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CALCULATION OF BOUNDARY LAYERS OF OSCILLATING AIRFOILS 

Tuncer Cebecl* and Lawrence W. Carr** 

ABSTRACT 

A two-point finlte difference unsteady 1amlnar and turbulent 

boundary layer computatlona1 method has been used to investigate 

the properties of the flow around an alrfoi1 (NACA 0012) oscl11ating 

through angles of attack up to 18 degrees, for reduced frequencies 

of 0.01 and 0.20. The unsteady potentlal flow was determined uSlng 

the unsteady potentlal flow method of Geissler. The lnfluence of 

transltlon locatlon on stall behavlor was investlgated, uSlng both 

experlmenta11y determined transltion lnformatlon, and transltlon 

located at the pressure peak; the results show the need for V1SCOUS­

lnvlscld lnteractlon in future computatlon of such flows. 

*Mechanlca1 Englneerlng Dept., Ca11fornla State Universlty, Long 

Beach, CA 90840. 

**Ames Research Center and Aeromechanlcs Laboratory, AVRADCOM 

Research and Technology Laboratories, Moffett Field, Ca11fornia. 



I NTRODUCTI ON 

Present knowledge of steady boundary-layer flows is considerable and 

stems from exhaustive investigation over almost eighty years. In contrast, 

unsteady boundary-layer flows have received slight attention and only in the 

recent past. The requirements imposed by the need to improve the performance 

of helicopter rotors, wind-energy devices and hydrofoil characteristics inply 

tile need for further research. Thi sis parti cul arly so since many of the 

unsteady flo\l investigations have been concerned \-/ith detail such as tile 

eXlstence or the nonexistence of singularity and its structure, see for example 

the papers contai ned in ref. 1. Here we are concerned \,/itll aspects of our 

ability to calculate the flow properties around oscillating airfoils in a range 

of para~eters of direct relevance to engineering practice. 

Tile need for further development of boundary-l ayer procedures to represent 
? 

unsteady flol'IS 1 s cl ear from the recent experiments of t~cCroskey et al .'- , 

T1Jdeman3, Davis and Malcolm4, Cousteix et al. S, Carr et al. 6, Young 7, Carr 

and r~cAlister8 and Geissler9• The range of measure~ents is reasonably extensive 

and includes subsonic and transonic flow, a range of airfoil sections and 



parameters of unsteady motion. Four flow regimes have been identifiedlO and 

correspond to no stall, stall onset, light stall and deep stall. None of 

these regimes nor the apparent breakdown of the unsteady boundary layer to 

form a large vortex near the surface at large angle of attack have been 

represented satisfactorily by calculation methods, 

Previous attempts to calculate oscillating alrfoil flows have involved 

either the solution of Navier-Stokes equations, Mehta 11 and Shamroth12 or 

the solution of the boundary-layer equations, Ceb(ci and Carr13 ,14 and 

. 1 15 Gelss er . While both approaches have merits, it is clear that the latter 

procedure, with further development, is likely to allow more precise solution 

of the equations and economy of computer resource~. 

The calculation of boundary-layers on an osclllating airfoil differs from 

the usual nonoscillating airfoil-flow calculations in that difficulties are 

caused by the translation of the stagnation point in space and time. In par­

tlcular, it is necessary to develop a procedure to generate initial conditions 

in the i~ediate vicinity of the moving stagnatior point and to account for 

the flow reversal that occurs in this region. In reference 14, the present 

authors described two procedures for generating initial conditions near the 

stagnation point of an oscillating airfoil, The first procedure used the 

characteristic box scheme and was shown to be accurate and free from the liQi-

tatiolls ~'/hich may be imposed by the flm'l reversal. The second procedure used 

a quasi -steady approach and \lIas al so sho\llll to be appropri ate provi ded that the 

region uhere it was used \las far from any flo\,1 reversal. 

The work described here is the continuation of that of reference 14, anrl 

explores the calculation of laminar and turbulent boundary layers on the whole 

oscillating airfoil. It has three separate but related phases. First, it is 

necessary to conduct numerical tests of the procedures of ref. 14 and of the 
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boundary conditions generated by the potential flow code of ref. 16. 

