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T.. ABSTRACT

Fracto-emission (FE) is the emission of particles and photons during and

following crack propagation. The types of particles we have observed include

electrons (EE), positive ions (PIE), and excited and ground state neutrals

(NE). In this report we present results of a number of experiments involving

principally graphite/epoxy composites and KevlarTM single fibers. A study

concerned with the physical processes responsible for EE and PIE is included.

Finally, a review paper on FE from fiber- and particulate-reinforced composites

is also included.
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11. INTRODUCTION

In this report we present four recently written manuscripts, three of

which deal with the subject of fracto-emission from fibers or fiber-reinforced

epoxies. The fourth paper involves recent studies on the mechanisms of

electron and positive ion emission from systems where large amounts of charge

separation occurs, e.g. situations involving interfacial or adhesive failure

We feel that the more details of fracto-emission mechanisms we can

provide, the more useful a tool FE will be for investigating damage and failure

mechanisms, the influence of environmental factors on composites, and as a

•	 sensitive probe of crack growth in composite materials.

The work presented in this report includes the following:

Section III: ACOUSTIC AND ELECTRON EMISSION FROM THE FRACTURE OF

GRAPHITE/EPDXY COMPOSITES

(Submitted to J. Mater. Sci.)

Section IV: FRA.CTO-EMISSION FROM SINGLE FIBERS OF KEVLAR-49

(Submitted to Fibre Science Technol.)

Section V: FRACTO-EMISSION: THE ROLE OF CHARGE SEPARATION
r'

(Submitted to J. Vac. Sci. Technol.)

F6 4	 !;

Section VI: FRACTO-EMISSION FROM FIBER- AND PARTICULATE-REINFORCED

COMPOSITES
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(A reviewa er which will be P p	 published in the Proceedings of the
n.

Symposium on Polymer Composiues—Interfaces, Plenum Press (1983))
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III. ACOUSTIC AND ELECTRON EMISSION FROM THE FRACTURE
OF GRAPHITE/EPDXY COMPOSITES

A. Jahan—Latibari, J. T. Dickinson, and L. C. Jensen
Department of Physics

Washington State University
Pullman, WA 99164-2894

ABSTRACT

The failure mechanisms of graphite—epoxy composites are investigated using
acoustic emission (AE) and electron emission (EE) techniques. EE and positive
ion emission (PIE) from the fracture of unidirectional graphite—epoxy
composites were measured. The results show a rapid rise in emission during
fracture and a slow decay following fracture for both EE and PIE.
Multidirectional graphite—epoxy composites fractured in flex were examined as
well. The simultaneous AE and EE measurements indicated a steady build—up of
QE prior to catastrophic failure in all systems examined. A slow, pre—fracture
EE build—up was detected from the flexural loading of zero degree
graphite—epoxy. This was attributed to mirocrack formation in the matrix as
well as the separation of the tiny bundles of fibers from one another on the
tension side of the sample. The steady build—up in AE was considered to be the
result of fiber fracture and interlaminar failure. The results of this study
suggest that by comparing data from AE and EE techniques, one can detect and
differentiate between the onset of internal and external Failure in composites.

^. ^....	 -
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In acquiring an understanding of the performance of composite structures,	 g

it is essential to accurately describe the processes leading up to crack

formation in model composites under stress. To pain this understanding, a

number of techniques have been developed for sensing damage to these materials

prior to failure. Acoustic emission (AE) is an example of such a technique; it

has been used successfully to detect areas of weakness in composite specimens

prior to failure (1,2). Bailey, et al. were able (3), with the aid of AE, to

detect the Location of flaws within composite components and investigate the

time-dependent formation and propagation of cracks during loading. Rotem (4)

was able to discriminate between different failure modes in composites by

analyzing amplitude intensity distributions of AE.

i

A
In recent months we have been investigating a set of physical phenomena

called fracto-emission (FE) that involves the emission of particles (e.g.

electrons, positive ions, neutral molecules, and photons) during and following

the propagation of a crack. Most of our work has concentrated on electron

emission (EE) and positive ion emission (PIE), which have been detected from a

wide range of materials (see references 5 - 17). The results from the fracture

of individual 10 ,um fibers of E-glass, 5-glass, and graphite (11,17) showed the

emission from these materials to be relatively intense (typically 108

particles per cm  of cross-sectional area) and short-lived, typically

decaying away in 10 - 50 ps. The fracture of Kevlar T14 fibers (18) produced

multiple bursts of emission, indicating the formation and fracture of

individual fibrils within the strands. These bursts, approximately 50 Ps in

duration, were often hundreds of microseconds apart in groups of 1 -- 5.
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Unfired epoxy (DER 332/T403 : a bisphenol-type A resin) yielded relatively weak
	 f

emission (typically 10 3 particles per cm  of cross-sectional area) with
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a decay time of about 25 us.

Fracture of the filament/epoxy strands resulted in significantly different

emission curves, During fracture, the EE and PIE rise together in the form of

large bursts. Immediately following separation this intense emission begins to

decay away; the decay is very slow and lasts for many seconds. Intense

emitters can yield detectable emission for as long as two hours after fracture.

As discussed elsewhere (11 - 16) we have found this behavior ^.o be

characteristic of interfacial or adhesive failure. A model involving the

physical phenomena accompanying such fracture is presented in reference 19,

wherein the charge separation between dissimilar materials in contact (e.g.

epoxy/glass) plays a critical role.

In this paper the results of EE and PIE measurements from the fracture of

unidirectional graphite-epoxy composites are presented; a study of

multi-directional graphite-epoxy, including a com parison of AE and EE from

flexural, loading of such com posites, is also included.

II. EXPERIMENTAL PROCEDURE

Unidirectional graphite-epoxy composites (provided by NASA-Ames Material

Science and Application Office) made from Union Carbide Thornel 300 graphite

fibers and NARMCO 5208 epoxy resin were fractured in tension. A sharp notch

was made in the center of the tension sample to control the fracture

initiation. Graphite-epoxy composites made from Union-Carbide Thornel 300

fibers and various NARMCO epoxy resins were tested in flex as well, The fiber

directions in these composites were (0), ( *45) and (0,90,90,0) degrees to 	 k
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the long axis. Samples were tested in three-point flex with a span-to-depth

ratio of 30:1 and strain rate of 0.064 mm/sea.

The experiments were performed in a vacuum chamber at a pressure of

3x10-5 Pa. The detectors used for charged particles are channeltron

electron multipliers (CEM I s) which produce fast (10 ns) pulses with

approximately 90N absolute detection efficiency for electrons and nearly 100%

efficiency for positive ions. The gains of the CEM t s used were typically

106 - 108 electrons/incident particle. The detectors were positioned 1

- 4 cm away from the sample with a bias voltage on the front cone of the CEM to

attract the charged particles of interest. Background noise counts ranged from

1 to 10 counts/second. Standard nuclear physics data aquisition techniques

were employed to count and store pulses, normally as functions of time. The

time scales of interest are'submicrosecond to several second intervals, which

we can easily cover with commercial electronics.

Acoustic emission (AE) and EE were detected from graphite-epoxy composites

fractured in three-point flex. AE was detected with a PZT transducer with a

resonant frequency of 175 KHz. The bursts were typically 500 ps in duration.

The filtered and amplified signal was fed into a discriminator to eliminate

background noise, and the resulting pulses were counted on a multi-channel

scaler. Thus the count rate displayed is determined by both the number and

size of AE bursts (the number of "rings" that trigger the discriminator). To

reduce the influence of mechanical. AE in our experiments the mechanical

supports were covered with teflon tape. Fracture of a uniform material (PMMA),

which will have no interlaminar shear or delamination, shows no prefracture AE

in our system. Fig. 1 shows schematically the electron multiples and AE

transducer arrangement which simultaneously detects AE and EE from the sample.
i

Load and deflection were also measured.
i

i
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III. RESULTS AND DISCUSSION!

The results of EE and PIE from the fracture of unidirectional

graphite—epoxy composite (Thornel 300/5208) are shown in Fig. 2. The samples

were 0.25 mm thick and 2.4 mm wide. In general EE exceeds PIE in terms of

total, emission by 10--40%. However, since the EE and PIE shown in Fig, 2 were

measured from two separate samples, a larger variation is present between EE

and PIE. The resulting emission plotted on a log scale shows the rapid rise

during fracture and slow decay following fracture. we note that the decay

kinetics for both EE and PIE are essentially identical, suggesting that a

common rate—limiting step is shared by the two types of emissions.

Examinations of the fracture surfaces on a number of systems involving

adhesive failure or delamination with an SEM indicate that the production of

interfaces is responsible for intense emission during and slow decay following

fracture. This feature of intense, long—lasting emission may serve as a

measure of the extent of delamination that has occured. By far the majority of

the emission is coming from the surfaces created by the separation of the

filaments from the matrix. Even though emission accompanying composite

fracture (interfacial failure) is more intense and Lasts. longer than emission

from single fibers, the intensity at fracture and decay rates very among

various composite systems. Emission from graphite—epoxy samples decays to the

background level, after about 60 seconds (see Fig. 2), while emission from

Kevlar—epoxy strands lasts as long as two hours. SEM observations showed

interfacial failure in both composite systems, but the interfacial fracture

energy may be the cause of the variations in emission decay rates.



