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CALCULATION OF BOUNDARY LAYERS OF OSCILLATING AIRFQILS

Tuncer Cebec1* and Lawrence W. Carr**

ABSTRACT

A two-point finite difference unsteady laminar and turbulent
boundary layer computational method has been used to investigate
the properties of the flow around an airfoil (NACA 0012) oscillating
through angles of attack up to 18 degrees, for reduced freguencies
of 0.01 and 0.20. The unsteady potential flow was determined using
the unsteady potential flow method of Geissler. The influence of
transition location on stall behavior was investigated, using both
experimentally determined transition information, and transition
located at the pressure peak; the results show the need for viscous-

inviscid 1nteraction in future computation of such flows.

*Mechanical Engineering Dept., California State University, Long
Beach, CA 90840.
**Ames Research Center and Aeromechanics Laboratory, AVRADCOM

Research and Technology Laboratories, Moffett Field, California.



INTRODUCTION

Present knowledge of steady boundary-layer flows is considerable and
stems from exhaustive investigation over almost eighty years. 1In contrast,
unsteady boundary-layer flows have received slight attention and only in the
recent past. The requirements imposed by the need to improve the performance
of helicopter rotors, wind-energy devices and hydrofoil characteristics irply
tne need for further research. This is particularly so since many of the
unsteady flow investigations have been concerned with detail such as the
existence or the nonexistence of singularity and its structure, see for example
the papers contained in ref. 1. Here we are concerned with aspects of our
ability to calculate the flow properties around oscillating airfoils in a range
of parameters of direct relevance to engineering practice.

The need for further development of boundary-layer procedures to represent
unsteady flows 1s clear from the recent experiments of McCroskey et a].e,

4, Cousteix et a1.5, Carr et a1.6, Young 7, Carr

2
T1jdeman™, Davis and Malcolm
and McAh‘ster8 and Geiss]erg. The range of measurements is reasonably extensive

and includes subsonic and transonic flow, a range of airfoil sections and



parameters of unsteady motion. Four flow regimes have been identified10 and
correspond to no stall, stall onset, 1ight stall and deep stall. None of
these regimes nor the apparent breakdown of the unsteady boundary layer to
form a Targe vortex near the surface at large angle of attack have been
represented satisfactorily by calculation methods.

Previous attempts to calculate oscillating airfoil flows have involved

N and Shamroth]2 or

13,14 an

either the solution of Navier-Stokes equations, Mehta
the solution of the boundary-layer equations, Cebeci and Carr d
Geiss]er]S. While both approaches have merits, it is clear that the latter
procedure, with further development, is 1ikely to allow more precise solution
of the equations and economy of computer resources.

The calculation of boundary-layers on an oscillating airfoil differs from
the usual nonoscillating airfoil-flow calculations in that difficulties are
caused by the translation of the stagnation point in space and time. In par-
ticular, it is necessary to develop a procedure to generate initial conditions
in the immediate vicinity of the moving stagnation point and to account for
the flow reversal that occurs in this region. In reference 14, the present
authors described two procedures for generating initial conditions near tne
stagnation point of an oscillating airfoil. The first procedure used the
characteristic box scheme and was shown to be accurate and free from the limi-
tations which may be imposed by the flow reversal. The second procedure used
a quasi-steady approach and was also shown to be anpropriate provided that the
region where it was used vas far from any flow reversal.

The work described here is the continuation of that of reference 14, and
explores the calculation of laminar and turbulent boundary layers on the whole
oscillating airfoil. It has three separate but related phases. First, it is

necessary to conduct numerical tests of the procedures of ref. 14 and of the



boundary conditions generated by the potential flow code of ref. 16.
Secondly, oscillating airfoils involve transition from laminar to turbulent
flow and the data provided by Carr and his coworkers allow the direct
evaluation of transition assumptions which must be made in the boundary-layer
calculations. In particular, a simple assumption is to involve transition at
the location corresponding to the peak pressure calculated by the inviscid
flow method. The available experimental data permit the implications of this
assumption to be evaluated and compared with those empirical transition
methods used for steady flows and described in ref. 17. Thirdly, leading edge
separation bubbles and trailing edge separation can also occur at higher
angles of attack as demonstrated by Carr et a1.6 The ability of a
calculation method to represent these regions of separation and the
expressions used to model turbulent flows at lTow Reynolds numbers with
separation as well as transitional flows need to be investigated.