Secondly, oscillating airfoils involve transition from laminar to turbulent 

flm'l and the data provided by Carr and his coworkers allow the direct 

evaluation of transition assumptions which must be made in the boundary-layer 

calculations. In particular, a simple assumption is to involve transition at 

the location corresponding to the peak pressure calculated by the inviscid 

flm'l nettlod. The available experimental data permit the implications of this 

assu~ption to be evaluated and compared with those empirical transition 

illethods used for steady flo\,/s and described in ref. 17. Thirdly, leading edge 

separatlon bubbles and trailing edge separation can also occur at higher 

angles of attack as demonstrated by Carr et al. 6 The ability of a 

cillculatloll r;1etllod to represent these regions of separation and tile 

expressions used to model turbulent flO\'Is at lm'l Reynolds numbers ~lith 

separatlon as well as transitional flows need to be investigated. 

The study reported here is continuing and this contribution may be 

regarded as a report of progress since that of ref 14. 

BASIC EQUATImlS 

Boundary-Layer Equations 

The boundary-layer equations for an incompressible laminar or turbulent 

flo\,1 on an oscillating airfoil are \'1ell knm/n and, with the eddy viscosity 

co~cept, can be written as 

(1) 

au au 
au + u ~ + v ~ = ~ + u ~ +!... (b~) aT ax ay at e ax ay ay (2 ) 
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Here x denotes distance along the surface of the airfoil, y along the 

normal and b = v + Em. In the absence of mass transfer, Eqs. (1) and (2) are 

subject to boundary conditions given by 

y = 0; u = v = 0: y = 0, (3) 

The presence of the eddy viscosity Em requires a turbulence ~odel and He 

use the algebraic eddy-viscosity formulation developed by Cebeci and Smith 

(ref. 18). According to this formulation Em is defined by two separate 

formulas. In the inner region of the boundary layer (Em)i is defined as: 

(Em)i = {0.4y[1 - exp(-Y/A)]}2 I~I Ytr O 2 y 2 Yc 

where 

1/2 
u -r = (~)max' 

+ vUe aUe 
p =7ax-

-r 

(4) 

(5) 

In Eq. (4), Ytr is an intermittency factor t:lat accounts for the transi­

tional region that exists between a laminar and tllrbulent flOH. It is defined 

by 

Ytr = 1 - exp [-G (x - x tr ) (6) 

Here xtr is the location of the start of transition and the empirical factor 

G which has the dimensions of velocitY/(length)2, is given by (ref. 13) 

u3 

G = ~ e R- l .34 (7) 
I c.vv --Z xt v r 

The transition Reynolds number is defined as R
Xtr

= (uex/v)tr. 

In the outer region (Em)o is defined by: 

CD 

J (ue - u )dy Y tr 
o 

4 

y <y<co c- - (8) 



The boundary between the inner and outer regions, Yc' is established by the 

continuity of the eddy-viscosity formulas. 

Initial Conditions 

If initial conditions in the (t,y) plane are given at a station Xo on the 

upper surface of the airfoil and satisfy the condition u > 0 and, in addition, 

initial conditions are given in the (x,y) plane at t = 0, then the solution of 

Eqs. (1), (2) and (3) may be obtained for x > Xo and t > 0 until they 

breakdown (flow separation). A similar remark applies to the lower surface 

except that u < O. The initial conditions at t = 0 can be generated for both 

surfaces if steady conditions are assumed to prevail at that time. It is only 

necessary to solve the appropnate equations \'Ihich, in this case, are given by 

Eq. (l) and by 

(9) 

There is no problem w1th the 1nitial conditions for Eqs. (l) and (9) since the 

calculations start at the stagnation point x = xs ' where ue and u are zero 

for all y. 

Unlike steady flows, where ue and u are zero for all y at the 

stagnation point, the stagnation point is not f1xed in an unsteady flow; 

although ue is zero, we cannot assume a priori that u 1S also zero. He'1ay 

avoid these diff1culties by using an implicit method, but now we are faced 

with the problem of generating a starting profile on the new time line. A 

convenient and accurate procedure to calculate the first velocity prof1le at 

the ne\,1 ti me-l i ne has been developed by the present authors as descri bed in 

ref. 14; 1t involves the use of the Characteristic Box scheme developed by 

Cebeci and Stewartson (ref. 19). Another procedure is to use a quasi-steady 
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approach in the immediate vicinity of the stagnation point. As long as the 

region where this approach is used does not contain flow separation, it is 

simpler to use than the first approach which employs the characteristic-box 

scheme. As a result, it is used here. 

Transformed Equations 

As in previous studies (see, for example, re~. 17), \'Ie use similarity 

variables to transform the governing equations before we seek their solution. 

