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COMPUTER SIMULATION OF SURFACE AND FILM PROCESSES

In this report the results obtained in two separate

investigations are presented:

(i) Simulation studies based on a potential comprising two-body

and three-body interactions. As model systems, several dif-

ferent silica phases are taken into consideration.

(ii) Crack propagation studies in two-dimensional triangular

lattices.

The progress made in these areas during this period is

given in the following two self-contained chapters.
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Simulation studies 'based on a potential with two- and
s

three-body interactions. Crystalline silica phases,

their surfaces and interfaces were modeled. 	 a
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ORIGINAL PACV 1

INTRODUCTION	 of pooR QUALITY

Using computer simulation techniques, the behavior of a model system
(with many degrees of freedom) can be comprted to analyze various physi-
cal phenomena. It has been shown that adequate computer methods, based
on interactions between discrete particles, can provide information leading 	

4

to an atomic level understanding of variousprocesses (1-7]. The success of
these simulation methods, however, is closely related to the accuracy of the
potential energy function representing the interactions among the particles.
The prime objective of the present investigation is to develop a potential
energy function for crystalline Si02 forms that can be employed in lengthy
computer m Aellin.g procedures. Such a potential energy function which
could furnish acceptable crystalline forms of Si02 at finite temperatures
(say, under a Monte Carlo or molecular dynamics code) presently is un-
available. In many of the simulation methods which deal with discrete par- 	 A
ticles, semi-empirical two-body potentials have been employed to analyze 	 f,
energy and structure-related properties of the system [1-10]. However, it is
now well accepted that many-body interactions are required for a proper 	 t
representation of the total energy for many systems. There are numerous
reports indicating the significance of multi-body interactions in calculating 	 'g

energy and structure-related properties 111-19]. In this study, we included 	 1
many-body interactions in an appropriate way for simulations based on
discrete particles.

Th general, for a system of N particles, the total potential energy may
be expanded as [15]:	 ]

N N	 N N N	 'E

	

^= 1	 r u (ri, rj) 1	 ^u(r,, ^^rk)+...

	

2!	 i	 k
iyl-j

N N	 N1	 ^,

where, u(ri, rj), u(Ti, T j, rk), ..., U(ri, Ti, .., rri ) arse two, three, and n-body poten-
tials, respectively. The position of the i'th particle is denoted by Ti.

Clearly, the most important term in this expansion is the first term
involving two-body interactions. Therefore, in the majority of the atomic-
tic calculations made to date, only pairwise additive potentials have been
used. This pro-rides great simplification in the analytical formalism as
well as in numerical computations. When the parameters of a two-body
potential, however, are calculated from, say, an experimentally determined
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bulk property, the pairwise nonadditive (Le, multi-body) contribution to
the total energy is introduced indirectly via estimated parameters i n a
complicated way. The two-oody potential, therefore, with parameters car-
rying the effect of the many-body portion of the total potential is called an
"effective" pair potential [14,15,20). In general, effective potentials provide
good results when another property of the same state is calculated (i.e.,
as long as variations in the local atomic configuration remain negligible)
[21). However, U the properties of another state have to be calculated, the
many-body part should be included in a theoretically acceptable way, if its
contribution is considerable [20],	 ..

In this investigation, energy and structure-related properties for sys-
tems containing Si and O atoms were taken into consideration. Simulations
were performed at Suite temperatures using a Monte Carlo procedure. For
total energy calculations, both two-body and three-bo6y interactions were
taken into account. Reported model calculations for energy and structure-
related properties of systems with Si and O atoms are rather scarce [22-
26). In general, all these earlier calculations were carried out assuming
only two-body "effective" potentials. An ionic model based on the Born-
Meyer-Huggins potential (which is an "effective" pair potential in nature)
was adopted for this purpose [27]. For several macroscopic properties, in
particular for the representation of amorphous structures, this potential
function produced very interesting results which are consistent with ex-
periments. However, at the present time, there is no indication that this
potential would allow various crystalline Si02 structures to be stable [1].

