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COMPUTER SIMULATION OF SURFACE AND FILM PROCESSES

In this report the results obtained in two separate

investigations are presented:

(1) Simulation studies based on a potential comprising two-body
and three-body interactions. As m¢del systems, several dif-

ferent silica phases are taken into consideration.

(ii) Crack propagation studies in two-dimensiornz2l triangular

lattices.

The progress made in these areas during this period is

given in the following two self-contained chapters.
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CHAPTER I.

Simulation studies based on a potential with.two- and

three~-body interactions. Crystalline silica phases;

their surfaces and interfaces were modeled.
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ORIGINAL PAGE (&4
INTRODUCTION OF POOR QUALITY

Using computer simulation techniques, the behavior of a model system
(with many degrees of freedom) can be computed to analyze various physi-
cal phenomena. It has been shown that adequate computer methods, based
on interactions between discrete particles, can provide information leading
to an atomic level understanding of various processes [1-7). The success of
these simulation methods, however, is closely related to the accuracy of the
potential energy function representing the interactions among the particles.
The prime objective of the present investigation is to develop a potential
energy function for crystalline S70, forms that can be employed in lengthy
computer m-delling procedures. Such a potential energy function which
could furnish acceptable crystalline forms of Si0, at finite temperatures
- (say, under a Monte Carlo or molecular dynamics code) presently is un-
available. In many of the simulation methods which deal with discrete par-
ticles, semi-empirical two-body potentials have been employed to analyze
energy and structure-related properties of the system {1-10). However, it is
now well accepted that many-body interactions are required for a proper
representation of the total energy for many systems. There are numerous
reports indicating the significance of multi-hody interactions in calculating
energy and structure-related properties{11-19]. In this study, we included
many-body interactions in an appropriate way for simulations based on
discrete particles.

In general, for a system of N particles, the total potential energy may
be expanded as [15):

1 NN . 1 N N N
¢’='2TEZ“("-‘:U)+§E Z Zu(fiw'j,fk)-l'"-
RIS ' i,k

s 3 s
j Sl
1 N N N
‘+;‘122’ ; u(?i:?j:"‘:?n)-l-"' (1)
T ik

where, u(7s, 7;), u(Fi, 75, T%), ..., u(Fi, 75, .., T ) are two, three, and n-body poten-

tials, respectively. The position of the i'th particle is denoted by 7;.
Clearly, the most important term in this expansion is the first term
involving two-body interactions. Therefore, in the majority of the atomis-
tic calculations made to date, only pairwise additive potentials have been
used. This provides great simplification in the analytical formalism as
well as in numerical computations. When the parameters of a two-body
potential, however, are calculated from, say, an experimentally determined
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bulk property, the pairwise nonadditive (i.e, multi-body) contribution to
the total energy is introduced indirectly via estimated parameters in a
complicated way. The two-oody potential, therefore, with parameters car-
rying the effect of the many-body portion of the total potential is called an
"effective” pair potential [14,15,20]. In general, effective potentials provide
good results when another property of the same state is calculated (i.e.,
as long as variations in the local atomic configuration remain negligible)
[21). However, if the properties of another state have to be calculated, the
many-body part should be included in a theoretically acceptable way, 1f its
contribution is considerable [20].

In this investigation, energy and structure-related propertnes for sys-
tems containing St and O atoms were taken into consideration. Simulations
. were performed at finite temperatures nsing a Monte Carlo procedure. For
total energy calculations, both two-body and three-bocy interactions were
taken into account. Reported model calculations for euergy and structure-

related properties of systems with S¢ and O atoms are rather scarce [22- ',

26). In general, all these earlier calculations were carried out assuming
only two-body "eflective” potentials. An ionic model based on the Born-
Meyer-Huggins potential (which is an "effective” pair potential in nature)
was adopted for this purpose [27]. For several macroscopic properties, in
particular for the representation of amorphous structures, this potential
function produced very interesting resuits which are consistent with ex-
periments. However, at the present time, there is no indication that this
potential would allow various crystalline S1O, structures to be stable [1].

In the present study, with a potential energy function comprising
two and three-body interactions, we were able to obtain stable crystalline
structures for low and high temperature forms of quartz and cristobalite
employing a Monte. Carlo procedure. The results emphazise the importance
of multi-body interactions in the stability of crystalline $70; phases.

- POTENTIAL ENERGY FUNCYION

To calculate the total potential energy of a system in a given configuration,

equation 1 was employed considering two-body and three-body interactions.
Four and higher body terms, however, were neglected. Because this expres-
sion (equation 1) had to be used in lengthy machine computations, u(7;, ;)
and u(F, 74, Tx) were chosen with the simplest possible functional forms. In
this study, thzrefore, the twe-body part was represented by a Mie-type
potential which is given by:

vl = iy (= w2y ) @



ORIGINAL PAGE 9

OF POOR QUALITY
with,ry; = |y — 74|, r, denotes the equilibrium separation and ¢ is the
energy at r;; == r,. The exponents m and n account for the repulsive and
attractive terms, respectively, The three-body part, on the other hand, was
expressed as:

ufo, 7T = D 2y GiFs, 75, 7x) (3)
i

where, the summation includes all triple multipole interactions resulting
from the expansion of the third-order interaction energy for three atoms.
Each term in the summation is expressed as the product of a geometrical
factor G(7i,7,,7x; which depends on the relative positions of the three
atomic nuclei and an interaction constant which depends only on the atomic
species involved in the interaction. The functional forms of G(7;,7;,7) for
several multiple interactions have been obtained by Bell [28]; and by Doren
and Zucker [29). Here, we consider only the triple-dipole interaction which
has been shown to be the dominant contribution [30,31]. This term was
first obtained for closed shell atoms by Axilrod and Teller [31] as:

u(-r'.',;j, ?k) =7 Gl(?';,;j,?k) ‘ (4)
with
- - - 1+ 3Co0s8;Cosb; Cosh,
G1(Ti, 75, 74) = - (5)

('_ij * Tk rjk)a

where, 8;,0;,60; and r,;, rq, ;5 represent the angles and the sides of the
triangle formed by the three particles i, j and k. Parameters such as ¢, r,,
m, n and Z will be referred to as "internal” parameters indicating that they
depend only on the atomic characteristics of the corresponding particles.