1 1+PI . 	.-

—9—

m^i,nn pn af.+,^ ^n,^ rT

Graphite--epoxy composite is brittle and fractures with less energy than a

_	 fit. • ^ .-c_.,^	 ..^^^ I{`

tougher composite system such as Kevlar--epoxy.

To further explore the type of fracture events in composites which lead to

FE, we simultaneously examined the AE and EE accompanying flexural failure.

Figs. 3 thru 6 show the results of AE and EE measurement from NARMCO 5208 epoxy

resin and (0) 161 (+45).i6 , and (019019010)16 degree

graphite—epoxy composites. Load vs. deflection curves are also included in

figures 4 thru 6 to better demonstrate the dependence of AE and EE on the

deformation and failure of composite materials. Samples tested in flex

contained no notch. Flexural testing of MARMCO 5208 epoxy resin produced a few

low intensity AE bursts prior to fracture, but no EE was detected. The single

bursts of AE prior to fracture are assumed to be the result of microcracking.

The AE and EE count rate at fracture for epoxy resin is one order of magnitude

smaller than graphite—epoxy composites. The AE data obtained from the flexural

testing of graphite—epoxy composites can be characterized as follows: first, an

initial rapid rise from zero due to the initial load applied to the specimen;

second, the steady build—up of the AE count rate prior to failure. Finally, a

large burst followed by a drop in AE count rate at catastrophic failure.

Concerning AE only, our results differ somewhat from those of Sarnly and

Parry (20). Barnly and Parry observed no acoustic activity prior to fracture

for unidirectional fiber glass—epoxy composite notched samples tested in flex.

In their experiment, the onset of failure and large load drop was indicated by

	

r'	 the onset of AE. However, their result on cross—ply (0/90) material showed the

AE build up immediately following the application of load. Fitz—Randolph

et.al . (21) have shown the steady increase of AE with deflection for

unidirectional boron--epoxy composites. This was expected because brittle

	

,^	 J

composites such'as graphite—epoxy produce different forms of AE bursts than
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glass--epoxy composites.

Composite materials generally exhibit a variety of failure :nodes,

including matrix cracking, debonding, fiber breakage resulting from statistical

distribution of fiber strength, delamination, and void growth (22). Some of

these events, prior to failure, will be clearly detectable in both EE and A£.

The basic requirement for detecting fracture events with FE is that the

newly created fracture surfaces are in some manner in communication with the

vacuum so that the particles can escape from the sample and be detected. Thus,

the existence or lack of correlations between AE and EE can provide information

on the mechanisms leading up to failure.

For example, Fig. 5 shows the AE build-up from a (0) 16 degree

graphite/epoxy system at the early stages of loading. As mentioned previously,

a statistical distribution of strength exists among graphite fibers t therefore

some fracture at a lower stress in tension than others, which will produce

bursts of AE. As the loading advances more fibers fracture and cause the AE

build-up prior to catastrophic failure of the composite (23). Shear and

internal, delamination will also contribute to AE. Loose fibers at the edges

may break at any time during loading and produce both AE and EE bursts

simultaneously. The failure of fiber bundles are shown by two Inrge EE and AE

bursts early in loading in Fig. 5. These failures were also observed with a

video recorder and correlated with the AE and EE. At higher load levels, fiber

fracture and internal delamination will lead to AE. Matrix cracking in the

tension side of the sample and the separation of tiny bundles of fibers will

all contribute to simultaneous AE and EE. The slow build-up of EE prior to

failure is attributed to microcracks formed on the surface, while the EE bursts

in the region between 3 and b mm deflection are considered the result of

"Larger" events such' as edge cracking or bundles fracturin.,	 the front

Y	 'r^
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surface. Finally, the test specimen Fractures catastrophically (where the load

drops), accompanied by large bursts of AE and EE occurring together. in

wpeci.mens without a notch, many fibers break simultaneously with delamination —

one can frequently see several plys failing successively. EE decays slowly

between successive failure of the plys, but both AE and load will increase

until the next catastrophic failure of more plys.

Even though some of the composite failure mechanisms described above will

apply to angle ply laminates, transverse cracking and interfacial failure will

predominate. When reinforcement fibers are at x'45 degrees to the long

axis, interfacial fracture is the main failure mechanism. This is clearly
	

r -

shown in Fig. 6 by the large simultaneous bursts of AE and EE. The EE curve is

characterized by frequent bursts characteristic of crack formation which in

this case is the interfacial failure at a 45 degree angle to the long axis of
	

l

the sample. The EE count rate is higher when loading the sample compared to.

background (prior to loading). Analysis of ±45 degree samples indicate

interfacial failure on the tension side after testing. Com posites with

different fiber directions produce different forms of AE bursts: when

composite layers are at :t45 degrees, AE appears immediately on loading and

increases with load. Interlaminar shear causes continous AE build—up. One

interesting feature of AE and EE data from (0/90/90/0) degree samples is the AE

build—up without any appearance of EE prior to failure. Large interlaminar

shear deformation and failure will occur in 90 degree (interior) laminates

prior to the failure of zero degree (exterior) laminates (Fig. 7). These

events apparently cannot be detected using EE due to their being internal to

the sample.
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Flexural loading of ,graphite--epoxy composites produces simultaneous AE and

EE. A continuous AE build-up was observed from the loading of multidirectional

graphite-epoxy composites. When unidirectional graphite-epoxy composites were

tested, an EE build-up prior to fracture was observed. 'The AE build-up prior

to fracture was assumed to result from accumulation of internal and external

damages such as fiber breaking and interlaminar failure, as well as matrix

cracking. The external failure of fibers and matrix cracking, prior to

catastrophic failure, resulted in EE build-up.

The results of these experiments indicate that it is possible to detect

microfractures, such as microscopic separation of tiny bundles of fibers,

interfacial failure and matrix cracking in fiber-reinforced composites using

EE. Even though the EE technique is not able to detect internal failure such

as fiber fracture or interlaminar shear failure, it will provide evidence of

failure at early stages of fracture. Also, it clarifies the source of AE as a

function of strain by the presence or absence of AE-EE correlations.

Comparisons of the techniques tell precisely the onset times for internal and

external failure. in addition, EE technique is probably sensitive to

interfacial fracture energy; higher interfacial energy will produce higher EE

counts than low interfacial energy (brittle interphase). EE can thus be

employed to characterize the toughness of fiber-matrix interphase in

composites.

I	 1^
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FIGURE CAPTIONS
I;

Fig. 1. Schematic diagram of experimental arrangement for EE, AE, and load
measurements on composite materials in ilex,

Fig. 2. EE and PTE from the tensile failure of unidirectional graphite—epoxy
composites (Union. Carbide Thornel 300 graphite fiber and NARMC0 5208 epoxy
resin).	 3

Fig. 3. The EE and AE accompanying the flexural, straining of NARMCO 5208 bulk
epoxy resin.

Fig. 4. The EE, AE, and load accompanying the flexural straining of 16 layer,
unidirectional graphite—epoxy composite. (Union Carbide Thornel 300 graphite
fiber and NARMCO 5209 epoxy resin.)

Fig. 5. The EE, AE, and load accompanying the flexural straining of 16 layer
(-45) degree graphite--epoxy composite. (Union Carbide Thornel 300 fiber
and MARMCO 5208 epoxy resin,)

Fig. 6. The EE, AE, and load accompanying the flexural, straining of 16 layer,
cross—ply (0,90,90,0) degree graphite—epoxy composite. (Union Carbide Thornel. 	 1
300 fiber and NARMCO 934 epoxy resin.)	 },
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IV. FRACTO--EMISSION FROM SINGLE FIBERS OF KEVLAR-49

J. T. Dickinson, A. Jahan-Latiberi, and L. C. Jensen
De partment of Physics

Washington State University
Pullman, `CIA 99164-2814

ABSTRACT

Fracto-emission (FE) is the'emission of particles (e.g. electrons, ions,
and photons) during and following fracture. In this paper, we present data on
electron emission (EE) and positive ion emission (PIE) from the tensile
fracture of Kevlar,49 single fibers. The fibers were initially fractured in
pure tension, where a stranded form of fracture was observed, often with
multiple peaks spread over several, hundred microseconds. The loading condition
was then changed by stretching and breaking the fibers over a dull metal edge.
With this change in the loading, three different forms of fracture were
observed; each with its own distinctive form of emission curve. When fracture
was accompanied by extensive splitting and failure between the fibrils, total
emission was high and both FE and PIE decay times were long relative to
fractures in which little inter-fibril failure occurred. The results of this
study suggest that FE has some applicability as a tool for the detection of
fracture mechanisms of single fibers.