The study reported here is continuing and this contribution may be

regarded as a report of progress since that of ref 14.
BASIC EQUATIONS

Boundary-Layer Equations
The boundary-layer equations for an incompressible laminar or turbulent
flow on an oscillating airfoil are well known and, with the eddy viscosity

concept, can be written as

ou 9V _
x Ty =0 (M)

A (2)




Here x denotes distance along the surface of the airfoil, y along the

normal and b =y + ¢ In the absence of mass transfer, Eqs. (1) and (2) are

m
subject to boundary conditions given by

y = 0; u=v-=20: y =8, u = ue(x,t) (3)
The presence of the eddy viscosity ep requires a turbulence model and we
use the algebraic eddy-viscosity formulation developed by Cebeci and Smith

(ref. 18). According to this formulation ¢, is defined by two separate

formulas. In the inner region of the boundary layer (e,); is defined as:

(€); = {0.4y[1 - exp(-y/M 1} lg-; Yep 02V <Y (4)
where
1/2 yu_ au
_ -1 +1-1/2 _ T +_ Ve %%
A= 26vuT [1-11.8p1] , U= (B)max’ p "'j;?'EY_ (5)
T

In Eq. (4), Yip is an intermittency factor that accounts for the transi-
tional region that exists between a laminar and turbulent flow. It is defined

by

X
Yep = 1 - exp [-G6 (x - Xiy) f dx (6)

Here Xy, is the location of the start of transition and the empirical factor

G which has the dimensions of ve]ocity/(]ength)z, is given by (ref. 13)

3
_1 Yo 134
6= 10 7 Ry, (7)

The transition Reynolds number is defined as R. = (u_x/v),..
Xtr e tr
In the outer region (ep)g is defined by:

(), = 0.0168 OI (u, - uldy

m Ytr yciyim (8)




The boundary between the inner and outer regions, Yeo is established by the

continuity of the eddy-viscosity formulas.

Initial Conditions
If initial conditions in the (t,y) plane are given at a station x, on the
upper surface of the airfoil and satisfy the condition u > 0 and, in addition,
initial conditions are given in the (x,y) plane at t = 0, then the solution of

Eqs. (1), (2) and (3) may be obtained for x > x_ and t > 0 until they

0
breakdown (flow separation). A similar remark applies to the lower surface

except that u < 0. The initial conditions at t = 0 can be generated for both
surfaces if steady conditions are assured to prevail at that time. It is only
necessary to solve the appropriate equations which, in this case, are given by

Eq. (1) and by

du
au au _ e 9 ou
Usx P Vay T e Ity (P gy %)

There is no problem with the 1nitial conditions for Eqs. (1) and (9) since the

calculations start at the stagnation point x = x_, where ug and u are zero

S’
for all y.

Unlike steady flows, where u_ and u are zero for all y at the

e
stagnation point, the stagnation point is not fixed in an unsteady flow;
although Uq is zero, we cannot assume a priori that u 1s also zero. We nay
avoid these difficulties by using an implicit method, but now we are faced
with the problem of generating a starting profile on the new time line. A
convenient and accurate procedure to calculate the first velocity profile at
the new time-line has been developed by the present authors as described in

ref. 14; 1t involves the use of the Characteristic Box scheme developed by

Cebeci and Stewartson (ref. 19). Another procedure is to use a quasi-steady



approach in the immediate vicinity of the stagnation point. As long as the
region where this approach is used does not contain flow separation, it is
simpler to use than the first approach which employs the characteristic-box

scheme. As a result, it is used here.

Transformed Equations
As in previous studies (see, for example, re’. 17), we use similarity
variables to transform the governing equations before we seek their solution.