Now, corabining equations 1 through 5, and neglecting the four-body
and highér terms, one obtains:

¢ =V~ ¥3 (6)
with
1 N € To \m To\n
Wy = 5‘; > m—n) ("(;Tj) - m(r—‘;) ) ‘ (7)

and
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N N N '
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In this general form, the total potential energy & is a function of the atomic
coordinates, and the internal parameters. These parameters, as mentioned
above, are assumed to be independent of the atomic positions and the
geometry of the system; they depend only on the atomic properties of the
species involved.

For a binary system of types 1 and 2 with the corresponding number
of particles Ny and N2 (for example, for the SiO; case), equations 7 and
8 may be rewritten as:

2 2
a'fap [ (mes). plmen) (nes) . pr(nes)
n .a,M_.R af) - . p-a\tos) . R\Nas
gzﬁ: 2(maﬂ" ”aﬂ)l af Tap i Tap of " Cap af
(9)
witha=1,2, §=1,2 and y=1,2; and
2 2 2
NoZop
Y=, 3 D o Tupy (10)
a f 7
A<
where,
o Raﬁ = ro;'ﬂ | (11)
N, m
4 )"
o) = zf(;; (12)
J
N. Napg
d
J
and
Na
Tapy = Z E G(7ai, Tcr:nrafk} (14)
J . .
.1<k

with, ra; # 0, o5 # 0 and rox # 0; (and considering ro5 = rgo). Here,
Toap Fepresents the equilibrium separation between the two species a and
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f for the two-body part ; d is a critical distance parameter which is used
as a normalizing factor, @ is independent of the value of d. roj = |Pa —
7,],where, 7o denotes the position of an atom of type a taken as the central
particle for the summation. The total number of particles in the system is
given by Nt = N; + N2; while, mag and nqg are the exponents for the
repulsive and attractive parts of the two-body potential.

The Mie potential (equation 2) which is employed to represent "bare”
two-body interactions is the general form of the commoniy used Lennard-
Jones potential with m and n assumed to be equal to 12 and 6, respectivaly.,
Here, m and n determine the curvature of the function around the mini-
mum and would provide a greater flexibility, in particular, when left as
variables in calculating quantities expressed as derivatives of the potential
energy. Even though the Mie potential may represent "bare” two-body
potentials fairly well, an accurate representation of the three-body part is
more difficult to attain. Only a limited number of reports can be found
in the literature proposing an analytic formula for three-body interaction
which would meet our requirements. In this first attempt, we adopted the
Axilrod-Teller approach to analyze, at least, some of the generic features
produced by a formal three-body function in the calculation of structural
and energy-related properties for various S0, crystals.

The functional representation of & as sums of two and three-body
terms is quite different from the usual formulation of the total potential
energy as a sum of "effective” two-body potentials alone. In the present for-
malism u(7;,7,) is the "bare” two-body potential and the many-body effect
is introduced via u(7;,7;,7x). In the "efective” pair potential formalism,
however, the many-body part is incorporated with the two-body 'internal’
parameters, therefore, the muiti-boily part was implicitly assumed to be
pairwise additive. This assumption, in turn, makes the 'internal’ potential
parameters very much more locally structure dependent (i.e.,for another
geometrical arrangement of atoms, for instance, going from bulk to the
surface, adjustments in the parameters would be necessary). At this point,
it is anticipated that the present formalism of the total energy as sums
of "bare” two-body plus three-body interactions would cause the internal
parameters to become much less position and geometry dependent than in
the case of an "effective” two-body approximation. See appendix 1.

CALCULATION OF THE PARAMETERS

For a binary system such as §iO,, evaluation of the parameters (internal
parameters, in particular) constituted the most cumbersome part of this in-
vestigation. We used only experimental data to evaluate these parameters.
The total potential energy of a binary system as given by equations 6 and 9
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through 14 contains two classes of parameters. (i) Internal parameters
which are related implicitly to the atomic properties (such as the poiarizability,
mean excitation energy and atomic volume) of the species involved i1i the in-
teraction. (ii) Geometric (external) parameters, as given by equations 12
through, 14 are functions of atomic positions and depend solely on the
configuration of the system. These geometric parameters are basically
some kind of lattice sums and, for known crystalline structures, can easily
be calculated. Table 1 tabulates these parameters for several crystalline
S102 forms. Internal parameters, on the other hand, are more difficult to
evaluate. In contrast to the geometrical parameters which are dependent on
the configuration, internal parameters are assumed to be independent of the
habit and the geometrical setting of the system. Therefore, the same set of
internal parameters which reproduces experimental quantities satisfactorly,
say for the pure Si, can be employed for calculating the two and three-
body interactions among St 2toms in any Si0, form. The total potential
energy, ®, expressed by equation 6 is, by definition, the cohesive energy of
the system. This constitutes one of the main expressions in the internal
parameters evaiuation procedure. The other major relation that has been
used is the stability relation given by:

ol

T = 0 (15)
where, V denotes the total volume of the system. Obviously, this expression
is exact only at static equilibrium (i.e., at T =0°K). However, it has been,
generally, assumed that the minimum of (V) coincides with the minimum
of the free energy of the system as a function of V.

For a binary system such. as Si0y, the internal parameters can be par-
titioned into three groups. (i) Parameters for pure silicon: Experimental
small cluster and bulk data for Si¢ were used to calculate pure silicon
parameters [32,33]. Equation 6 has been employed in this evaluation as-
suming msi—sgi) = 12 and n(si—s¢) = 6. The two body energy well
depth for equation 2 was calculated as ¢(si—sq) = 37740.0°K based on
the reported experimental dissociation energy of the Si; molecule. The
standard enthalpy of vaporization for the crystalline St has been reported
as 56900 4- 1500°K [33]. This value was used in equation 1 as an input (a
small term of the order of PV has been neglected, here, and cohesive energy

