General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI)
SECRETARIA DE PLANEJAMENTO DA PRESIDÊNCIA DA REPÚBLICA
CONSEHLO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO

INSTITUTO DE PESQUISAS ESPACIAIS
1. Publication N°
INPE-3200-PRE/562

2. Version

3. Date
Julho, 1984

5. Distribution

<table>
<thead>
<tr>
<th>Internal</th>
<th>External</th>
<th>Restricted</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑</td>
<td></td>
<td>☑</td>
</tr>
</tbody>
</table>

4. Origin
DCA/DEA

6. Key words - selected by the author(s)
- On Board Supervision
- Space Data Systems
- On Board Computer
- On Board Data Handling
- On Board Data Acquisition and Control

7. U.D.C.:
629.785:528.711.7(81)

8. Title
BRESEX: On Board Supervision: Basic Architecture and Preliminary Aspects for Payload and Space Shuttle Interface

9. Authorship
Eduardo Whitaker Bergamini - reporter
Aldenir Rodrigues de Paula Jr.
Ricardo Corrêa de Oliveira Martins

Responsible author

10. Nº of pages:
22

11. Last page:
20

12. Revised by

13. Authorized by
Nelson de Jesus Parada
Diretor Geral

14. Abstract/Notes

This report presents the material relative to the On Board Supervision Subsystem which was presented and considered in the joint conference between INPE and NASA personnel, held in March 12, 13 and 14 of 1984, in São José dos Campos, with the purpose of initiating a joint work which will lead to the implementation of the "Brazilian Remote Sensing Experiment - BRESEX. The BRESEX should consist, basically, of a Multispectral Camera for Earth observation, to be tested in a future flight of the "Space Shuttle", according to a program to be executed by NASA in collaboration with INPE.

15. Remarks
Trabalho apresentado ao pessoal do INPE e da NASA nos dias 12, 13 e 14 de março de 1984, em São José dos Campos, com o propósito de iniciar entendimentos conjuntos que deverão levar à implementação do "Brazilian Remote Sensing Experiment - BRESEX".
RÉSUMO

Este relatório documenta a parte da matéria relativa ao subsistema de supervisão de bordo que foi apresentada e considerada nas conversações levadas a efeito entre o pessoal do INPE e da NASA, nos dias 12, 13 e 14 de março de 1984, em São José dos Campos, com o propósito de iniciar entendimentos conjuntos que deverão levar à implementação do "Brazilian Remote Sensing Experiment - BRESEX". O experimento BRESEX deve constar, basicamente, de uma câmara multispectral de observação da terra, a ser testada em um dos futuros vôos do "Space Shuttle", de acordo com programa a ser executado pela NASA em colaboração com o INPE.
ACKNOWLEDGEMENTS

The authors are indebted to engineers Marcus Antonius A. Siqueira and Paulo Camilli for the data furnished in relation to the other BRESEX subsystems and the Space Shuttle Avionics, respectively.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRESEX ON BOARD SUPERVISION GLOSSARY</td>
<td>1</td>
</tr>
<tr>
<td>BRESEX ON BOARD SUPERVISION ARCHITECTURE</td>
<td>2</td>
</tr>
<tr>
<td>BASIC FUNCTIONS OF THE OBS-MC BUSES</td>
<td>3</td>
</tr>
<tr>
<td>BRESEX ON BOARD SUPERVISION ARCHITECTURE</td>
<td>4</td>
</tr>
<tr>
<td>BASIC FUNCTIONS OF THE OBS-TR BUS</td>
<td>5</td>
</tr>
<tr>
<td>BRESEX ON BOARD SUPERVISION ARCHITECTURE</td>
<td>6</td>
</tr>
<tr>
<td>BASIC FUNCTIONS OF THE OBS-TVB BUS</td>
<td>7</td>
</tr>
<tr>
<td>BRESEX ON BOARD SUPERVISION ARCHITECTURE</td>
<td>8</td>
</tr>
<tr>
<td>BASIC FUNCTIONS OF THE TC/TM BUS</td>
<td>9</td>
</tr>
<tr>
<td>BRESEX ON BOARD SUPERVISION ARCHITECTURE</td>
<td>10</td>
</tr>
<tr>
<td>SPACE SHUTTLE STANDARD SWITCH PANEL</td>
<td>11</td>
</tr>
<tr>
<td>SPACE SHUTTLE AFT FLIGHT DECK PAYLOAD AVIONICS</td>
<td>12</td>
</tr>
<tr>
<td>BASIC FUNCTION OF THE DATA HANDLING BUS</td>
<td>14</td>
</tr>
<tr>
<td>BRESEX ON BOARD SUPERVISION ARCHITECTURE</td>
<td>15</td>
</tr>
<tr>
<td>BASIC FUNCTIONS OF THE STANDARD COMMAND BUS</td>
<td>16</td>
</tr>
<tr>
<td>BRESEX ON BOARD SUPERVISION ARCHITECTURE</td>
<td>17</td>
</tr>
<tr>
<td>SOME VERY BASIC QUESTIONS TO BE TREATED</td>
<td>18</td>
</tr>
</tbody>
</table>

PRECEDING PAGE BLANK NOT FILMED
- BRESEX ON BOARD SUPERVISION GLOSSARY -

- OBS: On Board Supervision
- MC: Multispectral Camera
- TR: Tape Recorder
- SKD: Supervision Keyboard and Display
- TVE: TV Buffer
- PM: Power Module
- PLD.ST.: Payload Station
- SSP: Standard Switch Panel
- OPDH: Orbiter Payload Data Handling
- GPC: General Purpose Computer
- MDM: Multiplexer Demultiplexer
- PSP: Payload Signal Processor
- MTU: Master Timing Unit
- CCTV System: Closed Circuit TV System
- TC/TM: Telecommand/Telemetry
- C/DSN: Consolidated Deep Space Network
- BASIC FUNCTIONS OF THE OBS-MC BUSES -

DATA ACQUISITION BUS:

SENSORS RELATED DATA (CALIBRATION, TEMPERATURE, VIDEO SIGNAL, ETC.)

