - \Delta c_{m,k}) \\ \delta_{rm,k} \end{bmatrix}
\end{align*}
\]

(94)

Yaw angle, \(\Psi\), was used in Ref. 4, instead of \(\Delta \zeta\) but the conclusions and operations are essentially the same because sideslip is usually zero and the angle of attack is small.

In LOC1, the objective of the aileron and rudder is to null roll angle and cross track errors. The control system will track a straight horizontal path wings level. LOC2 uses the philosophy of a three tiered nested approach commonly used in commercial autopilots. A wings leveler, which causes the error \(\phi_k - \phi_{m,k}\) to be zero, can be upgraded to a track angle hold autopilot by replacing the roll command with a track angle error command, \(\phi_k - k_4(\Delta \zeta_{k} - \Delta c_{m,k})\). The track hold autopilot can be upgraded to a cross track autopilot by replacing \(\Delta \zeta_{m,k}\) with cross track error as shown in Eq. 93.

The parameter \(a_k\) is a roll command to rudder command crossfeed gain and is used to change rudder trim position in a turn so that the steady-state sideslip angle is zero. If \(a_k\) is zero, then commanding steady state rudder position to a trim value, \(\delta_{mr}\), as shown in Eq. 93 operates much like a yaw damper. The rudder is used to stabilize the aircraft, and damp Dutch roll in the transients; but is forced back to \(\delta_{mr}\) in steady state. LOC2 is similar in philosophy to a localizer autopilot discussed in Ref. 2. In LOC3, only the cross track error is used to command the bank angle. The \(\delta_{mr}\) command in Eq. 93 and Eq. 94 can be either programmed in software or the measure value of rudder at control system engage can be used.

The flight tests in Ref. 4 clearly showed, that from a capture and track viewpoint, LOC3 is the better all around design. LOC3 is used for the outer-loop lateral control system in this report but with the following modification

\[
\begin{align*}
\Psi_k - \Psi_{m,k} &= \begin{bmatrix} \phi_k \\ \delta_{r,k} \end{bmatrix} - \begin{bmatrix} 1.0 & 0.0 \\ a_k & 1.0 \end{bmatrix} \begin{bmatrix} \phi_{c,k} + \phi_{m,k} + k_7(\Delta \zeta_{k} - \Delta c_{m,k}) \\ \delta_{rm,k} \end{bmatrix} \\
&= \begin{bmatrix} \phi_k \\ \delta_{r,k} \end{bmatrix} - \begin{bmatrix} 1.0 & 0.0 \\ a_k & 1.0 \end{bmatrix} \begin{bmatrix} \phi_{c,k} + \phi_{m,k} + k_7(\Delta \zeta_{k} - \Delta c_{m,k}) \\ \delta_{rm,k} \end{bmatrix}
\end{align*}
\]

(95)
The known value for the roll command from the waypoint guidance system is included in the command error equation. Two different lateral control designs were investigated and are candidates for flight testing.

LAT1: \(k_7 = 0.5 \)

LAT2: \(k_7 = 1.0 \)
IV. CONTROL DESIGN AND NONLINEAR SIMULATIONS

This chapter presents the control system design parameters and some of the closed-loop simulation evaluations. There are three different designs for the longitudinal dynamics: LON1, LON2 and LON3 as discussed in Chapter III. LON1 and LON2 are designed using 5 and 20 samples per second. LON3 is designed using 5 sps for a total of five longitudinal control system options. There are two different designs for the lateral dynamics: LAT1 and LAT2. LAT1 is designed using 5 and 20 samples per second and LAT2 is designed using 5 sps for a total of three lateral control system options.

LON1 is a hierarchical design. First the elevator control loop is designed using the height error integrator. The elevator loop is closed, then the throttle loop is designed using the CAS error integrator. The height error integrator is not fed back to throttle and the CAS error integrator is not fed back to elevator. Elevator has a higher bandwidth than throttle and the control system can be considered to have vertical path error priority over airspeed error. During maneuvers, the throttle sometimes saturates and the control system must stabilize the vehicle using only elevator. The hierarchical approach guarantees that the control system is stable when throttle saturates.

LON2 is an integrated design. Throttle and elevator are designed simultaneously using the multivariable plant model. Both Type I integrators have feedback paths to both control effectors. When throttle saturates, there is no guarantee that the remaining elevator control loop is stable. Numerical tests for stability are necessary using closed-loop eigenvalues. The single elevator control loop achieves closed-loop stability throughout the aircraft's design flight conditions. The LON2 control system has neither path error or airspeed error dominating control priority.

LON3 is also an integrated design. As shown in Chapter III, airspeed error appears in both integrators. The control system is considered to have airspeed error priority over path error priority. Chapter V indicates that LON3 has slightly better stability margins than LON2 and LON1. This chapter shows that LON3 also has better simulation performance.

LAT1 and LAT2 are integrated designs. A hierarchical design for the lateral dynamics proved to be a poor approach. The hierarchical approach had difficulty in determining control gains which yielded a coordinated turn in simulation. LAT2 is included primarily to have at least two control options for comparison purposes. Chapter V indicates that LAT1 has better stability margins than LAT2. This chapter shows LAT1 also has better simulation performance.
The 20 iterations per second nonlinear simulation of the aircraft includes 6 degree of freedom motion for the aircraft, nonlinear actuator dynamics, sensor models, wind shear models and random noise generators. The nonlinear simulation uses aerodynamic forces generated using the stability derivatives of the ATOPS B-737 aircraft. When the outer-loop control system operates at 5 sps, the control effector command can be released at any 1/20 sec interval within the 1/5 sec sampling interval. (NMUCATI and NMUCOTI in Appendix B are subroutine inputs that control the command release time period). Releasing the control effector command early within the 1/5 sec control cycle does not seem to improve control performance significantly and is not further discussed. The control command is released as designed, at the end of the control sampling interval for all the simulations in this report.

A. OUTPUT FEEDBACK AND DESIGN VALUES

In this section, the states in the plant model and the output vector used for feedback are presented for each longitudinal design:

LON1: FIRST LOOP-ELEVATOR
\[
\Delta \dot{x}^T = [\Delta u \Delta w \Delta \theta \Delta z \Delta \delta_e \Delta \delta_h \Delta a_{\text{hWo}} \Delta u_e \Delta \xi_{\text{h1}} \Delta h \Delta \dot{h} \Delta u_g \Delta v_g \Delta w_g]
\]
\[
\Delta u = \Delta v_e
\]
\[
\Delta y^T = [\Delta \theta \Delta \delta_h \Delta \hat{\delta}_h \Delta u_e \Delta \xi_{\text{h1}}]
\]

SECOND LOOP-THROTTLE
\[
\Delta \dot{x}^T = [\Delta u \Delta w \Delta \theta \Delta z \Delta \delta_e \Delta \delta_h \Delta a_{\text{hWo}} \Delta u_e \Delta u_t \Delta \xi_{\text{h1}} \Delta \xi_{\text{CAS}} \Delta \delta_h \Delta \dot{h} \Delta u_g \Delta v_g \Delta w_g]
\]
\[
\Delta u = \Delta v_t
\]
\[
\Delta y^T = [\Delta \xi_{\text{CAS}} \Delta \theta \Delta u_t \Delta \xi_{\text{CAS}}]
\]

The integrator states, \(\xi_{\text{h1}}\) and \(\xi_{\text{CAS}}\), using Eq. 85 can be expressed in continuous time as,
\[
\xi_{\text{h1}} = \int \left\{ (\hat{h} - h_m) + 0.1 (\dot{h} - \dot{h}_m) \right\} \, dt
\]
(96)
\[\xi_{\text{CAS}} = \int (\text{CAS} - \text{CAS}_m) \, dt \]

The observations used for feedback in the elevator loop are pitch attitude,
the complementary filter outputs, filtered vertical acceleration, control
command position and the height integrator. The feedback paths in the
throttle loop are CAS, pitch attitude, control command position and the CAS
integrator. From a control design viewpoint, pitch attitude provides the
throttle control system with lead information concerning the movement of
elevator and aircraft height.

LON2: ELEVATOR AND THROTTLE

\[
\Delta \mathbf{x}^T = [\Delta u \, \Delta w \, \Delta q \, \Delta \theta \, \Delta z \, \Delta \delta_e \, \Delta \text{EPR} \, \Delta \hat{\alpha}_h \, \Delta \hat{\alpha}_w0 \, \Delta u \, \Delta u_t \, \Delta \xi_{\text{CAS}} \, \Delta \hat{\alpha}_g \, \Delta \hat{\alpha} \, \Delta \omega_1 \, \Delta \omega_2]
\]

\[
\Delta u^T = [\Delta v_e \, \Delta v_t]
\]

\[
\Delta y^T = [\Delta \text{CAS} \, \Delta \hat{\alpha} \, \Delta \hat{\alpha}_g \, \Delta \hat{\alpha}_w0 \, \Delta u \, \Delta u_t \, \Delta \xi_{\text{CAS}}]
\]

\[
\xi_{\text{h}2} = \int \{ (\hat{\xi} - \xi_m) + 10.0(\hat{\xi} - \xi_m) \} \, dt
\]

LON3: ELEVATOR AND THROTTLE

\[
\Delta \mathbf{x}^T = [\Delta u \, \Delta w \, \Delta q \, \Delta \theta \, \Delta z \, \Delta \delta_e \, \Delta \text{EPR} \, \Delta \hat{\alpha}_h \, \Delta \hat{\alpha}_w0 \, \Delta u \, \Delta u_t \, \Delta \xi_{\text{CAS}} \, \Delta \hat{\alpha}_g \, \Delta \hat{\alpha} \, \Delta \omega_1 \, \Delta \omega_2]
\]

\[
\Delta u^T = [\Delta v_e \, \Delta v_t]
\]

\[
\Delta y^T = [\Delta \text{CAS} \, \Delta \hat{\alpha} \, \Delta \hat{\alpha}_g \, \Delta \hat{\alpha}_w0 \, \Delta u \, \Delta u_t \, \Delta \xi_{\text{CAS}}]
\]

\[
\xi_{\text{h}3} = \int \{ (\hat{\xi} - \xi_m) + 20.0(\hat{\xi} - \xi_m) + 0.1(\text{CAS}^2 - \text{CAS}_m^2) \} \, dt
\]

The different integrators in LON2 and LON3 are determined as in LON1
using Eq. 85. The observations used for feedback in LON2 and LON3 are the
combination of the LON1 observation vectors. Throttle and elevator have
access to the same sensor information feedback paths in LON2 and LON3.

The design of the control system is achieved by choosing the elements
in the matrices Q, R, X_o, W and V iteratively until the control system has
desired closed-loop properties. The elements in W, the process noise covariance matrix, and V, the measurement noise covariance matrix, are predetermined from the values shown in Table 1 and Table 3. All internal control
states, such as an integrator state, have zero measurement noise. Iterative adjustments are made to \(Q, R, \) and \(X_0 \) until one set of numbers could be used for all three longitudinal control designs at all eight design flight conditions.

The design parameters for the longitudinal control systems are shown in Table 4. The large initial condition values for \(X_0 \) dominate over the process noise covariance matrix \(W \), when the two matrices are added in Eq. 69. The large initial condition values for the control states are useful in increasing frequency domain stability margins as discussed in Refs. 14 and 10.

The states in the plant model and the output vector for each lateral design are presented next.

LAT1: AILERON AND RUDDER

\[
\Delta x^T = \begin{bmatrix} \Delta v & \Delta p & \Delta r & \Delta \phi & \Delta \zeta & \Delta c & \Delta \delta_a & \Delta \delta_r & \Delta \hat{p} & \Delta r_{wo} & \Delta r & \Delta u_a & \Delta u_r & \Delta \xi_{c1} & \Delta \xi_{r1} & \Delta v_1 & \Delta v_2 \end{bmatrix}
\]

\[
\Delta u^T = \begin{bmatrix} \Delta v_a & \Delta v_r \end{bmatrix}
\]

\[
\Delta y^T = \begin{bmatrix} \Delta \phi & \Delta \zeta & \Delta c & \Delta \delta_a & \Delta \delta_r & \Delta \hat{p} & \Delta r_{wo} & \Delta r & \Delta u_a & \Delta u_r \end{bmatrix}
\]

\[
\xi_{c1} = \int \{ \phi - \phi_m - \phi_c - 0.5(\Delta c - \Delta c_m) \} \, dt
\]

\[
\xi_{r1} = \int \{ \delta_r - \delta_{rm} - a(\phi_c + \phi_m + 0.5(\Delta c - \Delta c_m)) \} \, dt
\]

LAT2: AILERON AND RUDDER

\[
\Delta x^T = \begin{bmatrix} \Delta v & \Delta p & \Delta r & \Delta \phi & \Delta \zeta & \Delta c & \Delta \delta_a & \Delta \delta_r & \Delta \hat{p} & \Delta r_{wo} & \Delta r & \Delta u_a & \Delta u_r & \Delta \xi_{c2} & \Delta \xi_{r2} & \Delta v_1 & \Delta v_2 \end{bmatrix}
\]

\[
\Delta u^T = \begin{bmatrix} \Delta v_a & \Delta v_r \end{bmatrix}
\]

\[
\Delta y^T = \begin{bmatrix} \Delta \phi & \Delta \zeta & \Delta c & \Delta \delta_a & \Delta \delta_r & \Delta \hat{p} & \Delta r_{wo} & \Delta r & \Delta u_a & \Delta u_r \end{bmatrix}
\]

\[
\xi_{c2} = \int \{ \phi - \phi_m - (\Delta c - \Delta c_m) \} \, dt
\]

\[
\xi_{r2} = \int \{ \delta_r - \delta_{rm} - a(\phi_c + \phi_m + \Delta c - \Delta c_m) \} \, dt
\]
The observations used for feedback in the lateral control loops are roll attitude, track angle error, cross track error, control command position and the integrators.

The design parameters for all the lateral control systems are shown in Table 5. The measurement noise for Δp and Δr are absorbed into the process noise covariance when the inner loops are introduced into the aircraft model. A large weight is placed on Δv in an attempt to make the aircraft bank-to-turn with little sideslip, i.e., a coordinated turn. A large weight is placed on Δv_r to keep the outer-loop command rudder rate small.

B. GAIN SCHEDULING AND CLOSED-LOOP EIGENVALUES

The control laws are adapted to changing airspeed by scheduling their gains as a function of CAS. Figure 6 shows the pitch LON3 optimal gain and scheduled gain as a function of CAS. The abrupt change in the two gains in Fig. 6 at 92.6 m/s (180 kt), a trend evident in most of the other gains, caused the gain schedule for all the gains to be computed in two groups. One group uses the four design flight conditions 61.7 m/s (120 kt), 69.4 m/s (135 kt), 77.2 m/s (150 kt), and 84.9 m/s (165 kt) to find a_1 and a_2 in the scheduling equation

$$\text{GAIN} = a_1 \text{CAS} + a_2$$

The other group uses the four design flight conditions 92.6 m/s (180 kt), 123.5 m/s (240 kt), 138.9 m/s (270 kt) and 154.3 m/s (300 kt) and regression analysis to determine a_3 and a_4 in

$$\text{GAIN} = a_3 \text{CAS} + a_4$$

The coefficients a_1-a_4 for all the control designs are given in Appendix A. The correlation coefficient for more than eighty percent of the gains is above 0.9.

The gains are updated in flight and simulation once every second. An easy-on is used to transition the gains between updates,

$$\hat{\text{GAIN}}_k = (1 - e^{-a\Delta t}) \hat{\text{GAIN}}_{k-1} + e^{-a\Delta t} \text{GAIN}_k$$

The easy-on operates at the outer-loop sample rate. The parameter a in Eq. 100 is 2.0. The easy-on is particularly useful during the 92.6 m/s (180 kt) gain transition point in CAS shown in Fig. 6.
The stability characteristics of the closed-loop digital flight control system are described by the eigenvalues of the closed-loop linear model system matrix. The closed-loop linear model system matrix, Φ_{CL}, is computed as follows,

$$
\Phi_{CL} = \begin{bmatrix}
\Phi & I & 0 \\
0 & I & 0 \\
\Delta th & \Delta tD & I
\end{bmatrix} - \Delta tI \begin{bmatrix}
K_y & K_u & K_r \\
0 & I & 0 \\
0 & 0 & I
\end{bmatrix}
$$

(101)

The degree of involvement of each state variables in each mode of motion is identified by the corresponding eigenvectors of Φ_{CL}. For discrete-time systems, root locations within the "unit circle" indicate stability, but these root locations are difficult to interpret. A useful method for evaluating discrete root locations is to map them into an equivalent continuous-time representation using natural logarithms.

Table 6 shows mapped closed-loop eigenvalues for each longitudinal and lateral control design at one flight condition. The mode definition in Table 6 is representative, since the table indicates that some complex modes split and recombine with other modes as the control structure alters. The column marked INNER-LOOP shows the plant eigenvalues before the outer-loop control system is closed. The inner-loop control system stabilizes the fast aircraft modes of motion (short period and Dutch roll) with good damping. The outer-loop control system alters the short-period root locations, but further increases the damping ratio to near critical damping ($\zeta=0.707$). The lateral outer-loop control system tends to destabilize the Dutch roll mode.

The different sampling rates used for the outer-loop designs (20 sps and 5 sps) have a small effect on eigenvalue locations. In most cases, the complex mode damping actually increases when the 5 sps design is compared to the 20 sps design. The LON1 control design has complex eigenvalues (associated with $\Delta \zeta_{HL}$) with the poorest damping.

The effect of the gain schedule on closed-loop eigenvalue location is small. There are differences but the scheduled gain closed-loop eigenvalues remain close to their optimal counterparts with reasonable damping. The LON3 control system has the best match between optimal and scheduled closed-loop eigenvalues and is closely followed in eigenvalue match performance by the LATI design. The LON1 control system has the poorest match.

A demonstration of the effect of airspeed on closed-loop eigenvalues is shown in Table 7. The real part of the Dutch roll mode remains almost constant while the imaginary part decreases with velocity. Dutch roll damping is increased as the natural frequency decreases with airspeed. The damping of the short period mode, the task of the inner-loop control system, is significantly decreased as velocity increases. The short period damping reaches a value of 0.22 near 154 m/s.
The inner-loop phugoid mode in Table 7 is stable below 84 m/s, then changes abruptly near 92 m/s and becomes unstable as airspeed increases. The gain scheduled outer-loop control systems stabilize the phugoid mode with high damping as the airspeed changes from landing approach values to high speed cruise velocities. In the LAT1 control system, the cross track mode is almost critically damped at low velocities as shown in Table 7. Increasing airspeed causes the cross track mode natural frequency to decrease but the damping remains high ($\xi > 0.59$).