A ~—H(yag) has been assumed). Then, the solution of equation 1 based on

the stability criterion (equation 15) produced: r,(si—g5) = 2.2134 A and

Z(si—si—si) = 5.2934 X 107(°K / A° ). This set of parameters reproduces
the correct energy and structure for the crystalline silicon, as well as the
reported n;—'icrocluster data (i.e.; energy and the structure) for S7; and Sis.
Furthermore, the diamond structure for the bulk S7 satisfies the stability



criterion and was found to have a lower energy than either the hep, fec or
bee structures. These parameters, however, were not tested for reproduc-
ing quantities expressed as higher derivatives of @. (ii)Parameters for pure
oxygen: Considering the dissociation energy of the O, molecule, the two-
body potential well depth for equation 2 was taken as ¢(o—0) = 59943.0
(°K) [34). The exponents in the two-body function were assumed to be
m(o—o) = 12 ard no—o) = 6. Basud on spectroscopic data the equi-
librium distance between two O atoms was taken as the average bond
Jength for the Oz molecule, ro(0—0) = 1.208 A [24). Tn this case no bulk
dsta (for example, based on solid oxygen) was employed to calculate the
three-body intensity parameter. Instead, we used reported ozone (O3) data

[35] and obtained Zp—o—0) = 2.622 X 10° ("KAO). These parameters
for pure oxygen are, now, exact for the minimum point of the two-body
potential curve and provide good dissociation energy for Oz. However,
minimization of the total energy yields a linear O3 molecule. At this point
no further attempt has been made to correct this shortcoming by refining
the parameters. (iii) Cross parameters: in the calculation of the cross
parameters (i.e., for interaction between Si and O atoms) experimental
data from bulk a-cristobalite and a-quartz were employed. In this case,
again by assuming m(s;—o) = 12 and n(s;..0) = 6, we are left with four
cross parameters (G(Sn'—-O);roiSa’-—O):Z(Si—Si—O) and Z(s.‘_o_o) ) to be
determined. The cohesive energies for a-cristobalite and a-quartz were ob-
tained from standard enthalpies of formation which are tabulated in Table
2. These experimental cobesive energies for a-cristobalite and a —quartz
were employed in equation 6 in determining the parameters. Now, equa-
tion 6 and 15 for a-cristobalite and a-quartz constitute four "nonlinear”
simultaneous equations. However, in these simultaneous equations, the
coefficients for the corresponding terms are numerically very similar, and
this makes acceptable roots difficult to obtain. To overccome this undesired
"ill condition” situation and, at the same time, to investigate the effect
of the input values of cohesive energies on the parameters, the values of
®'s for both a-cristobalite and a-quartz were varied within limits of the
experimental error margin. It was found that, in general, small variations
in & produces acceptable roots. So far, we have considered only positive
roots. Table 3 tabulates calculated values for the cross parameters using
two different sets of cohesive energies (varied within experimental limits),
along with the parameters for pure systems.
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COMPUTATIONAL PROCEDURE AND RESULTS

Employing parameters obtained in the preccding section, simulation
calculations were carried out at finite temperatures for a-cristobalite, a-
quartz, f-cristobalite and B-quartz, (These four allotropic crystalline forms
of 102 will be referred as a — ¢, a — ¢, f — ¢ and 8 — g, respectively).
In this investigation we are mostly concerned about the structural stability
of these four SiO, forms under a Monte Carlo code based on a potential
function given by equation 6. The stability criterion imposzd by equation
15 in calculating internal parameters may only be valid at the static limit
(i.e., at T= 0°K’). This condition, therefore, can not necessarly guaranty

" the preservation of the proper symmetry and configuration of the system

at a finite temperature.

Model calculations were performed using a Monte Carlo technique
based on the Metropolis approximation [36-38]. This is a stochastic method
weighted according to the Boltzmann factor. In this procedure, every
particle is treated discretely at finite temperatures. In general, the particles °
were positioned initially accordirg t4 the crystalline structure of the system
under consideration. Then, every atom was displaced by a self-adjusting
step size. The acceptance of the new position is decided by the Metropolis
procedure which is employed for every particle in the system based on the
temperature apd the particle’s total energy. This technique generates a
series of snapshots representative of the energetically most probable region
of the phase space and, in principle, it can provide ensemble averages of
any position-dependent quantity.

Throughout this investigation, calculatinns were performed consider-
ing the same internal parameters for pure silicon and pure oxygen. In the
case of the cross parameters we used set #1, as given in'Table 2; occa-
sionally, however, set #£2 was employed for parallel runs to investigate the
effect caused by the cross parameters on the final result. This analysis,
namely, the investigation of the effect of the parameters on the calculated
macroscopic characteristics of the system, at the moment, is incomplete.
However, the present study indicates that they are extremely important in
understanding the intricate relationship between atomic properties and the
structural characteristics of the system.

First, the bulk structures of the four different Si05 forms (a—¢, a—g,
f —c'and f— q) were simulated. The temperature was taken as 300 'K and
the initial configuration for each system was generated based on its reported
crystallographic data [39-41]. For calculating bulk properties, a three-
dimensional periodic boundary condition was imposed on the systems to
eliminate the surface effect [42). The volume of the computational box was

taken somewhat larger than 1000_;13 depending on the crystalline structure



of the system. The potential energy cut-off radius, R.yt, Was taken typically
as 5.04. In order to analyze the effect of the Ryt on the final result, the
calculation for a — ¢ was tupeated with R.y¢ = 7.04, but no appreciable
differunce in either the total energy or in the final atomic configuration
was detected. All iterations were carried out until complete equilibration,
which was monitored by the variation in the total potential energy. In
general, equilibrations were attained before 5000 iteration steps. For all
the four S10, forms studied, it has been found that equilibrated structures
preserved their original symmetry very well. The orientation of atoms
in these equilibrated structures was analyzed by the radial distribution
function (RDF), and by the angular distribution function (ADF).

The RDF provides mean peak positions for d(si—0), d(o—0) and
d(si—gs) rorresponding to "rst, neighbor distances between S¢{— O, 0 — O
and Si— S{ atoms. As an example, figure 1 demonstrates the calculated
total RDF for the a — ¢ case. At 200°K, the mean peak positions for all
four cases remained virtually unaflected (with respect to the initial first
neighbor distances based on the crystallograpuic data). Due to thermal
fluctuations, however, the peaks became more diffuse, as anticipated. The
most pronounced relaxation took place for the S7— O peak of § — ¢ for
which we considered the ideal structure as the initial configuration. The
equilibration, in this case, caused a shift for d(s;..0) from 1.71 to 1.57 (to
1.58 for the cross parameter set #2 ), which is in the right direction toward
the experimental value of 1.612 for the real §— ¢ [39]. Furthermore, the
RDF mean peak positions were found to be quite insensitive to the type of
cross parameters employed in the relaxation procedure (see Table 4).

