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TECHNICAL MEMORANDUM

RADIAL SI LATCHES VIBRATION TEST DATA REVIEW

I. INTRODUCTION

A dynamic test program of the Space Telescope Scientific Instruments Latches
was requested by the Marshall Space Flight Center Latch Design Audit Team. The
test program included random vibration, transient shock, and modal testing on the
latches for the axial and radial scientific instruments. The test program was required
for flight qualification of the SI latches.

This report describes the criteria development, types of testing, purposes for
testing, test apparatus, test procedure, and results and analysis of test data for the
radial SI latches.

II. DESCRIPTION OF TEST ITEMS

Latch "A" (Figs. 1, 1.1, and 1.2) consists of two parallel interfaced plates.
A threaded ball is permanently bound within a socket between the two plates. In
latching, a threaded rod is secured to the ball. Latch "A" will accept loads in all
three directions.

Latches "B" and "C" are pin-and-socket configurations. Each latch consists of
two halves that interface perpendicularly. Latch "B" (Figs. 1 and 1.3) accepts load
in the VI direction only. Latch "C" (Figs. 1, 1.4, and 1.5) accepts loads in the VI
and V2 directions.

To securely latch a radial scientific instrument to the Space Telescope, the pins
of latches "B" and "C" are pulled into their receptors as the threaded rod is
screwed into latch "A".

III. TEST CRITERIA AND DEVELOPMENT

The test criteria for the series of dynamic tests to be performed on the radial
SI latches is designed to evaluate the dynamic response of the test article and to
expose the test article to the simulated flight dynamic environments. The test criteria
will be notched if necessary to avoid exceeding the following maximum design loads:

Axis Peak G's

VI 6.23
V2 2.33
V3 3.11



A. Sinusoidal Diagnostic Survey Test Criteria

Sinusoidal test criteria levels were chosen at levels and sweep rates to preclude
exceedance of the above designated maximum design loads. Natural frequencies and
damping of the test article were predicted and the test level was determined such
that the loading of the test article would not be significant during the sine sweep
tests.

1. 0.1 G Level

A 0.1 g sine sweep from 5 to 2000 Hz at 3 octaves/min was used to identify
fundamental frequencies, to determine the damping factor, and to determine if
notching was required in the 0.25 g sine sweep. This test also allowed checking of
control and center-of-gravity (e.g.) accelerometers before beginning the 0.25 g sine
sweep. This was the initial vibration test in each axis. A 0.1 g sine sweep was
selected at random for convenience because of its low level. A 0.05 g or 0.15 g test
could have been used.

2. 0.25 G Level

A 0.25 g level test was chosen because it produced the desired response level.
The 0.25 g sine sweep was conducted at 3 octaves/min from 5 to 2000 Hz before and
after the random and the transient vibration tests. The vibration "signatures" from
the pre- and post-test sine sweeps were analyzed to determine if any changes
occurred in the latches due to random or transient testing. Changes in the "signa-
tures" usually indicate some structural change in the test specimen (broken or over-
stressed members, loose bolts and nuts, binding, or work interfaces).

B. Vehicle Transient Criteria

Shock spectra and time histories were calculated by space shuttle coupled loads
computer simulation analysis. Five liftoff and five landing cases were selected as
"worst" cases. Forcing functions used in the computer model included space shuttle
main engine (SSME) thrust, solid rocket booster (SRB) thrust, SRB internal pressure,
SRB ignition overpressure, SSME side loads, steady state wind and gusts, ground
reactions at the base of the SRB's, and in landing: angle of attack, cross winds,
horizontal velocity, and sink speeds. Figures 2 and 3 are examples of the shock
spectra and time histories. See NASA memorandum ED22-84-25 for all of the data.

Neither the response time histories nor the shock response spectra could be
reproduced in the test laboratory due to test equipment limitations. Consequently,
a fast sinusoidal sweep in the appropriate frequency range was chosen to simulate the
transient environment. Amplitudes for the test were obtained from the peak values
of the calculated response time histories. Frequency ranges were determined from
the shock response spectra of the transient time histories. Sinusoidal sweep rates
were adjusted to produce a factor of 3 on the number of peaks (between the maximum
amplitude and six decibels below maximum amplitude) from the transient time histories.
The resulting test criteria are presented in Figures 4 through 8.



1. Half Level

A half-level transient test was conducted as a calibration run. Data from this
test were evaluated to determine if the desired response amplitude and number of
cycles would be achieved during the full-level transients. Adjustments were made,
if necessary, to the amplitude and sweep rate of the full-level transient test criteria,
to achieve the desired response.