In the present study, with a potential energy function comprising
two and three-body interactions, we were able to obtain stable crystalline
structures for low and high temperature forms of quartz and cristobalite
employing a Monte, Carlo procedure. The results emphazise the importance
of multi-body interactions in the stability of crystalline SiO2 phases.

POTENTIU, ENERGY FUNCAON

To calculate the total potential energy of a system in a given configuration,
equation 1 was employed considering two-body and three-body interactions.
Four and higher body terms, however, were neglected. Because this expres-
sion (equation 1) had to be used in lengthy machine computations, u(j, r )
and,u(7 , j,Frr k ) were chosen -with the simplest possible functional forms. In
this study, tY-.-refore, the twrbody part was represented by a Mme-type
potential which is given by:

u( r i3) =	 E n 
n( ° 

y n — 
m( I )n	 (2)

)	 i	 i

	

^	 4

	

aD	

D

r^

	

a	 ^

f

t
1w

f

i

^k

m	 ^I	
3

Di



oa

i}

i

I	 r

1

5

ORIGINAL PAQE 00
OF POOR QUALITY

with,rij = jai -- ?jj, ro denotes the equilibrium separation and a is the
energy at rij = ro. The exponents m and n account for the repulsive and
attractive terms, respectively. The three-body part, on the other hand, was
expressed as:

.u(ri, rj, rk)	
Zt • Gi(rs, rj, rk)	 (3)

where, the summation includes all triple multipole interactions resulting
from the expansion of the third-order interaction energy for three atoms.
Each term in the summation is expressed as the product of a geometrical
factor G("ri , rj , rk ) which depends on the relative positions of the three
atomic nuclei and an interaction constant which depends only on the atomic
species involved in the interaction. The functional forms of G('r i,rj,"rk ) for
several multiple interactions have been obtained by Bell 1281; and by Doren
and Zucker 129]. Here, we consider only the triple-dipole interaction which
has been shown to be the dominant contribution [30,31]. This term was
$rst obtained for closed shell atoms by Aailrod and Teller 131] as:

u(rip "j, tk) = Zl . G 1(ri p rj, rk)	 (4)

with

I + 3C089i C089j C086k
G 1 (r,, rj, rk ) --	 r- .	 (5)

e^ +^ rik ` rjk)3

where, 9i, 9j , 9k and rij , rik , rik represent the angles and the sides of the
triangle formed by the three particles i, j and k. Parameters such as E, r,,
m, n and Z will be referred to as "internal" parameters indicating that they
depend only on the atomic characteristics of the ! corresponding particles.

Now, combining equations 1 through 5, and neglecting the four-body
and higher terms, one obtains:

t_!jig x"913
	

(6)

with

N N

^2=^	 E	 n(r')"' —m(T')n	 (7)
i	 (m	 n )	 rij	 rij:

and
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X Zl 
1 + W osoi C060 Cosak	

(8)
6 { E k	 (rij • rik' rjk)3

i0j r4k

In this general form, the total potential energy -t is a function of the atomic
coordinates, and the internal parameters. These parameters, as mentioned
above, are assumed to be independent of the atomic positions and the
geometry of the system; they depend only on the atomic properties of the
species involved.

For a binary system of types 1 and 2 with the corresponding number
of particles Ni and N2 (for example, for the Si02 case), equations 7 and
8 may be rewritten as:

2 2
*	 r r	 [n,p aQma^), R(^ar) _ m.R . a( Rsr) . R(n•0)2 _.._ L^ .L^   R	 R	 R	 R

R 2(m^R — n^R)of

(9)
with a = 1, 26 ;, j = 1, 2 and 7 = 1, 2; and

a — Lr E 
EN  UP R7 

TQ 	 (10)
3d

a R<7 7

where,

Rap _" ro
QR	 (11)
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and

No NN-1
TQ'R7 = L E G'(r,ri, raj, rak)	 (14)

j<k

with, !°a;	 0, raj	 0 and rak 34 0; (and considering r,,, R = r#j. Here,

roQR represents the equilibrium separation between the two species a and
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# for the two-body part ; d is a critical distance parameter which is used
as a normalizing factor. (D is independent of the value of d. rah = j ?cr --
fjl,where, Y. denotes the position of an atom of type a taken as the central
particle for the summation. The total number of particles in the system is
given by NTot Ni + N2; while, mom# and n^# are the exponents for the
repulsive and attractive parts of the two-body potential.