* Trade name of E.I. Du Pont de Nemours and Co.
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1. INTRODUCTION

The fracture behavior of fiber-reinforced composites is strongly dependent

on the properties of the fibers, the matrix, and the interface. The role of

debonding, fiber fracture, and fiber pull-out can be critical in determining

the toughness of fibrous composites. Recently we have been examining various

characteristics of a phenomenon called 't fracto-emission," explaining its

relationships to failure mechanisms in composites including fiber- and

particulate-reinforced epoxies (1) as well as particulate-filled elastomers•.

By fracto-emission (FE) we mean the emission of particles (e.g. electrons,

positive ions, neutral species, and photons) during and following the formation

of a crack in a stressed material (Reference 2 and the references found therein

contain our recent .,wark on a wide variety of materials). As part of cur FE

studies, we have examined the FE from the fracture of single fibers of

Materials such as E -glass, 3-glass, graphite, and Kevlar--49. The fracture

properties of single fibers under tensile stress are of considerable interest

because of their contribution to strength in elongation.

We report here the results of recent measurements of electron emission

(EE) and positive ion emission (PIE) from the fracture of single fibers of

Kevlar. In a previous study we were able to measure the mass of the PTE

accompanying the fracture of Kevlar (3), In this work we focus on the time

dependence and total intensities of the emission produced by such fracture.

A	
These measurements give clear indications of the time required for the fibers

to undergo failure as well as the "damage" being produced during fracture. For

10 dam fibers, the time of fracture will be seen to be suprisingly long. We

propose that such FE measurements may prove useful foir examining the ways in
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which fibers break.

II. EXPERIMENTAL PROCEDURE
. III

The Kevlar-,49 Aramid fibers used for this research are characterized by

high crystallinity, high tensile strength and modulus, and low density.	 In the
t

i
experiments to be described here, the samples were single fibers adhesively

i

bonded to pieces of aluminum sheet shaped to fit into clamps in our vacuum ^.

i
system.	 The fiber length and diameter were 18 mm and 10 )am respectively.	 The

fibers were strained at a rate of 1% per second until failure occurred. 	 Almost
r
r

all fibers fractured under pure tension broke in various stranded forms.	 For !

comparison, some of the fibers were stretched across a dull aluminum edge

during straining; this frequently produced "smoother" fractures, with less

splitting and shredding.

EE and PIE were measured using a Galileo Electro-Optics Model. 4821 channel.
F'

I,

electron multiplier (CEM) positioned within 3 cm of the sample. 	 The front of

the CEM was biased at +300V for electrons and - ,2500V for positive ions.	 The i

pulse output (10 ns pulse width) from the CEM was amplified and fed into a 100

MHz discriminator. The resulting pulses were fed into a multichannel analyzer,

allowing counts vs time to be recorded at 1 ps per channel. The emission

curves varied in duration and are displayed here on various time scales,

emphasizing the bursts of emission. Because of the tiny area of the fractur:,

r	 ^

surface, the bursts are frequently small and the accompanying decay curves

rather weak. Total particle counts are provided with each emission curve and

in the tables. These may be larger than the area under the displayed curves 	 I

because the after-emission is extended to longer times.

f
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The experiments were carried out in a vacuum chamber pumped by a diffusion

pump with a liquid nitrogen cold trap; the background pressure in the chamber

was 1x10-5 Pa.

One side of the broken fiber was used to characterize the nature of the

fractured fiber in terms of the degree of damage to the fiber. This was done

by placing the broken fiber between two glass slides and photographing it at a

magnification of 200x using a Zeiss Photomicroscope 111. The "damage" was then

qualitatively correlated with the intensity and time distributions of the EE

and FIE from each fiber.

III. RESULTS AND DISCUSSION

Typical results of EE measurements from the purely tensile fracture of

Kevlar fibers are presented in Figs, le and 1b. Photographs of the

corresponding fracture surfaces are shown in Fags, 1a' and W. As can be seen

from the photographs, the fibers generally fractured into individual fibrils, a

well known tendency of Kevlar fibers (4). The extent of splitting is seen to

vary qualitatively between Figs. 1a' and lb'. In Fig. 1a', the fiber fracture

involves limited splitting, and the corresponding EE is of very short duration

and in the form of two short bursts with a total. of 308 counts. On the other

hand, the fiber in Fig. 1b' is extensively split after fracture. The EE curve

in Fig. 1b shows more intense, multiple bursts, characteristic of a more

complicated fracture process. The emission occurred in four distinct bursts

each longer in duration than the bursts in Fig, 1a. From examination of Fig.
i^

1bI one can see that substantially more splitting and fibril, fracture has

t
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Similar results were obtained from the PIE measurements. The PIE, on the

time scale shown in Fig. 2a, is characterized by multiple, long lasting bursts.

Note the PTE build-up and decay of the second burst in Fig. 2a (about 100 "us).

This relatively slow build-up of the emission is most likely an indication of

the time required for the splitting or separation process for the formation of

the individual fibrils, while the decay time or after emission is due to

thermally stimulated relaxation of the fracture surfaces (5). This is

supported by the splitted form of fracture shown in Fig. ta i . It is obvious

from Figs. 1 and 2 that both EE and PIE are more intense when fibers fracture

into separate fibrils.

These emission curves and photographs ( Figs. 1 and 2) show the

complicated forms of fracture that occur- from the tensile deformation of Kevlar

single fibers. In Table I we have summarized the total emission counts for a 1

millisecond interval during and after fracture, the number of distinguishable

EE or PIE bursts (peaks), and the time duration between the occurence of the

first burst and the last burst. This time is an indication of the time from

initial fiber damage to final failure for the slow strain rate used in this

experiment. That is surprizing is the magnitude of this time in relation to

the small cross--sectional area of the sample. In general, from the parameters

in Table Z, we see that when the total emission for either EE or PTE is high

the splitting and formation of fibrils is significant, and there is evidence of

extensive plastic deformation (as observed with the photomicroseope). Also, a

high total emission count was generally accompanied by bursts of EE or PTE with

long decay, We tentatively suggest that Long after-emission may be related to

a higher degree of fibril formation and/or plastic deformation.

This form of fracture, namely the splitting and formation of fibrils, was

C 1 ^I

I!
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previously seen by'Chiao, at al, (4) while testing Kevlar/e poxy strands.

Chino, at al. also detected particles or defects within the fibrils which did

not appear to be artifacts, but were an inherent characteristic of the fiber.

Due to the presence of these defects, some fibrils fracture at a lower stress

level than others, producing an initial fracture in different parts of the

fiber, followed by failure of the stronger fibrils at later times. This form

of fracture might thus yield successive bursts of emission over measurable time

periods. At this point, we can not distinguish clearly the order of events

producing the sequence of EE bursts that we observe.

Fig. 3 shows typical EE measurements and corresponding photographs of

Kevlar--49 single fibers stretched and broken over the dull metal edge. Similar

results of PIE measurements and photographs of their respective fracture

surfaces areg	 graph or photograph in Figs. 3presented in Fig. ^. Although each Y

F

or 4 is for a particular fiber, they are representative of approximately f:.fty

samples we studied.

For samples broken across the metal edge, three distinctive forms of

fracture can be qualitatively distinguished by the examination of the emission

curves and the photographs. The first type was characterized by low total

emission followed by a rapid decay; this corresponded to a "clean" fracture

where the fiber cleaved relatively cleanly across its cross- -section (see Figs,

3a and 3a', 4a and 4a'). Second, a " splitting" type of fracture was observed

which was accompanied by greater counts of both EE and PIE, with longer decay

times ( see Figs. 3b and W, 4b and 4b', and Table Il). 	 This form of fracture

was the type that dominated when fibers were fractured in pure tension. In the

third form of fracture, the fiber broke mainly across its cross—section, but

the resulting fracture surfaces are frayed. Such "frayed ' r fracture was
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characterized by several bursts of electrons and positive ions, with some 	
4

bursts Lasting up to 200 its (see Fags. 3c and 3c', 4c and 4c').

Table II presents average values of the parameters; total counts, number
,F

of bursts, and time duration to characterize typical behavior for each type of

fracture.

In Kevlar fibers the extended polymer chains along the fibril axes are

covalently bonded, whereas the fibrils are attached to one another in the

transverse direction only by hydrogen bonds (5). The weak hydrogen bonds break

easily and cause the fibrils to separate from one another during fracture:.

When the fiber fracture is "clean", a limited number of either covalent or

hydrogen bonds were broken. In addition, the exposed fiber surface area is

very small. Therefore the total emission count is low with a very rapid decay

(see Figs. 3a and 4a). In cases where fibrils are formed extensively even

though the total number of failed covalent bonds may be no hi. er  than that

found in flat fracture, a very high number of hydrogen bonds are broken. The

failure of hydrogen bonds causes more fibril surface area to be exposed and may

produce charge separation in a way similar to del.amination or "interfacial

failure," which we have found produces intense emission (2,6). We have shown

that charge separation during fracture plays a key role in the emission

mechanism; in general., when charge separation is intense so is the EE and PIE

(2,6). Thus the EE may be providing signals indicative of the manner in which

!i

	 the fibers are failing.