The ADF was used to analyze average Si— 0 — Siand O — Si— O
angles formed by the nearest neighbors of the corresponding atoms. These
angles are found to be very useful in the characterization of various S{O;
forms [25,39). In all four cases investigated here, averaged values of the
O — 87— O angle, which is the internal angle of the SiO, tefrahedron, was
found to be around 109 degrees. This is consistent with many experimental
findings. The intra-tetrahedral angle, ST — O — St, however exhibits some
variations among the allotropic forms of S70; considered. As an example,
Figure 2 demonstrates the ADF for Si— O —Siand O— St— O of a—c.
The effect of the type of cross parameters was found to be somewhat more
visible on the average value of the Si— O — S7 angle when compared with
the effect on the averaged O— S7— O angle. In general, cross parameter set
#1 provides slightly larger Si— O — S7 angles (see Table 4 for comparison).

Calculated cohesive energies for the equilibrated Si0, forms are given
in Table 2, <long with the experimental values. All the calculated cohesive
energies were found to be within acceptable limits. The effect of different



4

cross parameters on the calculated total energies is noticeable but quite
small and the calculated energies remained within experimental error mar-
gins.

Next, we performed simulation calculations for (001) surfaces of the
a— ¢, Again, the Monte Carlo method based on equation 6 was employed
considering the same set of parameters, as above. Initially, exposed surfaces
were generated by cutting an ideal a— ¢ crystal in the (001) direction. This
was accomplished by imposing periodic boundary conditions only in the z
and y-directions for a properly positioned crystal that produced "infinite”
exposed surface planes in both <z and —z directions, One obtains a

- "regular” surface structure when the cutting plane is located between two

neighboring O-planes in the (001) direction. Otherwise, depending on the
location of the cutting plaue, the surface created would be O-rich in one
side and Si-rich in the other. Equilibration runs were carried out (i)for a
regular surface and (ii) for an O-rich surface, considering systems with 96
moving atoms at T= 300°K.

The reconstruction for the "regular” surface was found to be minimal. |

The largest displacement was exhibited by the top O atoms which expanded
outwards approximalely 0.7A. At the same time these top layer O atoms
moved slightly toward the nearest Si atoms. Top and side views for
the regu'ar suiface are shown in Figure 3 before and after equilibration.
Equitibratsd sarface configurations obtained using cross set #1 and set
#2 were %irtually identical. However, the effect of the cross parameters was
very pronounced in the surface energy calculations. Cross parameter set
#1 produced a surface energy of 841.6 mJ /m? which is in a good agreement
with experimental findings [43]. Set #2, on the other hand, yielded
a negative surface energy value (—310.0 mJ/m?2) which is in obvious
disagreement.

* The O-rich surface for the a—¢ exhibited considerable surface reconstruc-

tion. O atoms located in the top layer (i.e., excess O atoms) moved closer to
O atoms of the neighbering tetrahedron (located slightly lower than the ex-
cess O atoms) forming so called peroxide bridges. Figure 4 shows the
schematic representation of the reconstructed O-rich (001) surface of a—c.
Formation of these peroxide bridges has already been determined by several
investigators [44,45].

DISCUSSION AND CONCLUSIONS

The effect introduced by three-body interactions is quite pronouaced
and complex. In contrast to two-body interactions, three-body forces en-
courage open structures. Therefore, in the present formalism the familiar

picture of pajrwise additive interacting particles, which favors compact

TN
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structures, is drastically altered. For example, the behavior of the O atoms
in the Si02 crystals represent this three-body effect quite clearly. The in-
ternal parameters used for the pure oxygen two-body potential were chosen
to reproduce the equilibrium O, data correctly. Accordingly, in the two-
body potential part for pure O Wwe have ro(0—0) = 1.208 A (see above). In
the simnlation runs for crystalline SiO5 forms, the average nearest neigh-
bor O — O distance was found to be around 2.59 A . Strong three-body
interactions, due to surrounding S¥ or other O atoms in the bulk prevented
the O atoms from further approaching each other (despite thermal motions
introduced by the Monte Carlo code employed). At the O-rich surface, on
the other hand, due to a "reduced” three-body effect, the top O atoms can
come closer to form peroxide bridges.

The present interaction potential function does not utilize any covalency
or ionicity concepts, nor does it catagorize the interactions between particles
into short or long range. This concept, although it may be quite useful in
many other modelling procedures, would be rather difficult to assess, in par-
ticular, at the surface region oi in the vicinity of a defect.

One of the most important outcomes of the present investigation is the
fact that three-body potentials, even in a simple analytic form (but, ade-
quately represented by triplet summation), can provide stable SiO5 crystal-
line forms involving thermal fluctuations. This work, in this respect, may be:
regarded as a first attempt at investigating the multi-body eflect in the ener-
getics and structure-related properties of S1O5 phases, Calculated potential
energy parameters reported in this paper represent only a sample case for
comparison. The test for the ability of these parameters to reproduce other
macroscopic quantities of the corresponding compounds is an enormous job
that was only performed partly in this investigation, Therefore, reported
pumerical resuits may be only semi-qualitative in nature, and should be
treated accordingly.

The computational time required for these simulation runs were con-
siderably higher than the usual calculations based on two-body interac-
tions alone. For example, an equilibration run for a system containing
approximately 200 relaxing particles may take up to an hour of CPU time
in a CDC 7600 machine. The largest part of this computation time is
spent. tc calculate the three-body interactions. Despite this relatively long
computer time requirement, simulation runs for Si0, systems based on the
present potential energy function are well within reach.



. APPENDIX 1.

In the present model the 'bare’ two-body potential, u(r;;) fof a par-
ticular pair is always represented with the same functional form associated
with the same parameters irrespective of the immediate surrounding. The
effect of the neighboring particles (which is the many- body eflect) is ac-
counted for via the three-body term. Therefore, the evaluation of the
two-body part can be accomplished using simply diatomic data. However,
extreme care must be exercised in extracting such information from ap-
proximate ab initio calculation results.