The ?Nfie potential (equation 2) which is employed to represent "bare"
two-body interactions is the general form of the commonly used Lenard-
Jones potential with m and n assumed to be equal to 12 and 6, respeOA V, ly.
Here, rn and n determine the curvature of the function around the mini-
mum and would provide a greater flexibility, in particular, when left as
variables in calculating quantities expressed as derivatives of the potential
energy. Even though the Nfie potential may represent "bare" two-body
potentials fairly well, an accurate representation of the three-body part is
more difficult to attain.. Only a limited number of reports can be found
in the literature proposing an analytic formula for three-body interaction
which would meet our requirements. In this first attempt, we adopted the
A.xilrod-Teller approach to analyze, at least, some of the generic features
produced by a formal three-body function in the calculation of structural
and energy-related properties for various Si0 2 crystals.

The functional representation of 4) as sums of two and three-body
terms is quite different from the usual formulation of the total potential
energy as a sum of "effective" two-body potentials alone. In the present for-
malism u(?i,?j) is the "bare" two-body potential and the mans-body effect
is introduced via u(r;,rj,rk). In the "effective" pair potential formalism,
however, the many-body part is incorporated with the two-body 'internal'
parameters, therefore, the multi-body part was implicitly assumed to be
pairwise additive. This assumption, in turn, makes the 'internal' potential
parameters very much more locally structure dependent (i.e.,f'or another
geometrical arrangement of atoms, for instance, going from bulk to the
surface, adjustments in the parameters would be necessary). At this point,
it is anticipated that the present formalism of the total energy as sums
of "bare" two-body plus three-body interactions would cause the internal
parameters to become much less position and geometry dependent. than in
the case of an "effective" two-body approximation. See appendix 1.

1?

ffi

CALCULATION OF THE PARAMETERS

For a binary system such as S02i evaluation of the parameters (internal
parameters, in particular) constituted the most cumbersome part. of this in-
vestigation. We used only experimental data to evaluate these parameters.
The total potential energy* of a binary system as given by equations 6 and 9
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through 14 contains two classes of parameters. (1) Internal parameters
which are related implicitly to the atomic properties (such as the poarizability,
mean excitation energy and atomic volume) of the species involved iii the in-
teraction. (ii) Geometric (external) parameters, as given by equat!Dns 12
through, 14 are functions of atomic positions and depend solely on the
configuration of the system. These geometric parameters are basically
some hind of lattice sums and, for known crystalline structures, can easily
be calculated. Table 1 tabulates these parameters for several crystalline
SiO2 forms. Internal parameters, on the other hand, are more difficult to
evaluate. In contrast to the geometrical parameters which are dependent on
the configuration, internal parameters are assumed to be independent of the
habit and the geometrical setting of the system. Therefore, the same set of
internal parameters which reproduces experimental quantities ratisfactorly,
say for the pure Si, can be employed for calculating the two and three-
body interactions among Si atoms in any SiO2 form. The total potential
energy, 4^, expressed by equation 6 is, by •definition, the cohesive energy of
the system.. This constitutes one of the main expressions in the internal
parameters evaluation procedure. The other major relation that has been
used is the stability relation given by:

84^ = 0
	 (15)

8Y
where, V denotes the total volume of the system. Obviously, this expression
is exact only at static equilibrium (Le., at T =0 11K). However, it has been,
generally, assumed that the minimum of 4?(V) coincides with the minimum
of the free energy of the system as a function of V.