C. ALTITUDE CAPTURE SIMULATION

The command model interface between the waypoint path generator and the outer-loop control system allows the aircraft to be remote from the desired path when the control system is engaged. When the aircraft is engaged above the flight path, the command model establishes a path the aircraft follows using a standard rate of descent, 2.5 m/s (8.3 ft/s), to capture the waypoint path with no overshoot as depicted in Fig. 7.

Nonlinear six degree-of-freedom simulations of the three longitudinal control systems operating at 5 sps for an altitude capture are shown in Fig. 8. The wind, measurement noise and gust disturbances are inactive in the simulation. The captures are smooth with little overshoot. The lower damping of the modes in the LON1 control system, as shown in Table 6, are evident in the LON1 simulation for n. Maximum CAS deviations during the descent are approximately 2 m/s (~4 kts), for all three designs.

D. CAS CAPTURE SIMULATION

Changing the calibrated airspeed of the aircraft over a wide range is an important test of the gain schedule part of the outer-loop control system. Figure 9 shows each control system changing CAS from an initial value of 77.2 m/s (150 kt) to 129 m/s (250 kt) at an altitude of 305 m (1000 ft). The initial CAS rate of change is limited to 0.76 m/s2. The CAS command model control system causes the CAS response to have a smooth capture. Flaps change position as a function of airspeed in Fig. 9 and is one source of height error as airspeed increases. The other source of height error in Fig. 9 is the manner in which the different longitudinal outer-loop control systems regulate potential and kinetic energy.

The airspeed increases faster if the aircraft is allowed to descend slightly at the beginning of the maneuver. In other words, potential energy is allowed to decrease initially to obtain a fast increase in kinetic energy. The integrated designs, LON2 and LON3 both exhibit an initial loss in altitude of approximately 25 m (~80 ft). The LON1 hierarchical design simulation on the other hand, actually shows an initial increase in height at the beginning of the simulation.

The LON1 hierarchical design keeps total height variation small (10 m < (~30 ft <)) as airspeed increases. Airspeed responds slower, however, in the LON1 hierarchical design approach. LON2 and LON3 require approximately 100
sec to complete the CAS change while LON1 requires 160 sec to perform the same velocity maneuver. Smaller height variations with changing airspeed could be made by LON2 and LON3 if the maximum rate of change of the command model CAS command is reduced. The maximum rate of change of CAS is an input variable to the control subroutine in Appendix B and has no effect on closed-loop stability.

An important transfer point in the CAS simulation occurs when CAS crosses 92.6 m/s (180 kt). Some control gains change quickly in this region, but little effect of the change is evident in the simulation.

The only noticeable CAS simulation difference between LON2 and LON3 occurs in throttle. Throttle is smoother and settles faster in LON3 past 78 seconds into the simulation.

E. HORIZONTAL PATH CAPTURE

A horizontal path capture is similar to a localizer beam centerline capture during a landing approach. Figure 10 shows the horizontal path geometry. The aircraft is heading towards the desired path and the aircraft control system is engaged approximately 5500 m (4 mi) from the path. The nonlinear 6-DOF simulation for the LATI control system is shown in Fig. 11. The command generator leaves the aircraft on course after computing the desired maximum bank angle using Eq. 91 which captures the path in one turning sequence. The command generator begins the turn when the command generator control system indicates the aircraft should roll away from the path. The coordinated turn is accomplished with a no overshoot capture.

F. WIND SHEAR SIMULATION

Wind shear has been recognized as a significant factor in commercial transport accidents during takeoff and landing, (Ref. 16). The nonlinear 6-DOF simulation used to evaluate the control designs, contains the wind shear/turbulence package developed by the Standard Research Institute, (SRI) (Ref. 17). The control designs in this report are not specifically designed to counteract wind shear and do not contain wind shear internal models for estimation and disturbance accommodation. The effect of wind shear is an important indication of the control systems performance, however, and simulations are presented in this section for the three longitudinal control designs.

One of the most severe wind shear models in the SRI package is Profile D4, a high severity thunderstorm wind shear. The horizontal wind increases from 0 to a 50 kt headwind initially, then rapidly changes to a 30 kt tailwind as the aircraft nears the touchdown point during landing. Coincident with the change from a headwind to a tailwind, a vertical downdraft of 10 kt and of short duration, 15 sec, is also simulated as part of the shear profile. Figure 12 shows the atmospheric condition which could generate the Profile D4 wind shear. All three longitudinal control designs fly successfully through the wind shear avoiding both stall and premature ground interception.
The effect of the wind shear for each longitudinal control design is shown in Figs. 13 and 14. The aircraft is simulated progressing down a 3 deg glideslope with wind gust and sensor measurement errors not activated. The glideslope descent path changes to level flight 9 m (32 ft) above the runway at approximately 125 secs into the simulation. The wind shear and vertical downdraft occur between 110 and 120 seconds into the simulation.

LON3 exhibits the best, i.e., the smallest, path error response in vertical height (± 12 m). LON1, the hierarchical design, has the largest path error (23 m below - 44 m above the glideslope). LON2 operating at 20 sps, has the best CAS response, i.e., CAS stays above 59 m/s (115 kt). LON1 experiences the worst CAS response but still avoids stall.

Throttle response for each control design is shown in Fig. 14. The upper limit on throttle is a function of engine pressure ratio, EPR, and the CAS error in the control integrator y - y_m as shown in Appendix B. If the CAS error is small, then the upper limit on throttle decreases from 60.0 deg (the physical maximum) at EPR = 1.2 to 42.0 deg when EPR = 1.85. The throttle limits are determined using the steady state relationship between EPR and throttle. The objective of the throttle limit is to keep EPR below 1.85 under normal operating conditions. Keeping EPR below 1.85 is also the objective of the inner-loop autothrottle control system shown in Fig. 4. If the CAS error is large (> 4.1 m/s (8 kts)), EPR and throttle for the outer-loop control design in this report are allowed to increase as CAS error increases up to the physical maximums (60 deg for throttle). The lower limit on throttle is increased from 0 at 131 m/s to 10 deg at 101.8 m/s to keep the engines from completely spooling down at low velocities.

In all four wind shear simulations, throttle increases to the 60 deg limit at 20 sec into the simulations and EPR reached a value of ~2.1 as shown in Fig. 14. The control systems recognized the abnormal situation and allowed throttle to reach full authority in order to reduce the command errors. The 42 deg limit for throttle is activated for the LON3 (at 5 sps) and LON2 (at 20 sps) control systems 135 sec into the simulations. The CAS error for these two control designs is kept within tolerance values during the 135 sec - 145 sec time period.
The linear control systems designed in Chapters III and IV are evaluated in this chapter using frequency domain concepts. Frequency domain evaluation is useful in judging control system performance when the plant is subjected to various types of uncertainties. An excellent discussion of these concepts is given in Ref. 10.

The evaluation in this chapter concentrates on the effect of additive alterations at the input to the plant model. In Fig. 15, the plant loop is broken at point i and the loop transfer function is computed as (with $\Delta G(s)$ zero),

$$u = (I + K(s)G(s))^{-1} u^* \tag{102}$$

In single-input, single-output plants, the performance objective is usually viewed as observing how close $K(s)G(s)$ evaluated at $s=j\omega$ is to -1.0 as the frequency, ω, is varied over a frequency range of interest. The resulting Bode gain/phase plot gives an indication of how close $1 + K(s)G(s)$ is to being zero.

For multi-input, multi-output plants, Ref. 10 argues that one type of performance evaluation for a closed-loop system is to compute how close the return difference matrix, $I + K(s)G(s)$, is to being singular using singular values. The singular values are computed by substituting $j\omega$ for s and varying ω in the return difference matrix, $I + K(j\omega)G(j\omega)$, over a frequency range of interest. A plot of the singular values of the complex matrix, i.e., $\sigma[I + K(j\omega)G(j\omega)]$, is called a sigma plot. The singular values are plotted in this report in units of dB using $20 \log \sigma$. As σ approaches 0, the dB values approach $-\infty$.

Unlike Bode plots, a problem with sigma plots is that it is not clear what constitutes a poor sigma plot, i.e., a less than satisfactory control design. Recent publications, Refs. 18 and 19, have shown that sigma plots tend to be conservative. If a sigma plot indicates a potentially poor design, the actual performance of the control system, when physically realizable uncertainties occur, is unclear. It is clear, however, that a "good" sigma plot does result in a satisfactory control design. If the performance characteristics of the full state feedback continuous-time linear quadratic regulator (LQR) is judged as a potentially "good" design, the performance characteristics are, Ref. 8, (with $R = \rho I$, ρ is a scalar).

$$\sigma[I + K_{LQR}(j\omega I - A)B] \geq 1 \quad 0 \leq \omega < \infty \tag{103}$$
Expressed in dB, sigma plots above 0 dB indicate a good design while sigma plots below 0 dB are potentially poor. In the single-input case, sigma plots above 0 dB correspond to 60 deg of phase margin and infinite gain margin.

Past research efforts in sigma plots have primarily concentrated on continuous-time additive alterations, $\Delta G(s)$ in Fig. 15, and multiplicative alterations to continuous-time plants. The outer-loop control design in this report is discrete. The discrete system counterpart to Fig. 15 and Eq. 102, as discussed in Ref. 8, is determined using the z-transform. The loop transfer function is computed as (with $\Delta G(z)$ zero),

$$u = (I + K(z)G(z))^{-1} u^*$$ \hspace{1cm} (104)

The discrete system sigma plots in this report are computed by substituting $z = e^{j\omega t}$ into the discrete return difference matrix $I + K(z)G(z)$. Singular values are computed using the complex matrix, $I + K(e^{j\omega t})G(e^{j\omega t})$, and varying the frequency ω. What constitutes a "good" sigma plot for the discrete-time systems is currently an open question. As the sampling time approaches zero, it has been shown in Ref. 20 that the discrete-time sampled-data linear quadratic regulator frequency domain properties approach the continuous-time properties.

A. SINGULAR VALUES AND BODE PLOTS

This section compares outer-loop sigma plots and Bode plots for the control system designs. The comparisons are computed for the LON2 and LAT1 outer-loop control systems operating at 5 sps and 77 m/s CAS. The point where the control loop is broken for the outer-loop control design is shown in Fig. 1a. The inner-loop control system, actuator dynamics and aircraft dynamics are lumped together as the continuous-time plant. Sigma plots can be determined at point i for the 5 sps and 20 sps control designs. If the control loop is broken at the actuator input, the inner-loop control system would have to be modeled as a discrete system and the control system would be multirate when the outer-loop controller operates at 5 sps. Multirate control evaluation using sigma plots is beyond the scope of this work.

Single loop Bode plots in this report are obtained by opening one control loop while leaving the other control loop closed and plotting gain and phase of the scalar complex number $K(e^{j\omega t})G(e^{j\omega t})$. A single loop singular value plot is obtained by adding 1.0 to $K(e^{j\omega t})G(e^{j\omega t})$ and plotting the resulting complex number magnitude in dB. Breaking the throttle loop at point i' for the LON2 outer-loop control system operating at 5 sps and 77 m/s CAS produces the sigma plot and Bode plot in Fig. 16. The smallest value for σ is -2.7 dB at 0.2 rad/sec. At 0.2 rad/sec, the LON2 throttle Bode plot has a gain of -7.3 dB and a phase of -138 deg. The LON2 throttle phase margin is 57 deg and the gain margin is -18.5 dB, an excellent design. The minimum singular value does not usually occur at the crossover frequency as shown in Fig. 16. The LON2 control system's high gain feedback in the low frequency range is caused by the integrators. The LON2 control system's good roll off at high frequencies is caused by the u_t filter in PIF.
Breaking the loop at i' for the LAT1 rudder outer-loop control system operating at 5 sps and 77 m/s CAS produces the sigma plot and Bode plot in Fig. 17. The rudder command error integrator causes the control system to "wash-out" low frequency inputs to rudder. The smallest singular value is -3.5 dB at 0.53 rad/sec. At 0.53 rad/sec, the LAT1 rudder Bode plot in Fig. 17 has a gain of -8.7 dB and a phase of -160 deg. The phase margins for the LAT1 rudder loop are 174 deg and 93.1 deg. The gain margins for the LAT1 rudder loop is -10 dB and -50 dB, all good single-input design values.

Breaking the loop at point i for the LON2 control system operating at 5 sps and 77 m/s produces the maximum and minimum singular value plots in Fig. 18. The first minimum singular value, -3.0 dB at 0.21 rad/sec, corresponds to the single-input throttle minimum in Fig. 16. The second minimum singular value, -3.2 dB at 1.1 rad/sec, corresponds to the single-input elevator minimum in Fig. 19. Overall, there is not a significant difference between single-input sigma plots and multi-input sigma plots for the longitudinal control systems.

The lateral control system has a completely different conclusion. Breaking the loop at i for the LAT2 control system operating at 5 sps and 77 m/s CAS produces the two singular value plots in Fig. 18. The minimum singular value in Fig. 18b is 12.3 dB below either minimum single-input singular value in Figs. 17 and 20. The minimum singular value of -17.3 dB at 0.44 rad/sec in Fig. 18b is a strong departure from the single-input indications of control system robustness for aileron and rudder. Figure 18 is considered to be an example of the conservativeness inherent in singular value analysis. Numerous quadratic weight adjustments did not improve the minimum value in Fig. 18b significantly. The frequency of the minimum singular value indicates the inner-loop control system is actively involved in generating the result shown in the figure. Contrary to Fig. 18b; nonlinear simulations, closed-loop eigenvalues and single-input Bode plots all indicate that the lateral control system design has acceptable performance.

B. EFFECT OF SAMPLE RATE

Two longitudinal control system configurations, LON1 and LON2, and one lateral control system, LAT1, are designed at two sample rates, 20 sps and 5 sps. Figures 21 and 22 show the effect of different sample rates for single loop breaks at point i'. The different sample rates have little effect on LAT1 and LON2 control system gain as a function of frequency. The different sample rates have a larger effect on the control system phase, especially at high frequencies. The phase margin for the aileron loop changes from 45 deg at 20 sps to 35 deg at 5 sps, a significant degradation. The phase margin for the rudder loop changes from 100 deg to 90 deg. The LON2 throttle loop shows no change in phase margin with sample rate. The elevator loop phase margin degrades only 2.0 deg.

The multi-input singular value effects of different sample rates can be observed by comparing Table 8 and Table 9 for the LON2 design and comparing
the results in Table 10 for the LAT1 design. There is a 0.5 dB (approx­
imate) minimum singular value improvement using the higher sample rate for
LON2 (this corresponds to a 3.0 deg phase change). The singular value
improvement for LAT1 is 0.3 dB or less. Single-input Bode plots give a
better relative indication of control system performance degradation as the
sample rate decreases when compared to multi-input sigma plots for the con­
trol designs in this report.

C. EFFECT OF AIRSPEED

The primary effect of airspeed on the longitudinal designs is that
the control system low frequency stability properties improve with air­
speed. The increase is apparent when the minimum singular values are
compared in Tables 11, 8 and 12 for the LON1, LON2 and LON3 control sys­
tems, respectively. The high frequency stability properties degrade in
LON1 and LON2 but remain fairly constant in LON3 as airspeed increases.
Another trend evident in the tables is that LON3 has better frequency
domain stability properties than LON2 and LON2 has better stability pro­
erties than LON1.

The single-input frequency response for the lateral designs indicate
that the stability properties improve with airspeed as shown in Tables 13
and 14. The minimum singular values in Table 10 for the multi-input sigma
plots indicate that the stability properties degrade with airspeed. The
single-loop frequency response is considered to be a better indication of
actual control system performance for the lateral outer-loop control de­
signs. The LAT1 control system stability properties in Table 13 are
better than the LAT2 control system stability properties in Table 14.
VI. CURVED TRAJECTORY SIMULATION

The performance of the 3D RNAV control system described in the previous chapters is evaluated in this chapter along a complex curved trajectory in the terminal area. Two versions of the nonlinear six degree of freedom simulation along the curved trajectory are presented. The first version has all external noise and disturbances deactivated. The second version has all noise and disturbances (except for wind shear) activated. The noise and disturbances include a steady wind of 10 kt moving east to west, the sensor noise and bias errors shown in Table 3 and wind gusts from a Dryden model with a standard deviation of 0.3 m/s (1.0 fps). The waypoints and the aircraft's initial trim conditions are shown in Table 15. The horizontal curved trajectory generated by the waypoints and the steady wind direction are shown in Fig. 23.

The curved trajectory begins with the aircraft flying straight and level with the flaps fully extended at 40 deg. The aircraft rolls left, flies level for a short time, then rolls right and enters a circular turn with a 233 deg change in heading. During the first roll to the left, the aircraft begins to descend at a steep rate, 7.2 m/s (23.6 ft/sec). The trajectory of the aircraft is a descending spiral during the circular turn part of the trajectory. After completing the 233 deg change in heading, the aircraft, still descending, flies level for a short time, then rolls left to line up with the runway center line. During the final turn, the aircraft decreases the descent rate to 3.7 m/s (12.3 ft/sec). The simulation is terminated at the point where an automatic landing control system could complete the descent and land. The latitude and longitude values in Table 15 correspond to Earth coordinates near the NASA Wallops Flight Center.

A. LONGITUDINAL DYNAMICS

The disturbance free simulations for the longitudinal dynamics are shown in Figs. 24 to 26. The simulation begins with an initial condition mismatch in commanded and actual CAS. The descent path is begun 25 seconds into the simulation. The command model limits the vertical deceleration and the aircraft descends to capture the path using aircraft accelerations which ensure passenger comfort. The value used to limit \(h \) is an adjustable input to the flight control system and has no effect on closed-loop stability. Increasing the maximum allowed value of \(h \) decreases the height error. The maximum value of \(h_{\text{min}} \) in the command model is 0.457 m/s\(^2\) (1.5 ft/sec\(^2\)). The purposeful increase in height error caused by the acceleration limit grows to between 70 and 80 m in Figs. 24 to 26. The error between commanded and actual vertical velocity decreases to zero as the simulation progresses. There is a slight error of less than 10 m in the height response because of the control system's Type 1 response. The control system decreases throttle during the descent to keep airspeed from increasing.
The changes in height and vertical velocity after 180 sec into the simulation are caused by the rolling motions of the aircraft. A cross-axis term which feeds back roll angle squared to elevator is used in the control design and aids in decreasing height error during turns.