For any given two atoms the "bare” two-body potential is a function

. of the internuclear separation, r;;, and formally it may be defined as:

u(ri;) = E(thj) — E(rije0) Al

where, E(ri;) and &(r;;00) denote the total ground state energies for the

two particles at a separation ¢;; and at an infinitely large internuclear .
separation, respectively. Based on first principle quantum mechanical con-

siderations, E(r;;) and E(r;;00) may be exactly calculated by:

B(rij) = B )(ry;) + ECORR(ry) A2

E(rijoc) = BEHF)(1) + E(CORR)(1) 4 EFHF)(2) + E(CORR)(9) A3

where, E(HF)(r,;) and E(CORR)(r, ) are the total Hartree-Fock and electronic

correlation energies for the two particles at a separation r,;, and E(HF )(1),
E(CORR)(1) and E(HF)(2), E(CORR)(2) denote corresponding energies for

. the isolated particles 1 and 2, respectively. In the absence of any ex-

ternal field, both E(ry;) and E(rie) represent the lowest enmergy level
for the corresponding systems. Accordingly, the function u(r;;) can be
derived continuously from the long range dispersion limit to the short
range steep repulsion region which also covers the region around the min-
imum. Obrviously, the quantum theory for such a curve does not re-
quire separate approaches for the long and short range regions.

In particular, for many electron systems, an exact evaluation of u(r;;)
based on first principles, at the moment, is not possible due to various
computational difficulties. To overcome some of these inherent difficulties,
various approsimate methods have been proposed. In the majority of
these methods for calculating u(r;;) involving many electron systems, one
generally assumes a particular hybrid type for the bonding between the
atoms. Accordingly, calculations produce a u(r;;, h) curve which is a two-
body potential curve for the particular hybrid type imposed. For differeat

e ———————
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" hybrid types one obtains a series of u(ry;, h) curves some of which may
coincide with u(ry;) for a certain range of r;;. In principle, the lower
envelope the these u(ri;, h) curves must coincide with u(ri;) of equation
Al,
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ORIGINAL P 1
OF POOR QUALITY

Teble ¢ Lattice Sums for Crystelline SIOJ_E'orms

A-erist. ol-quarts P-crist. B-quertz
7 4,057% 9.1148 4.0388 4.1048
uy 9722.33 (328,37 9796.98 9870.78
g 41,3494 36.7629 42,0266 48,1561
7 $861.17 $164.88 4698.4¢ §929.74
27! 5.2401 5.6759 5.0999 5,6325
7, 202.442 168,962 202.892 204,702
2, 19.5795 20,2410 19,3044 21,5124
o7, 101.221 94.4946 101,444 102,302
ey 5.7840 8.3242 4.94088 8.0688
Ty2 -191.313 ~117.663 ~202.27¢ -175.68%
T2z 174.512 195.381 167.158 A195.231
Tog 62.0504 76.5891 57.5318 73.9876
Tz 176.555 195.427 167.131 195.237
Tayy -47.8405“ ~29.4278 -50.5788 ~43.9041
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" ORIGINAL PAST 1@
OF POOR QUAL!T':; '

Teble 2 Cohesive Energies for Crystalline $i02 Formsh
(in Kcal/mole)

calculated experimental
set &1 set #2
ol-¢ -441.,4 -4'35,0 -430.8+22
X-q -43¢.6 -428.3 -431,2417
B-c -452.2 -443.7 -~436.1417
B-q -645.2 -433.8 -436.5+15 ’

* Experizental cohesive energies were obtained for

following reaction,

, - EiQﬁc): Si(g)+2 0O(g)

using stendard enthalpies of formation for the reactants
products. (33, §¢-65)

the

and
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ORIGINAL Fiv 3 1
OF POOR QUALITY

s

Tible 3 Cross Piremeters calculated from Crystalline
Data
set ¥} set #2
€(si~0) , €K 47354, 58889,
forsiop) (Y . 1,422 1.578
t(srosim0y + CRED 5659026, 317513,
2rs;-0—-0) . CKED 4485348, 7909849,

* These two sets of parameters satisfy

both X-c¢ and pl-q.

i

€eq.é and eq.ld'for

Siqz



Lo CORICINAL Pass

ta w4

OF POOR QUALITY
Teble, 4 Mean Feak Positions for RDF and ADF

type of source of dors: | 450 dsp Bi-0-Si |0-Si-0 hemp(K)nn
s$iQ form datat (jB (KS (&) angle [angle
cal
sat &1 3.08 2.57 1.59% 155 109 300
cal
setl 42 3.07 2.60 1.40 147 108 300
pDl-c exp (39)¢é6) 2,60 ~|1,605, 108,07
3.077 2.65% 1.608 146 .44 11y . 7 303
exp (&7) 2.5~ )1.60~V
2. 463 1.61% 147 298
cal
set &1 3.06 2.58 1.59 144 107 300
cal ,
set 42 3.0 2,61 1,60 144 111 300
exp (67) 2,60~ | 1,60 v ' .
2,67 1.461 144 298
exp (é8) 2,616, 1.609, 143,39, '
3.0577 2.619% 1.611 143.7] 108,75 | 29¢
exp (40) 2,60~ 1,616 106,.5 v
3.058 2.67 1,620 141,87 111,686 | 298
X-q €exp (69%) 1.597,
1.617 298
exp (70) 1.606, ’
1.612 298
exp (71)
143,45 256
exp (72)
: 143,65 298
exp (73) 106,75,
109.32| 2946
exp (78)
110.63 | 29¢
celi
set €1 3.09 2.5% 1,87 1460 109 300
cal
set &2 3.0¢9 .58 L. 98 188 106E 300
ﬁ-c €rp  (33) 2,60 ~ ’ 107.6,
3.068 2.69% 1.612 146 .69 112.8 1503
€EXp (é7)
2.53 1.55 973
cal
set &1 3.10 2.59 1.95¢9 158 108 300 .
ca.
set 62 3.10 2.60 1.61 151 110 300
ﬁ-q exp (431) 2.59 101.3 A
3.10 2.70 1.62 14¢6.9 116.1 | 873
exp (67) ‘ ’
2.40 1.63 144 ° £73

cel: caicuiated value, exp: experimental value
2 tenp: the tenperature at which the data were obtained,
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FIGURE CAPTIONS ‘

FIGURE 1. Radial Distribution Function for a-cristobalite at 300°K,
The curve is obtained from the positions of S7 aud O atoms averaged over
500 steps after full equilibraticn,

FIGURE 2. Distribution Function of O — S¢{ — O and Si — O — §i
angles for a-cristobalite at 300°K, The results represent averaged values
over 500 steps after full equilibration.