2. Full Level

A full-level transient test was then conducted at levels and sweep rates formu-
lated from the half-level transient test data. The purpose of this test is to simulate
the liftoff vehicle transients of actual flight.

C. Random Vibration Criteria

The original predicted cargo bay acoustic criteria for the space shuttle was
145 dB. Space Telescope (ST) random criteria were based on measured vibration
data from the ST-Structural Dynamic Test Vehicle (SDTV) vibroacoustic test. The
resulting random criteria for the scientific instruments were 9.5 grms, as shown in
Figure 9.

Based upon the data from the first four shuttle missions, the cargo bay acoustic
criteria were revised downward to 139 dB. Figure 10 compares 145 dB and 139 dB
acoustic levels. Likewise, the random criteria were scaled downward to 4.6 grms, as
shown in Figure 11.

Evaluating STS flight payload data from missions 1 through 9 indicated that
structure-borne excitation exceeds acoustically induced vibration in the 20 to 200 Hz
frequency range. A third criteria modification was made to include this low frequency
exceedance. Figure 12 illustrates the modified criteria used in the latch test.

1. Half Level

A half-level random test was conducted to verify control system capability, to
determine magnification factor (Q) at the fundamental frequency, to check cross axis
response, and to determine if notching is required to stay within the maximum design
loads.

2. Full Level

A 60-second full-level random test was conducted to qualify the latches for the
maximum expected flight random vibration environment. Single mission random vibra-
tion test time is based upon the actual time the environment is present times a factor
of three (a factor of safety on the quality of the test article); however, a minimum
test time of 1 min is recommended for adequate equalization of the control system and
to provide sufficient time for data acquisition. Test time for the SI latches is set by
the 1 min minimum.



IV. TEST APPARATUS

Figure 1 illustrates the scientific instrument simulator. Attached to the simu-
lator are the latches. Also the latches are attached to the test fixture. Figure 1
also illustrates the locations of the control and response accelerometers.

Figure 13 illustrates the test fixture and shaker table configurations for the
three axes. In the VI axis only one shaker is used. The latches, simulator and an
aluminum plate attach directly to the shaker. In the V2 and V3 axes, the following
configuration is used: two large granite "team" tables mount onto a concrete floor.
A 2-in. thick magnesium plate is mounted upon the team tables. This plate is oil
lubricated. A 6-in. thick aluminum plate is bolted to the mangesium plate. This
aluminum plate is machined out and foam filled. Another 2-in. thick aluminum plate
bolts above. The latches then bolt to this plate. Four shakers attach to the 6-in.
aluminum plate at the four corners as indicated in the figure. A computer system
controls and monitors the shakers and processes data.

V. TEST PROCEDURE

The various tests were performed in the following order in each axis.

1) 0.1 g sine sweep

2) 0.25 g sine sweep

3) Low level random vibration

4) Full level random vibration

5) -6 dB transient

6) Full level transient

7) 0.25 g sine sweep

For a detailed list of test procedures see ST-SIL-TCP-001, December 15, 1982.

VI. TEST DATA AND EVALUATION

Figures 14 through 35 present the control average and e.g. response in each
axis for the 0.25 g sine tests (pre- and post-), the full-level transient tests, and
the full-level random tests.

Figures 14 through 19, 20 through 27, and 28 through 35 are data from the VI,
V2, and V3 axes, respectively.



A. Sinusoidal Diagnostic Survey

Figure 21 illustrates the center-of- gravity (e.g.) response for the V2 axis for
input in the V2 axis. The fundamental response frequency is 34 Hz. The magnifica
tion factor (Q) can be calculated as follows:

Q _ Peak Response Level
^ Input Level

0.25 - 2 4~ 2'4

Examining e.g. response data of VI axis, VI input and V3 axis, V3 input
reveals a system response frequency of approximately 35 Hz and a magnification
factor, Q = 3.

Comparison of the V2 axis pre- and post-test 0.25 g sine sweep data indicates
a positive frequency shift in the post-test data, as in Figure 21. Examination of the
"B" and "C" latches after V2 axis testing revealed degradation of the internal inter-
face surfaces of the latch halves and particulates in the area around these interfaces.
Contact marks were observed on the point "C" bases — SI and FPS (focal plane
structure) halves.

B . Vehicle Transient

Figure 16 is an example of the VI axis input for the 5 to 14 Hz vehicle tran-
sient test. Figure 17 is the e.g. response for the above input in the VI axis. The
VI e.g. response, 4.17 g's, is well within the fifth cycle load limit of 6.23 g's. The
number of cycles is a factor of 3 to 4 due to test control system limitations (sweep
rate, rise rate, and control feedback loop).