For a binary system such. as SiO2i the internal parameters can be par-
titioned into three groups. (i) Parameters for pure silicon: Experimental
small cluster and bift data for Si were used to calculate pure silicon
parameters [32,33). Equation 6 has been employed in this evaluation as-
suming m (s i—s i) = 12 and n(s i_s) = 6. The two body energy well
depth for equation 2 was calculated as e(s i_s i) = 3TT40.0°K based on
the reported experimental dissociation energy of the Sit molecule. The
standard enthalpy of vaporization for the crystalline Si has been reported
as 56900 ± 1500°K [33]. This value was used in equation 1 as an input (a
small term of the order of PV has been neglected, here, and cohesive energy
ke •-19'(,,ar) has been assumed). Then, the solution of equation 1 based on
the stability criterion (equation 15) produced: r,(si— s,) = 2.2134 A and

Z(si—si—s,) = 5.2934 X 107(°KA^). This set of parameters reproduces
the correct energy and structure for the crystalline silicon, as well as the
reported mlcrocluster data (Le.` energy and the structure) for Sit and Si3.
Furthermore, the diamond structure for the bulk Si satisfies the stability
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criterion and was found to have a lower energy than either the hcp, fcc or
bcc structures. These parameters, however, were not tested for reproduc-
ing quantities expressed as higher derivatives of 4). (ii)Parameters for pure
oxygen: Considering the dissociation energy of the 02 molecule, the two-
body potential well depth for equation 2 was taken as c(o-0) . = 59943.0
(OK) [34]. The exponents in the two-body function were assumed to be
m(o-0) = 12 and n(O-0) = 6. BasfA. on spectroscopic data the equi-
librium distance 'between two O atoms was taken as the average bond
length for the 02 molecule, ro(o—o) = 1.208A [34]. Iv this case no bulk
data (for example, based on solid oxygen) was employed to calculate the
three-body intensity parameter. Instead, we used reported ozone (0 3 ) data

[35] and obtained Z(o—o--o) = 2.622 X 10 5 ('KAY). These parameters
for pure oxygen are, now, exact for the minimum point of the two-body
potential curve and provide good dissociation energy for 0 3 . However,
minimization of the total energy yields a linear 0,3 molecule. At this point
no further attempt has been made to correct this shortcoming by refining
the parameters. (iii) Cross parameters: in the calculation of the cross
parameters (i.e., for interaction between Si and 0 atoms) experimental
data from bulk a-cristobalite and a-quartz were employed. In this case,
again by assuming m(si—o) = 12 and n(s i—.o) = 6, we are left with four
cross parameters (c(si—o), ro(si— o), Zlsi—si—o) and Z(si—o—o) ) to be
determined. The cohesive energies for a-cristobalite and a-quartz were ob-
tained from standard enthalpies of formation which are tabulated in Table
2. These experimental cohesive energies for a-cristobalite and a —quartz
were employed in equation 6 in determining the parameters. Now, equa-
tion 6 and 15 for ci-cristobalite and a-quartz constitute four "nonlinear"
simultaneous equations. However, in these simultaneous equations, the
coefficients for the corresponding terms are numerically very similar, and
this makes acceptable roots difficult to obtain. To overcame this undesired
"ill condition" situation and, at the same time, to investigate the effect
of the input values of cohesive energies on the parameters, the values of
Vs for both a-cristobalite and a-quartz were varied. within limits of the
experimental error margin. It was found that, in general, small variations
in 4) produces acceptable roots. So far, we have considered only positive
roots. Table 3 tabulates calculated values for the cross parameters using
two different sets of cohesive energies (varied within experimental limits),
along with the parameters for pure systems.
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COMPUTATIONAL PROCEDURE AND RESULTS

Employing parameters obtained in the preceding seTt on, simulation
calculations were carried out at finite temperatures for a-cristobalite, a-
quartz, P-cristobalite and P-quartz. (These four allotropic crystalline forms
Of S02 will be referred as a — c) a -- q, # — c and A — q, respectively).
In this investigation we are mostly concerned about the structural stability
of these four S02 forms under a Monte Carlo code based on a potential
function given by equation 6. The stability criterion imposed by equation
15 in calculating internal parameters may only be valid at the static limit
(i.e., at T -= 0 1K). This condition, therefore, can not necessarly guaranty
the preservation of the proper symmetry and configuration of the system
at a finite temperature.