A comparison of the simulations indicate LON2 and LON3 are almost identical in performance. LON1 has larger errors and less damping but overall, has a smoother response. The 20 sps and 5 sps longitudinal control system designs have similar simulation performance. The 20 sps simulations are not presented.

In contrast, the 20 sps and 5 sps lateral designs exhibit a noticeable difference as shown in Figs. 27 and 28. The 20 sps design is better damped and has less cross track error (6 m vs. 22 m). The commanded bank angle changes to the desired value required in a turn 5 seconds before the turn commences as discussed in Chapter III D. The turns are well coordinated, i.e., steady-state sideslip is zero and steady turn cross track error is zero. The maximum sideslip at turn entry is ~1.0 deg.

The longitudinal curved trajectory simulations with all disturbances activated are shown in Figs. 29 to 33. Elevator activity is kept at a reasonable level. Throttle activity is low and nonoscillatory. Stochastic performance, which is most clearly evident in the HDOT response, improves from LON1 to LON2 and further improves in LON3. The bias in the CAS response is caused by the fact that the true aircraft CAS is plotted. The control system causes measured CAS, which contains a bias, to follow commanded CAS. Throttle activity for LON1 is lower than either LON2 or LON3.

The simulations for LON1 and LON2 operating at 20 sps are shown in Figs. 32 and 33. Stochastic performance is improved when comparisons are made with the 5 sps designs. Throttle activity is smoother and height error is relatively flat during the descent. The aircraft response is quicker as evidenced by the sharper pitch angle changes. It remains to be determined if passengers can detect a difference between the same type of control system operating at different rates.

B. LATERAL DYNAMICS

The lateral control design responses along the curved trajectory with disturbances are shown in Figs. 34, 35 and 36. The steady wind causes the aircraft dynamics in the simulation to initially trim the aircraft with a nonzero track angle error but with a zero cross track error. The 20 sps LAT1 design quickly drives the track angle error to zero. The steady wind and gusts have little effect on the excellent simulation performance of the LAT1 design at 20 sps.

The 5 sps design simulations for LAT1 and LAT2 in Figs. 34 and 36 have a slower response than the 20 sps LAT1 design and develop a larger cross track error, (60 m vers. 15 m). Differences between the 5 sps LAT1 and 5 sps LAT2 outer-loop control designs are noticeable in the roll response.
and slideslip response. LAT1 has slightly larger slideslip excursions, while LAT2 has a slightly larger roll overshoot. The cross track error and track angle error simulations for LAT1 and LAT2 are essentially identical. Increasing the cross track error gain in the lateral integrator for LAT2 does not reduce the cross track error response in transients. It remains to be determined if aircraft passengers can detect differences between the two lateral control systems.

From the simulation runs, it is seen that the overall performance of the outer-loop control systems starting from level flight to near the runway is satisfactory. The simultaneous lateral and longitudinal maneuvers are performed and completed with response consideration given to passenger comfort. There are no detrimental overshoots or oscillations in the presence of steady winds and typical levels of atmospheric turbulence.
VII. CONCLUSIONS AND RECOMMENDATIONS

A. Conclusions

The conclusions of this study are:

- Outer-loop digital flight control systems can be successfully designed and practically implemented using the synthesis theory of optimal limited state feedback.

- Optimal limited state feedback allows a designer to explore a variety of control structures and compensation elements in the control loop.

- Integrated control designs, such as LON3 and LAT1 in the report, have superior performance over the nested decentralized approach, such as LON1, for identical quadratic weights.

- The outer-loop control system can operate at a very slow sample rate (5 sps) with reasonable performance and stability margins. The performance at the fast rate outer-loop designs (20 sps) is better than the slow rate design, as expected, but pilot opinion will have to be used to determine if the difference is noticeable in flight.

- The structure used to form the integral error has a significant effect on control performance. LON3 performed better than LON2 which performed better than LON1 for identical cost functions. The three longitudinal control systems primarily differed in the way the integral error is constructed.

- The control system in simulation flies the airplane successfully through severe wind shears near the terminal area.

- The gain-scheduled control system stabilizes the airplane in simulation for the following individual variations in parameters away from the design flight conditions:
 - 3048 m (10,000 ft) to sea level
 - 59 m/s (115 kt) to 154 m/s (300 kt)
 - 0.2 to 0.3 cg
 - 90,000 lb to 75,000 lb
 - throttle saturated either full forward or zero
 - rudder actuator failed
• The use of multi-input sigma plots for relative evaluation of control performance was unsatisfactory. A better indication of relative control performance was provided by single-loop Bode plots. The sigma plots were considered to be too conservative.

• The control system flies a curved trajectory in the terminal area with high accuracy and good response to measurement noise, gusts and steady winds.

B. Recommendations

• The performance of the lateral control system degrades with bank angle, particularly past 35 deg. The maximum bank angle expected in flight is 25 deg. Improvements could be made by identifying the linear dynamics of the aircraft while the aircraft is banked in the nonlinear simulation using readily available parameter identification programs.

• An interesting use of the lateral command system is for the RNAV/MLS transition problem reported in Ref. 8. The position estimate of the aircraft changes abruptly when the MLS transmitters are in range and the MLS measurements become available to the filters onboard the aircraft. The change is caused by the increased accuracy of MLS versus RNAV. When the change is detected, the control system can be reinitialized and the command model activated to transfer the aircraft to the more highly accurate guidance path.

• A potentially better approach to gain scheduling is to bring the selection of the regression coefficients directly into the control design optimization process. ICS has developed an approach using stochastic optimal limited state feedback which could perform the optimization.

• Dynamic compensation and eigenvalue sensitivity analysis should be incorporated in the cost function.

• Wind shear accommodation using the command generator tracker should be used in the outer-loop control design.

• The energy probe, Ref. 20, should be investigated as a feedback sensor.

• The design of the inner- and outer-loop should be integrated using multirate optimal output feedback theory.
Appendix A GAIN SCHEDULES

This appendix presents the regression coefficients for all the control system gains. The appendix is a printout of the two FORTRAN subroutines used to compute the lateral (LATGAIN) and the longitudinal (LONGSCH) gains. LATGAIN and LONGSCH are called by the subroutines PIFLAT and PIFLON discussed in Appendix B.

A.1 LATGAIN

SUBROUTINE LATGAIN(VGS, ICHOSLA, GAINA)
C
ICHOSLA---------DETERMINES WHICH SCHEDULE TO USE IN LATGAIN
C
= 1 0.05 SEC 1.0PHI + 0.5Y DESIGN
C
= 2 0.20 SEC 1.0PHI + 0.5Y DESIGN
C
= 3 0.20 SEC 1.0PHI + 1.0Y DESIGN
C
VGS-----------AIRSPEED USED FOR GAIN SCHEDULE
C
GAINA---------OUTPUT GAIN VECTOR

DIMENSION GAINA(13)
DIMENSION PCL2A(18), PVL8A(18)
A
PCL2A(18), PVL8A(18)
R
PCL2C(18), PVLC(18), PVL2C(18), PVLC(18)

C...

C GAIN SET FOR ICHOSLA = 1 LAT1 20 SPS
C
C A1

DATA PVL2A /0.0000122, 0.0011360, -0.001690, -0.001060/
A
-0.01530, 0.00712, -0.05050, 0.01815,
R
-0.0000535, 0.0002700, -0.00004200, 0.0004200,
C
-0.0003190, -0.00000718, -0.0014610, -0.00004200,
D
0.004350, 0.000231, 0.10700, 0.01820/
C
C A2

DATA PCL2A /0.9260, -0.02740, 0.22500, 1.0093/
A
-1.410, -1.370, 0.2380, -1.6590,
R
-0.166, -0.01660, 0.03500, 0.01560,
C
-0.0000116, -0.00000793, 0.0001950, 0.0001518,
D
1.698, -0.4790, -10.35, 0.3720/
C

C A3

DATA PV L8A /0.00010060, -0.0000790, -0.0014490, -0.00076700/
A
0.00012, 0.0000320, -0.02620, 0.01509,
R
0.60001210, -0.0000211, 0.0000116, 0.00000793,
C
0.0001161, 0.00000793, 0.0001950, 0.0001518,
D
0.001370, 0.000231, 0.07088, -0.002995/
C
C A4

DATA PCL8A /0.5006, -0.07790, 0.16600, 0.9420/
A
-0.00060, -0.00790, -3.64330, -0.91880,
R
0.2002, 0.05237, 0.03680, -0.003103,
C
-0.0436, 0.0001301, 0.1375, -0.00110,
D
2.101, -0.479, 1.19860, 4.6/

C...

C GAIN SET FOR ICHOSLA = 2 LAT1 5 SPS
C
C A1

DATA PVL2A /0.00000736, 0.000427, -0.00265, -0.00349/
A
-0.00959, 0.00059, -0.0509, 0.00123,
R
-0.000355, 0.000177, 0.0000418, -0.00000453,
C
-0.000418, -0.00000453, 0.00238, -0.00100,
D
0.00431, -0.00342, 0.0864, 0.0164/
C A2
DATA PCL2A /0.7026, -0.0904, 0.453, 0.969 /
A -1.265, -1.328, 0.431, -0.889 /
B -0.133, 0.000579, -0.000012, 0.00109 /
C 0.000827, -0.000384, 0.183, 0.00627 /
D 1.167, 0.366, -0.573, 0.536 /

C A3
DATA PVLEP /0.00027000, 0.000517, -0.00197, 0.46, 0.00211, 0.00303, -0.0349, 0.00906 /
A 0.000542, -0.0006412, -0.000012, 0.00109 /
C 0.000297, 0.000333, 0.0009395, 0.00110 /
D 0.00262, 0.00110, 0.00211, -0.00062 /

C A4
DATA PCL8B /0.643, -0.0803, 0.310, 0.20 /
A -3.66, -0.793, -2.197, -0.149 /
B -0.2197, 0.0426, 0.00633, 0.01265, -0.4468, -0.4129 /
D 1.93, 0.565, 0.731, 3.851 /

C GAIN SET FDP ICHOSLA * 3 LATZ 5 SPS
C A1
DATA PVLC2 /-0.0006347, -0.0005246, -0.0003502, -0.00038766 /
A -0.01454307, 0.0063107, 0.0593540, 0.01714920 /
B -0.00036427, 0.0027847, 0.00001620, 0.00347640, -0.00114100 /
C 0.0002502, -0.00070140, -0.00099627, 0.01649697 /

C A2
DATA PCL2C /-0.71257900, -1.0296300, -0.6837100, 0.99597300 /
A -1.36775520, -1.4289700, 0.5602780, -1.36989600 /
B -1.5631200, -0.0579400, 0.06629000, -0.00214000, 0.01472500 /
C 1.3542520, 0.6754920, -11.2350380, 3.23233500 /

C A3
DATA PVLE2C /0.0004739, 0.0002457, 0.00052169, -0.00038869 /
A 0.0040066, 0.00266535, -0.04970220, 0.0361226 /
B -0.00019403, -0.00017500, 0.00001200, -0.00570140, -0.27671700 /
C 0.00522444, 0.00236176, 0.05518012, -0.00396304 /

C A4
DATA PCLC2 /0.57370086, 0.0181143, -0.34302707, 0.36824171 /
A -0.22324554, -0.16774071, -0.71188080, 1.21282888 /
B -0.0161400, 0.08339371, -0.01326000, -0.86210114, -0.48773771 /
C 1.37765914, 0.83019820, 3.63572686, 4.10506943 /

C ICHOSLA = 1
IF(ICHOSLA .NE. 1) GO TO 30
 IF(VGS .GE. 180.0) GO TO 10
 IF(VGS .LT. 10.0) GO TO 15

C VGS IS LESS THAN 180.0
 DO 10 J=1,18
 GAIN(J) = PVL2A(J) * VGS + PCL2A(J)
 10 CONTINUE
 GO TO 100

C VGS IS GREATER THAN 180.0
 15 CONTINUE
 DO 20 J=1,18
 GAIN(J) = PVL8A(J) * VGS + PCL8A(J)
 20 CONTINUE
 GO TO 100

 999 CONTINUE

C 48
C ICHOSLA = 2

30 CONTINUE

IFI ICHOSLA .NE. 2) GO TO 70
IFI VGS .GE. 180.) GO TO 50

C VGS IS LESS THAN 180.0

DO 40 I = 1,18
 GAINA(I) = PVL2R(I)*VGS + PCL2R(I)
40 CONTINUE
GO TO 100

50 CONTINUE

C VGS IS GREATER THAN 180.0

DO 60 I = 1,18
 GAINA(I) = PVL2R(I)*VGS + PCL2R(I)
60 CONTINUE
GO TO 100

C ICHOSLA = 3 (DATA FROM LATEPAT = 9/22/82 **J. BROUSSARD'S ACCOUNT**)

70 CONTINUE

IFI ICHOSLA .NE. 3) GO TO 90
IFI VGS .GE. 180) GO TO 80

C VGS IS LESS THAN 180.0

DO 75 I = 1,18
 GAINA(I) = PVL2C(I)*VGS + PCL2C(I)
75 CONTINUE
GO TO 100

80 CONTINUE

C VGS IS GREATER THAN 180.0

DO 85 I = 1,18
 GAINA(I) = PVL2C(I)*VGS + PCL2C(I)
85 CONTINUE
GO TO 100

90 CONTINUE

PRINT *,"ERROR IN LATGAIN = ICHOSLA = ">ICHOSLA=" THIS IS NOT AN
APTION"
STOP "ERROR IN LATGAIN NOT OPTION ICHOSLA"

100 CONTINUE

RETURN
END

SUBROUTINE LONGSCH(VGS, ICHOSLA, GAINA)

A.2 LONGSCH

SUBROUTINE LONGSCH(VGS, ICHOSLA, GAINA)

C ICHOSLA-------DETERMINES WHICH SCHEDULED TO USE IN LONGSCH
C = 1 WESTED 0.05 SEC 1.07 + 0.175 DT DESIGN
C = 2 WESTED 0.20 SEC 1.07 + 0.175 DT DESIGN
C = 3 COUPLED 0.20 SEC 1.07 + 0.175 DT + 0.1V2 DESIGN
C = 4 COUPLED 0.20 SEC 1.07 + 0.175 DT + 1.0V2 DESIGN
C = 5 COUPLED 0.20 SEC 1.02 + 10GDOT DESIGN
C = 6 COUPLED 0.05 SEC 1.02 + 10GDOT DESIGN
C VGS--------AIRSPEED USED FOR GAIN SCHEDULE
C GAINA--------OUTPUT GAIN VECTOR

49
C A4
DATA PCLDRC / 0.8720000, 0.0, 0.0, 0.6160000,
A -0.343000, -0.000000, -4.580000, 0.474000,
B 0.000000, -1.249000, 0.000000, 0.013000,
C 0.0, -1.594000, 0.000000, 0.000000,
D 0.000000, 0.0256000, -0.00469000, 0.00000000,
E 0.000000, 4.530000, 0.304000, 0.00000000

C GAIN SET FOR ICHOSL0 = 3 I LONG 5 SPS
C A1
DATA PVLO2D / .00000000, .00000000, .00000000, .00000000, .00000000, .00000000,
A .00000000, .00000000, .00000000, .00000000, .00000000, .00000000,
B .00000000, .00000000, .00000000, .00000000, .00000000, .00000000,
C .00000000, .00000000, .00000000, .00000000, .00000000, .00000000,
D .00000000, .00000000, .00000000, .00000000, .00000000, .00000000,
E .00000000, .00000000, .00000000, .00000000, .00000000, .00000000

C A2
DATA PCIO2D / .86493000, .01143000, .57380614, .00000000,
A -.22378286, .75380714, -.14.825614, -.5.474000,
B -.09640000, .035333, .00000000, .00000000,
C -.00537429, -.46342857, .00000000, .00000000,
D -.15598571, 1.95250000, .70090000, 1.15625000,
E .00000000, .00000000, .00000000, .00000000

C A3
DATA PVLO2E / -.000007876, -.00152700, 0.00000000, .00000000,
A -.00054500, -.00045100, .00035333, .00018333,
B -.00220000, .035333, .00000000, .00000000,
C -.00220000, .035333, .00000000, .00000000,
D -.00220000, .035333, .00000000, .00000000,
E -.00220000, .035333, .00000000, .00000000

C A4
DATA PCIO2E / .89575429, 1.61021429, .57380714, .00000000,
A -.18750000, .32850286, -1.5362500, 3.47790000,
B -.13928000, -.74770000, .00000000, -.17934571,
C -.00537429, -.46342857, .00000000, .00000000,
D -.00130054, -.00183823, .00000000, -.00414286,
E -.135900286, 1.24663429, .46017714, .22190000
C GAIN SET FOR ICHOSLO = 5 1 LONZ 9 SPS

C A1
DATA PVL2F / .00006333, .00008267, .00008267, .00072600/
A -.00222433, -.00441033, -.00675533, -.00894400/
B -.00222433, -.00441033, -.00675533, -.00894400/
C -.00142000, -.00276000, -.00405000, -.00532000/
D -.00405000, -.00276000, -.00142000, -.00532000/
E .00794133, -.00233000, -.00233000, -.01062400/

C A2
DATA PCL2F / .86825500, -.00388000, -.01728000, 5.80662000/
A -.86825500, -.00388000, -.01728000, 5.80662000/
B -.42762000, -.24355000, .19465000, -.10350000/
C .26365000, -.35593000, .00222270, -.00427700/
D -.00222270, .00139940, -.00142000, -.00523200/
E -.19965400, 2.14566000, .74366000, 1.49925000/

C A3
DATA PVL2F / -.00008010, -.00009610, .00191627, -.00173900/
A -.00008010, -.00009610, .00191627, -.00173900/
B .00004400, -.00172190, .00391333, .00510930/
C -.00000943, .00184229, -.00034543, .00001110/
D -.00000943, .00184229, -.00034543, .00001110/
E .00000441, -.00541771, .00989181, -.00858762/