For a steady flow, we use the Falkner-Skan transformation defined by

=

n=v ;‘;y, b = VI flx,n) (10)

where  is the usual definition of stream function that satisfies the conti-
nuity equation, Eq. (1), that is

=a_q.)_ =_ﬂ).
u 3y v =X (11)

J1th this transformation, Eq. (9) and its boundary conditions, Eq. (3), can be
written as

af !
X

' m+ 1

(o) + 03 L ger 4 mll - (927 = x(f' _ g %;) (12)

n =0; f=Ff"=0: n =g f' =1 (13)

where primes denote differentiation with respect to n, m denotes a dimen-

sionless pressure-gradient parameter defined by

du
m =§_ e (14a)

o OX

and b is defined by

b=1+¢, em = /v (14b)



For unsteady flows, we use a transformation similar to that defined by
Eq. (10) except that Ua is now a function of both x and t and the dimension-

less stream function F is a function of x, t and ¢; we let

ue(x,f)
g =V =¥ Y= /u_e("x,‘f)—vx F(x,t,z) (15)

With this transformation it can be shown that the continuity and momentum
equations and their boundary conditions for unsteady incompressible flows can

be written as

1] l n+ 1 1l 12 | 4 "wo_
(bF") + 5 FF" + ml1 - (F')"] + my(1 - F ) - mF" =
1 5F' . oF' uw oF ‘
X[LleST+F 5-X—-F —a')z] (16)
¢z = 0; F=F'=0: T = gy F' =1 (17)

Here primes now denote differentiation with respect to ¢ and

au ou
m=§ga—x——, me=ﬁ_23—te- (18)
e
Solution Procedure

le use Keller's Box method to solve the governing equations of the previ-
ous section. This is a two-point finite-difference method which has been used
to solve a wide range of parabolic partiai-differential equations as discussed
in ref. 19. The solution procedure for Eqs. (12) and (13) is identical to
that described in ref. 17. The solution procedure used to generate the
initial conditions in the (x,y) and (t,y) planes is described in reference
13. For unsteady flows, where we now solve Eqs. (16) and (17), we use the
solution procedure described in ref. 20. In regions where there are no flow

reversals across the layer, we use the Standard Box scheme and in regions

where there is flow reversal, we use the Zig-Zag scheme.



RESULTS AND DISCUSSIOM

To accomplish the objectives stated in the Introduction with the
boundary-layer method discussed in the previous section, we have considered
the NACA 0012 airfoil and calculated its pressure distribution with Geissler's
inviscid code]6 for two reduced frequencies, k = 0.01 and k = 0.20 and for

two angles of attack

5° + 5° sinyt (19a)
8° + 10° sinyt (19b)

The experimental data taken for these two angles of attack and two frequencies
show that the one with the smaller variation in angle of attack, Eq. (19a),

has no trailing-edge separation on the whole airfoil for either frequency.

Its maximum angle of attack range falls in what McCroskey and Pucci call the "no
stall region" (“max < 13°). The only flow separatlion occurs in the form of a
bubble near the upper surface leading edge. For o Z_5°, flow separates and
reattaches as the flow goes from laminar to turbulent.

The flow corresponding to the larger variation in angle of attack, Eq.
(19b), on the other hand, has a leading edge separation bubble as well as an
open trailing edge separation. Its maximum angle of attack range falls in
between 1ight stall (amax < 15°) and deep stall (“max < 20°) with the
magnitude of reduced frequency playing an important role in the performance of
airfoil characteristics. As discussed by McCroskey and Pucci]o, the quali-
tative behavior of Tight stall in this case is sensitive to reduced frequency
and maximum incidence for a specified airfoil at zero Mach number. The
qualitative behavior is closely related to the boundary-layer separation
characteristics (leading-edge vs trailing-edge separation) and to the changes

in this separation behavior Onax and k. An imporcant point that they note



is the amount of trailing-edge separation suppressed by increasing the
frequency. As a result of this unsteady effect, an airfoil that falls in the
light stall region can pass from 1ight-stall with k < 0.10 to stall onset
(0ax = 14) for k > 0.15.