HOUSEKEEPING DATA BUS:

MESSAGE CONTAINING ACQUISITION, CONTROL, TESTING, ANCILLARY, TIMING, SYNCHRONIZATION, TESTING, KEYBOARD AND OTHER POSSIBLE SUPERVISING DATA, FOR RECORDING, UNDER MC FRAME FORMATTING.

CONTROL BUS:

COMMANDS AND ACQUISITION RELATED TO: CAMERA READINESS; MIRROR POSITION NG; CALIBRATION AND AMPLIFICATION STATUS; SHUTTER ACTUATION; CAMERA POWER SUPPLY, ETC.
- BASIC FUNCTIONS OF THE OBS-TR BUS -

CONTROL BUS:

TAPE RECORDER COMMAND AND ACQUISITION:
POWER SUPPLY, STATUS, ACTIVATION, RUN, ETC.
BASIC FUNCTIONS OF THE OBS-TV BUS

CONTROL BUS:

TV BUFFER COMMAND AND ACQUISITION:
POWER SUPPLY, STATUS, ACTIVATION, ETC.
- BASIC FUNCTIONS OF THE TC/TM BUS -

The TC/TM bus is considered to implement a direct connection between the Supervisor Keyboard and Display (SKD) and the On Board Supervisor (OBS) itself. The exchange of appropriate command and telemetry messages through the TC/TM bus would enable the payload specialist to monitor the operation of the experiment. The SKD could be implemented using some special input/output electronics or, in a primitive fashion, using the Standard Switch Panel (SSP) in its unique version, without further sophistication.
MARKING OF FOUR OVERLAYS TO BE DONE BY JSC PER INDIVIDUAL CARGO ELEMENT REQUIREMENTS (OVERLAY WILL COVER COMPONENT DESIGNATORS)

J14 (N035E9-9B5N) 1

NOTES:
1. CONFORMS TO NASA SPECIFICATION 40M39569
2. PANEL IS PANEL SIZE E AS DEFINED IN PARAGRAPH 3.4.1.1.1
NOTES:

1. LEGEND

PAYLOAD DEDICATED PANEL AREA EQUALS 16.85 FT². PANELS ARE DEFINED IN FIGURE 3.4.1.1.1-1.

ADDITIONAL PAYLOAD DEDICATED D&C PANELS ON INBOARD SURFACES OF THREE EQUIPMENT CONSOLES REQUIRE ALLOWANCE OF SIX (6) INCHES DEPTH OF NORMAL PANEL AREA. ALL COMPONENTS ON THESE SURFACES MUST BE FULLY RECESSED. ADDITIONAL PANEL SURFACE AREA IS 5.5 FT²

2. TOTAL PAYLOAD DEDICATED VOLUME IS 21.64 FT³

Figure 3.2.1.1(A) Shuttle Orbiter Payload Physical Interface Locations - Aft Flight Deck General Arrangement
- BASIC FUNCTION OF THE DATA HANDLING BUS -

Four possible connections between OPDH and OBS:

1. GPC - OBS:
 - Special interface is needed;
 - Relatively high (1 Mbits/sec) data rate;
 - Ancillary, time, command and telemetry data can be exchanged, although through a polled line.

2. MDM - OBS:
 - Point-to-point serial communication;
 - Apparently no special interfacing electronics is needed;
 - Command data;
 - Relatively high data rate (1 Mbits/sec).

3. PSP - OBS:
 - Low speed data rate;
 - Parallel lines;
 - Commands only

4. MTU - OBS:
 - Master timing.
- BRESEX ON BOARD SUPERVISION ARCHITECTURE -

PLD, ST.

SSP

SKD

OPDH

DATA HANDLING BUS

TIMING

TR

TVB

MC

PM

09.03.84
PRELAUNCH TEST
BASIC FUNCTIONS OF THE STANDARD COMMAND BUS

The Standard Command Bus is intended for manual use, not only for some redundant functions, normally executed by the On Board Supervision Subsystems, but for substituting it, in case of failure, while preserving the essential operation of the other subsystems of the experiment.
- SOME VERY BASIC QUESTIONS TO BE TREATED -

1. Detailed documentation (hardware and software) on the four OPDH - OBS possible connections for better understanding of the alternatives for interfacing through these buses;

2. Detailed documentation on the SSP and payload station electronic hardware;

3. NASA evaluation and counseling on the alternatives for interfacing the On Board Supervisor with the Space Shuttle Avionics;

4. Need to get knowledge on qualification constraints of the payload for mission approval.

5. Possible means of on board and ground message exchange in view of the desired future connection between INPE space data network and the C/DSN for cross-supported space missions.