C A4
DATA PCL2F / .89394657, .37744577, -.02512571, 7.45291439/
A -.27210000, .63953543, -.14.112600, -.23933628/
B -.27210000, .63953543, -.14.112600, -.23933628/
C -.05465000, -.31374286, .00262697, -.00507054/
D -.05465000, -.31374286, .00262697, -.00507054/
E -.11961492, 1.04407714, .52705971, .29483571/

C GAIN SET FOR ICHOSLO = 6 1 LONZ 2 SPS

C A1
DATA PVL2C / .00001333, .00001933, .00002733, .00018933/
A .00001333, .00001933, .00002733, .00018933/
B .00015333, .00243867, .00467000, .00622733/
C -.00446667, .00073400, -.00001919, -.00000599/
D -.00002733, .00000191, -.00000162, -.00000162/
E .00002133, .00071300, -.00262487, .00438200/

C A2
DATA PCL2C / .96690000, .00012000, -.00520000, 8.03970000/
A -.79025000, .96557000, -.96175000, 6.96736000/
B -.05740000, -2.59174000, 1.99440000, -.11436000/
C -.29408000, -.37767000, .00056300, -.00030900/
D -.29408000, -.37767000, .00056300, -.00030900/
E -.20136000, 2.58562000, .75924000, -.01184000/

C A3
DATA PVL2G / -.00002486, -.00002257, -.00009362, -.00009960/
A -.00002486, -.00002257, -.00009362, -.00009960/
B -.00004666, -.00172348, .10399333, -.09678866/
C -.00004666, -.00172348, .10399333, -.09678866/
D -.00004666, -.00172348, .10399333, -.09678866/
E .00004666, -.00172348, .10399333, -.09678866/

C A4
DATA PCL2G / .97347714, .00001143, -.01844571, .94571429/
A -.26510786, -.88072696, -.14.040590, -3.34027174/
B -.09405797, 1.33627134, .07891435, -.11387439/
C -.07069143, -.88072696, -.14.040590, -3.34027174/
D -.00021423, -.0049954, -.0054446, -.00014349/
E -.12252587, 1.1313429, .59349714, .30436288/

52
C ICHOSLO = 1

IF (ICHOSLO .NE. 1) GO TO 30

IF (VGS .GE. 180.) GO TO 10

DO 10 I = 1,22
 GAINA(I) = PVLO2A(I)*VGS + PCLO2A(I)
10 CONTINUE
GO TO 200

15 CONTINUE

DO 20 I = 1,22
 GAINA(I) = PVLOBA(I)*VGS + PCLOBA(I)
20 CONTINUE
GO TO 200

C ICHOSLO = 2

30 CONTINUE

IF (ICHOSLO .NE. 2) GO TO 50

IF (VGS .GE. 180.) GO TO 40

DO 40 I = 1,22
 GAINA(I) = PVLO2C(I)*VGS + PCLO2C(I)
40 CONTINUE
GO TO 200

45 CONTINUE

DO 45 I = 1,22
 GAINA(I) = PVLOEC(I)*VGS + PCLOEC(I)
45 CONTINUE
GO TO 200

C ICHOSLO = 3 (DATA FROM LONDAT1 - 9/22/82 **J. BROUSSARD'S ACCOUNT**)

50 CONTINUE

IF (ICHOSLO .NE. 3) GO TO 70

IF (VGS .GE. 180.) GO TO 55

DO 55 I = 1,22
 GAINA(I) = PVLO2D(I)*VGS + PCLO2D(I)
55 CONTINUE
GO TO 200

60 CONTINUE

DO 60 I = 1,22
 GAINA(I) = PVLOBD(I)*VGS + PCLOBD(I)
60 CONTINUE
GO TO 200

C ICHOSLO = 4 (DATA FROM LONDAT2 - 9/22/82 **J. BROUSSARD'S ACCOUNT**)

70 CONTINUE

IF (ICHOSLO .NE. 4) GO TO 75

IF (VGS .GE. 180.) GO TO 80

DO 80 I = 1,22
 GAINA(I) = PVLO2E(I)*VGS + PCLO2E(I)
80 CONTINUE
GO TO 200

75 CONTINUE

DO 75 I = 1,22
 GAINA(I) = PVLOBE(I)*VGS + PCLOBE(I)
75 CONTINUE
GO TO 200

C ICHOSLO = 5 (DATA FROM LONDAT3 - 9/22/82 **J. BROUSSARD'S ACCOUNT**)
90 CONTINUE
IF(ICLOSLO .NE. 5) GO TO 110
 IF(VGS .GE. 180.) GO TO 100

 DD 95 I = 1,22
 GAINT(I) = PVLO2F(I)*VGS + PCL2F(I)
 95 CONTINUE
 GO TO 200

100 CONTINUE
 DD 105 I = 1,22
 GAINT(I) = PVLO8F(I)*VGS + PCL8F(I)
 105 CONTINUE
 GO TO 200

C ICLOSLO = 6 (DATA FROM LONDATA - 9/27/82 **J. PEOUSSARD'S ACCOUNT**)
110 CONTINUE
IF(ICLOSLO .NE. 6) GO TO 130
 IF(VGS .GE. 180.) GO TO 120

 DD 115 I = 1,22
 GAINT(I) = PVLO2G(I)*VGS + PCL2G(I)
 115 CONTINUE
 GO TO 200

120 CONTINUE
 DD 125 I = 1,22
 GAINT(I) = PVLO8G(I)*VGS + PCL8G(I)
 125 CONTINUE
 GO TO 200

130 CONTINUE
 PRINT *, ERRN IN LONGCH - ICLOSLO = "ICLOSLO" THIS IS NOT AN
 AOPTION
 STOP "ERROR IN LONGCH NO OPTION ICLOSLO"

200 CONTINUE
 RETURN
END
Appendix B LONGITUDINAL AND LATERAL SOFTWARE

This appendix presents the FORTRAN listing of the subroutines PIFLON and PIFLAT. The subroutines are called 20 times per second during the nonlinear simulations in Chapters IV and VI.

B.1 PIFLAT

```fortran
DIMENSION PGLA(18), GAIA(18)
REAL KV, KPHidot
LOGICAL FIRST, NOPROP, FINDRM, DEBUGA

EQUIVALENCE (POLGA(11),S311), (POLGA(2),S312),
A (POLGA(3),S313), (POLGA(4),S314),
B (POLGA(5),S315), (POLGA(6),S316),
C (POLGA(7),S321), (POLGA(8),S322),
D (POLGA(9),S323), (POLGA(10),S324),
E (POLGA(11),S325), (POLGA(12),S326),
F (POLGA(13),S411), (POLGA(14),S412),
G (POLGA(15),S413), (POLGA(16),S414),
H (POLGA(17),S421), (POLGA(18),S422),
I (POLGA(19),S423), (POLGA(20),S424)

DATA FIRST / .TRUE./, DEBUGA = .TRUE., NORMPRINTOUT REQUESTED

CONTINUE
```

55
IFI .NOT. FIRST) GO TO 10

C INITIALIZE STATES

C CHOOSE DELT AND GKY

DELT = 0.2
IFI (ICHOSLA .EQ. 1) DELT = .05
GKY = .5
IFI (ICHOSLA .EQ. 3) GKY = 1.

C INITIALIZE GAINS

CASG = CAS
IFI (CASG .LT. 120.) CASG = 120.
IFI CASG .GT. 200.) CASG = 300.
CALL LATGAIN (CASG, ICHOSLA, POLA)

C SET UP INITIAL VALUES

ARY = .03
APP = 1.19
PP = 180.
PP2 = 760.
GRAY = 32.174
RPO = 0.0174*32925
DACMAX = 20.
DPMAX = 30.
POL1 = POLLO = BNK
ITIME = 0
TAGELO = TAGELO = TAGE
COFF1 = COFEO = CTRE
POLL1 = 2NHBAR
CASG = CAS
DRC = DR1 = DP0 = DPM
DA1 = DAO = DAM
VDA2 = VDA1 = 0.0
VDP2 = VDR1 = 0.0

C INITIALIZE MODEL STATES

Y1 = CRTE
PS11 = TAGE
PH11 = BNK

C INITIALIZE INNER LOOP STATES

PHIDOTF = PHIDOT
C1 = EXP(-20.0*T)
KPHIDOT = -1.5

C INITIALIZE OTHER DATA

C KOPROP MODEL INDICATES IF TRUE THAT COMMAND NOT BE PROPAGATED

C FINDDR FINDS THE MAXIMUM POLL ANGLE FOR CAPTURES

KOPROP = .FALSE.
FINDRM = .TRUE.
IFI AR5(CRTE) .LT. 3000.0) FINDRM = .FALSE.
IFI AR5(TAGE) .LT. 30.0) FINDRM = .FALSE.
LIDP = -1
FIRST = .FALSE.
PLIDP = 1.0/DELT + 0.1
MULTI = DELT/T + 0.1
ACAS = Exp(-20.0*DELT)
RCAS = 1.0-ACAS
GFEEO = RCAS
IMULTI = MULTI -1

IFI MULTI .EQ. 1 INMULATI = 1
DECPS = DECPS*DELT
RDCLMAX = RDCMA1*DELT

10 CONTINUE

C INNER LOOP CALCULATIONS

PHIDOTF = C1*(PHIDOT - PHIDOT) + PHIDOT
X = PHIDOTF*KPHIDOT

C CHECK FOR LOOP ITERATION OF CONTROL LOOP
IF(IMULTI .GE. MULTI) IMULTI = 0
IMULTI = IMULTI + 1
IF(IMULTI .NE. MULTI) GO TO 65
ROLLNO = ROLLN1
BNKE = BNKEAR = ROLLN1

C LIMIT RATE OF CHANGE OF ROLLN TO 5DEG/SEC
IF(ABS(BNKE) .GT. DEGPS) BNKE = SIGN(1.0,BNKE)*DEGPS
ROLLN1 = ROLLN1 + BNKE

C FILTER CAS
CASS = ACAS*CASS + DCAS*CAS

C UPDATE GAINS EVERY 1.0 SECONDS
IF(ILOOP .GT. MLOOP) ILOOP = -1
ILOOP = ILOOP + 1
IF(ILOOP .NE. 0) GO TO 30
CASF = CASS

C UPDATE CROSS AXIS GAIN
IF(CASS .GT. 300.0) CASS = 300.0
IF(CASS .LT. 150.0) CASS = 150.0
IF(CASS .GT. 240.0) GO TO 20
AK = 0.00016425*CASF - 0.04042
GO TO 25

20 CONTINUE
AK = 0.000070493*CASF - 0.02894

C CONSTRUCT GAINS G1-G18
25 CONTINUE
CASS = CASS
IF(CASS .GT. 300.0) CASS = 300.0
IF(CASS .LT. 120.0) CASS = 120.0

C CONSTRUCT THE LAT GAINS
CALL LATGAIN(CASp, CNOSLA, GAINA)
ATTPE = ITIMF/100
NTIME = ATIME*100
IF(NTIME .GT. ATIME) WRITE(6,1000) (I,PGLA(I),I=1,18)

C PROPAGATE COMMAND MODEL
30 CONTINUE
IF(NOPROP) GO TO 40
IF(ARS(Y1) .LT. 0.1) ANO. ARS(PSI1) .LT. 0.01) NOPROP = .TRUE., B = GAV/VGS
AK1 = ARY*(MULTI*MULTI)
AK2 = ARP*VGS/150.0/MULTI
YR = Y1
PS10 = PSI1
PHIO = PHI1
PHI1 = PHI1 + AK1*YR - AK2*PS10
PDC = PHI1 - PHIO
UM = PDC

C DO NOT CHANGE HEADING IF ON PATH TO GLIDESLOPE
IF(PHI11*PSII1 .GT. 0.0 AND. ARS(PSII1) .GT. 30.0) PDC = 0.0

C FIND MAXIMUM ROLL IF FAR FROM TRACK
IF(.NOT. FINDRM) GO TO 35
ANUM = (VGS*VGS)*(COS(TAGEP*PPO)-1.0)
ADEN = -CERVE-SIGN(1.0*CRTE*2000.0)*GAV
ADEN = SIGN(1.0,ADEN)*.00001 + ADEN
ROLLMAX = ARS(PIATAN(ANUM,ADEN)/PPO)
IF(ROLLMAX .GT. ROLLMAX) ROLLMAX = ROLLMAX
IF(UM*PHIO + SIGN(1.0,PHIO)*.00001) LT. 0.0) FINDRM = .FALSE.
35 CONTINUE
ROLLMA1 = A(ROLLMA1,ABS(RHKBAP))
IF(ABS(PHIO) .GE. ROLLMA1) RDC = 0.0
IF(U**2+SIGN(1.0,PHIO)*U**0.0001) .LT. 0.0) RDC = UM

C APPLY CONTROL IF ACCELERATION IS APPLICABLE

IF(ABS(DC1) .GE. RDCMAX) RDC = SIGN(1.0,DC1)*RDCMAX
PHI1 = PHIO + RDC
PSI1 = PSIO + DELT*TAN(RPD*PHI1)/PPD
IF(PSI1 .LT. PP) PSI1 = PSI1 - PP
IF(PSI1 .LT. PP) PSI1 = PSI1 + PP

Y1 = Y0 + DELT*VGS*Sin(RPD*PSIO) + DELT*DELT*TAN(RPD*PHI1)*
 0.5*VGS

A = ROLLNI - ROLLNO *(PHI1 - PHIO)
C = ROLLNO + PHIO + GKY*(CRTE1 - Y0)
G1 = PSI1 - PSIO
IF(G1 .GE. PP) G1 = G1 - PP
IF(G1 .LT. PP) G1 = G1 + PP
G2 = TAGEO - TAGE1
C = G2 - G1
H = CRTEO - CRTE1 -(Y1 - Y0)
GO TO 90

40 CONTINUE

A = ROLLNI - ROLLNO
C = ROLLNO + GKY*CRTE1
G = TAGEO - TAGE1
IF(G .GE. PP) G = G - PP
IF(G .LT. PP) G = G + PP
H = CRTEO - CRTE1

50 CONTINUE

B = 0.0
D = ROLL1 - C
E = OR1 - AK+C - DRC
F = ROLLO - ROLL1

C DETERMINE IF THERE HAS BEEN A LARGE CHANGE IN CRTE CAUSED BY
C CHANGING FPM* RNAV TO MLS

IF(ABS(H) .LT. HMAX) GO TO 55
FIRST = .TRUE.
GO TO 5

55 CONTINUE

C EASYON HERE

GO TO 60
IF(GOTO .NE. 0) GO TO 65

C COMPUTE CONTROL LAW

VDA1 = 5311*VDA2 + 5313*VDRZ +
 5311*F + 5323*G + 5325*H +
 5411*D + 5413*E +
 5421*A + 5423*B
VDR1 = 5312*VDA2 + 5314*VDRZ +
 5312*F + 5324*G + 5326*H +
 5412*D + 5414*E +
 5422*A + 5424*B
DAO = DA1 + DELT*VDA1
DRO = OR1 + DELT*VDR1

IF(ILODP .NE. 0) GO TO 65

C TIME CHECK

OPTIM = SECONDICP

C PRINT OUTPUT FOR DEBUG

IF(NOT(DEBUGA)) GO TO 65
B.2 PIFLON
C PITCH-------------------MEASURED PITCH ANGLE - DEG
C TAS-------------------TRUE AIRSPEED - FT/SEC
C CAS-------------------CALIBRATED AIRSPEED - KT
C PR-------------------ENGINE PRESSURE RATIO
C ROLL-------------------MEASURED ROLL ANGLE - DEG
C VGS-------------------GROUND SPEED - FT/SEC
C VAR-------------------BAROMETRIC HEIGHT MEASUREMENT - FT
C HSVS-------------------VERTICAL VELOCITY MEASUREMENT - FT + UP
C ACC-------------------VERTICAL ACCELERATION MEASUREMENT - FT/SEC**2
C HCP-------------------HEIGHT COMMAND - FT + UP
C HCWP-------------------VERTICAL VELOCITY COMMAND - FT/SEC + UP
C CASWP-------------------AIRSPEED COMMAND - FT/SEC
C CTMD-------------------THROTTLE COMMAND - 1000 LBS
C CECMD-------------------ELEVATOR COMMAND - DEG
C CTH-------------------MEASURED THROTTLE - 1000 LBS
C CSW-------------------COMMANDED FLAP - DEG
C C--------------PI TCH RATE - DEG/SEC
C C T-------------------PARAMETER IN ZOOT - HIGH ALPHA REDUCTION - FT/SEC
C C DMA1-------------------MAXIMUM RATE OF CHANGE OF CAS COMMAND - FT/SEC
C C DMAT-------------------MAXIMUM VALUE FOR ZDOT - FT/SEC
C C DMAT2-------------------MAXIMUM VALUE FOR ZDOT - FT/SEC
C C Nmulati-------------------NUMBER OF 0.05 SEC PERIOD DELAYS BETWEEN RECEIVING
C C MEASUREMENTS AND RELEASING CONTROL COMMANDS TO ACT
C C IF DELT=.20 AND Nmulati=1, DELAY=REGULAR 1 PERIOD
C C DELAY
C C IF DELT=.20 AND Nmulati=2, DELAY=REGULAR 2 PERIOD
C C DELAY
C C IF DELT=.20 AND Nmulati=3, DELAY=REGULAR 3 PERIOD
C C DELAY
C C IF DELT=.20 AND Nmulati=4, DELAY=REGULAR 4 PERIOD
C C DELAY
C C IF DELT=.05 THEN Nmulati MUST = 1
C C DMA2-------------------MAXIMUM RATE OF CHANGE OF CAS COMMAND - FT/SEC
C C DMA2-------------------MAXIMUM RATE OF CHANGE OF ZDOT COMMAND - FT/SEC**2
C C KMULTI-------------------PARAMETER IN ZDOT - HIGH ALPHA REDUCTION - FT/SEC
C C DEBUGO-------------------DEBUG PRINTOUT
C C
C DIMENSION PGLO(223), GAINAI(222)
C REAL KV, MTOFFS, LGOCAM
C LOGICAL FIRST, FLAPON, ZFILT, ZALP, DEBUGO
C EQUIVALENCE (PGLO(11),53111), (PGLO(2),53121),
C (PGLO(3),53131), (PGLO(4),53141),
C (PGLO(5),53211), (PGLO(6),53221),
C (PGLO(7),53231), (PGLO(8),53241),
C (PGLO(9),53251), (PGLO(10),53261),
C (PGLO(11),53271), (PGLO(12),53281),
C (PGLO(13),53301), (PGLO(14),53310),
C (PGLO(15),54111), (PGLO(16),54121),
C (PGLO(17),54131), (PGLO(18),54141),
C (PGLO(19),54211), (PGLO(20),54221),
C (PGLO(21),54231), (PGLO(22),54241)
C DATA FIRST / TRUE. /
C S CONTINUE
C IF(.NOT. FIRST) GO TO 10
C
C INITIALIZE STATES
C IF(CAS .GT. 170 .AND. ICHOSLO .EQ. 4) ICHOSLO = 3
C DELT = 0.2
C IF(ICHOSLO .EQ. 1 .OR. ICHOSLO .EQ. 6) DELT = 0.05
C GKR = 1.
C GKR2 = 0.1
C GKV2 = 0.0