FIGURE 3. Schematic representation of the regular {100) surface of
a-cristobalite; (a) before and (b) after relaxation. The top view shows

" one of the periodic cells from the z-direction (perpendicular to the exposed

surface). The side view shows the same cell viewed from the x-direction.
During the relaxation process, only the top O atom was displaced slightly,
while the rest of the system remained virtually unchanged. (Large open
circles represent S7 atoms, and small solid circles are O atoms,)

TIGURE 4. Schematic representation of the reconstructed O-rich (001) |

surface of a-cristobalite. Peroxide bridges formed by excess O atoms are
responsible for the surface reconstruction. (S7 and O afoms zre shown in
large open and small solid circles, respectively.)
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CHAPTER II,

Crack propagation studies in two-dimensional

triangular lattices.
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PROPAGATION OF CRACKS IN 2D LATTICES

This investigation is an extension of the earlier study whieh
had been carried out last year considering a static approach.
General characteristics of the model considered in this new study
are basically similar to the previous one. Again a 2D triangular
lattice has been used with particles interacting via Lennard-Jones
type potentials. However, in this case, the effect of the temper-
ature was taken into account by using a molecular dynamics simu-
lation technique. Therefore, the results are expected to be more
realistic., Simulations for two~dimensional systems are rela-
tively easier to analyze than results for three-dimensional
systems. First of all, 2D systemé contain a smaller number éf
particles and, therefore, require less computer time. Results can
be represented by simple 2D plots and problems arising due tec the
multi-particle character of the system are easily identifiable.
Thus, the analysis of the 2D system provides considerable infor-
mation not only about the microscopic nature of the crack growth
phenomenon, bﬁt also provides some knowledge about "how to
interpret the simulation results." The question of the
credibility of these 2D results, of course, remains unanswered,

At this stage, it is not known how to extrapolate results obtained
from a 2D simulation to a 3D domain. However, the results obtained
in this study together with several other reports [1,2] in the
literature indicate that 2D systems, in most cases, do exhibit
characteristics similar to 3D systems.

Atomistic level ana:ysis of the crack propagation process
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using computer simulation techniques has been the subject of
)

several earlier investigations. 1In the literature we could find
only a few reports relevant to the study carried out in this
investigation, 1In the report by Ashurst and Hoover [1], the
fracture phenomenon was investigated based on a truncated Hook's
law force. They have found that, even with this very simplistiec
force law, their static simulation furnished results for energy.,
entropy, stress concentration and crack structure all to be con-
sistent with expectations from macroscopic elastic theory.

The other relevant and more recent study was reported by
Dienes and Paskin [2]., 1In this mcdeling study they also consi-
dered a 2D triangular lattice with particles interacting via the
Lennard~Jones function. A crack has been introduced in the
interior of a pre-st;essed sample. The crack was initiated by
"outting" the bonds between a given number of atoms at the central
portion of the sample. The interatcmic potentiai was artificially
set to zero between these atoms. According to their report, the
condition would correspond to the insertion of a very thin knife
to create the crack., Furthermore, in the energy and force calcu-
lations, they only considered nearest neighbor interactions (by
taking Rcut = 1.6 ro). In their model, the crack was aligned
parallel to close-packed rows and displayed a linear path in its
propagation. Finally, they found that their results are quantita-
tively good at the early stages of the propagation process.

The main objective of the present study is to investigate
the crack propagation phenomenon at a microscopic level. For'this
purpose, a 2D triangular lattice was taken into consideration and

the effect of a tensile load imposed on the system was analyzed.
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In the following sections, first a perfect lattice, then a lattice

with a surface crack under various conditions was investigated.

PERFECT LATTICE

As a perfect 2D lattice, the basal plane of an hep lattice
was taken into consideqation. A system of 2400 particles in a
rectangular shape (80 by 30) was first generated in static
equilibrium. A tensile load was applied in the [112]) direction,
which is the close-packed direction, This direction was also
chosen as the x~direction in our cartesian coordinate system.

The load was imposed in small incremental strains (in this case
elongations) of 0.01. This was performed uniformly throughout the
system by factorizing all the x-compononts of the position vectors
describing the system. In the x-direction, periodic boundary
conditions (PBC) were applied to provide continuity for the system
(in the tensile dire«tion), and also {2 furnish two free surfaces
in the y-directiorn. In a general sense, the imposed PBC provides
the desired tensile strain on the system.

The system was relaxed after every incremental strain by a
molecular dynamics code. A cut-off radius. Rcut, of 2.86 ro was
cohsidered for the energy and force calculations. This Rcut is
between the fourth and fifth neighboring shells surrounding the
central atom and provides 30 neighbors, The reduced time step was
taken as 0.01 and the reduced temperature was T# = 0.02 (to com- ,
pare with real systems; e.g.» for copper these represent 2.5E-15
secoﬁds and 100 K, respectively. Additional information about the

cut-off radius and the molecular dynamics program are included in
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Appendix I and II., The stress-strain curve calculated as a result
of this elongation-relaxation process is shown in Fig. 1 up to e =

0.88.