IV. CONCLUSIONS

^I

The emission of electrons and posit.ive ions from the fracture of single

r

i

1
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fibers of Kevlar-49 has been examined on the microsecond time scale. Evidence
• r;

^9.

of the time required from initial damage to ultimate failure of the fiber has

been provided, showing times ranging from a few microseconds to several hundred	
.I

microseconds. Secondly, the 'total emission from the entire fracture event

tends to correlate with the extent of "dame,ge" to the fiber produced by

fracture. Finally, by examination of the shape and intensity of the EE/PIE

bursts, it may be possible to differentiate between fibril formation vs fibril 	
4

i

fracture. A measurement of other EE/PIE characteristics such as kinetic energy 	
I

or use of other FE components (e.g. neutral emission or photon emission) might

provide more deformation information on the fracture processes occurring where 	
r
t+

such fibers are stressed to failure.	 3

i
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Table T. Selected Parameters for Electron and Positive Ton Emi ssion From the
Fracture of Kevlar Single Fibers.

Emission Type	 Total. Emission Plumber of Time Duration
Counts Per 1 ms bursts (Microseconds)

t

EE	 308 5 681
615 4 125
640 3 209
860 4 116
576 3 132
264 2 147
429 3 111

PTE	 1265 3 219
195 1 -•

882 2 19
744 4 59

* Time between the occurrence of the first and last burst
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Table II. Averages of Selected Parameters of EE and PIE for Various Forms of
Keirlar-49 Single—Fiber Fracture, (Fibers Stressed Over Metal Edge.)

Fracture	 Emission	 Total Emission	 Number of	 Time Duration
Microstructure	 Type	 Counts per 1 ms)	 Bursts	 (microseconds)

Clean	 EE	 334	 3	 15
PIE	 42	 1	 —

Stranded	 EE	 470	 2	 25
PIE	 641	 2	 6

Frayed	 EE	 1168	 6	 5390
PIE	 768	 4	 470

Time between the occurrence of the first and last burst

K4
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FIGURE CAPTIONS

Fig. i. Electron emission and photographs of fracture surfaces of Kevlar
single fibers fractured in pure tension: a) limited splitti.nn, and b) extensive
splitting of fibrils.

Fig. 2: Positive ion emission and photographs of the corresponding fracture
surfaces of a Kevlar single fiber fractured in pure tension.

Fig. 3: Electron emission and photographs of the corresponding fracture
surfaces of Kevlar single fibers fractured across a dull metal edge: a) flat,
b) stranded, and c) frayed fracture.

Fig.4: Positive ion emission and photographs of the -corresponding fracture
surfaces of Kevlar single fibers fractured across a dull metal edge: a) flat,
b) stranded, and c) frayed fracture.
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V. FRAM—EMISSION: THE ROLE OF CHARGE SEPARATION

J. T. Dickinson, L. C. Jensen, and A. Jahan—Latibari
Department of Physics

Washington State University
Pullman, CIA. 99 164-2814

ABSTRACT

Fracto—emission is the emission of particles (e.g. electrons, ions, ground
state and excited neutrals, and photons) during and following fracture. We
have found that during fracture of adhesive bonds and crystalline materials
involving large amounts—of charge separation on the surface, the emission of
charged particles, excited neutrals, light, and radio waves occurs with unique
and revealing time dependencies. In this paper we report simultaneous
fracto—emission measurements on several. systems. We interpret the results in
terms of a conceptual model, involving the following steps: (1) charge
separation due to fracture, (2) desorption of oases from the material into the
crack tip, (3) a gas discharge in the crack, (4) energetic bombardment of the
freshly—created crack walls, and (5) thermally stimulated electron emission,
accompanied by electron stimulated desorption of ions and excited neutrals. In
addition to evidence from fracture experiments, we present •esults from studies
of electron bombardment of a polymer surface.

_•j.... .,x:.—ter,	 -	 ^ _
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I. INTRODUCTION

Fracto-,emission (FE) is the emission of particles (e.g. electrons, ions,

ground state and excited neutrals, and photons) during and following fracture

of mates its. In past work we have observed intense, long-lasting emission of

electrons W) and positive ions (PIE) from systems where high densities of

surface charge develop on the fracture surface (see references contained in

reference 1). Such systems include: 1) adhesive failure (e.g. peeling of

pressure—sensitive adhesives from inorganic substrates, fracture of

particulate—filled elastomers, fracture of fiber—reinforced epoxies) , 2)

fracture of piezoelectric materials such as crystalline SiO2 , sucrose, and

polycrystalline PZT, and 3) a number of non—piezoelectric materials which still

show intense charge separation, such as LiF, MgO, A.1 203 , and mica.

In examining the various components of EE from these materials we found it

useful to-measure simultaneously two or more types of emission on various time

scales, to provide further understanding of the emission mechanisms. Some of

this work has been previously described for EE and PIE from polybutadiene

filled with glass beads. The results previously obtained can be summarized as

follows:

1. EE and PIE rise rapidly together during crack propagation, and

decay immediately after separation of the fracture surfaces with identical

kinetics (2-4).

2. 0n a submi.orosecond time scale, a substantial fraction of the PIE 	 I

a
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is in coincidence with the EE (3--5). This suggests that at least some of

the electrons emitted are either created simultaneously with positive

ions, or more likely, creation of the positive ions is accompanied by

inelastically scattered electrons and/or Auger electrons from an ESD--like

process (7).

3. There are neutral species emitted from materials undergoin.g

fracture (6). These can be attributed to the release of absorbed species

and/or fracture fragments (decomposition).

4. There are also excited neutrals emitted which are correlated in

time with the EE (4). We have attributed these metastable molecules to

ions neutralized in the process of leaving the surface.

In this paper we would like to report recent results involving

simultaneous measurement of EE, photons (phE), and radio waves (RE)

accompanying the fracture in vacuum of various materials where strong charge

separation occurs. Also, measurements of EE and PIE induced by electron

bombardment are presented for one material, polybutadiene. Finally a

conceptual model is presented that ties together these new observations and

those summarized above.

11. EXPERIMENTAL

The measurements described here were performed on materials fractured in a

vacuum of 1 -S 10-5 Pa. Samples were fractured either in tension or in

three point flexure. The alumina-filled epoxy consisted of one part by weight

EPOU 828 (Z-hardener) epoxy to three parts of irregularly-shaped alumina

particles with an average diameter of 10 }um. The 2mm X 17mm X 45mm samples

- --	 -
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were notched with a sharp saw and fractured in tension in front of the

detectors. The polybutadiene (BR) consisted of Diene 35NFA (Firestone Tire and

Rubber Co.) orosslinked.with 0.05,19 (by weight) dicumyl peroxide. by heating for

2 hours 'at 150 °C. Some BR samples contained 30--95 pm glass beads (34% by

volume). Samples were 2mm X Smm X 20mm, and were notched slightly in the

middle as before. The sucrose crystals were grown by allowing a saturated

solution of sugar in water to evaporate for three weeks. These crystals were

broken by applying a force perpendicular to the piezoelectric axis. Sucrose

and quartz crystals were fractured in flexure. BR for electron bombardment

studies consisted of Diene 35NFA dissolved in benzene and allowed to evaporate

on a supporting Cu sheet. This resulted in a 0.8 mm thick BR film covering the

Cu sheets. The Si.02 crystals were x—cut disks, 6.5 mm in diameter by 1.2

mm thick, the disk face being-the (2,1,1,0) plane. The fracture surfaces

tended to be perpendicular to the disk face.

The electrons were detected with a channeltron electron multiplier

(background noise counts ranged from 1 to 10 counts per second). A Bendix

BX754A Photon Counter Tube with an S-20 photosensitive surface and background

count rate of 10-20 counts per second was used to detect visible photons. The

two detectors were generally placed within 1 cm or Less from the region where

the crack would propagate. Both detectors yielded 10 ns pulses which could be

treated with standard pulse counting techniques and stared in a multi.—channel

analyzer (MCA).