60
IFI ICMSLO .EQ. 3 .OR. ICMSLO .EQ. 4) GKaD = 20.
IFI ICMSLO .GT. 4) GKaD = 10.
IFI ICMSLO .EQ. 3) GKVZ = 0.1
IFI ICMSLO .EQ. 4) GKVZ = 1.0

CASI = CAS
IFI (CASI .LT. 120.) CASI = 120.
IFI (CASI .GE. 300.) CASI = 300.
CALL LONGSCH (CASI, ICMSLO, PGOI)

PPR = 0.017453293
GRAV = 32.174
RPD = 0.0174532925
CECMAX = 15.
PITCH1 = PITCH + PITCH
CASI = CASO = CASKTDIFPS
MODFO = MODP1 = ACC
ZPLUS = ZMINUS = ZBAR AD
ZDPLUS = ZDMINUS = HVSI
ZI = 70 = -ZBAR AD
DI = DIO = -HVSI
DTI = DTO = DTM
DEL = DEO = DEM
VDTZ = VDT1 = 0.0
VDEZ = VDE1 = 0.0
ZL1ASP = ZL1ASM = ACC
CASP1 = CASP0 = CASKTDIFPS
ZALP = .FALSE.
MULTI = DELT/0.1
IMULTI = MULTI - 1

IFI (MULTI .EQ. 1) NMULTI = 1
ACAS = EXP(-2.0*DELT)
BCAS = 1.0 - ACAS
ITIME = 0
MLDOP = 1.0/DELT + 0.1
CMAX = CMAX*DELT
DMAX = DMAX*DELT
ADDPR = ADDP1*DELT
ZDMAX = 1.50
AF1 = 0.5/(MULTI*MULTI)
AK2 = 2.0/(MULTI)
HTOH = 0.80*HT
CNHTOH = 0.32*HT
RT = -0.0095*T
AKCN = 0.0 - EXP(-0.05*DELT)
AMIN = 1.0 - EXP(-0.025*DELT)
A1 = (AKCN - AMIN)/20.0
AZ = AMIN
GFEED = 1.0 - EXP(-2.0*DELT)

C INITIALIZE MODEL STATES
ZM1 = -ZBAR AD
ZM1 = -HVSI

C INITIALIZE INNER LOOP STATES

HMDP = ACC
CMH = EXP(-10.0*T)
CM = G1
CMH = EXP(-0.0625*T)

C INITIALIZE OTHER DATA
LOOP = -1
CASF = CAS
ZMAX = ZMAX
FIRST = .FALSE.

10 CONTINUE
C CHECK FOR ICMSLO = 4 PROBLEM
IFI (CASI .LT. 170 .AND. ICMSLO .EQ. 4) FIRST = .TRUE.
IFI FIRST) GO TO 9
C CHECK FOR LOOP ITERATION OF CONTROL LAW
C PERFORM INNER LOOP CALCULATIONS
HOOF XII OF ROLLZ

C PERFORM COMPLEMENTARY FILTER

ZPLUS = AMAX
Z0PLUS = AMAXD
IF (.NOT. PS1) GO TO 15
ERRORP = 16500 - 16000
ZPLUS = ZMINUS + HTIM*ERRORP
Z0IASP = ZBIASP + BTIM*ERROR

C CORRECT ACCELEROMETER FOR GRAVITY

AC = ACC + GRAV*1.0 - COS (PITCH*RPD) * COS (BANK*RPD)
AC = ACC

C CORRECT FOR BIAS

AC = AC - ZBIASP

C PROPAGATE

ZMINUS = ZPLUS + T*AC
ZMINUS = ZPLUS + T*Z0PLUS + T*T0.5*AC
ZBIASM = ZBIASP

C CONTINUE

IF (IMULTI .GE. MULTI) IMULTI = 0
IMULTI = IMULTI + 1
IF (IMULTI .GE. MULTI) GO TO 70

C BEGIN CONTROL LOOP

C UPDATE CASWP

CASER = CASWP - CASWPD
ACASC = A1*ASIG(CASER) + A2
IF (ACASC .GE. AKM) AASC = AKMAX
DCAS = AASC+ACASER
IF (ARS(DCAS) .GT. CASMAX) DCAS = SIGN (1.0, DCAS) * CASMAX
CASWPD = CASWP + DCAS

C SCHEDULE FLAPC

CASF = ACASF = CASF + RSACAS
IF (.NOT. FLAPDN) GO TO 20
CASG = CASWPO/KTOOPS
FLAPC = 0.0
IF (CASG .LT. 100.0) FLAPC = -0.25*CASG + 47.5
IF (CASG .LT. 170.0) FLAPC = -0.50*CASG + 90.0
IF (CASG .LT. 150.0) FLAPC = -1.00*CASG + 165.0
IF (CASG .LT. 135.0) FLAPC = 30.0

C COMPUTE FLIGHT PATH ANGLE

GAMA = ASIN(Z0PLUS/TAS/RPD)

C COMPUTE ADA TO COMPARE TO ADAMAX AND ADAMIN

ALPHA = PITCH - GAMA
IF (ALPHA .LT. ADAMIN) GO TO 35
IF (.NOT. TALP) DJMAX1 = DJMAX2/2.0
TALP = .TRUE.
IF (ALPHA .GT. ADAMAX) GO TO 30
GO TO 40

C REDUCE 2DOT COMMAND

C CONTINUE

ZDOT = ADZstrcpy(TAS*SIN1(ADAMIN - ALPHA)*RPD)
DJMAX1 = DJMAX1 - DJDOT
IF (DJMAX1 .LT. 0.0) DJMAX1 = 0.0
ZHT = ACASP1 - BCASP1
GO TO 40
35 CONTINUE
IF (ZMAX1 .LT. ZMAX2) ZMAX1 = ZMAX1 + DZMAX
ZALP = .FALSE.

40 CONTINUE
DZMA3 = AMAX1(DZMA2, ARS1(HDCWP))
DZMA4 = DZMA3
IF (ZALP) DZMAX = AMIN1(DZMA1, DZMA3)

C CHECK TO SEE IF GAIN UPDATE IS REQUIRED
IF (ILOOP .GT. MLLOP) ILOOP = -1
ILOOP = ILOOP + 1
IF (ILOOP .NE. 0) GO TO 50
CASZ = CASF
IF (CASZ .LT. 120.0) CAST = 120.0
IF (CASZ .GT. 300.0) CAST = 300.0

C CALCULATE THE LON GAINS
CALL LONGSCHI(CASZ, ICHSLO, GAINA)
50 CONTINUE

C PROPAGATE MODEL
ZMO = ZM1
ZMDO = ZM2
DZAAA = HDCWP
AMP4 = 1.0
IF (ZALP) AMPA = 0.0
IF (ZALP) DZAAA = SIGN(1.0, HDCWP) * DZMAX
UM = AMP4 * ARS1(-HDCWP - ZMO) + ARS1(-DZAAA - ZMDO)
ZDD = UM
AMP = 1.0
IF (UM-ZMDO .LT. 0.0) APP = 2.5
IF (ARS1(ZDD) .LT. (AMP*ZDMAX)) ZDD = SIGN(1.0, ZDD)*ZDMAX*AMP4
ZMO = ZMDO + DELT*ZDD
DZAAA = AMAX1(ABS(DZAAA)+DZMAX)
IF (ABS(ZP1) .GE. DZAAA .AND. ABS(HDCWP) .LT. 0.1)
A = 2*ZP1 = SIGN(1.0, ZMDO)*ZDBB
ZDD = (ZMDO - ZMDO) / DELT
IF (ARS1(ZDD) .LT. (AMP*ZDMAX)) ZDD = SIGN(1.0, ZDD)*ZDMAX*AMP4
ZP1 = ZMDO + DELT*ZDD
ZM1 = ZMO + DELT*ZDO + DELT*DELT*ZDD*0.5

C COMPUTE CONTROL LAW STATE FEEDBACK
A = CASO - CAS1
B = PITCHO - PITCH1
C = HOFFO - HOFP1
D = TO - ZI - (ZM1 - ZMO)
F = DZD - DZI

C COMPUTE INTEGRATOR
F = GKZ*(ZI-ZMO) + GKZ*(ZD1-ZMDO) + GKV*0.5
A = (CAS1*CAS1 - CASWP1*CASWP1)/GRAV
G = CASI - CASWP1

C EASYON CONTROL GAINS
DO 60 I=1,2
PGLO(ii) = PGLO(I) + GFEED*(GAINA(I) - PGLO(I))
60 CONTINUE
H = ZMDO - ZMDO
P = CASWP - CASWP1

C DETERMINE IF THERE HAS BEEN A LARGE CHANGE IN X CAUSED BY CHANGING
C RHV TO MLS OR A BAD DATA POINT HAS OCCURRED
IF (ARS1(O) .LT. DMAX) GO TO 65
FIRST = .TRUE.
GO TO 9
65 CONTINUE
C COMPUTE CONTROL LAW
VOT1 = 5311*VOT2 + 5313*VDE2
1 5321*A + 5323*B + 5325*C
2 5327*D + 5329*E +
3 5413*F + 5415*G +
4 5421*H + 5423*P
VOT2 = 5312*VOT1 + 5314*VDE2
1 5322*A + 5324*B + 5326*C
2 5328*D + 5320*E +
3 5412*F + 5414*G +
4 5422*H + 5424*P

DTO = DTO + DELT*VDT1
DEO = DEO + DELT*VDE1

IF (ILOOP .NE. 0) GO TO 70
C PRINT OUTPUT FOR DEBUG
IF (.NOT. DEBUG) GO TO 70
IF (NTIME .EQ. ITIME) WRITE(6,1000) (1, FOLOII), (1)Z22)
WRITE(6,2000) CASO, CASWPO, HCWP, ZM1, HDQWP,
A, ZMP1, ITIME, IDPLUS, DEI
WRITE(6,3000) ZAPL, AMPA, DIAMA, DZMII, HDQWP, ZMD1, ZMPD, AMP, E)

70 CONTINUE
IF (IMULTI .NE. 1MULDS) GO TO 80
C DOWNLOAD DATA
PITCH1 = PITCHO
PITCHO = PITCH
CAS1 = CASO
CASO = CAS+KDFPS
MDFO1 = MDFD0
MDF0O = MDFO
Z1 = Z0
Z0 = Z0PLUS
DZY = DZ0
DZ0 = DZ0PLUS
CASWPO = CASWPO
ATIME = ATIME100
NTIME = ATIME100
C PROCESS CONTROL COMMAND FOR CONTROL LIMITS
80 CONTINUE
C LOWER LIMIT ON THROTTLE
LOCAS = 0.2*(222.0 - CAS)
C UPPER LIMIT ON THROTTLE
C RELATIONSHIP BETWEEN THROTTLE AND EPR AT EPR = 1.25, THROTMX = 42.0
C IF CAS ERROR IS TOO LARGE INCREASE THROTMX USING ADHICAS

ADHICAS = ABS(G) = 0.0
IF (G .GE. -8.0) ADHICAS = 0.0
IF (HCASM - .GT. 60.0) HCASM = 60.0
IF (LTHASM - LT. 42.0) HCASM = 42.0
IF (LOCASM - LT. 0.0) LOCASM = 0.0
IF (LTHASM - LT. 10.0) LOCASM = 10.0
IF (DTO .GT. .GT. HCASM) DTO = HCASM
IF (DTO .LT. LOCASM) DTO = LOCASM
VOT2 = VDT1
DT1 = DTO
dC = DTHD = DTO
C COMPUTE INNER LOOP FOR ELEVATOR
Y = MDFO + 2.16*QF - 0.004*PDLLZ
DECMO = KV*DEO + Y
IF (ABS(DECMO) - LT. DECMAI) GO TO 90
DECMO = (SIGN10*DECMO) + DECMAI
NEO = (DECMO/KV) - Y
VDEI = 0.0
90 CONTINUE

VOEZ = VOEL
DEI = DEO
ITIME = ITIME + 1

C FORMAT STATEMENTS

1000 FORMAT(1X,6(I3,F15.4),/)
A
2000 FORMAT(1X, 'CASE', CASWPD MSCP ZMP1 HDCWP =',
A
3000 FORMAT(1X, 'AMP AAAAA DZZBBB HDCWP =',
A
RETURN
END
REFERENCES

LIST OF SYMBOLS

In general, matrices are represented by capital letters and vectors are underscored; exceptions to these rules are only made when they are contradicted by standard aerodynamic notation.

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
</table>
| A | Discrete time feedforward matrix
Fundamental matrix (continuous-time system) |
| a | Acceleration
Roll to rudder crossfeed gain
Inverse of gain schedule time constant |
| a_h | Component of the vehicle acceleration
normal to the local level plane |
| B | Control effect matrix (continuous-time system) |
| b | Bias estimate |
| C | Control law feedback gains |
| c | Cross track error |
| D | Control observation matrix |
| E | Disturbance effect matrix (continuous-time system) |
| e | 2.71828 ... |
| e | Vector error |
| f | Vector-valued nonlinear function |
| G(s) | Plant transfer function |
| g | Magnitude of gravitational acceleration vector |
| H | Command observation matrix |
| H_1^2 | Euler angle transformation form
Frame 1 axes to Frame 2 axes |
<p>| h | Distance from the aircraft's cg to the Earth's surface, positive down |</p>
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Identity matrix</td>
</tr>
<tr>
<td>i</td>
<td>Index integer</td>
</tr>
<tr>
<td>J</td>
<td>Cost functional matrix</td>
</tr>
<tr>
<td>j</td>
<td>$\sqrt{-1}$</td>
</tr>
<tr>
<td>K</td>
<td>Gain value</td>
</tr>
<tr>
<td>K(s)</td>
<td>Control transfer function</td>
</tr>
<tr>
<td>k</td>
<td>Index integer</td>
</tr>
<tr>
<td>L_u, L_v, L_w</td>
<td>Scales of turbulence</td>
</tr>
<tr>
<td>λ</td>
<td>Number of commands</td>
</tr>
<tr>
<td>M̂</td>
<td>Cross weighting matrix in Linear Quadratic Regulator cost function</td>
</tr>
<tr>
<td>m</td>
<td>Mass of the vehicle</td>
</tr>
<tr>
<td></td>
<td>Number of controls</td>
</tr>
<tr>
<td></td>
<td>Meters</td>
</tr>
<tr>
<td>N</td>
<td>Number of time steps</td>
</tr>
<tr>
<td>n</td>
<td>Number of states</td>
</tr>
<tr>
<td>P</td>
<td>Riccati matrix in the optimal limited state feedback regulator problem</td>
</tr>
<tr>
<td>p</td>
<td>Rotational rate about the body x-axis</td>
</tr>
<tr>
<td>Q̂</td>
<td>State weighting matrix</td>
</tr>
<tr>
<td>q</td>
<td>Rotational rate about the body y-axis</td>
</tr>
<tr>
<td>q̄</td>
<td>Free stream dynamic pressure ($=\frac{1}{2}\rho V^2$)</td>
</tr>
<tr>
<td>R</td>
<td>Control weighting matrix</td>
</tr>
<tr>
<td>R_L</td>
<td>Distance-to-go to an end of segment</td>
</tr>
<tr>
<td>r</td>
<td>Rotational rate about the body z-axis</td>
</tr>
<tr>
<td>S</td>
<td>Covariance matrix in the optimal limited state feedback regulator problem</td>
</tr>
<tr>
<td>s</td>
<td>Laplace transform variable</td>
</tr>
<tr>
<td>VARIABLE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>T</td>
<td>Thrust</td>
</tr>
<tr>
<td>T_L</td>
<td>Time-to-go to an end of segment</td>
</tr>
<tr>
<td>t</td>
<td>Time</td>
</tr>
<tr>
<td>u</td>
<td>Body x-axis velocity component</td>
</tr>
<tr>
<td>u_L</td>
<td>Control vector</td>
</tr>
<tr>
<td>V</td>
<td>Velocity magnitude</td>
</tr>
<tr>
<td></td>
<td>Measurement noise covariance matrix</td>
</tr>
<tr>
<td>v</td>
<td>Body y-axis velocity component</td>
</tr>
<tr>
<td></td>
<td>Control difference</td>
</tr>
<tr>
<td>W</td>
<td>Process noise covariance matrix</td>
</tr>
<tr>
<td>w</td>
<td>Body z-axis velocity component</td>
</tr>
<tr>
<td>w_L</td>
<td>White noise Gaussian vector</td>
</tr>
<tr>
<td>X_0</td>
<td>Covariance matrix of state initial conditions</td>
</tr>
<tr>
<td>x</td>
<td>Position along the x-axis</td>
</tr>
<tr>
<td>X</td>
<td>State vector</td>
</tr>
<tr>
<td>y</td>
<td>Position along the y-axis</td>
</tr>
<tr>
<td>z</td>
<td>Position along the z-axis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIABLE (GREEK)</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>Wind-body pitch Euler Angle (angle of attack)</td>
</tr>
<tr>
<td>β</td>
<td>Negative of wind-body yaw Euler angle (sideslip angle)</td>
</tr>
<tr>
<td>Γ</td>
<td>Discrete time control effect matrix</td>
</tr>
<tr>
<td>γ</td>
<td>Inertial-velocity axis pitch Euler angle (flight-path angle)</td>
</tr>
<tr>
<td>δ</td>
<td>Delta function</td>
</tr>
<tr>
<td></td>
<td>latitude</td>
</tr>
<tr>
<td>δ_A</td>
<td>Aileron deflection</td>
</tr>
<tr>
<td>VARIABLE (GREEK)</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>δ_{AC}</td>
<td>Aileron command</td>
</tr>
<tr>
<td>δ_a</td>
<td>Aileron state</td>
</tr>
<tr>
<td>δ_E</td>
<td>Elevator deflection</td>
</tr>
<tr>
<td>δ_{EC}</td>
<td>Elevator command</td>
</tr>
<tr>
<td>δ_e</td>
<td>Elevator state</td>
</tr>
<tr>
<td>δ_F</td>
<td>Flap deflection</td>
</tr>
<tr>
<td>δ_R</td>
<td>Rudder deflection</td>
</tr>
<tr>
<td>δ_{RC}</td>
<td>Rudder command</td>
</tr>
<tr>
<td>δ_r</td>
<td>Rudder state</td>
</tr>
<tr>
<td>δ_{SPL}</td>
<td>Left spoiler deflection</td>
</tr>
<tr>
<td>δ_{SPR}</td>
<td>Right spoiler deflection</td>
</tr>
<tr>
<td>δ_S</td>
<td>Spoiler state</td>
</tr>
<tr>
<td>δ_T</td>
<td>Throttle deflection</td>
</tr>
<tr>
<td>δ_{TC}</td>
<td>Throttle command</td>
</tr>
<tr>
<td>ζ</td>
<td>Damping ratio</td>
</tr>
<tr>
<td></td>
<td>Track angle error</td>
</tr>
<tr>
<td>η</td>
<td>Gaussian noise</td>
</tr>
<tr>
<td>θ</td>
<td>Inertial-body pitch Euler angle</td>
</tr>
<tr>
<td>λ</td>
<td>Eigenvalue</td>
</tr>
<tr>
<td></td>
<td>Longitude</td>
</tr>
<tr>
<td>ν</td>
<td>Measurement Gaussian noise</td>
</tr>
<tr>
<td>ξ</td>
<td>Integrator state</td>
</tr>
<tr>
<td>ρ</td>
<td>Air density</td>
</tr>
<tr>
<td>Σ</td>
<td>Summation</td>
</tr>
<tr>
<td>σ</td>
<td>Real part of an eigenvalue in radians/sec</td>
</tr>
<tr>
<td></td>
<td>Standard deviation</td>
</tr>
<tr>
<td></td>
<td>Singular value</td>
</tr>
<tr>
<td>VARIABLE (GREEK)</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>(\phi)</td>
<td>Discrete-time system matrix</td>
</tr>
<tr>
<td>(\phi)</td>
<td>Inertial-body axis roll Euler angle</td>
</tr>
<tr>
<td>(\psi)</td>
<td>Inertial-body axis yaw Euler angle</td>
</tr>
</tbody>
</table>
| \(\omega \) | Frequency in radians/sec
| | Imaginary part of an eigenvalue |