Model calculations were performed using a Monte Carlo technique
based on the Metropolis approximation 136-38). This is a stochastic method
weighted according to the Boltzmann factor. In this procedure, every
particle is treated discretely at finite temperatures. In general, the particles
were positioned initially according W the crystalline structure of the system
under consideration. Then, every atom was displaced by a self-adjusting
step size. The acceptance of the new position is decided by the Metropolis
procedure which is employed for every particle in the system based on the
temperature and the particle's total energy. This technique generates a
series of snapshots representative of the energetically most probable region
of the phase space and, in principle, it can provide ensemble averages of
any position-dependent quantity.

Throughout this investigation, calculations were performed consider-
441.1 

ing the same internal parameters for pure silicon and pure oxygen. In the
case of the cross parameters we used set #1, as given in'Table 2; occa-
sionally; however, sett #2 was employed for parallel runs to investigate the
effect caused by the cross parameters on the final result. This analysis,
namely, the investigation of the effect of the parameters on the calculated
macroscopic characteristics of the system, at the moment, is incomplete.
However, the present study indicates that they are extremely important in
understanding the intricate relationship between atomic properties and the
structural characteristics of the system.

First, the bulk structures of the four different S02 forms (Cr— c, a— q,
— e'and f — q) were simulated. The temperature was taken as 300 W and

the initial configuration for each system was generated based on its reported
crystallographic data [39-41]. For calculating bulk properties, a three-
dimensional periodic boundary condition was imposed on the systems to
eliminate the surface effect 142J. The volume of the computational bo g was

tlaken somewhat larger than 1090Y depending on the crystalline structure
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of the system. The potential energy cut-off radius, R,,, t , was taken typically
as 5.0A. In order to analyze the effect of the ,R,w i on the final result, the
calculation for a — c was rtipeated with R,.r = 7.OA, but no appreciable r
difference in either the Natal energy or in the final atomic configuration
was detected. Ml iterations were carried out until complete equilibration,
which was monitored by the variation in the total potential energy. In
general, equilibrations were attained before 5000 iteration. steps. 	 For all
the four Si02 forms studied, it has been found that equilibrated structures
preserved their original symmetry very well. 	 The orientation of atoms
in these equilibrated structures was analyzed by the radial distribution
function (RDF), and by the angular distribution function (ADF).

The RDF provides mean peak positions for d(si_O), d(O-0) and
d(s i—s i) corresponding to Irst neighbor distances between Ss — 0, 0 — 0
and Si — Si atoms. As an example, figure 1 demonstrates the calculated
total RDF for the a — c case. At 200'K ,,, the'mean peak positions for all
four cases remained virtually unaffected (with respect to the initial first {

neighbor distances' based on the crystallograp'Wi c data).	 Dine to thermal
fluctuations, however, the peaks became more diffuse, as anticipated. The
most pronounced relaxation took place for the Si — 0 peak of 	 — c for
which we considered the ideal structure as the initial configuration. The
equilibration, in this case, caused a shift for d(s i.– O) from 1.71 to 1.57 (to
1.58 for the cross parameter set #2 ), which is in. the right direction toward
the experimental value of 1.612 for the real 	 c 139], Furthermore, the
RDF mean peak positions were found to be quite Insensitive to the type of
cross parameters employed in the relaxation procedure (see Table 4).