C. Random Vibration

In each axis the -6 dB random test indicated that notching of the full level
random vibration input criteria was not required to maintain e.g. response loads
within the maximum design limits. Figures 36, 37, and 38 illustrate the inputs into
each latch for the full level random VI axis test. Fixture resonances resulted in
over testing at some frequencies, this may be seen in Figures 26 and 34 — the V2
and V3 control averages. In addition, there was over testing resulting from cross-
axis fixture resonances at some frequencies above 400 Hz. However, these exceed-
ances are narrow band and well above the first fundamental frequency of the test
article and are not considered significant.

The figures in Appendix B illustrate auto spectral density, transfer function,
and coherence plots for selected random vibration time histories. Appendix C
describes how the plots in Appendix B were calculated. The following description
describes the results of frequency domain analysis for the "A" latch in the VI axis:

Figure 39 is an auto spectral density plot for the R2 accelerometer , located
outside of the "A" latch. Figure 40 is an auto spectral density plot for the R5



accelerometer, located inside of the "A" latch. Figure 41 is a transfer function plot
for the energy transfer between the R5 and R2 data. This describes the energy
transfer through the latch. Notice that negligible energy transfer occurs above
200 Hz. However, below 200 Hz considerable energy transfer occurs. Figure 42
illustrates the coherence of the transfer of energy through the latch. Notice that
considerable energy transfer occurs only at particular frequencies.

In examining the other H(f) plots and coherence plots, one can see that at some
locations energy transfer was minimal, while at other locations energy transfer was
as much as 95 percent.

VII. SUMMARY AND CONCLUSIONS

A. Summary

Dynamic testing of the space telescope scientific instruments radial latches was
performed as specified by the designated criteria. The specified test procedure was
carefully followed. No failures were discovered in testing. The alignment stability
after exposure to the dynamic environments was within the required tolerances.
Participates were discovered in the latch interfaces after testing.

B. Conclusions

Pending positive dye penetrant test results, the latches are considered struc-
turally qualified for the flight dynamic environment.

Increased friction due to the worn latch surfaces may account for the frequency
increase in the V2 axis post-test 0.25 g sine sweep. Another possibility is increased
friction due to binding produced by misalignment in the V2 axis. The random vibra-
tion time history data recorded during the V2 axis test indicated that impacting
occurred at the point "B" and "C" latches. This is attributed to setup error which
caused the clearance between the bases to be below the minimum allowable. The
setup error was corrected before proceeding with the V3 and VI axes. No further
impacting of latch half bases was observed.

A lubricant must be added to trap participate matter that was produced by
wearing of the latch registration interfaces. This lubricant is necessary since
participate contamination of the Space Telescope optical surfaces could render it
useless.
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VI AXIS TRANSIENT TEST
SWEEP RATE * 15 OCTAVES/MIN

10
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7.00 Hz S 0.75 CpK
7.00- M.30 Hz S 0.300 INCHES D.A. DISPLACEMENT
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Figure 4. VI axis transient criteria.
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Figure 5. V2 axis transient criteria.
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Figure 6. V2 axis transient criteria.
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Figure 7. V3 axis transient criteria.
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V3 AXIS TRANSIENT TEST «|
SWEEP RATE = 21 OCTAVES/MIN

X
*»

tM

in
0.

10.0

1.0

0.1

0.01

0.001

0.0001

FREQUENCY IN HERTZ

II.00 Hz S 0.17 CpK
H.00- 14.00 Hz S 0.027 INCHES D.A. DISPLACEMENT

14.00 Hz 6 1.60 CpK
14.00- 18.00 Hz S 1.60 CpK

Figure 8. V3 axis transient criteria.

X
f

r"
\7

r
\n
i

>

S

1 — ^/

• =4

t

r i i\
i

/i
xr 1 \

> \
- — \

V

1
\

\

\

CRITERIA COWOSHI

95 PERCENTILE
DATA

0 100 1000

FREQUENCY (HZ)

Figure 9. Random vibration criteria - 145 dB basis.

16



130

120

01
>
01

01u
a.

c

I

90

80

70

I 'I I I I I I I I I I I I I I I I I I I 'I

— ORIGINAL CRITERIA

REVISED CRITERIA

10 20 100 1000 10.000

1/3 Octave Frequency (Hz)

Figure 5-2-1: Orblter Cargo Bay
Acoustic Spectrum

Figure 10. Space shuttle cargo bay acoustic criteria.