<table>
<thead>
<tr>
<th>SUBSCRIPTS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Body axis</td>
</tr>
<tr>
<td>b</td>
<td>Bias</td>
</tr>
<tr>
<td>C</td>
<td>Command value</td>
</tr>
<tr>
<td>CL</td>
<td>Closed-loop</td>
</tr>
<tr>
<td>E</td>
<td>Earth-relative axis</td>
</tr>
<tr>
<td>e</td>
<td>Error quantity</td>
</tr>
<tr>
<td>f</td>
<td>Full state feedback</td>
</tr>
<tr>
<td>GS</td>
<td>Ground speed</td>
</tr>
<tr>
<td>g</td>
<td>Gust</td>
</tr>
<tr>
<td>H</td>
<td>Horizontal</td>
</tr>
<tr>
<td>IL</td>
<td>Inner-loop</td>
</tr>
<tr>
<td>i</td>
<td>Element index for vectors and matrices</td>
</tr>
<tr>
<td>j</td>
<td>Element index for vectors and matrices</td>
</tr>
<tr>
<td>k</td>
<td>Sampling instant index</td>
</tr>
<tr>
<td>m</td>
<td>Model variable</td>
</tr>
<tr>
<td>o</td>
<td>Nominal value</td>
</tr>
</tbody>
</table>
| s | Static pressure
<p>| | Stochastic |
| t | Transient |</p>
<table>
<thead>
<tr>
<th>SUBSCRIPTS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>Velocity component along body x-axis</td>
</tr>
<tr>
<td>v</td>
<td>Velocity component along body y-axis</td>
</tr>
<tr>
<td>w</td>
<td>Velocity component along body z-axis</td>
</tr>
<tr>
<td>x</td>
<td>Horizontal perpendicular to y and z</td>
</tr>
<tr>
<td>y</td>
<td>Horizontal perpendicular to x and z</td>
</tr>
<tr>
<td>z</td>
<td>Vertical perpendicular to x and y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUPERSCRIPITS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Earth (inertial) axis</td>
</tr>
<tr>
<td>T</td>
<td>Transpose of matrix</td>
</tr>
<tr>
<td>-1</td>
<td>Inverse of matrix</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PUNCTUATION</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(')</td>
<td>Derivative of quantity with respect to time</td>
</tr>
<tr>
<td>('')</td>
<td>Combined variable</td>
</tr>
<tr>
<td>(,)</td>
<td>Vector quantity</td>
</tr>
<tr>
<td>∂()/∂()</td>
<td>Partial derivative of one variable with respect to another</td>
</tr>
<tr>
<td>E{ }</td>
<td>Expected value</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Δ()</td>
<td>Perturbation variable</td>
</tr>
<tr>
<td>()*</td>
<td>Star trajectory</td>
</tr>
<tr>
<td>(^)</td>
<td>Estimated quantity</td>
</tr>
<tr>
<td></td>
<td>Discrete cost function weighting matrix</td>
</tr>
<tr>
<td>∞</td>
<td>Infinity</td>
</tr>
<tr>
<td>∫</td>
<td>Integral</td>
</tr>
<tr>
<td>(~)</td>
<td>Difference between variable and star trajectory</td>
</tr>
<tr>
<td>ACRONYM</td>
<td>CORRESPONDING PHRASE</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------</td>
</tr>
<tr>
<td>ATOPS</td>
<td>Advanced Transport Operating Systems</td>
</tr>
<tr>
<td>CAS</td>
<td>Calibrated Airspeed</td>
</tr>
<tr>
<td>DIALS</td>
<td>Digital Integrated Automatic Landing System</td>
</tr>
<tr>
<td>DOF</td>
<td>Degrees of Freedom</td>
</tr>
<tr>
<td>dB</td>
<td>Decibels</td>
</tr>
<tr>
<td>EPR</td>
<td>Engine Pressure Ratio</td>
</tr>
<tr>
<td>IL</td>
<td>Inner-loop</td>
</tr>
<tr>
<td>kt</td>
<td>Knot</td>
</tr>
<tr>
<td>lim</td>
<td>Limit</td>
</tr>
<tr>
<td>lb</td>
<td>Pound</td>
</tr>
<tr>
<td>LQR</td>
<td>Linear Quadratic Regulator</td>
</tr>
<tr>
<td>MAX</td>
<td>Maximum</td>
</tr>
<tr>
<td>MEAS</td>
<td>Measurement</td>
</tr>
<tr>
<td>MLS</td>
<td>Microwave Landing System</td>
</tr>
<tr>
<td>MIN</td>
<td>Minimum</td>
</tr>
<tr>
<td>MXEPR</td>
<td>Maximum Engine Pressure Ratio</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>PIF</td>
<td>Proportional Integral Filter</td>
</tr>
<tr>
<td>rad</td>
<td>Radians</td>
</tr>
<tr>
<td>RNAV</td>
<td>Area Navigation</td>
</tr>
<tr>
<td>sec</td>
<td>Seconds</td>
</tr>
<tr>
<td>SIGN</td>
<td>The positive or negative sign</td>
</tr>
<tr>
<td>SPL</td>
<td>Left Spoiler</td>
</tr>
<tr>
<td>SPR</td>
<td>Right Spoiler</td>
</tr>
<tr>
<td>TAS</td>
<td>True Airspeed</td>
</tr>
<tr>
<td>tr</td>
<td>Trace</td>
</tr>
<tr>
<td>WO</td>
<td>Wash-out</td>
</tr>
</tbody>
</table>
TABLE 1. SCALES AND VARIANCE FOR GUST MODELS

<table>
<thead>
<tr>
<th>ALTITUDE (m)</th>
<th>18.3</th>
<th>18.3-100</th>
<th>100-533.4</th>
<th>>533.4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_u) (m/sec)</td>
<td>4.88</td>
<td>12.65 (h^{-0.32})</td>
<td>3.05</td>
<td>3.05</td>
</tr>
<tr>
<td>(\sigma_v) (m/sec)</td>
<td>3.88</td>
<td>6.52 (h^{-0.18})</td>
<td>3.05</td>
<td>3.05</td>
</tr>
<tr>
<td>(\sigma_w) (m/sec)</td>
<td>2.83</td>
<td>2.83</td>
<td>2.83</td>
<td>2.85</td>
</tr>
<tr>
<td>(L_u) (m)</td>
<td>171.0</td>
<td>171.0</td>
<td>7.42 (h^{0.68})</td>
<td>533.4</td>
</tr>
<tr>
<td>(L_v) (m)</td>
<td>97.5</td>
<td>43.43 (h^{0.28})</td>
<td>6.85 (h^{0.68})</td>
<td>533.4</td>
</tr>
<tr>
<td>(I_w) (m)</td>
<td>53.0</td>
<td>8.25 (h^{0.64})</td>
<td>6.85 (h^{0.68})</td>
<td>533.4</td>
</tr>
</tbody>
</table>

TABLE 2. COMMAND MODEL PARAMETERS

LONGITUDINAL MODEL OPERATING AT 20 sps

- \(k_h \) 0.6 sec\(^{-2} \)
- \(k_h \) 2.0 sec\(^{-1} \)
- \(k_{\text{CAS}} \)
- \(\bar{h}_{\text{MAX}} \)
- \(\bar{h}_{\text{MAX}} \) Min (0.00117205*(|\(\text{CAS}_c - \text{CAS}_m \)|) + 0.001249, 0.02469)
- If \(h_m * h_m < 0.0 \) THEN \(\bar{h}_{\text{MAX}} \) = 1.14 m/sec\(^2\) (3.75 ft/sec\(^2\))
 - OTHERWISE \(\bar{h}_{\text{MAX}} \) = 0.457 m/sec\(^2\) (1.5 ft/sec\(^2\))
- \(\text{CAS}_{\text{MAX}} \) 0.76 m/s (2.5 ft/sec)

LATERAL MODEL OPERATING AT 20 sps

- \(k_c \) 0.0984 deg/sec/m (0.03 deg/sec ft)
- \(k_c \) 3.77 m\(^{-1}\) (1.15 ft\(^{-1}\))
- \(\phi_{\text{MAX}} \) 4.0 deg/sec
- \(\phi_{\text{MAX}1} \) 25.0 deg (ROLLMAX in Appendix B)
- \(\phi_{\text{MAX}3} \) 30.0 deg (ROLLMAX in Appendix B)
<table>
<thead>
<tr>
<th>Sensor</th>
<th>Noise standard deviation</th>
<th>Bias</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attitude gyro</td>
<td>0.23 deg</td>
<td>0.23 deg</td>
<td></td>
</tr>
<tr>
<td>Rate gyro</td>
<td>0.02 deg/sec</td>
<td>0.</td>
<td></td>
</tr>
<tr>
<td>Body mounted accelerometers</td>
<td>1% of g</td>
<td>1% of g</td>
<td>0.2, -0.2, 0.25 deg misalignment and 0.25% scaling error modeled</td>
</tr>
<tr>
<td>MLS-azimuth</td>
<td>0.01 deg</td>
<td>0.01 deg</td>
<td></td>
</tr>
<tr>
<td>MLS-elevation</td>
<td>0.01 deg</td>
<td>0.01 deg</td>
<td></td>
</tr>
<tr>
<td>MLS-DME</td>
<td>2.3 m</td>
<td>2.3 m</td>
<td></td>
</tr>
<tr>
<td>Barometric altimeter</td>
<td>0.91 m</td>
<td>12.2 m</td>
<td></td>
</tr>
<tr>
<td>Airspeed indicator</td>
<td>1 m/sec</td>
<td>1.5 m/s</td>
<td></td>
</tr>
<tr>
<td>EPR measurement</td>
<td>0.01</td>
<td>0.02</td>
<td>Used for limit check</td>
</tr>
<tr>
<td>δ_A measurement</td>
<td>0.1 deg</td>
<td>0.2 deg</td>
<td>Used to initialize u_k</td>
</tr>
<tr>
<td>δ_R measurement</td>
<td>0.1 deg</td>
<td>0.15 deg</td>
<td>"</td>
</tr>
<tr>
<td>δ_T measurement</td>
<td>0.2 deg</td>
<td>0.4 deg</td>
<td>"</td>
</tr>
<tr>
<td>δ_E measurement</td>
<td>0.1 deg</td>
<td>0.2 deg</td>
<td>"</td>
</tr>
</tbody>
</table>
TABLE 4. SQUARE ROOT OF MATRIX DIAGONAL FOR LONGITUDINAL CONTROL SYSTEMS

<table>
<thead>
<tr>
<th>UNITS</th>
<th>Q</th>
<th>X₀</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δu (m/s)</td>
<td>1.22</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>Δw (m/s)</td>
<td>1.52</td>
<td>1.52</td>
<td></td>
</tr>
<tr>
<td>Δq (deg/sec)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δθ (deg)</td>
<td>65.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Δz (m)</td>
<td>0.244</td>
<td>3.05</td>
<td></td>
</tr>
<tr>
<td>Δδₑ (deg)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>ΔEPR</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δα₀ (m/s²)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δq' (deg)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δuₑ (deg)</td>
<td>0.0</td>
<td>7.0</td>
<td></td>
</tr>
<tr>
<td>Δuₑ (deg)</td>
<td>6.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>Δξ₁ -</td>
<td>0.2</td>
<td>LON1</td>
<td>1.0 LON1</td>
</tr>
<tr>
<td>Δξ₂ -</td>
<td>0.2</td>
<td>LON2</td>
<td>1.0 LON2</td>
</tr>
<tr>
<td>Δξ₃ -</td>
<td>0.2</td>
<td>LON3</td>
<td>1.0 LON3</td>
</tr>
<tr>
<td>ΔξCAS₁ -</td>
<td>0.2</td>
<td>LON1</td>
<td>4.0 LON1</td>
</tr>
<tr>
<td>ΔξCAS₂ -</td>
<td>0.2</td>
<td>LON2</td>
<td>4.0 LON2</td>
</tr>
<tr>
<td>ΔξCAS₃ -</td>
<td>0.2</td>
<td>LON3</td>
<td>4.0 LON3</td>
</tr>
<tr>
<td>ΔH (m)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δh (m/s)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δμₑ (m/s)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δνₑ₁ (m/s)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δνₑ₂ -</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δνₑ (deg/sec)</td>
<td></td>
<td>9.0</td>
<td></td>
</tr>
<tr>
<td>Δνₑ (deg/sec)</td>
<td></td>
<td>12.0</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 5. SQUARE ROOT OF MATRIX DIAGONAL FOR LATERAL CONTROL SYSTEMS

<table>
<thead>
<tr>
<th>UNITS</th>
<th>Q</th>
<th>X₀</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δv (m/s)</td>
<td>30.5</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>Δp (deg/sec)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δr (deg/sec)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δϕ (deg)</td>
<td>70.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Δζ (deg)</td>
<td>0.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Δc (m)</td>
<td>1.5</td>
<td>3.05</td>
<td></td>
</tr>
<tr>
<td>Δδ_a (deg)</td>
<td>0.0</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>Δδ_r (deg)</td>
<td>0.0</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Δρ (deg/sec)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δr_W₀ (deg/sec)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δf (deg/sec)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δu_a (deg)</td>
<td>0.1</td>
<td>4.</td>
<td></td>
</tr>
<tr>
<td>Δu_r (deg)</td>
<td>0.2</td>
<td>2.</td>
<td></td>
</tr>
<tr>
<td>Δξ_c1 -</td>
<td>1.5 LAT1</td>
<td>0.1 LAT1</td>
<td></td>
</tr>
<tr>
<td>Δξ_c2 -</td>
<td>1.5 LAT2</td>
<td>0.1 LAT2</td>
<td></td>
</tr>
<tr>
<td>Δξ_r1 -</td>
<td>0.8 LAT1</td>
<td>0.1 LAT1</td>
<td></td>
</tr>
<tr>
<td>Δξ_r2 -</td>
<td>0.8 LAT2</td>
<td>0.1 LAT2</td>
<td></td>
</tr>
<tr>
<td>Δv_g1 (m/s)</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δv_g2 -</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
</tr>
<tr>
<td>Δv_a (deg/sec)</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>Δv_r (deg/sec)</td>
<td></td>
<td></td>
<td>70</td>
</tr>
</tbody>
</table>
Table 6. Closed-Loop Mapped Eigenvalues

LON1 Closed-Loop Eigenvalues at 77 m/s (150 kt)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Inner-Loop</th>
<th>Optimal 20 sps</th>
<th>Scheduled 20 sps</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \delta_e$</td>
<td>-23.4</td>
<td>-23.8</td>
<td>-23.8</td>
</tr>
<tr>
<td>$\Delta \delta_h$</td>
<td>-6.93</td>
<td>-6.1</td>
<td>-6.1</td>
</tr>
<tr>
<td>Short Period</td>
<td>-2.1 ±j2.8</td>
<td>-2.2 ±j2.5</td>
<td>-2.1 ±j2.5</td>
</tr>
<tr>
<td>Δu_z</td>
<td>0.0 ±j0.0</td>
<td>-0.68 ±j0.67</td>
<td>-1.26</td>
</tr>
<tr>
<td>Comp. Filter</td>
<td>-0.40 ±j0.40</td>
<td>-0.40 ±j0.40</td>
<td>-0.40 ±j0.40</td>
</tr>
<tr>
<td>$\Delta \delta e$</td>
<td>0.50</td>
<td>-0.81</td>
<td>-0.64</td>
</tr>
<tr>
<td>$\Delta \delta_t$</td>
<td>0.0</td>
<td>-0.30</td>
<td>-0.78</td>
</tr>
<tr>
<td>Phugoid</td>
<td>-0.0004±j0.067</td>
<td>-0.074±j0.11</td>
<td>-0.20 ±j0.04</td>
</tr>
<tr>
<td>$\Delta \delta_{h1}$</td>
<td>0.0</td>
<td>-0.064±j0.025</td>
<td>0.048±j0.10</td>
</tr>
<tr>
<td>$\Delta \delta \omega$</td>
<td>0.060</td>
<td>0.060</td>
<td>0.064</td>
</tr>
<tr>
<td>$\Delta \delta_{w1}$</td>
<td>0.0</td>
<td>---</td>
<td>0.034</td>
</tr>
</tbody>
</table>