2D LATTICE WITH AN EXISTING CRACK

A lattice with an initial surface crack was generated by
remcving 9 particles from the lower surface region of a perfect
lattice (see Fig. 2). This system, now with an existing surface
erack, was elongated and relaxed by the molecular dynamics code in
a similar way explained above for the perfect case. First, the
effect of the temperature on the stress-strain curve was analyzed
up to e = 0,03, Figure 3 shows two curves, dotted and.solid'
representing the stress-strain curves for T® = 0.1 and T* = 0.02,
respectively. The shift in the dotted curve (high temperature
curve) is mainly due to the thermal expansion, For lower strain
values, these curves represent fully equilibratéd systems,
However, for strains higher than 0.02, systems may require
additional relaxation times to equilibrate completely. The
difficulty involved in attaining the equilibrium is mainly due to
large fluctuations displayed by the stress values calculated as
derivatives of the energy. At this stage, we believe that the
general trend exhibited by these two curves is sufficiently
accurate for the present investigation. Any further incremental
elongations (in addition to e = 0.03) cause the crack to
propagate. Determination of the critical strain; i.e., the strain
at which the crack first starts tc propagate, is difficult to'
assess. For this purpose we performed three separate runs with

three different pre-strained systems, namely with e = 0,03,
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e = 0,035 and e = 0,04, all at T* = 0.02., The 2D lattice with the
surface crack was strained in one single step from its original
length up to 3.0, 3.5 and 4.0% elongations. In the case of e =
0.03, the crack did not exhibit any growth and the overall
configuration of the systems remained unchanged up to 3500 time
steps. However, for both e = 0.035 and 0.04 cases, the
propagation of the crack took place. In these prestrained cases,
we simulated the system under nonequilibrium isothermal
conditions. For the e = 0.035 cast, the crack growth first
initiated after 1000 iteration steps., Figure 4§ displays the
stages of this relaxation process up to 3200 iterations;, at which
the system reached almost to an equilibrium state, The darker
circles in the figures represent ﬁarticles with higher stres;es.
For the e= 0.04 case, on the other hand, the crack propagated much
earlier (obviously because of the high strain imposed initially).
The crack started growing first at the 500'th iteration step and
the system attained an equilibrium state at approximately 2400
iteration. The stages of this propagation process are shown in
Fig. 5. ﬁga;ﬂ. the darker circles display particles with higher
stresses. In both cases, the particles at the crack tip exhibited
high stresses cogsistently. Furthermore, the crack propagated
along the close~packed rows of the lattice andy, at the same time,
tried to remain perpendicular to the applied load by choosing a
zig zag path., These behaviors are very much consistent with
experiments and theories based on macroscopic considerations and,
therefore, indicate the adequacy of the present atomistic ievel

simulation procedure. The relaxation of the system can be

— 3(./



followed in Fig. ¢ where ?he average stress is plotted versus the
iteration steps. The oscillatory behavior of this curve 1s a
temperature effect mainly due to vibrational motions displayed

by individual particles in the system., From the snapshots shown
in Fig. 5, we also calculated the velocity of the crack propaga-
tion. The curve in Fig. 7 represents the variation in the crack
propagation velocity as a function of the calculated average
stress., The upper range of this curve is near the velocity of

sound propagation. This is expected according to a report by

Ashurst and Hoover [1].

REFERENCES

1. W. T. Ashurst and W. G. Hoover, Phys. Rev. B 14, 1465 (1976).

2. G. J. Dienes and A. Paskin, in "Atomistics of Fracture," ed:
R. M. Latanision and J. R. Pickens (Plenum Press, New York,
1983) p 671.

3. P. 0. Esbjorn and E. J, Jensen, J. Phys. Chem. Sclids 37,

1081 (1976).

.-



ORIGINAL PA“S (T
- OF POOR QUALITY
APPENDIX I

Many of the characteristics of a 2D Lennard-Jones lattice are known
[3]. Here, the energy and its derivatives of a 2D triangular lattice will be
formulated. For a perfect lattice, with particles interacting via two-body
central potentials, the total interaction energy of the bulk system can be
expressed as; |

N
o= ur) (1)
s

where, N is the total number of particles in the system, and u(r;) represents
the pair potential function between twe particles in the system separated
by a distance r;. For the Lennard-Jones case we have;

urd = (22— (2x) ®

]

with ¢ and r, denoting the energy and the internuclear distance at the
equilibrium, respectively. The stability criterion for a 2D system, in the
sbsence of an external force, is given by;

A

a4
where, A is the total area occupied by the system. For a system of N
particles we have:

=0 3)

A = Na, (4)

with a, denoting the area per particle. For a triangular Iatt’ice a, is equal
to' v/0.7542 where d denotes the nearest neighbor distance. Considering
lattice sum notations, from equations 1 and 2 we obtain:

= 3¢ (B2~ 28 o2 ) (5)
where, N
Bjg = Z(%)m (6a)

and

= d |
Bs =2 (1) (6)
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Many of the characteristics of a 2D Lennard-Jones lattice are known
[3]. Here, the energy and its derivatives of a 2D triangular lattice will be
formulated. For a perfect lattice, with particles interacting via two-body
central potentials, the total interaction energy of the bulk system can be
expressed as;

N
#=3 3 ur) (1)
g

where, N is the total number of particles in the system, and u(r;) represents
the pair potential function between twz particles in the system separated
by a distance r;. For the Lennard-Jones case we have;

ur) = ((:—:)““—(:—:)') (2)

with ¢ and r, denoting the energy and the internuclear distance at the
equilibrium, respectively. The stability criterion for a 2D system, in the
absence of an external force, is given by;

8%
y v ks (3)

where, A is the total area occupied by the system. For a system of N
particles we have:

A = Na, (4)

with a, denoting the area per particle. For a triangular lattice a, is equal

to v/0.7542 where d denotes the nearest neighbor distance. Considering
lattice sum notations, from equations 1 and 2 we obtain:

= 3¢ (B2 -2y ) )

where, N
Bra =) (5)" (6a)

and

N 4 "
Bs = E‘r..) (6b)
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are the 2D lattice sums. Now, the condition for the minimum energy
expressed by equation 3 gives:

r

1/6
~(g2) ™
The definition of the equilibrium condition based on this equation is very
important for calculating the nearest neihgbor distance d with respect to
the equilibrium distance r, of equation 2. The value of r,/d depends on
the total number of particles included in che summations of equation 6. A
consideration of a finite cut-off radius, R.y¢, in the lattice sum calculations,
therefore, would affect the values of r,/d as well as & Accordingly, Ry
becomes a part of the potential function, in particular, for smaller cut-off
radii.