1.0

~ 0.1
N

•s.
»4
0"̂

Q
C/J
DL

0.01

0.001

0.0001
1C

X"
S"

st—

/

1
1

1

X

A
^

_i _
V

AA
, \

/ \

f-
/
/

/v

r»
/

/
\

1/••

»^

X
^

4 -
^

x^
\

N

^

\
fc\

\
> 100 1000

FREQUENCY ( H Z )

CRITERIA COHPOSIT!
4.6 GRMS

95 PERCENTILE
DATA

Figure 11. Random vibration criteria - 139 dB basis.

17



/RADIAL SI RANDOM.VIBRATION CRITERIA

COMPOSITE: 3.34 Grms
0. 1

1 .0E-3

1 0E-4

1 [ 1 1 1 1 1 1

! /
:

-

~\
\

-

\\ =
-

10 100 1000
FREQUENCY IN HERTZ

20 Hz 6 0.00240 g2/Hz
20- 90 Hz 6 +5.0 dB/oci
90- 200 Hz 6 0.03000 g2/Hz
200-2000 Hz S -5.0 dB/oct

2000 Hz S 0.00060 g2/Hz

COMPOSITE = 3.34 Crms

Figure 12. Random vibration criteria.

D>

V2 RADIAL

/ / / / / / T V
VI RADIAL

Figure 13. Test configuration.

18



CONtROl AWtRACE

POST TEST SUEEP I 1 UP

k^

18 °HZ LOO Sr SI RADIAL LATCHES Ul 55C

Figure 14. VI axis sine sweep control average.

R22 VI CG
flCAS DATA' CH 1 • POST TEST SHEEP I 1 UP

an*
ST SI RADIAL LATCHES VI .25C

Figure 15. VI axis e.g. pre- and post-test data.

19



COKTROL MJfXME

fOST TEST SUEIP t 1 UP

SM

ST SI RMIAl LATCHES VI 5-H HZ VO

Figure 16. VI axis transient control average.

92.2 VI CG R.
Tint: CM.n UTHl

20

.1
. !.!::;;-i

. : . M i . i I i ..- : ; | . : - i i : i H.:I : . I J l.i . i

Figure 17. VI axis e.g. transient response.



It"
1 1

-J

-g

-3

-4

CONTROL AUERACE
POST TEST

RltS LEUEl • 3.3*7 G

a SOR/HZ

_^x"

^ ̂

"̂̂

^

'̂ ̂
*&*

^

^ f

l^x —

S

<̂

"̂x*

ELAPSED Tint . 62 SEC5

DELTA F * 4.883

^

*

f

^

^
"

19. S

11 ' HZ IOC

1

-̂̂- v^

"̂ V̂

<̂*k.ô*
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Figure 18. VI axis random control average.
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Figure 19. VI axis e.g. random response.
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Figure 20. V2 axis sine sweep control average.
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Figure 21. V2 axis e.g. pre- and post-test data.
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Figure 22. V2 axis transient control average - test 1.
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Figure 23. V2 axis e.g. transient response.
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Figure 24. V2 axis transient control average - test 2.
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Figure 26. V2 axis random control average.
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Figure 27. V2 axis e.g. random response.
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Figure 28. V3 axis sine sweep control average.
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Figure 29. V3 axis e.g. pre- and post- test data.
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Figure 30. V3 axis transient control average - test 1.
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Figure 31. V3 axis e.g. transient response,
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Figure 32. V3 axis transient control average - test 2.
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Figure 33. V3 axis e.g. transient response.
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Figure 34. V3 axis random control average.
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Figure 35. V3 axis random response.
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Figure 36. "A" latch random input.
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Figure 37. "B" latch random input.
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Figure 38. "C" latch random input.
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Figure 39. VI "A" latch random auto spectral density.

l '5 VI. IMS IDE R L.F1TCH f"L RRNDOM VI
i liJ ! 0 of- ' f 'C CM. B 'V ax i s : G?.
i'.S.'.'i X a x i s : H?.

. ,;:'I ;1 drms b e t w e e n 20 and Ih0y'"hz

• -t

•

- •!

•-

>::.:|
1

|

t
\ •

f~ ' '

• • ••

[j

= =

:::

...

X

...

!r

|::::

...

...

._

I:::

...

W=
f.J

->

' 1

:::̂ ::1.;|
l̂|/

J.
r i'luv/tw

— •

;•!
Jt %^

.. ..

« -T —

1 1

f

1 1

i i i

Mb*
i j.-Wl

I i

::::

ft

. .,

*:;'".:.
;

....;,..