In addition to EE and phE, we detected the emission of radio frequency

electromagnetic waves (RE) accompanying fracture in vacuum. RE has been

detected previously by Der,jaguin, et al. (8) during the separation of polymer

films from dielectric surfaces at pressures considerably higher (103 --
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10	 Fa) than ours (10
-5
 ?a).	 The RE was detected using two different

pickup coils: a 2.5 mH RF choke coil and a 20000 turn solenoid of No. 30 magnet ^r

wire.	 Either coil was connected to the input of a wide-band differential

iamplifier with high common mode rejection to minimize	 p	 ,P	 J	 pick-up noise	 and  ^i{{{{

further amplified by a second amplifier.	 The response of each coil to a
€I

fracture event was a ringing signal with approximate frequencies and duration
i

as follows: i}

2.5mH choke coil	 600 khz	 20 jus

20000 turn solenoid	 8 khz	 1 ms

r
i

'	 The solenoid was 5 times more sensitive but because of the higher j
a

inductance and thus longer ringing it could only be used to determine the onset {

of detectable RE or the actual occurrence of RE emission, with approximate
E:	 ►;I

values of RE duration.	 The choke coil allowed more accurate time correlations I

but with reduced sensitivity.
i

Ff

Two methods of recording RE were used: the choke coil signals were fed

into a discriminator, so that rings above a threshold produced pulses which

were then counted with an YMCA, thereby detecting the presence of bursts of RE

as a function of time. 	 The second method, used for the solenoid, consisted of

digitizing the coil output with a wave-form digitizer. 	 The rise of the RE

ringing signal could then be correlated in time with other FE by the use of 1

i

synchronized start pulses.	 Thus within one channel, width on the MCA all three

FE components could be compared.	 Previous experiments (2) correlating FE to

video recording of crack growth indicated that EE intensity rises rapidly

during crack propagation and falls upon separation of the fracture surfaces.

VA
F
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Although it has not been proven conclusively for rapid crack growth, we have

assumed that One most intense EE is occurring during crack propagation.

111. RESULTS

The first set of data, shown in Fig. 1, is from the fracture of

alumina-filled epoxy. The time scale chosen was in an intermediate range to

assure aquisition of all three signals and still provide reasonably good time

correlation information. In a separate experiment measuring, crack motion in

this material with a rotating framing camera, the duration of crack growth was

f

found to be about 24 ps. The data in Fig. 1 was taken at 44 ms per channel and
	

3

the count rate is plotted on a log scale vs. time. The EE burst occurring
	

i

during fracture, seen in Fig. 1 as the point where the EE count rate is a

maximum, is accompanied by a burst of RE as well as phE. The phE may show a

weakly-defined tail; the RE drops off immediately after fracture. The results

shown here were reproducible for 10 consecutive samples and show that in a

vacuum there is an electrical breakdown occuring during fracture of this filled

polymer.

Figs. 2-»4 show similar results for polybutadiene (BR) filled with glass

beads, single--crystal sucrose, and single-crystal quartz. ftll show the burst

of RE and phE accompanying fracture. The BR and SiO 2 show clear evidence

of tails' following fracture, which may to a first approximation follow the

electron decay in form. Note that for the .filled BR we were able to follow phE

and EE rising together, due to the much slower crack velocity. Also note that
	

1

the drop in phE after the peak is for all of these material far more than a

simple proportionality relative to the drop in EE; i.e., the phE during

r



fracture is much more intense than a phE mechanism that remains parallel to an 	 4
f;
d.

EE mechanism would predict.	 i<<

As a further test of the occurrence of a discharge during fracture,

simultaneous PIE and RE measurements were taken for the k'racture of the filled

BR using the more sensitive solenoid coil (PIE was measured rather than EE

because on faster time scales EE showed evidence of saturating the electron

multiplier.). Of primary interest here was the onset of RE relative to the

growth of PIE which we know rises with EE during fracture. The time of

fracture has been reduced (by increasing the strain rate by approximately a

factor of twenty) in order to increase the amplitude of the RE during fracture.

The digitized waveform of the RE signal was squared, averaged, and the

background subtracted to yield the average power in the ringing RE signal.

This result is shown with the corresponding PIE count rate for the filled BR in 	
4

_	 r	 !I

Fig. 5, where'great care has been taken to align the curves correctly in time.

The RE is seen to.break out of the background noise in the regions of most

intense electron emission. The arrows indicate bursts of PTE and RE that are

correlated in time. Also, the regions where the PIE is most intense correspond

to regions where the RE is highest, where it has been shown (3) that the crack

velocity is the highest. Thus, it appears that the RE intensity is velocity

dependent also. The primary result here is that we can see RE during a

considerable portion of the period in which we observe PTE.

In anticipation of a component of EE possibly produced by bombardment of

the fracture surface by charged particles created in a discharge, we performed

two experiments on a thick film of BR. At room temperature,'the BR was

bombarded with with 2 keV electrons at nanoampere currents for 5 m.nutes. As

a
soon as the electron beam was turned off, a nearby channeltron biaseA to detect
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electrons was turned on. Fig. 6a shows the resulting EE, with a long-lasting

decay which is very similar to that of EE induced by fracture. This effect has

been extensively studied on crystalline inorganic materials, such as oxides and

alkali halides and is known as thermally stimulated electron emission

(TSEE)(9). Here we see (to our knowledge for the first time) the same

phenomenon, TSEE, at room temperature from a polymer.

Because of our extensive studies of fracture--induced PTE from this

material (3,4), we also examined the emission of ions both during and after

electron bombardment. For an energy of 2 keV and a current of 5 nanoamperes

we see in Fig, 6b the PIE emitted during bombardment, which decays away as soon

as the bombardment stops. The ions are not following a parallel mechanism to

the EE but are following an ESD mechanism only. Thus we propose that the PIE

observed during fracture is due to a portion of the Er. which never completely

escapes the sample but rather collides with the surface (probably at positive

charge patches) and induces ESD of positive ions.

IV.	 CONCEPTUAL MODEL

At least in the cases illustrated here where significant charge separation

occurs during fracture, we feel that the gaseous discharge that we detected

`.:.	 using RE and phE is playing a very important role in the production of EE and

PIE. In fact, variations in discharge intensity may explain the large

variation in intensities observed for a wide range of materials, crack

velocities, and other factors. The basic ideas we are proposing are:

1. The fracture event yields charge separation (usually patchy)
-u

producing an electric field, E, in the crack.
sw^	 ,

.



T. Desorption of volatiles and/or frar.Gure products raises tne

pressure, P, in the crack 'sip.

3. A gas'discharge (dictated by P, E, and a distance d which

characterizes the crack width) occurs, producing the RE and phE. Electron

and ion bombardment of the crack walls occurs during this discharge.

4. Bombardment of the fracture surfaces creates primary excitations,

usually explained in Inorganic crystals in terms of electron—hole

production raising electrons into traps near the conduction band, which

then undergo thermally stimulated migration until recombination with a

hole occurs. This recombination can yield an emitted electron .(thermally

stimulated electron emission MEE)), say by an Auger process, or a photon

(thermal luminescence, (TL) (12)).

5. A portion of the electron emission strikes adjacent patches of

positive charge yielding PTE via an ESD mechanism. Some of these positive

i-)ns are neutralized as they leave the surface yielding the excited

neutral component of FE that we have observed.

Consistent with this model are the abservations that qualitatively, when

charge separation is intense, so are EF. and PTE. Secondly, the RE and phE peak

intensities (i.e., during fracture) appear to be closely following the same

trends. Third, in materials where charge separation is intense but the RE is

weak, the EE and PTE tend to be small (e.g. an alkali, halide). Fourth, the

very close tie between EE and PIE =unt rates following fracture supports the

ESD mechanism. Furthermore, the PTE kinetic energies we observe are often in

the hundreds of eV (10,11) suggesting that the PIE originates from positive

'.	 charge patches. Fifth, coincidence experiments showed that there was a finite

i

probability of detecting an electron in close coincidence with an emitted

A^

^_^__



positive ion. This electron could be an inelastically scattered electron

(creating the ESD excitation) or an accompanying Auger electron ex pected in the	 J!
1
{

ESD process involving creation of a core hole. Sixth, in the case of sucrose

and SiO2 there is an observable phE decay that follows the EE decay after

separation of the fracture surfaces, indicating a parallel de--excitation

mechanism, similar to what is observed in THE and TL. Finally, the strong 	 t

increase in EE with crack velocity observed in filled BR would be expected

because; a) the surface charge densities may be higher due to the reduced 	 {

reneutralization through conduction paths, and b) increased gas desorption into
R

the crack tip occurs due to an expected increase in crack tip temperature with

crack velocity.	 rj

V. CONCLUSIONS

. These initial results and this conceptual model allow us to make a number

of predictions concerning the dependence of fracture--induced EE on material

properties, temperature, and crack velocity. Also, quantitative models

relating various FE intensities to measurement of surface charge (measured in

vacuum), surface conductivity, and se parate TSEE, TSL, and ESD should be

possible. We are currently pursuing these and a number of other features of

fracture--induced particle emission.

d
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FIGURE CAPTIONS

Pig. 1: Simultaneous-emission of electrons, photons, and radio waves from the
fracture of alumina-filled epoxy.

9

Fig. 2: Simultaneous emission of electrons, photons, and radio waves from the
fracture of golybutadiene filled with small glass beads.

Fig. 3: EE, phE, and RE from the fracture of single-crystal sucrose.

_	 4

Fig. 4: EE, phE, and RE from the fracture of SiO2.

Fig. 5: PIE and RE during fracture of filled SR. Note the fast time scale.