In the computer simulation studies the stress and the elastic constants
are calculated at the atomistic level for every individual particle. The
Lagrange strain parameters, eqp, for a 2D lattice may be expressed as;

f? = z? + 23:::2? + 2cyyyg? ~+ 2ezyTiYi ~+ 2eyzYiTi (8)
The stress, for example, in the x-direction is given by:
1 69

Oss = r Oezz

or,

Z [(ra )12 (e )e](_::c)‘ (9)

Similarly, for the y-direction we have:

- g3 [eye— (2 (10

The elastic constants, Cagys, of 4 2D triangular lattice have already been
calculated by Esbjorn and Jensen [3], and following relations have been
obtained:

Crszz = Cyyyy = 3Cusyy (11a)

and
c‘gg, = nygz = 0. (llb)

where,
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126 A Toyz o g](z-‘)‘
) [rceye — 4oy (12)
As it was stated above for r,/d and & cases the values of 0as and Capqs
are also dependent on the cut-off radius considered in the summations. Of
course, for a system at the equilibriuin (i.e., in the absence of exteraal
forces and if the condition described by equation 3 is satisfled) the stress
components e,5 should be equal to zero. In investigating the effect of 1.y,
it is very helpful to analyze the system in terms of neighboring shells. Table
1 gives these neighboring shell distances and the occupation numbers. Table
2, on the other hand, tabulates calculated values for the lattice sums, r,/d,
& and Cy,;, upto 20'th shell.

-3¢



APPENDIX II.

COMPUTER SOFTWARE (TENST)

This package has been prepared mainly for investigating behaviors of
two or three-dimensional monatomic systems under tensile loads. Simulations
are based on a molecular dynamics technique which uses a Nordsieck-
Gear algorithm. The program was prepared in a vectorized form for the
Cray usage. It can handle sytems containing up to 10000 particles within
reasonable computation time. The result of the calculations for positions
and individual stresses can be stored for any desired intervals for further
analysis. This program has also a graphics option for trajectory plots. If
desired trajectories of every moving particle can be plotted for a visual in-
spection.

INPUT DATA AND THE DEFINITION OF PARAMETERS

(i) I/O data:

1) TITLE (Title card up to 80 characters)

2) XTIME,NRUN,NCQONT,NEW,IPSTEP XMIN,XMAX

3) IFREQ,IMEAN,ISTRES

4) NSTEP,NMEAN,IPDATE,NSBSV,NSBTS,NFINTS

5) XELO,NELO,JDIM

6) TEMP,DT,RCUT

7) EP,RO,AMASS, MOVE,FAC,LAYER

x repeat LAYER times

8) W(J,K),NOO(J,K),ISQUAR

9) PP(1), PP(2), PP(3), FACPBC

(ii) Definition of parameters:

TITLE== Title card up to 80 characters. -

XTIME= Time limit for internal check. It should be less than the
time allocated for the program run for normal termination.

NRUN= Maximum number of steps for the run.

NCONT= 1 For initial runs.

NCONT= 2 For continuation runs.

NEW=0

IPSTEP= Trajectory plotting routine will be called in every IPSTEP
times. If IPSTEP=0 no plot calls will be made.

-39



XMIN, XMAX :Minimum and maximum points on the plot (even if
IPSTEP=0 XMIN and XMAX must be defined).
IFREQ, IMEAN : In every IFREQ steps, averages of the individual

stresses will be calculated for the last IMEAN steps, Always IMEAN,LE.IFREQ

should be satisfied.

ISTRES= 1 Averages for stresses will be taken.

ISTRES== 0 No stress calenlations will be performed.

NSTEP = Step number at the start (usually NSTEP==0). It has no
effect if NCONT==2,

NMEAN= Number of steps averages to be taken. This is for the
periodic printnig only.

IPDATE= Number of steps between neighbor list update.

NSBSV= Number of steps between savings of variables (coordinates -
and averaged values),

NSBTS= Number of steps between temperature scalings.

NFINTS= Number of step at which temperature scaling will be turned
off.

XEJLO= Elongation factor to be multiplied by the x component of
the positions for incremental elongation. (If XELO=1 no elongation will
be imposed).

NELO== Number of steps between elongations

JDIM= Dimensionality of the system. (For a two-dimensional system
JDIM=2).

TEMP= Temperature (in deg. Kelvin).

DT= Time steps in seconds.

RCUT-— Cut-off radius (in A)

£P= Energy parameter, epsilon (in deg.)
. RO= Equilibrium distance for two-body interaction (in A).

AMASS= Atomic mass (in atom gram).

MOVE= Number of mobile particles. (In general MOVE should be
equal to the total number of particles).

FAC= Factor used in generating lattice points.

LAYER= Number of input files required for lattice generation.

W(J,K)= First three describe the coordinates of the original atom.
Following three are the unit cell dimensions.

NOO(J,K)=Number of particles to be generated in x,y and z direc-
tions.

ISQUAR= 2 Takes square root of the W(J,K) values before the lattice
is generated. If ISQUAR.NE.2 no action will be taken.

PP(1)= Length of the periodic box in the x-direction. This is for the
PBC option and must be consistent with the genereted lattice coordinates.

PP(2)=0
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PP(3)= 0.
FACPBC= Factor for PP(1) to provide the correct length for PBC,

S
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TABLE CAPTIONS }

1. ielghboring shells, number of particles in every shell, total
number of particles, the distance squared and distances of
shells from a central particlz are given for a two-dimensional
triangular lattice.

2. For every shell the values of lattice sums(86 and Bqoy ro/d,
total potentizl energy ¢ and the elastic constant C are

XXXX

tabulated for a two-dimensional lattice (see Appendix I).
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FIGURE CAPTIONS

1.

Stress-strain curve for a perfect 2D triangular lattice,
Stress values indicate average stresses calculated for the
system (in reduced units).

A system with a preexisting surface crack at equilibrium,
Temperature effect on the stress-strain curve for a system
containing a surface crack., Solid and dotted lines represent
T# = 0,02 and T*# = 0.1 cases, respectively.

Stagés of the crack propagation for a system with a surface
crack pre-strained for e = 0.035, Darker circles represent
particles with higher stresses, Numbers at the right side of
snapshots are the iteration steps.

Stages of the crack propagation for e = 0.04. See caption
for Fig. 4.

Variation in the average stress as a function of the iter-
ation steps. For the e = 0.04 case.

Crack propagation velocity versus the average stress., (Units

for the velocity are calculated for copper.)
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