For a steady flow, we use the Fa1kner-Skan transformation defined by 

1jJ = vu \)x f(x,n) e 
(10) 

where 1jJ is the usual deflnition of stream function that satisfies the conti­
nuity equation, Eq. (1), that is 

U = a1jJ ay , 

iJl til this transformation, 
\'1ritten as 

I 
r1 + 1 (bf") + 2 

ffll 

n = 0; f = f' 

Eq. (9) and 

v = - ~ ax 

its boundary conditions, Eq. 

(f' )2J = X(f' af' _ f" .!!.) + 11[1 - ax ax 

= 0: n = ne; f' = 1 

(11 ) 

(3), can 

(12 ) 

(13 ) 

\~ere primes denote dlfferentiation with respect to n, m denotes a dimen­

sionless pressure-gradient parameter defined by 

and b is defined by 

+ 
b = 1 + £m' 

du 
m - x e 

I - U;ox 

6 

(14a) 

+ 
Em = e:ml \) 

I 

(14b) 

be 



For unsteady fl o\'iS, we use a transformati on simi 1 ar to that defi ned by 

Eq. (10) except that ue is now a function of both x and t and the dimension­

less stream function F is a function of x, t and ~; we let 

(15 ) 

With this transformation it can be shovin that the continuity and momentum 

equations and their boundary conditions for unsteady incompressible flows can 

be vlritten as 

(bFII) + J1 + 1 FFII + 11[1 _ (F,}2] + m (l _ F') _ I m....F II = 
2 3 2 j 

1 .... F' .... F' .... F x[ - _0 - + F' ~ _ F II ~o~ ] 
LIe at ax ax 

(16 ) 

~ = 0; F = F' = 0: F' = 1 (l7) 

Here primes nO\l denote dlfferentiatlon v/ith respect to ~ and 

(18 ) 

Solution ProcedJr~ 

He use Keller's Box method to solve the governing equations of the previ­

ous sectlon. This is a two-polnt finlte-difference method which has been used 

to solve a \iide range of parabolic partial-differential equations as discussed 

in ref. 19. The solution procedure for Eqs. (12) and (13) is identical to 

that described in ref. 17. The solution procedure used to generate the 

initial conditions in the (x,y) and (t,y) planes is described in reference 

13. For unsteady flm'ls, \'Ihere \ie now solve Eqs. (l6) and (17), we use the 

solution procedure described in ref. 20. In regions where there are no flow 

reversals across the layer, we use the Standard Box scheme and in regions 

uhere there is flow reversal, \'Ie use the Zi g-Zag scher.Je. 
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RESULTS AND DISCUSSION 

To accomplish the objectives stated in the Introduction \'/ith the 

boundary-layer method discussed in the previous section, we have considered 

the NACA 0012 airfoil and calculated its pressure distribution with Geissler's 

inviscid cOde16 for two reduced frequencies, k = 0.01 and k = 0.20 and for 

t\'/o angl es of attack 

(l9a) 

(l9b) 

The experimental data taken for these t\'10 angles of attack and two frequencies 

show that the one with the smaller variation in angle of attack, Eq. (19a), 

has no trailing-edge separation on the whole airfoil for either frequency. 

Its maximum angle of attack range fall s in ~lhat ~lcCroskey and Pucci call the "no 

stall regi on" (amax < 13°). The only f10\'I separa Lion occurs in the form of a 

bubble near the upper surface leading edge. For a > 5°, flow separates and 

reattaches as the flow goes from laminar to turbulent. 

The flow corresponding to the larger variation in angle of attack, rq. 

(1gb), on the other hand, has a leading edge separation bubble as well as an 

open trailing edge separation. Its maximuQ angle of attack range falls in 

between 1 i ght stall (amax < 15°) and deep stall (amax < 20°) with the 

r,lagni tude of reduced frequency pl ayi ng an important rol e in the performance of 

airfoil characteristics. As discussed by r~cCroskey and pucci
10

, the quali­

tative behavior of light stall in this case is sensitive to reduced frequency 

and maximum incidence for a specified airfoil at zero Mach number. The 

qualitative behavior is closely related to the boundary-layer separation 

characteristics (leading-edge vs trailing-edge separation) and to the changes 

in this separation behavior amax and k. An important point that they note 
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is the amount of trailing-edge separation suppressed by increasing the 

frequency. As a result of this unsteady effect, an airfoil that falls in the 

light stall region can pass from light-stall with k < 0.10 to stall onset 

(ex = 14) for k > 0.15. max 
The boundary-layer method described in the previous section is able to 