The boundary-layer method described in the previous section is able to
calculate both laminar and turbulent flows. The calculations start at the
stagnation point for the given pressure distribution and for the specified
freestream. The initial conditions at t = 0 are obtained by solving the
steady flow form of the equations and those in the (t,y) plane with the
quasi-steady approach described earlier and applied only in the immediate
neighborhood of the stagnation region. Transition is achieved by specifying
its location as part of the input to the computer program. In contrast to
steady flows where empirical correlations for transition have been developed
and compared satisfactorily with experimental data, 1ittle is known of the
same phenomena in unsteady flows. Here we have taken two approaches. In the
first, if available, transition location has been specified directly from
experiment and in the second it has been specified at the location of maximum
pressure. The first assumption allows the evaluation of the numerical
technique and the second is expected to be physically sound since the pressure
distribution becomes increasingly peaky as the angle of attack is increased
and the merits of this assumption can be tested. It can also be expected that
the second assumption will become less appropriate as the peak in the pressure
distribution diminishes with decreasing angle of attack.

Figures 1 and 2 show the variation of displacement thickness &*, and
local skin-friction coefficient, Ces distributions on the airfoil at
different angles of attack for two reduced frequencies. Here §* and Ce

are defined by



® u 21
§* = [ (1 -y, Ce = —5 (20a)
0 e

and in terms of the transformation given by Eq. (15) can be expressed as

2F"
s = X (n. - F), cp = —F (20b)
/R;' e e f /R;

Transition was assumed to correspond to maximum pressure and the chord

Reynolds number, Rc’ was taken as 3 x 106 and approximately 100 stations

were taken in the x-direction with 41 stations in the time direction
corresponding to Awt = 9°. The steady-state conditions were obtained from

the pressure distribution that corresponded to o = 0 by taking wt = 270° and

the calculations for t > 0 were performed for increasing angle of attack. Since
we are using an unsteady pressure distribution to calculate the initial conditions
at t = 0 and 3u/at is not zero at t = 0, slight oscillation occurs when
unsteady-flow calculations are performed for the next time step. For tnis
reason a smoothing procedure was applied to the calculated results at that

time station and the next few stations.

As can be seen from the results, there is no flow separation on the
airfoil except for a very small region at the trailing edge. This is without
doubt due to the inaccuracy of the inviscid pressure distribution in that
region where the effect of viscous forces on the inviscid flow is greatest.

An inviscid-viscous interaction should eliminate the trailing-edge separation.

The calculations for case 2 are more difficult to perform than those for
case 1 since the flow regime falls between light stall and deep stall, due to
larger variations in angle of attack. Whereas there is almost no flow
separation in case 1, there is both leading-edge and trailing-edge separation
for case 2. Once the calculations have started for steady state for, say yt

corresponding to 270°, we expect that flow separation will take place as the

10



angle of attack increases. However, whether the first flow separation will
manifest itself in the form of leading-edge separation or trailing-edge sepa-
ration remains to be explored. In either case, if the flow separates at the
leading-edge at higher angles of attack, then the use of the boundary-Tayer
method will Tlead to breakdown of the solutions due to the singularity at sepa-
ration, and, as a result, calculations cannot be performed for the downward
stroke beyond the separation point. For the case when the separation takes
place near the trailing edge, again the calculations cannot be extended beyond
the separation point for the downward stroke.

The calculations for case 2 were again performed for the same chord
Reynolds number and for the same number of x- and t-stations. The initial
calculations were started by using the pressure distribution which corresponded
toa = -2°. Transition locations were specified by two different approaches
for two reduced frequencies, k = 0.01 and k = 0.20.

Figure 3 shows the variation of transition as a function of angle of
attack for case 2 at two frequencies. We see from these figures that the
effect of reduced frequency on the location of transition is considerable. At
the Tower frequency, transition occurs almost at the same Tocation on the
upward and downward strokes whereas, with the higher frequency, the transition
Tocations on both strokes differ noticeably. Compared with the lower frequency
case, with increasing frequency, the transition location moves backward in the
upward stroke and forward in the downward stroke. It is obvious that a correct
prediction of airfoil characteristics in the same angle of attack range for
different frequencies will depend on our ability to predict transition as a
function of frequency among other things.

Figures 4 to 8 show the results for case 2. Those in Figures 4 and 5
correspond to a transition location at the maximum pressure peak. The first

traces of flow reversal occur near the trailing edge at o = 8° and are

11



Timited to less than the chord length. As the angle of attack increases, the
flow reversal region near the trailing edge slightly increases becoming
approximately 5% at o = 18°. There is no Teading-edge separation for either

frequency.