Fig. 6: Consequences of electron bombardment on BR: a) EE following
bombardment, and b) PIE during bombardment.
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VI. FR.=O-MESS; 4N FROM FIBER-REI ITFORCE,D AND

PARTICULATE  FI LL.ED COb-MOS ITES

J. T. Dickinson, A. Jahaa Latibari, and L. C. Jensen
Department of Physics

Washington State University
Pullman, WA 99164-2814

ABSTRACT

Fracto-emission (FE) is the emission of particles and photons during
and following crack pro pagation. The type's of particles we have observed
include electrons (EE), positive ions (PIE), and excited and ;round state
neucrai emission ('YE). In this paper we present our work an the characteri-
zacioa of the various FE components rind measurements relating FE to the frac-
ture events and material properties involved. FE characteristics measured
include total emi.ssio-a, time dependence relative to crack p ropagation, species

neutral and ionic components energy of charged species, and time correlatiors
netNepe-- pairs of FEE components. Experiments on fracture of epoxy, single
fibers, fiber/evo:cy strands, particulate filled epoxy, and multi-ply fiber/
epoxy systems will be presented.

.
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1. INTRODUCTION

When a crack propagates through a mate*ial the crack walls are left in a

highly excited, non--equilibrium state. For non—metals this departure from

equilibrium involves: (1)broken bonds, (2) liberated fragments (e.g. free

radicals, atoms, molecules), (3) defects (e.g. in crystals, point defects), (4)

charge separation often involving production of charged species, a variety of

types of electron traps, and associated electric fields, and (5) a localized

rise in temperature. All of these factors represent concentrated energy which

can contribute to the ejection or emission of charged particles, neutral

particles, and photons from the fracture surfaces. We refer to all forms of

such emission accompanying fracture as "fracto—emission" (FE). Our

experimental studies of the characteristics of FE from a wade range of

materials are presented in references 1-13. A review of our work on EE

accompanying adhesive failure can be found in reference 14.

The basic behavior we have observed can be summarized as follows:

(1) Some form of crack propagation appears to be a necessary prerequisite

for the occurrence of FE.

(2) FE is a wide—ranging phenomenon. We have observed electron (EE) and

positive ion emission (PIE.) from all materials tested including inorganic

crystalline materials, ceramics, glasses, glassy polymers, filled and unfilled

elastomers, fiber—reinforced composites, and-molecular crystals.

(3) The few systems we have studied to date emit photons (phE) in air and

in vacuum environment.

6
(4) Interfacial failure between epoxies, polymers, glasses, gra phite, and

metals produce very intense, long—lasting energetic EE and PIE. This is

'i	 believed to be due to the production of high concentrations of surface free
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radicals and surface charge due to charge separation. The EE and PIE ener;y

distributions which we have measured for these systems are broad,

slowly-decreasing functions peaking near 0 eV but extending to beyond 1 keV.

These ener;ies are believed to be due to charged particles being accelerated in

the presence of the electric fields produced by charge patches on the fracture

surface.

(5) Polymeric systems have a strong dependence of EE intensity on crack

velocity (V 
c
). Presumably, this is due to a higher density of free

radicals and trapped electrons produced by more primary bond scissions at

higher Vc . At lower V  the polymer has time for slipping and

unraveling of chains allowing it to deform and tear with less "damage".

(6) In support of this, more highly cross-linked polymers produce .higher

intensity and longer-lasting FE (for the same reasons).

(7) The measurements we have made on the mass of PIE produced during fracture

indicate that the masses are chain fragments; this implies a sensitivity to

where the fracture has occured on an atomic scale.

Our initial work on FE from composites has concentrated on fracture of

individual fibers, unfilled resins, and unidirectional fiber/epoxy systems. A

few studies of multi-»directional fiber/epoxy systems have also been carried

out. In addition, we have recently examined FE from particulate-filled epoxy.

The results of these studies will be presented here.

II. EXPERIMENTAL PROCEDURE

Details of our experimental procedure are given in references 1-13. In

brief, experiments were performed in vacuum at pressures ranging from 10-6

to 10-' torn. Our !vacuum systems are equipped with devices to stress
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samples in various ways including tension, flex, and compression, while

measuring stress and/or strain. The detectors used for charged particles are

channeltron electron multipliers (CEM) which produce fast. (10ns) pulses with

approximately 90% absolute detection efficiency for electrons and nearly 100%

efficiency for positive ions. The gains of the CEM's used were typically

106 _ 108 electrons/ incident particle. The detectors were positioned 1

- 4 cm away from the sample with a bias voltage on the front cone of the CEM to

attract the charged particles of interest. Background noise counts ranged from

1 to 10 counts/second. Standard nuclear physics data aquisition techniques

were employed to count and store pulses, normally as functions of time. The

time scales of interest are submicrosecond to several second intervals, which

we can easily cover with commercial. electronics. Single fibers and

epoxy-filament strands were tested in tension at a rate of 1% per second. -

Fiber samples consisted of 5-20 fibers adhesively bonded to Al sheet metal

shaped to fit into clamps in the vacuurd system. To reduce the probability of

fiber pull.-out, the fibers were stretched across a sharp Al edge, where

approximately 90% of them fractured.

Keylar, E-glass, and S-glass epoxy-strands and unidirectional

graphite-epoxy composite made from Union Carbide Thornel 300 graphite fibers

and NARMCO 5208 epoxy resin were also fractured in tension. A sharp notch was

made in the center of the tension sample to control the fracture initiation.

Graphite-epoxy composites made from Union-Carbide Thornel 300 fibers and

various NARMCO epoxy resins were tested in flex as well.. The fiber directions

in these composites were (0), ( 1145) and (0,90,90,0) degree to the long

axis. Samples were tested with a span-to-depth ratio of 30:1 and strain rate

of 0.064 mm/sev. Acoustic emission (AE) and EE were deteoted From

graphite-epoxy, composite fractured in flex. AE was detected with a PZT

Y
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roransd ucer with a resonant fre quency of 175 KHz. The bursts sere typically 500

,us in duration. The filtered and amplified signal, was fad into a discrLninator

to eliminate background noise, and the resulting pulses were counted on a

multi-channel scaler. Taus the count rate displayed is determined by both the

number and size of AE bursts (the number of "rings" that trigger the

discriminator). To reduce the influence of mechanical. AE in our experiments the

mechanical supports were covered with teflon tape. Fracture of a uniform

material (PMMA), which will have no i.nterl.ami.nar shear or delamination, shows

no pref'racture AE in our system. Fig. 1 shows schematically the electron

multipler and AE transducer arrangement which simultaneously detects AE and EE

from the sample. Load and deflection were also measured.

Another composite structure we have investigated recently is a

particulate-filled epoxy. The epoxy is EPON 828 (z-hardener) filled with

irregularly shaped alumina particles with an average diameter of approximately

10 um. This brittle material was broken in flex,

111. RESULTS AND DISCUSSION

Filament -Epgxy Strands: An early observation we made involving adhesive

failure and its effect an charged particle emission concerned the fracture of

composites. Starting with the constituents of a composite, the EE time

distributions of the fracture of individual 10--20 ,um filaments of KevlarTM

Thornel. 300 graphite, E-glass, and S-gl.assg as measured with a CEM 1 cm from

the sample, are shown in Fig. 2. Also shown is the EE From the fracture of

unfilled DER 332/T403, a bi.sphenol-A type resin. With the exception of Kevlar

filaments, repeated experiments showed no evidence of a measurable rise to the

neck emission. The brittle fifers with small cross section break or, a

3	 ^
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microsecond time scale. The peak emission occurs during fracture and decays

rapidly away, typically in 17 — 100 ;us as shown in Fi;. 2.

When these fibers are placed in the epoxy resin and fractured, the results

are significantly different. Fig. 3 shows the EE and PIE resulting from the

failure of a strand containing Kevlar fibers in DOW DER 332 epoxy. These

curves were taken simultaneously with two detectors. In general, EE exceeds

PIE in terms of total emission by 10-40%; in Fig. 3 PTE has been normalized to

the EE at a single point. On the time scale shown, the time required for

fracture was less than one channel.. Thus, the signal rises from a noise count

of 0.1 to 10/sec to peaks of 10 4-10 5 counts/sea. dote that in this

case the decay from the peak lasts for many seconds; intense emitters such as

these can gave detectable emission for as long as 2 hours after fracture, Also

note that the decay kinetics for both EE and PIE are essentially identical,

suggesting that a common rate-limiting step is shared by the *two types of 	 t^

emission.

Examination with an SEM of the fracture surface on a number of systems.

involving adhesive failure or delamination indicate that the production of

inuerfaces is responsible for tre considerable differences between Fig. 2 and

Fig. 3. This feature of intense, long lasting emission may serve as a measure

of the extent of delamination that has occured. In support of this, in Fig. 4a

and 4b we compare the EE for two types of epoxy strands made from 20 }gym

.j
diameter E--glass filaments and 10 dam S—glass filaments embedded in DOW DER 332

epoxy (Dote the different time scales for the two different materials).
^I

Examination under the SEM shows that there is considerably more delamination

i
and separation of the filaments in the case of E--glass than for S—glass epoxy

strands, which apparently results in considerably higher count rates and

longer—lasting emission. By far the predominant emission is coming from the

Ir
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The results of experiments on unidirectional graphite—epoxy composites 	 • ^I

(Thornel 300/5208) are shown in Fig. 6. The samples were 0.25 mm thick and 2.4

mm wide. The EE and PTE were measured from two separate samples. The

resulting emission plotted on a log scale shows the ra pid rise during fracture

and slow decay following fracture. Examination of the fracture surfaces shows

extensive del,amination and interfacial—like failure, consistent with the

results on DOW DER 332/Kevlar strands.