calculate both laminar and turbulent flows. The calculations start at the 

stagnation point for the given pressure distribution and for the specified 

freestream. The initial conditions at t = 0 are obtained by solving the 

steady flml form of the equations and those in the (t,Y) plane with the 

quasi-steady approach described earlier and applied only in the immediate 

neighborhood of the stagnation region. Transition is achieved by specifying 

its location as part of the input to the computer program. In contrast to 

steady flows where empirical correlations for transition have been developed 

and compared satisfactorlly with experimental data, little is known of tile 

same phenomena in unsteady flows. Here we have taken two approaches. In the 

first, if available, transition location has been specified directly from 

experlment and in the second it has been specified at the location of maximum 

pressure. The first assumption allows the evaluation of the numerical 

technique and the second is expected to be physically sound since the pressure 

distribution becomes increasingly peaky as the angle of attack is increased 

and the merits of this assumption can be tested. It can also be expected that 

the second assumption will become less appropriate as the peak in the pressure 

dlstribution diminishes with decreasing angle of attack. 

Figures 1 and 2 show the variation of displacement thickness 0*, and 

local skin-friction coefficient, cft distributions on the airfoil at 

rlifferent angles of attack for two reduced frequencies. Here 0* and cf 

are defined by 
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u 
(l - u)dy, 

e 

and in terms of the transformation given by Eq. (15) can be expressed as 

0* - x ( F ) - IR': ne - e' 
x 

2F" w c =--
flJC 

x 

Transi ti on \'1as assur.1ed to correspond to maximum pl"essure and the chord 

Reynolds number, Rc' was taken as 3 x 106 and approximately 100 stations 

were taken in the x-direction with 41 stations in the time direction 

(20a) 

(20b) 

corresponding to ~wt = gO. The steady-state condltions were obtained from 

the pressure distribution that corresponded to CI. := 0 by taking (llt = 270° and 

the calculations for t > 0 \'/ere performed for incl'easing angle of attack. Since 

I'le are using an unsteady pressure distribution to calculate the initial conditions 

at t = 0 and au/at is not zero at t = 0, slight oscillation occurs when 

unsteady-flow calculations are performed for the next time step. For this 

reason a smoothing procedure was applied to the calculated results at that 

time station and the next few stations. 

As can be seen from the results, there is no flow separation on the 

airfoil except for a very small region at the trailing edge. This is \'Iithout 

doubt due to the inaccuracy of the inviscid pressure distribution in that 

region where the effect of viscous forces on the inviscid flow is greatest. 

An inviscid-viscous interaction should eliminate the trailing-edge separation. 

The calculations for case 2 are more difficult to perform than those for 

case 1 since the flow regime fall s beb'/een 1 i ght stall and deep stall, due to 

larger variations in angle of attack. Whereas there is almost no flow 

separation in case 1, there is both leading-edge and trailing-edge separation 

for case 2. Once the calculations have started for steady state for, say wt 

corresponding to 270°, we expect that flow separation will take place as the 
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angle of attack increases. However, whether the first flow separation vli11 

manifest itself in the form of leading-edge separation or trailing-edge sepa­

ration remains to be explored. In either case, if the flow separates at the 

leading-edge at higher angles of attack, then the use of the boundary-layer 

Method will lead to breakdown of the solutions due to the singularity at sepa­

ration, and, as a result, calculations cannot be performed for the downward 

stroke beyond the separation point. For the case when the separation takes 

place near the trailing edge, again the calculations cannot be extended beyond 

the separation point for the downward stroke. 

The calculations for case 2 were again performed for the same chord 

Reynolds number and for the same number of x- and t-stations. The initial 

calculations were started by using the pressure distribution ~/hich corresponded 

to a = _2°. Transition locations were specified by two different approaches 

for two reduced frequencies, k = 0.01 and k = 0.20. 

Figure 3 shows the variation of transition as a function of angle of 

attack for case 2 at two frequencies. We see from these figures that the 

effect of reduced frequency on the location of transition is considerable. At 

the lower frequency, transition occurs almost at the same location on the 

upward and downward strokes whereas, with the higher frequency, the transition 

locations on both strokes differ noticeably. Compared vlith the lower frequency 

case, with increasing frequency, the transition location moves backward in the 

upward stroke and forward in the downward stroke. It is obvious that a correct 

prediction of airfoil characteristics in the same angle of attack range for 

different frequencies will depend on our ability to predict transition as a 

function of frequency among other things. 