Table 6. Closed-Loop Mapped Eigenvalues (Continued)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Inner-Loop</th>
<th>Optimal 5 sps</th>
<th>Scheduled 5 sps</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \delta_e$</td>
<td>-23.4</td>
<td>-20.0</td>
<td>-20.3</td>
</tr>
<tr>
<td>$\Delta \delta_h$</td>
<td>-6.93</td>
<td>-4.4</td>
<td>-4.4</td>
</tr>
<tr>
<td>Short Period</td>
<td>-2.1 ±j2.8</td>
<td>-2.6 ±j2.9</td>
<td>-2.6 ±j2.8</td>
</tr>
<tr>
<td>Δu_z</td>
<td>0.0 ±j0.0</td>
<td>-0.71 ±j0.69</td>
<td>-0.78 ±j0.59</td>
</tr>
<tr>
<td>Comp. Filter</td>
<td>-0.40 ±j0.40</td>
<td>-0.40 ±j0.40</td>
<td>-0.40 ±j0.40</td>
</tr>
<tr>
<td>$\Delta \delta e$</td>
<td>0.50</td>
<td>-0.88</td>
<td>-0.83</td>
</tr>
<tr>
<td>$\Delta \delta_t$</td>
<td>0.0</td>
<td>-0.31</td>
<td>-0.25</td>
</tr>
<tr>
<td>Phugoid</td>
<td>-0.0004±j0.067</td>
<td>-0.060±j0.10</td>
<td>-0.17</td>
</tr>
<tr>
<td>$\Delta \delta_{h1}$</td>
<td>0.0</td>
<td>-0.065±j0.02</td>
<td>-0.035±j0.077</td>
</tr>
<tr>
<td>$\Delta \delta \omega$</td>
<td>0.060</td>
<td>0.059</td>
<td>0.064</td>
</tr>
<tr>
<td>$\Delta \delta_{w1}$</td>
<td>0.0</td>
<td>---</td>
<td>0.032</td>
</tr>
</tbody>
</table>

79
<table>
<thead>
<tr>
<th>MODE</th>
<th>INNER-LOOP</th>
<th>OPTIMAL 5 sps</th>
<th>SCHEDULED 5 sps</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \delta_e)</td>
<td>-23.4</td>
<td>-20.3</td>
<td>-20.3</td>
</tr>
<tr>
<td>(\Delta \delta_h)</td>
<td>-6.93</td>
<td>-4.2</td>
<td>-4.3</td>
</tr>
<tr>
<td>SHORT PERIOD</td>
<td>-2.1 ±j2.8</td>
<td>-2.6 ±j2.7</td>
<td>-2.6 ±j2.7</td>
</tr>
<tr>
<td>(\Delta u_e - \Delta z)</td>
<td>-0.0 ±j0.0</td>
<td>-0.91±j0.43</td>
<td>-0.86±j0.48</td>
</tr>
<tr>
<td>COMP. FILTER</td>
<td>-0.40 ±j0.40</td>
<td>-0.40±j0.40</td>
<td>-0.40±j0.40</td>
</tr>
<tr>
<td>(\Delta \epsilon)</td>
<td>-0.50</td>
<td>-0.68</td>
<td>-0.70</td>
</tr>
<tr>
<td>(\Delta \epsilon_t)</td>
<td>0.0</td>
<td>-0.19</td>
<td>-0.19</td>
</tr>
<tr>
<td>PHUGOID</td>
<td>-0.004±j0.067</td>
<td>-0.14±j0.057</td>
<td>-0.14±j0.06</td>
</tr>
<tr>
<td>(\Delta \epsilon_h)</td>
<td>0.0</td>
<td>-0.074</td>
<td>-0.076</td>
</tr>
<tr>
<td>(\Delta \epsilon_w)</td>
<td>0.060</td>
<td>-0.065</td>
<td>-0.064</td>
</tr>
<tr>
<td>(\Delta \epsilon_{\text{CAS2}})</td>
<td>0.0</td>
<td>-0.033</td>
<td>-0.034</td>
</tr>
</tbody>
</table>
TABLE 6. CLOSED-LOOP MAPPED EIGENVALUES (CONTINUED)

LON3 CLOSED-LOOP EIGENVALUES AT 77 m/s (150 kt)

<table>
<thead>
<tr>
<th>MODE</th>
<th>INNER-LOOP</th>
<th>OPTIMAL 5 sps</th>
<th>SCHEDULED 5 sps</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \delta_e$</td>
<td>-23.4</td>
<td>-20.4</td>
<td>-20.3</td>
</tr>
<tr>
<td>$\Delta \alpha_p$</td>
<td>-6.93</td>
<td>-4.1</td>
<td>-4.2</td>
</tr>
<tr>
<td>SHORT PERIOD</td>
<td>-2.1 ±j2.8</td>
<td>-2.8 ±j2.8</td>
<td>-2.8 ±j2.8</td>
</tr>
<tr>
<td>$\Delta \alpha_u - \Delta z$</td>
<td>0.0 ±j0.0</td>
<td>-0.82±j0.60</td>
<td>-0.79±j0.61</td>
</tr>
<tr>
<td>COMP. FILTER</td>
<td>-0.40 ±j0.40</td>
<td>-0.40±j0.40</td>
<td>-0.40±j0.40</td>
</tr>
<tr>
<td>$\Delta \psi_F$</td>
<td>0.50</td>
<td>-0.72</td>
<td>-0.72</td>
</tr>
<tr>
<td>$\Delta \alpha_t$</td>
<td>0.0</td>
<td>-0.24</td>
<td>-0.23</td>
</tr>
<tr>
<td>PHUGOID</td>
<td>-0.004±j0.067</td>
<td>-0.20,-0.13</td>
<td>-0.21,-0.13</td>
</tr>
<tr>
<td>$\Delta \xi_{n3}$</td>
<td>0.0</td>
<td>0.051</td>
<td>0.051</td>
</tr>
<tr>
<td>$\Delta \xi_{wo}$</td>
<td>0.06</td>
<td>-0.063</td>
<td>-0.063</td>
</tr>
<tr>
<td>$\Delta \xi_{cas3}$</td>
<td>0.0</td>
<td>0.032</td>
<td>0.032</td>
</tr>
</tbody>
</table>

TABLE 6. CLOSED-LOOP MAPPED EIGENVALUES (CONTINUED)

LAT1 CLOSED-LOOP EIGENVALUES AT 77 m/s (150 kt)

<table>
<thead>
<tr>
<th>MODE</th>
<th>INNER-LOOP</th>
<th>OPTIMAL 20 sps</th>
<th>SCHEDULED 20 sps</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Delta \delta_a$</td>
<td>-33.0</td>
<td>-33.0</td>
<td>-33.0</td>
</tr>
<tr>
<td>$\Delta \alpha_r$</td>
<td>-21.1</td>
<td>-22.1</td>
<td>-22.1</td>
</tr>
<tr>
<td>$\Delta \phi - \Delta \hat{\phi}$</td>
<td>-6.8 ±j2.3</td>
<td>-6.9 ±j2.6</td>
<td>-6.9 ±j2.5</td>
</tr>
<tr>
<td>α_r</td>
<td>0.0</td>
<td>-3.9</td>
<td>-3.9</td>
</tr>
<tr>
<td>ROLL MODE-\Delta \phi_{wo}</td>
<td>-2.7 ±j0.91</td>
<td>-2.4 ±j0.84</td>
<td>-2.3 ±j0.92</td>
</tr>
<tr>
<td>DUTCH ROLL</td>
<td>-0.53±j0.42</td>
<td>-0.58±j0.82</td>
<td>-0.61±j0.68</td>
</tr>
<tr>
<td>$\phi - \alpha_u$</td>
<td>0.0 ±j0.0</td>
<td>-0.41±j0.30</td>
<td>-0.44±j0.30</td>
</tr>
<tr>
<td>$\xi - \xi_{rl}$</td>
<td>0.0 ±j0.0</td>
<td>-0.16±j0.21</td>
<td>-0.17±j0.23</td>
</tr>
<tr>
<td>$c - \xi_{cl}$</td>
<td>0.0 ±j0.0</td>
<td>-0.088±j0.084</td>
<td>-0.085±j0.084</td>
</tr>
</tbody>
</table>
TABLE 6. CLOSED-LOOP MAPPED EIGENVALUES (CONTINUED)

LAT1 CLOSED-LOOP EIGENVALUES AT 77 m/s (150 kt)

<table>
<thead>
<tr>
<th>MODE</th>
<th>INNER-LOOP</th>
<th>OPTIMAL 5 sps</th>
<th>SCHEDULED 5 sps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δδ_r</td>
<td>-33.0</td>
<td>-30.5</td>
<td>-31.2</td>
</tr>
<tr>
<td>Δδ_a</td>
<td>-22.1</td>
<td>-22.2</td>
<td>-22.0</td>
</tr>
<tr>
<td>Δf - Δp</td>
<td>-6.8 ±j2.3</td>
<td>-6.8 ±j3.1</td>
<td>-6.9 ±j3.1</td>
</tr>
<tr>
<td>u_r</td>
<td>0.0</td>
<td>-4.6</td>
<td>-4.6</td>
</tr>
<tr>
<td>ROLL MODE - Δf_ wo</td>
<td>-2.7 ±j0.91</td>
<td>-2.4 ±j0.87</td>
<td>-2.4 ±j0.95</td>
</tr>
<tr>
<td>DUTCH ROLL</td>
<td>-0.53±j0.42</td>
<td>-0.58±j0.83</td>
<td>-0.58±j0.67</td>
</tr>
<tr>
<td>f - u_a</td>
<td>0.0 ±j0.0</td>
<td>0.38±j0.28</td>
<td>0.41±j0.22</td>
</tr>
<tr>
<td>ξ - ξ_r2</td>
<td>0.0 ±j0.0</td>
<td>0.17±j0.18</td>
<td>0.19±j0.20</td>
</tr>
<tr>
<td>c - c_2</td>
<td>0.0 ±j0.0</td>
<td>0.095±j0.086</td>
<td>0.095±j0.08</td>
</tr>
</tbody>
</table>

TABLE 6. CLOSED-LOOP MAPPED EIGENVALUES (CONCLUDED)

LAT2 CLOSED-LOOP EIGENVALUES AT 77 m/s (150 kt)

<table>
<thead>
<tr>
<th>MODE</th>
<th>INNER-LOOP</th>
<th>OPTIMAL 5 sps</th>
<th>SCHEDULED 5 sps</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δδ_r</td>
<td>-33.0</td>
<td>-30.8</td>
<td>-31.0</td>
</tr>
<tr>
<td>Δδ_a</td>
<td>-22.1</td>
<td>-22.0</td>
<td>-22.0</td>
</tr>
<tr>
<td>Δf - Δp</td>
<td>-6.8 ±j2.3</td>
<td>-6.9 ±j3.1</td>
<td>-6.9 ±j3.1</td>
</tr>
<tr>
<td>u_r</td>
<td>0.0</td>
<td>-4.6</td>
<td>-4.6</td>
</tr>
<tr>
<td>ROLL MODE - Δf_ wo</td>
<td>-2.7 ±j0.91</td>
<td>-2.5 ±j0.84</td>
<td>-2.4 ±j0.9</td>
</tr>
<tr>
<td>DUTCH ROLL</td>
<td>-0.53±j0.42</td>
<td>-0.58±j0.82</td>
<td>-0.62±j0.73</td>
</tr>
<tr>
<td>f - u_a</td>
<td>0.0 ±j0.0</td>
<td>0.37±j0.30</td>
<td>0.36±j0.30</td>
</tr>
<tr>
<td>ξ - ξ_r2</td>
<td>0.0 ±j0.0</td>
<td>0.17±j0.20</td>
<td>0.19±j0.21</td>
</tr>
<tr>
<td>c - c_2</td>
<td>0.0 ±j0.0</td>
<td>0.10±j0.12</td>
<td>0.095±j0.12</td>
</tr>
</tbody>
</table>
TABLE 7. SAMPLE OF CLOSED-LOOP EIGENVALUE VARIATIONS WITH AIRSPEED

<table>
<thead>
<tr>
<th>VELOCITY (m/s)</th>
<th>SHORT PERIOD</th>
<th>PHUGOID</th>
<th>CONTROL SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>-1.7 ± j1.9</td>
<td>-0.009 ± j0.087</td>
<td>INNER-LOOP</td>
</tr>
<tr>
<td>69</td>
<td>-1.9 ± j2.6</td>
<td>-0.004 ± j0.082</td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>-2.1 ± j2.8</td>
<td>-0.0004 ± j0.067</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>-2.1 ± j3.2</td>
<td>-0.0006 ± j0.062</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>-1.7 ± j3.9</td>
<td>0.018 ± j0.049</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>-1.2 ± j5.3</td>
<td>0.024 ± j0.026</td>
<td>SCHEDULED</td>
</tr>
<tr>
<td>139</td>
<td>-1.0 ± j5.6</td>
<td>0.030 ± j0.013</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>-0.95 ± j5.7</td>
<td>0.029 ± j0.012</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>-1.06 ± j1.4</td>
<td>-0.26 ± j0.10</td>
<td>LON1 5 sps</td>
</tr>
<tr>
<td>69</td>
<td>-2.5 ± j2.3</td>
<td>-0.23 ± j0.018</td>
<td>SCHEDULED</td>
</tr>
<tr>
<td>77</td>
<td>-2.6 ± j2.8</td>
<td>-0.25, -0.17</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>-2.4 ± j3.3</td>
<td>-0.26, -0.14</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>-1.9 ± j3.9</td>
<td>-0.28, -0.052 + j0.04</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>-1.2 ± j5.2</td>
<td>-0.36, -0.045 + j0.035</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>-1.0 ± j5.5</td>
<td>-0.42, -0.041 + j0.042</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>-1.0 ± j5.5</td>
<td>-0.50, -0.045 + j0.041</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>-1.1 ± j1.8</td>
<td>-0.15 ± j0.09</td>
<td>LON2 5 sps</td>
</tr>
<tr>
<td>69</td>
<td>-2.6 ± j2.3</td>
<td>-0.14 ± j0.06</td>
<td>SCHEDULED</td>
</tr>
<tr>
<td>77</td>
<td>-2.6 ± j2.7</td>
<td>-0.14 ± j0.06</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>-2.5 ± j3.2</td>
<td>-0.14 ± j0.02</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>-1.7 ± j4.0</td>
<td>-0.25 ± j0.03</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>-1.0 ± j5.3</td>
<td>-0.33, -0.04 + j0.012</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>-0.84 ± j5.5</td>
<td>-0.32, -0.04 + j0.026</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>-0.81 ± j5.6</td>
<td>-0.30, -0.04 + j0.026</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>-1.0 ± j1.3</td>
<td>-0.19 ± j0.072</td>
<td>LON3 5 sps</td>
</tr>
<tr>
<td>69</td>
<td>-2.7 ± j2.3</td>
<td>-0.18 ± j0.008</td>
<td>SCHEDULED</td>
</tr>
<tr>
<td>77</td>
<td>-2.8 ± j2.8</td>
<td>-0.21, -0.13</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>-2.6 ± j3.3</td>
<td>-0.23, -0.09</td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>-1.7 ± j4.0</td>
<td>-0.27, -0.046 + j0.014</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>-1.03 ± j5.3</td>
<td>-0.33, -0.036 + j0.011</td>
<td></td>
</tr>
<tr>
<td>139</td>
<td>-0.88 ± j5.5</td>
<td>-0.32, -0.037 + j0.020</td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>-0.84 ± j5.7</td>
<td>-0.30, -0.037 + j0.020</td>
<td></td>
</tr>
</tbody>
</table>

83
Table 7. Sample of Closed-Loop Eigenvalue Variations with Airspeed (Concluded)

<table>
<thead>
<tr>
<th>VELOCITY (m/s)</th>
<th>DUTCH ROLL</th>
<th>CROSS TRACK</th>
<th>CONTROL SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>-0.62±j0.59</td>
<td>0.0±j0.0</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>-0.53±j0.42</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>77</td>
<td>-0.57±j0.36</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>85</td>
<td>-0.58±j0.37</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>93</td>
<td>-0.59±j0.42</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>124</td>
<td>-0.60±j0.38</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>139</td>
<td>-0.81, -0.70</td>
<td>"</td>
<td>"</td>
</tr>
<tr>
<td>154</td>
<td>-0.96, -0.62</td>
<td>"</td>
<td>"</td>
</tr>
</tbody>
</table>

INNER-LOOP

LAT1 5 sps

OPTIMAL

LAT1 5 sps

SCHEDULED
TABLE 8. MINIMUM SINGULAR VALUES FOR LON2, 5 sps, SCHEDULED GAINS

<table>
<thead>
<tr>
<th>VELOCITY (m/s)</th>
<th>FIRST MINIMUM SINGULAR VALUE (DB)</th>
<th>FREQUENCY (RAD/SEC)</th>
<th>SECOND MINIMUM SINGULAR VALUE (DB)</th>
<th>FREQUENCY (RAD/SEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>-3.6</td>
<td>0.19</td>
<td>-3.2</td>
<td>1.3</td>
</tr>
<tr>
<td>69</td>
<td>-3.0</td>
<td>0.21</td>
<td>-3.1</td>
<td>1.2</td>
</tr>
<tr>
<td>77</td>
<td>-3.0</td>
<td>0.21</td>
<td>-3.2</td>
<td>1.1</td>
</tr>
<tr>
<td>85</td>
<td>-2.8</td>
<td>0.19</td>
<td>-3.2</td>
<td>1.0</td>
</tr>
<tr>
<td>93</td>
<td>-1.9</td>
<td>0.17</td>
<td>-3.2</td>
<td>0.91</td>
</tr>
<tr>
<td>124</td>
<td>-1.7</td>
<td>0.16</td>
<td>-3.4</td>
<td>1.0</td>
</tr>
<tr>
<td>139</td>
<td>-1.9</td>
<td>0.16</td>
<td>-3.5</td>
<td>1.0</td>
</tr>
<tr>
<td>154</td>
<td>-1.8</td>
<td>0.16</td>
<td>-3.6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