Energy Distributions: Because the EE and PIE from systems involving

interfacial failure frequently was intense and long—lasting, we were able to

take measurements of the energy distributions, n(E), using retarding potential

analysis. The curves in Fig. 6 represent n(E)dt', when: dE is 2 eV, plotted on

i	 a log scale and normalized to unity at the peak. Both curves are very similar

(within our experimental error, they are identical.), showing a peak near 0 eV

and a significant number of higher energy particles in the tail. It is well

known that charge'separation is a common occurrence with adhesive failure and

can leave the surfaces in a highly charged state. Thus the probable cause of

the high energy particles is the release of the charges in physical proximity

of charge patches of the same sign, yielding an acceleration of the particles

to the observed energies.

Preliminary experiments involving fracture of the filaments and neat

rasin alone do not seem to yield emission at such high energies. Thus we

appear to have a distinct indicator of interfacial failure in a composite
r'

system:

'	 a) intense, long—lasting EE and PIE

b) the presence of high energy EE and PIE.

Retarding grids could easily reject the low energy particles and thus obtain a
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siznal whioh is entirely due to interfacial failure. Proper steps to quantify

these measurements could allow a precise determination of the degree of

d4lamination/interfacial failure that has ocaured during a fracture event.

TOF Measurements of PIE Mass from Fracture of Filaments: To determine the

masses of the positive ions emitted from Kevlar and E-glass fibers we have

devised a time--of--fl.ignt (TOF) technique (14) (shown schematically in Fig. 7).

The fivers, upon fracture, emit bursts of EE and PIE simultaneously, as

determined by a number of experiments using two detectors close to the sample.

By triggering a multichannel analyzer (MCA) with the EE burst we can record the

time of arrival of the corresponding PIE burst dawn a 25 cm drift tube. From

the leading edge of theng TQF d stri,b _ o ►,a g;10 can meaiuri^ a TOF correapcandi,ng

to the fastest (presumably the lightest) positive iohb emitted.

Fig. 8 shows the leading edges of TOF distributions obtained for PIE from

Kevlar and E-glass fibers for a 500 V drift tube potential (-V). Five to ten

curves like these were acquired for each of these four values of --V and an

average time obtained. The average time at each voltage was plotted vs the

inverse square root of the potential and the slopes of these lines were used to

calculate M/q. M/q values of 60 = 20 a.m.0 and 48 ± 12 a.m.u. were

obtained for Kevlar and E-glass, respectively.

Although the uncertainties in these values of M/q are relatively large, we

emphasize that the M/q of the PIE accompanying fracture of materials has

previously been totally unknown. The technique we have employed 'here favors

the detection of the lightest masses if more than one mass is emitted.

Nevertheless we have some sensitivity to the presence of heavier masses which

should show up as a shoulder on the leading edge of the TOF distribution at

longer times. Careful examination of a number of TOF distributions both for

li

I
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Kevlar and E-glass show no clear evidence of heavier masses. Therefore our

present results indicate that the PIE accompanying fracture of these materials

^I

consists of relatively light ions. 	 ;III
For each material our uncertainties do not allow a unique value of mass to	

I
1^

be assigned to the observed PIE and therefore a number of candidates have been

examined. For Kevlar, we can rule out absorbed H 2O and ions of common

background and atmospheric gases. If we assume e=e, the PIE mass from Kevlar

is considerably smaller than a monomer. Likely candidates are:

0 H	 0 H	 0 H

11	 1	 II	 1

—^C^i-- 	 or ----C ^^-0--•--

all of which could be produ

assume a=e, we can rule out

constituent atoms/molecules

Ca+ , Kam , and possibly SiO+.

Zed by chain bond cleavage. For E-glass, if,we

H2O+ and 02. Fragments of the

of E-glass which are possible candidates include

Reference 11 discusses a TOF technique

that takes advantage of the coincidence between individual electrons and

positive ions that we have observed. This method has been applied to the

measurement of PIE masses from the Fracture of filled polybutadiene, an

elastomer. We also applied the method to Kevlar-epoxy strands.

Fig. 9 is the resulting TOF curve from fracture of a Kevlar-epoxy strand

•	 for the same drift tube length of 25 cm and a tube voltage of -2kii. The peaks

over the time interval 1 to 5 ps are due to heavier ions; we are still in the

process of identifying them. The large feature in the first channel (0-0.25

J7.



S^

us) is also a positive ion (it can be shifted slightly b= changing the volta gef	 P	 Y !	 $

on the tube). For reasonable initial kinetic energies (less than a few keV)

the only M capable of reaching the detector that fast is mass 1 or 2, i.e..

hydrogen. We conclude, therefore, H + or H2+ is a predominant component

of the PIE from this particular material. Of course both the epoxy resin and

the Kevlar filaments contain abundant quantities of hydrogen.

AE and EE from Flexural Testing of Fiber—Reinforced Composites: To

further explore the type of fracture events in composites which Lead to FE, we

simultaneously examined the AE and EE accompanying flexural failure. Figs. 10

thru 12 show the results of AE and EE measurement from (0)16'

( ±45) 16 , and (0,90 1
90,0) 16 graphite—epoxy composite. Load vs.

deflection curves are also included in figures 10 thru 12 to better demonstrate

the dependence of AE and EE on the deformation and failure of composite

materials. In general. the AE data obtained from these experiments can be

characterized as follows: first, an initial rapid rise from zero due to the

initial load ap plied to the specimen; second, the steady build up of the AE

count rate prior to failure. Finally, a large burst followed by a drop in AE

count rate at catastro phic failure.

Concerning AE only, our result differs somewhat from those of Barnly and

Parry (15). Barmy and Parry observed no acoustic activity prior to fracture

for unidirectional fibe r glass—epoxy composite notched flex samples. In their

experiment, the onset of failure and large load drop was indicated by the onset

of AE. However, their result on cross—ply (0/90) material showed the AE build

up immediately following the application of load. Fitz—Randolph et.al . (15)

have shown the steady increase of AE with deflection for unidirectional

boron—epoxy composites.

Composite materials generally exhibit a variety of failure modes including

r
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matrix crazing or microcracking, debonding, fiber failures resulting from

statistically distibuted flaw strength, delamination, and void growth (17).

Some of these events, prior to failure, will be clearly detectable in both. EE
`	 1F

and AE. o!

The basic requirement for detecting fracture events with FE is that the

newly created fracture surfaces are in some manner in communication with the t^

vacuum so that the particles can escape from the sample and be detected. 	 Thus,

the existence or lack of correlations between AE and FE can provide information 6

on the mechanisms leading up to failure.

For example, Fig. 10 shows the AE build-up in an (0) 16 graphite/epoxy

system at the early stages of loading.	 Because of the statistical nature of i

the fiber strength, some may fracture at a very low stress in tension, which

will also contribute to the AE count rate. 	 Shear and delamination are the

dominant failure mechanisms in this instance; the main sauce of AE is the
f	

.

interlaminar shear. 	 Loose fibers at the edges may break at any time during

loading and produce both AE and EE bursts simultaneously. 	 As the loading {'
. ^I

advances, interlaminer shear and internal delamination will lead to AE.	 Matrix

cracking in the tension side of the sample and the separation of tiny bundles

of fivers will all contribute to simultaneous AE and EE. 	 Thus, the slow
1

'

f
build-up of EE prior to failure is attributed to small microeracks formed on l

the surface.	 The bursts of EE prior to failure are considered to be due to

'''urger" events such as edge cracking or bundles fracturing on the front

surface.	 Finally, the test specimen fails catastrophically (where the load

drops), accompanied by large bursts of AE and EE occurring together.	 One can

frequently see several plys failing successively.

Even though some of the composite failure mechanisms described above will

.	 apply to angle ply laminates, transverse cracking and interfacial failure will

---____ ...... ..	 _._ -
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predominate. Linen reinforcement fibers are at =450 degree to the long axis,

interfacial failure is the vain failure mech?nism. This is clearly seen in

Fig. 11 from simultaneous large bursts of AE and EE. .Interlaminar shear

contributes to continous AE build up. One interesting feature of AE and EE

data from (0/90/90/0) degree samples is the AE build up without any appearance

of EE prior to failure. Large interlaminar shear deformation and failure will

occur in 90 degree (interior) laminates prior to the failure of zero degree

(exterior) laminates (Fig. 12). These events apparently cannot be detected

using EE due to their being internal to the sample.