Figure 6 shows the results for case 2 in which transition locations were
input from the experimental data, according to Fig. 3b. Again the calculations
were started at the same angle of attack, a = -2, and continued in the upward
stroke mode. In this case, however, the solutions broke down at o« = 11.09°,
There was essentially no flow reversal and no signs of numerical difficulties
until a = 9.54 when flow separation appeared around the trailing edge. At
the next angle of attack, a = 11.09, a Taminar leading-edge separation bubble
appeared at around 4% chord and the solutions broke down shortly thereafter.
Figure 6 also shows that while the computed displacement thickness distribu-
tions are smooth, those corresponding to local skin friction are not. The
wiggles in the Tatter case are a result of transition locations specified at
different angles of attack. For example, we see from Figure 3b that for
-2 < a < 0, the transition location moves from (x/c),. = 0.40 to approximately
(x/c)tr = 0.55. This neans that the laminar flow calculations for a = 0
contain a combination of Taminar and turbulent flow characteristics which
originated at a = -2 where the laminar flow calculations terminated at
(X/c)tr = 0.40.

Calculations were also performed with the transition criterion of Michel,
which was devised for steady flows, and the results were found to be similar
to those of Figure 6 except that the solutions broke down earlier at o = 8°.
Figure 7 allows comparison between the measured transition locations and those
calculated from Michel's formula during the upward stroke together with those

corresponding to maximum pressure peak. It is clear, therefore, that the use

12



of this correlation, although imperfect, is to be preferred to the specifica-
tion of transition at the location of the pressure peak.

The intermittency expression used for the transitional region in the eddy-
viscosity formula can play an important role in the calculation of leading-edge
separation bubbles. It is likely that this formula, which has been used
satisfactorily for attached flows undergoing transition from Taminar to turbu-
lent flows, may not be as accurate for flows undergoing transition due to
separation. It is evident from Eqs. (6) and (7) that the coefficient of the
pararieter G controls the transition length. Thus a decrease in G by a factor
of 10 will reduce the transition length which, in turn, will Tessen the pos-
sibility of separation. Calculations shown in Fiqure 8 performed with a value
of 1/120 for the coefficient of G revealed that the leading-edge separation had
been suppressed allowing the calculations to proceed and to reveal trailing-
edge separation. This procedure permitted the calculations to be performed in
the upward stroke to an angle of 18° where the trailing-edge separation had
moved forward to around 20% chord. This sensitivity of the calculated flow to
the coefficient of G requires further confirmation which may be obtained, in
part, by the use of interactive methods; in this way the breakdown caused by

the singularity will no longer occur.
CONCLUDING REMARKS

The numerical method of ref. 13 has been used to investigate the proper-
ties of the flow around an airfoil (NACA 0012) oscillating with angles of
attack up to 18° and for reduced frequencies of 0.01 and 0.20. This encorpas-
ses the regions of no-stall and deep stall identified by McCroskey and
Pucci]O. The inviscid pressure distribution was obtained from Geissler's

method. The calculations were performed without numerical difficulties in

13



both flow regimes and the zig-zag numerical scheme was shown to work satis-
factorily in regions of flow reversal.

The influence of transition location was investigated with the numerical
method. The specification of transition at the location of pressure peak led
to results which were in disagreement with experiment for the low frequency
case; in particular, the calculated results did not reveal the deep stall
observed in ref. 10. In contrast, the results for the high frequency case were
in accord with experiment. Use of the experimentally determined transition
location for the high frequency case, however, Ted to discrepancies which may
well be attributed to the pressure distribution obtained from inviscid-flow
theory which does not consider any separation on the airfoil. This suggests
the need for interaction between the viscous and inviscid flow calculations.

Further investigations were conducted with the turbulence model of Cebeci
and Smith which includes consideration of the transition region. It was found
that the length of the transition region could be controlled by modifications
to the model with consequent reduction of the transition region and of the
separation bubble. Additional studies are required to quantify the effects,

and, once again, should make use of interactive procedures.
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Figure 3. Variation of transition location with angle of attack on the MNACA

0012 airfoil at two reduced frequencies: (a) k = 0.07, (b) k =

0.20, for case 2. The symbols denote experimental data of ref. 6
and the solid lines the fairing done hy the authors.
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