Flgures 4 to 8 show the results for case 2. Those in Figures 4 and 5 

correspond to a transition location at the maximum pressure peak. The first 

traces of flow reversal occur near the trailing edge at a ~ 8° and are 
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limited to less than the chord length. As the angle of attack increases, the 

flow reversal region near the trailing edge slightly increases becoming 

approximately 5% at a = 18°. There is no leading-edge separation for either 

frequency. 

Figure 6 shows the results for case 2 in \~hich transition locations were 

input from the experimental data, according to Fig. 3b. Again the calculations 

were started at the same angle of attack, a = -2, and continued in the upward 

stroke mode. In this case, however, the solutions broke down at a = 11.09°. 

There was essentially no flow reversal and no signs of numerical difficulties 

until a = 9.54 when flow separation appeared around the trailing edge. At 

the next angle of attack, a = 11.09, a laminar leading-edge separation bubble 

appeared at around 4% chord and the solutions broke down shortly thereafter. 

Figure 6 also shows that while the computed displacement thickness distribu­

tions are smooth, those corresponding to local skin friction are not. The 

wiggles in the latter case are a result of transition locations specified at 

different angles of attack. For example, we see from Figure 3b that for 

-2 ~ a ~ 0, the transition location moves from (x/c)tr = 0.40 to approximately 

(x/c)tr = 0.55. This means that the laminar flow calculations for a = 0 

contain a combination of laminar and turbulent flow characteristics which 

originated at a = -2 where the laminar flow calculations terminated at 

(x/c)tr = 0.40. 

Calculations were also performed with the transition criterion of Michel, 

which was devised for steady flows, and the results were found to be similar 

to those of Figure 6 except that the solutions broke down earlier at a = 8°. 

Figure 7 allows comparison between the measured transition locations and those 

calculated from Michel's formula during the up~/ard stroke together with those 

corresponding to maximum pressure peak. It is clear, therefore, that the use 
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of this correlation, although imperfect, is to be preferred to the specifica­

tion of transition at the location of the pressure peak. 

The intermittency expression used for the transitional region in the eddy­

viscosity formula can play an important role in the calculation of leading-edge 

separation bubbles. It is likely that this formula, which has been used 

satisfactorily for attached flows undergoing transition from laminar to turbu­

lent flows, may not be as accurate for flows undergoing transition due to 

separation. It is evident from Eqs. (6) and (7) that the coefficient of the 

para~eter G controls the transition length. Thus a decrease in G by a factor 

of 10 will reduce the transition length which, in turn, will lessen the pos­

sibility of separation. Calculations shown in Figure 8 performed with a value 

of 1/120 for the coefficient of G revealed that the leading-edge separation had 

been suppressed allowing the calculations to proceed and to reveal trailing­

edge separation. This procedure per~itted the calculations to be performed in 

the upward stroke to an angle of 18° where the trailing-edge separation had 

moved forward to around 20% chord. This sensitivity of the calculated flovi to 

the coefficient of G requires further confirmation which may be obtained, in 

part, by the use of interactive methods; in this way the breakdown caused by 

the singularity will no longer occur. 

CONCLUDING Ra1ARKS 

The numerical method of ref. 13 has been used to investigate the proper­

ties of the flow around an airfoil (NACA 0012) oscillating with angles of 

attack up to 18° and for reduced frequencies of 0.01 and 0.20. This enco~pas­

ses the regions of no-stall and deep stall identified by McCroskey and 

Pucci lO • The inviscid pressure distribution was obtained from Geissler's 

method. The calculations were performed without numerical difficulties in 
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both flow regimes and the zig-zag numerical scheme was shown to work satis­

factorily in regions of flow reversal. 

The influence of transition location was investigated with the numerical 

method. The specification of transition at the location of pressure peak led 

to results which were in disagreement with experiment for the low frequency 

case; in particular, the calculated results did not reveal the deep stall 

observed in ref. 10. In contrast, the results for the high frequency case were 

in accord with experiment. Use of the experimentally determined transition 

location for the high frequency case, however, led to discrepancies which may 

well be attributed to the pressure distribution obtained from inviscid-flow 

theory which does not consider any separation on the airfoil. This suggests 

the need for interaction between the viscous and inviscid flow calculations. 

Further investigations were conducted with the turbulence model of Cebeci 

and Smith which includes consideration of the transition region. It was found 

that the length of the transition region could be controlled by modifications 

to the model with consequent reduction of the transition region and of the 

separation bubble. Additional studies are required to quantify the effects, 

and, once again, should make use of interactive procedures. 
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