The results of these experiments indicate that it is possible to detect

microfractures, such as microscopic separation of tiny bundles of fibers,

interfacial failure and matrix crazing, in fiber-reinforced composites using

EE. Even though the EE technique is not able to detect internal failure such

as interlaminar shear failure, it will provide evidence of failure at early

stages of fracture. Alsc, it clarifies the source of AE as a function of

strain by the presence or absence of AE-GE correlations. Finally, comparisons

of the techiniques tell precisely the onset times for internal and external

failure.

EE from Particulate-Filled Epoxy: Another form of reinforced plastics

which have gained popularity are the particulate filled plastics. Particles of

silica or alumina are incorporated into plastics primarily because of their low

cost. In addition, some material properti:: may improve to some extent. In

our studies we examined EPON $2$ epoxy (Z-hardener) filled with irregularly

shaped alumina particles. This material is quite strong and brittle so we 	 j

fractured most of the samples in a three-point flexure mode. The

cross-section of the sample was 2 mm x • 6 mm. A typical EE curve plotted on a 	 .

log sca_; ;  shown in Fig. 13, where t 0 corresponds to the instant of

t
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failure.	 The material for i^ai.s emission curve is filled a4 an

Al 0 3/epoxy ratio (ct) of 3 to 1 by weiflht.

The emission intensity is strongly influenced by the concentration of

filler particles. 	 Taking just the first channel (0.8 seconds per channel)

count as a measure of the initial EE count rate vs. the Al203/epoxy

ratio, one sees this dependence in Fig. 14. 	 The total emission (measured over

several hundred seconds) follows 'basically the same curve. 	 Compared to the

unfilled material (ce, = 0) the EE intensity rises rapidly as a increases, and

peaks near c< = 1.	 This is followed by a slower decline.

These results are preliminary, and we are not entirely sure why the EE•

intensity depends on a in this fashion. Optical inspection of the fracture

surface indicates that alumina particles are indeed being exposed, although SEM

micrographs are far Less convincing so we are not at this point sure of the

degree of interfacial failure that is occurring.	 Secondly, as cK increases,

the mechanical parameters such as fracture energy, surface energy, and the

degree of interfacial failure are bound to change. 	 We are obviously

inLarested in correlating these mechanical properties with the resulting EE.

Photon-Emission Measurement from Filament-Epoxy Strands: Photon emission

(phE) accompanying fracture appears to be of a different character. We have

performed in air a number of experiments on the phE from epoxy strands of

filaments with a strand cross-section of 0.5 mm 2. Fig. 15 shows the

visible light emission accompanying the straining and failure of epoxy strands

of Kc vlar, E-glass, and graphite. Several show phE prior to failure, possibly

due to crack formation on a surface visible to the photomultiplier, or to

chem il umine seance as observed by George and Pinkerton (18), and Fanter and Levy

(19). The decay that we observe for the phE following fracture is within the

time constant of the electrometer used to measure the photon detector current.

0 '.
i '.

r	 ,
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t	 Alnoun h uhe cause of the ma, or burst of phE during fracture is unknown, we

suspect, as with many cases of triboluminescence, that breakdown is occuring in

the crack tip due to the high potentials produced by charge separation. This

will be particularly intense at instances when.delamination and adhesive

failure are occuring. Further experiments need to be carried out to confirm

this.

PhE was also measured during "T" peel tests of two—ply Kevlar—epoxy

panels. The entrance to the photomultiplier was approximately 2 am from the

"crack's , and directed toward it. PhE was observed only during separation of

the plys and decayed immediately upon release of the stress. For a constant

area of new fracture surface (5 cm 2 ), the intensity of phE per unit area of

fracture surface was found to depend strongly on the crack velocity, defined as

the linear rate of the creation of new surface (cm/s). Fig. lb shows the phE

far a typical delaminati.on. Fig. 37 shows this dependence where the ordinate

represents the area under the emission curves for various velocities. The

light intensity tends to increase for more rapid separation of the two

surfaces, with a saturation occurring at a velocity of 10 -1 cm/s..

IV. CONCLUSIONS

We have tried to show a wide variety of FE results on a number of systems

involving adhesive failure at interfaces and indicate some of the parameters,

that are influencing this emission. The need for careful stud=.es of the

physics and chemistry of these phenomena is obvious. The usefulness of FE as a

tool for MDT or for investigation of failure mechanisms require a broad based

attack combining fracture mechanics, materials science, and fundamental

fracto--emission stud-- .s on materials of mutual interest. Potential areas of
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usefulness for FE in the study of composite failure include the fallowing;

1	

^

Z. As a probe of crack growth on an extremely wide range of time scales.

These need not be catastrophic fracture and might involve crazing,

micro--cracking, linking of microcracks, and other pre—failure events.

2. The energies of the FE components may serve as a measure of the

density of the charge distributions created an the fracture surface and relate

to debonding parameters between the fiber and resin.

3. FE may serve as a way to measure the surface temperature at the crack

tip by careful modeling of the emission curves at short times after fracture.

Our modeling to date has required an elevated temperature of fracture that

decays quickly away.

4. FE may serve as a means of measuring instantaneous crack velocity.

Certainly the onset of crack formation and the onset and duration of dynamic

crack growth can be readily measured.

5. FE may serve as a probe of the locus of fracture in composite

materials and in illuminating failure mechanisms.

6. FE may serve as an NDT tool, perhaps in conjuctzon with acoustic

emission. FE would be particularly useful when sensitivity to events near the

surface is desired.

7. FE may be related in important ways to fracture mechanics parameters

such as surface energy, fracture strength, or fracture toughness. If reliable

connections would be made to such parameters, FE might be used to measure them.
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Fig. I. Schematic diagram of exper mencal a,=ange^e^_ for D-T , E, and load
measurements an compos;.ce matarials in fl ax.

Fig. 2. The time disc --`buc:^on of	 due to the fracture of graphite, E--,lass,
Eevlar Filaments and bulk apcx7 (I)OW DER 332/'6304). Noce the fast
,̂tee sca-Le.

Fig. 3. __ and ?IE =rem tae _rsc_..re of Eevlar/E.o:t-7 strands.

. _g. 4. _= during and follo •rt-ng =rack;i _ of a) _-Glass and b) S-Glass-
epoxv strands. :Tote	 a diifarent time scales.

Fig	 and PI? from the tarsi_- failure of unidirect_onal graphita-
epox7 composite (Tlaion Carbide morel 1-00 graphite _ibe; and
MA-MiCO 3208 epcxv res_: ) .

FZ and P77 from Kev' ar/

. ..se time-af-:l_gac tecan_cue
25 c i.

sution for E-Glass and Zevlar

Fig. 6. Energ'7 d: scrjbut_on on a log scale for
_pox? strands.

Fig. 7. The a perimenta.1 ay_angement: :or use
Me distances are dl = d 3 = I CM, d Z =

Fig. 3. The leading edge of the PI. TOF distri]
fibers.

Fig. 9. The TOF for PIZ- from tae fracture of Zavlar/Epo:fF strands.	 The Major
peak near 0 G.s is attributed to 3 r or 32.

10. The ZEE, 3,?, and load acco=pan71mg tae flexural scr a-ri:g of 16 laver,
iaidirectioaal granhitz-?po: 	 composite.	 (T:aion Carb'_de T:zor:el 300
g:apnite fiber and JA.g%= -209 epoxy resi,z. )	

4

F: g. 11. The y, AE, and load accemaar.viag tae flex•ral stra=Ming of 16 laver
(=45"), graphic--epox. 7 compo<ite.	 (raian Carbide 7--o—.-el 300 and
YAMM.CC 3Z08 epox7 resin.)

Fig. 12. The ^, 3E, and load accampanv{_ag the flexural straining-. of 16 Taper,
s cross p17 (0,	 90, 90, 0)° graphite-epoxy composite.	 (Union Carbide

Thornel 300 graphite fiber and `TAMP"_CO 934 epoxy resin.)

Fig. 13. '-` pical E	 curs plo!:ted an a log scale from the fracture of an
alumina particle filled epoxy.

f

Fig. 14. Peak EL as a function of the 3120 3/epoxy ratio, a.

F'_g. 15. P'rocon-emission accompan?iag the fracture of 3avlar, E-Glass, and
Graphite epos? st=ands.

. Fig. 16. Photon-emission from the delami -ta tiea of a Ravlar/Epox7 composite.

Fig. 17. Photon-emission from Kevlar/Epox7 delamin--tioa as a function of
various peel velocities.
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V11. CONCLUSION

In this report we have presented our recent work on fracto—emission

accompanying fiber and fiber/epoxy composite fracture. We also included recent

studies on the mechanism of charged particle emission. Our goals are to

continue our studies on characterizing the various FE components (charged

particles, neutrals, and photons), to investigate the physical mechanisms

responsible for this emission, and *to correlate FE properties with the

phenomena of fracture which are of interest to materials science. Our efforts

to date have given us encouragement that FE promises to be a useful tool for

probing failure mechanisms and detecting crack growth in composite materials.
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