=

<::::!:::

> :

tVi

.;..

. t.'Li •:.

i:< i
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Figure 41. "A" latch transfer function.
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Figure 42. "A" latch coherence.
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Figure 43. VI "B" latch random auto spectral density.
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Figure 44. VI inside "B" latch random auto spectral density.
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Figure 45. "B" latch transfer function.
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î
-.
1

;lPi

Figure 46. "B" latch coherence.

37



! • ' ! ' ? VI C I RICH FL RFINDOM VI
• s | - , , •".-; j.•:.[:: f ,;;| j _ j. ( V ax i S :

• Ti X a x i s :
* Rvg:

•'•'. H .'•"' 'T: ins hetujeen 20 and
I

Figure 47. VI "C" latch random auto spectral density.
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Figure 48. VI inside "C" latch random auto spectral density.
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Figure 49. "C" latch transfer function.
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Figure 50. "C" latch coherence.
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Figure 53. VI "A" latch input versus e.g. transfer function.
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Figure 55. V2 "A" latch random auto spectral density.
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Figure 56. V2 "A" latch inside random auto spectral density.
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Figure 57. V2 "A" latch transfer function.
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Figure 59. V2 "B" latch random auto spectral density.
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Figure 60. V2 "B" latch random auto spectral density.
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Figure 61. V2 "B" latch transfer function.
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Figure 62. V2 "B" latch coherence.
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Figure 63. V2 "C" latch random auto spectral density.

R : ' G ' V ? INSIDE C I .RICH Fl. . R R f J D O M VP
H I ! T O SPEC C M . B V a x i s : G?/'l
!;"oIJ X a x i s : l-lz

t R v q : -r.;:^
•i , 1 J Grrns be tween 'dR and 1 6 0 W " h 2 . ' j 4 Q

* i _ ~ L '

. nn i :;if-;

Figure 64. V2 "C" latch inside random auto spectral density.
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Figure 65. V2 "C" latch transfer function.
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Figure 66. V2 "C" latch coherence.
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Figure 68. V2 e.g. response auto spectral density.
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Figure 69. V2 input versus e.g. transfer function.
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Figure 70. V2 input versus e.g. coherence.
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Figure 71. V3 "A" latch random auto spectral density.
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Figure 72. V3 "A" latch inside random auto spectral density.
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Figure 73. V3 "A" latch transfer function.
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Figure 74. V3 "A" latch coherence.
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Figure 75. V3 "B" latch random auto spectral density.
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Figure 76. V3 "B" latch inside random auto spectral density.
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Figure 77. V3 "B" latch transfer function.
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Figure 78. V3 "B" latch coherence.
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Figure 79. V3 "C" latch random auto spectral density.
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Figure 80. V3 "C" latch inside random auto spectral density.
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Figure 81. V3 "C" latch transfer function.
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Figure 82. V3 "C" latch coherence.
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Figure 83. V3 "A" latch random input auto spectral density.
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Figure 84. V3 e.g. response auto spectral density.
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Figure 85. V3 input versus e.g. transfer function.
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Figure 86. V3 input versus e.g. coherence.
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APPENDIX C

ANALYSIS EQUATIONS
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Correlation is a measure of similarity between two vibration waveforms. It is
used to detect hidden periodic signals in noise and to determine other information
such as energy transfer, etc.

An autocorrelation analysis multiplies the ordinates at time, t, and t + T (a time
shift), then time averages. Autocorrelation is defined mathematically as follows:

RXX(T) =^m Y f X(t) X(t + T) dt

T/2

f
-T/2

An autocorrelation of a random signal using a small T will tend to highlight the
resonances of the system. Cross correlation is a correlation between two different
waveforms. It is defined mathematically as follows:

RX Y(T) = f X(t) Y(t + T) dt

T/2

f
-T/2

Once time domain analysis is completed, frequency domain analysis can begin.
The auto spectral density (a power spectral density of the autocorrelation) is defined
as follows:

G x x ( f ) = 2 /Rx x(T)e- i 2 r f T

The cross spectral density is defined as follows:

Gxy(f) = 2 / RX Y(T) e ""il dt

The cross spectral density determines frequencies of greatest transfer.

Coherence, in the frequency domain, is analogous to the correlation coefficient
o

in the time domain. Coherence values of YXY
 < 1 indicate that the response is not

attributable to the input. Coherence describes the percentage of energy transfer at
any particular frequency. It is defined as follows:
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" GXX< f ) Gyy(1) *

A transfer function describing energy transfer through a system can be cal-
culated as follows:

GXY ( f )

Gu
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