TABLE 9. MINIMUM SINGULAR VALUES FOR LON2, 20 sps, SCHEDULED GAINS

<table>
<thead>
<tr>
<th>VELOCITY (m/s)</th>
<th>FIRST MINIMUM SINGULAR VALUE (DB)</th>
<th>FREQUENCY (RAD/SEC)</th>
<th>SECOND MINIMUM SINGULAR VALUE (DB)</th>
<th>FREQUENCY (RAD/SEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>-3.2</td>
<td>0.23</td>
<td>-4.0</td>
<td>1.0</td>
</tr>
<tr>
<td>69</td>
<td>-2.5</td>
<td>0.21</td>
<td>-3.8</td>
<td>1.1</td>
</tr>
<tr>
<td>77</td>
<td>-2.5</td>
<td>0.20</td>
<td>-3.8</td>
<td>1.1</td>
</tr>
<tr>
<td>85</td>
<td>-2.5</td>
<td>0.19</td>
<td>-4.0</td>
<td>1.0</td>
</tr>
<tr>
<td>92</td>
<td>-1.8</td>
<td>0.17</td>
<td>-4.0</td>
<td>1.0</td>
</tr>
<tr>
<td>123</td>
<td>-1.7</td>
<td>0.17</td>
<td>-4.0</td>
<td>1.0</td>
</tr>
<tr>
<td>138</td>
<td>-1.9</td>
<td>0.17</td>
<td>-4.0</td>
<td>1.0</td>
</tr>
<tr>
<td>154</td>
<td>-1.0</td>
<td>0.17</td>
<td>-4.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
TABLE 10. MINIMUM SINGULAR VALUES FOR LAT1, SCHEDULED GAINS

<table>
<thead>
<tr>
<th>VELOCITY (m/s)</th>
<th>5 sps</th>
<th>20 sps</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SINGULAR VALUE (DB)</td>
<td>FREQUENCY (RAD/SEC)</td>
</tr>
<tr>
<td>62</td>
<td>-12.3</td>
<td>0.53</td>
</tr>
<tr>
<td>69</td>
<td>-12.6</td>
<td>0.58</td>
</tr>
<tr>
<td>77</td>
<td>-17.3</td>
<td>0.44</td>
</tr>
<tr>
<td>85</td>
<td>-17.2</td>
<td>0.43</td>
</tr>
<tr>
<td>93</td>
<td>-20.1</td>
<td>0.40</td>
</tr>
<tr>
<td>124</td>
<td>-23.2</td>
<td>0.53</td>
</tr>
<tr>
<td>139</td>
<td>-23.5</td>
<td>0.48</td>
</tr>
<tr>
<td>154</td>
<td>-25.9</td>
<td>0.44</td>
</tr>
</tbody>
</table>

TABLE 11. MINIMUM SINGULAR VALUES FOR LON1, 5 sps, SCHEDULED GAINS

<table>
<thead>
<tr>
<th>VELOCITY (m/s)</th>
<th>FIRST MINIMUM SINGULAR VALUE (DB)</th>
<th>FREQUENCY (RAD/SEC)</th>
<th>SECOND MINIMUM SINGULAR VALUE (DB)</th>
<th>FREQUENCY (RAD/SEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>-6.0</td>
<td>0.08</td>
<td>-3.4</td>
<td>1.4</td>
</tr>
<tr>
<td>69</td>
<td>-5.2</td>
<td>0.08</td>
<td>-3.2</td>
<td>1.1</td>
</tr>
<tr>
<td>77</td>
<td>-5.2</td>
<td>0.09</td>
<td>-3.1</td>
<td>1.1</td>
</tr>
<tr>
<td>85</td>
<td>-4.7</td>
<td>0.10</td>
<td>-5.8</td>
<td>1.1</td>
</tr>
<tr>
<td>93</td>
<td>-2.4</td>
<td>0.15</td>
<td>-7.3</td>
<td>0.9</td>
</tr>
<tr>
<td>124</td>
<td>-</td>
<td>-</td>
<td>-8.0</td>
<td>0.9</td>
</tr>
<tr>
<td>139</td>
<td>-</td>
<td>-</td>
<td>-8.2</td>
<td>0.8</td>
</tr>
<tr>
<td>154</td>
<td>-2.6</td>
<td>0.15</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 12. MINIMUM SINGULAR VALUES FOR LON3, 5 sps, SCHEDULED GAINS

<table>
<thead>
<tr>
<th>VELOCITY (m/s)</th>
<th>FIRST MINIMUM SINGULAR VALUE (DB)</th>
<th>FREQUENCY (RAD/SEC)</th>
<th>SECOND MINIMUM SINGULAR VALUE (DB)</th>
<th>FREQUENCY (RAD/SEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>-2.7</td>
<td>0.21</td>
<td>-3.1</td>
<td>1.6</td>
</tr>
<tr>
<td>69</td>
<td>-2.7</td>
<td>0.21</td>
<td>-3.1</td>
<td>1.6</td>
</tr>
<tr>
<td>77</td>
<td>-2.9</td>
<td>0.21</td>
<td>-2.6</td>
<td>1.2</td>
</tr>
<tr>
<td>85</td>
<td>-2.7</td>
<td>0.19</td>
<td>-2.6</td>
<td>1.1</td>
</tr>
<tr>
<td>93</td>
<td>-1.8</td>
<td>0.17</td>
<td>-2.6</td>
<td>1.0</td>
</tr>
<tr>
<td>124</td>
<td>-1.6</td>
<td>0.16</td>
<td>-2.8</td>
<td>1.0</td>
</tr>
<tr>
<td>139</td>
<td>-1.8</td>
<td>0.16</td>
<td>-2.9</td>
<td>1.0</td>
</tr>
<tr>
<td>154</td>
<td>-1.8</td>
<td>0.16</td>
<td>-3.0</td>
<td>1.1</td>
</tr>
</tbody>
</table>

TABLE 13. MINIMUM SINGULAR VALUES FOR LAT1, 5 sps, SCHEDULED GAINS

<table>
<thead>
<tr>
<th>VELOCITY (m/s)</th>
<th>MINIMUM SINGULAR VALUE (DB)</th>
<th>FREQUENCY (RAD/SEC)</th>
<th>MINIMUM SINGULAR VALUE (DB)</th>
<th>FREQUENCY (RAD/SEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>-6.0</td>
<td>1.1</td>
<td>-3.3</td>
<td>0.56</td>
</tr>
<tr>
<td>69</td>
<td>-6.0</td>
<td>1.0</td>
<td>-2.8</td>
<td>0.58</td>
</tr>
<tr>
<td>77</td>
<td>-5.0</td>
<td>1.0</td>
<td>-3.5</td>
<td>0.52</td>
</tr>
<tr>
<td>85</td>
<td>-5.0</td>
<td>1.0</td>
<td>-2.7</td>
<td>0.58</td>
</tr>
<tr>
<td>93</td>
<td>-4.2</td>
<td>1.2</td>
<td>-3.3</td>
<td>0.58</td>
</tr>
<tr>
<td>124</td>
<td>-4.7</td>
<td>1.0</td>
<td>-3.3</td>
<td>0.63</td>
</tr>
<tr>
<td>139</td>
<td>-4.4</td>
<td>1.0</td>
<td>-2.5</td>
<td>0.58</td>
</tr>
<tr>
<td>154</td>
<td>-3.9</td>
<td>1.0</td>
<td>-2.2</td>
<td>0.52</td>
</tr>
</tbody>
</table>
TABLE 14. LAT2 FREQUENCY DOMAIN PROPERTIES, 5 sps, SCHEDULED GAINS, $\Delta \delta_a$ LOOP OPEN, $\Delta \delta_r$ LOOP CLOSED

<table>
<thead>
<tr>
<th>VELOCITY (m/s)</th>
<th>MINIMUM SINGULAR VALUE (DB)</th>
<th>FREQUENCY (RAD/SEC)</th>
<th>FIRST GAIN MARGIN (DB)</th>
<th>FREQUENCY (RAD/SEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>-6.1</td>
<td>1.1</td>
<td>11.5</td>
<td>0.25</td>
</tr>
<tr>
<td>69</td>
<td>-6.1</td>
<td>1.0</td>
<td>10.3</td>
<td>0.25</td>
</tr>
<tr>
<td>77</td>
<td>-5.5</td>
<td>1.0</td>
<td>11.6</td>
<td>0.23</td>
</tr>
<tr>
<td>85</td>
<td>-5.2</td>
<td>1.0</td>
<td>12.4</td>
<td>0.23</td>
</tr>
<tr>
<td>93</td>
<td>-4.5</td>
<td>1.2</td>
<td>25.2</td>
<td>0.22</td>
</tr>
<tr>
<td>124</td>
<td>-4.6</td>
<td>1.2</td>
<td>12.2</td>
<td>0.25</td>
</tr>
<tr>
<td>139</td>
<td>-4.8</td>
<td>1.2</td>
<td>12.4</td>
<td>0.25</td>
</tr>
<tr>
<td>154</td>
<td>-5.1</td>
<td>1.1</td>
<td>12.8</td>
<td>0.27</td>
</tr>
</tbody>
</table>

TABLE 14. LAT2 FREQUENCY DOMAIN PROPERTIES, 5 sps, SCHEDULED GAINS, $\Delta \delta_a$ LOOP OPEN, $\Delta \delta_r$ LOOP CLOSED (CONCLUDED)

<table>
<thead>
<tr>
<th>VELOCITY (m/s)</th>
<th>PHASE MARGIN (DEG)</th>
<th>FREQUENCY (RAD/SEC)</th>
<th>SECOND GAIN MARGIN (DB)</th>
<th>FREQUENCY (RAD/SEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>62</td>
<td>38</td>
<td>0.69</td>
<td>-10.0</td>
<td>1.8</td>
</tr>
<tr>
<td>69</td>
<td>36</td>
<td>0.69</td>
<td>-9.5</td>
<td>1.8</td>
</tr>
<tr>
<td>77</td>
<td>39</td>
<td>0.63</td>
<td>-9.8</td>
<td>1.6</td>
</tr>
<tr>
<td>85</td>
<td>40</td>
<td>0.63</td>
<td>-10.1</td>
<td>1.7</td>
</tr>
<tr>
<td>93</td>
<td>49</td>
<td>0.65</td>
<td>-10.2</td>
<td>1.7</td>
</tr>
<tr>
<td>124</td>
<td>42</td>
<td>0.63</td>
<td>-10.7</td>
<td>1.7</td>
</tr>
<tr>
<td>139</td>
<td>41</td>
<td>0.61</td>
<td>-11.5</td>
<td>1.7</td>
</tr>
<tr>
<td>154</td>
<td>39</td>
<td>0.63</td>
<td>-10.8</td>
<td>1.7</td>
</tr>
</tbody>
</table>
TABLE 15. CURVED TRAJECTORY FLIGHT CONDITIONS

<table>
<thead>
<tr>
<th>WAYPOINT</th>
<th>X (m)</th>
<th>Y (m)</th>
<th>Z (m)</th>
<th>RADIUS (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-6706.0</td>
<td>2896.0</td>
<td>-1406.0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>-6706.0</td>
<td>-107.0</td>
<td>-1406.0</td>
<td>2286.0</td>
</tr>
<tr>
<td>C</td>
<td>-7209.0</td>
<td>-3048.0</td>
<td>-829.0</td>
<td>2286.0</td>
</tr>
<tr>
<td>D</td>
<td>-4923.0</td>
<td>-2743.0</td>
<td>-383.5</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>-4923.0</td>
<td>0.0</td>
<td>-256.8</td>
<td>1524.0</td>
</tr>
<tr>
<td>F</td>
<td>1000.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WAYPOINT</th>
<th>LATITUDE (DEG)</th>
<th>LONGITUDE (DEG)</th>
<th>SPEED (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>38.01214601</td>
<td>-75.44233621</td>
<td>75.0</td>
</tr>
<tr>
<td>B</td>
<td>37.99775995</td>
<td>-75.41336030</td>
<td>75.0</td>
</tr>
<tr>
<td>C</td>
<td>37.98749129</td>
<td>-75.38191319</td>
<td>75.0</td>
</tr>
<tr>
<td>D</td>
<td>37.97157281</td>
<td>-75.39875636</td>
<td>75.0</td>
</tr>
<tr>
<td>E</td>
<td>37.98472385</td>
<td>-75.42522296</td>
<td>69.5</td>
</tr>
<tr>
<td>F</td>
<td>37.9449551</td>
<td>-75.45699678</td>
<td>69.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WAYPOINT</th>
<th>WEIGHT 85000.0 lbs</th>
<th>CG 0.2</th>
<th>FLAPS 40 deg-FIXED</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIRCRAFT PARAMETERS</td>
<td>INITIAL HEADING 122.2 deg</td>
<td>INNER-LOOP SAMPLE RATE 20 sps-ALWAYS</td>
<td>OUTER-LOOP SAMPLE RATE VARIES IN FIGURES</td>
</tr>
</tbody>
</table>
Figure 1. Inner-loop, outer-loop control system block diagrams
FIGURE 2. AILERON/SPOILER INNER-LOOP CONTROL SYSTEM BLOCK DIAGRAM
FIGURE 3. YAW DAMPER AND RUDDER ACTUATOR MODEL BLOCK DIAGRAM
FIGURE 4. AUTOTHROTTLE INNER-LOOP CONTROL SYSTEM BLOCK DIAGRAM
FIGURE 5. ELEVATOR INNER-LOOP CONTROL SYSTEM BLOCK DIAGRAM
FIGURE 6. COMPARISON OF LON3 OPTIMAL AND GAIN SCHEDULED GAINS
FIGURE 7. ALTITUDE CAPTURE
FIGURE 8. ALTITUDE CAPTURE SIMULATION, 5 sps OUTER-LOOP
FIGURE 8. ALTITUDE CAPTURE SIMULATION, 5 sps OUTER-LOOP (CONCLUDED)
FIGURE 9. CAS CAPTURE SIMULATION, 5 sps OUTER-LOOP
FIGURE 9. CAS CAPTURE SIMULATION, 5 sps OUTER-LOOP (CONCLUDED)
FIGURE 10. HORIZONTAL PATH CAPTURE
FIGURE 11. LAT1 HORIZONTAL CAPTURE, 5 sps OUTER-LOOP
FIGURE 12. WIND SHEAR ENVIRONMENT
FIGURE 13. WIND SHEAR SIMULATION
FIGURE 13. WIND SHEAR SIMULATION (CONCLUDED)
FIGURE 14. WIND SHEAR SIMULATION: THROTTLE RESPONSE
FIGURE 15. CONTROL SYSTEM BLOCK DIAGRAM FOR FREQUENCY DOMAIN EVALUATION
FIGURE 16. LON2 THROTTLE LOOP FREQUENCY RESPONSE USING SCHEDULED GAINS, OUTER-LOOP SAMPLE RATE = 5 sps

FIGURE 17. LAT1 RUDDER LOOP FREQUENCY RESPONSE USING SCHEDULED GAINS, OUTER-LOOP SAMPLE RATE = 5 sps
FIGURE 18. LON2 (TOP) AND LAT1 (BOTTOM) SIGMA PLOTS USING SCHEDULED GAINS, OUTER-LOOP SAMPLE RATE = 5 sps
FIGURE 19. LON2 ELEVATOR LOOP FREQUENCY RESPONSE USING SCHEDULED GAINS, OUTER-LOOP SAMPLE RATE = 5 sps

FIGURE 20. LAT1AILERON LOOP FREQUENCY RESPONSE USING SCHEDULED GAINS, OUTER-LOOP SAMPLE RATE = 5 sps
FIGURE 21. LAT1 BODE PLOTS USING OPTIMAL OUTPUT FEEDBACK GAINS
a) THROTTLE LOOP OPEN, ELEVATOR LOOP CLOSED

b) ELEVATOR LOOP OPEN, THROTTLE LOOP CLOSED

FIGURE 22. LON2 BODE PLOTS USING OPTIMAL OUTPUT FEEDBACK GAINS
FIGURE 23. HORIZONTAL CURVED TRAJECTORY PROFILE
FIGURE 24. LON1 CURVED TRAJECTORY PERFORMANCE, 5 sps
FIGURE 25. LON2 CURVED TRAJECTORY PERFORMANCE, 5 sps
FIGURE 26. LON3 CURVED TRAJECTORY PERFORMANCE, 5 sps
FIGURE 27. LAT1 CURVED TRAJECTORY PERFORMANCE, 5 sps
FIGURE 28. LAT1 CURVED TRAJECTORY PERFORMANCE, 20 sps
FIGURE 29. LON1 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 5 sps
FIGURE 30. LON2 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 5 sps
FIGURE 31. LON3 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCE, 5 sps
FIGURE 32. LON2 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 20 sps
FIGURE 33. LON1 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 20 sps
FIGURE 34. LAT1 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 5 sps
FIGURE 35. LATI CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 20 sps
FIGURE 36. LAT2 CURVED TRAJECTORY PERFORMANCE WITH DISTURBANCES, 20 sps
INVESTIGATION, DEVELOPMENT, AND APPLICATION OF OPTIMAL OUTPUT FEEDBACK THEORY. Volume II—Development of an Optimal Limited State Feedback Outer-Loop Digital Flight Control System for 3-D Terminal Area Operation

John R. Broussard and Nesim Halyo

Information & Control Systems, Incorporated
28 Research Drive
Hampton, VA 23666

National Aeronautics and Space Administration
Washington, DC 20456

NASA Langley Technical Monitor: Richard M. Hueschen
Final Report

This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.