The ADF was used to analyze average Si — 0 — Si and 0 — Si — O
angles formed by the nearest neighbors of the corresponding atoms. These
angles are found to be very useful in the characterization of various Si02 ► ^

forms [25,39]. In all four cases investigated here, averaged values of the
0 — Si— 0 angle, which is the internal angle of the SiO4 W rahedron, was
found to be around 109 degrees. This is consistent with many experimental
findings. The intra-tetrahedral angle, Si — 0 — Si, however exhibits some
-t-ariations among the allotropic forms of Si02 considered. As an example,
Figure 2 demonstrates the ADF for Si— 0— Si and 0— Si— 0 of a— c.
The effect of the type of cross parameters was found to be somewhat more
risible on the average value of the Si— 0 — Si angle when compared with i
the effect on the averaged 0-- Si— 0 angle. In general, cross parameter set 1

1 provides slightly larger Si— O—Si angles (see Table 4 for comparison).

Calculated cohesive energies for the equilibrated S02 forms are given
in Table 2, Tong with the experimental values. All the calculated cohesive i

1energies were found to be within acceptable limits. The effect, of different
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cross parameters on the calculated total energies is noticeable but quite
small and the calculated energies remained within experimental error mar-
gins.

Next, we performed simulation calculations for (001) Surfaoes of the
a c. Again, the Monte Carlo method based on equation 6 was employed
considering the same set of parameters, as above. Initially, exposed surfaces
were generated by cutting an, ideal a c crystal in the (001) direction. This
was accomplished by imposing periodic boundary conditions only in the x
and y-directions for a properly positioned crystal that produced "infinite"
exposed surface planes in both +z and —z directions. One obtains a
"regular" surface structure when the cutting plane is located between two
neighboring 0-planes in the (001) direction. Otherwise, depending on the
location of the cutting plane, the surface created would be 0-rich in one
side and Skich in the other. Equilibration runs were carried out (i)for a 	

p

regular surface and (ii) for an 0-rich surface, considering systems with 96
moving atoms at T= 300*K.

The reconstruction for the "regular" surface was found to be minimal.
The largest displacement was exhibited by the top O atoms which expanded
outwards approximately 0.7A. At the same time these top layer O atoms F
moved slightly toward the nearest Si atoms. Top and side views for
the regular, 4olu Lace are shown in Figure 3 before and after equilibration. 	 $
Equi ibr2 t A surface configurations obtained using cross set #1 and set
#2 were ^ilrtually identical. However, the effect of the cross parameters was
very pronounced in the surface energy calculations. Cross parameter set

1 produced a surface energy of 841.6 to J/m2 which is in a good agreement
with experimental findings 143). Set #2, on the other hand, yielded
a negative surface energy value (-310.0 mJ/m2) which is in obvious

t

disagreement.
The 0-rich surface for the a—c exhibited considerable surface reconstruc-

tion. 0 atoms located in the top layer (i.e., excess O atoms) moved closer to 	
n

0 atoms of the neighboring tetrahedron (located slightly lower than the ex-
cess 0 atoms) forming so called peroxide bridges. Figure 4 shows the
schematic representation of the reconstructed O-rich (001) surface of a— c.
Formation of these peroxide bridges has already been determined by several
investigators (44,45).

DISCUSSION AND CONCLUSIONS

The effect introduced by three-body interactions is quite pronounced
and complex. In contrast to two-body interactions, three-body forces en-
courage open structures. Therefore, in the present formalism the familiar
picture of pairvi.se additive interacting particles, which favors compact

Y
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structures, is drastically altered. For example, the bena^ior of the 0 atoms 	 f

in the Si02 crystals represent this three-body effect quite clearly. The in-
ternal parameters used for the pure oxygen two-body potential were chosen
to reproduce the equilibr<um 02 data correctly. Accordingly, in the two-
body potential part for pure 0 we have r,(Q--o) .= 1.208 AA (see above). In
the simulation runs for crystalline S02 forms, the average nearest neigh-
bour 0 -- 0 distance was found to be around 2.59 A . Strong three-body
Interactions, due to surrounding Si or other 0 atoms in the bulk prevented
the 0 atoms from further approaching each other (despite thermal motions
introduced by the Monte Carlo code employed). At the 0-rich surface, on
the other hand, due to a "reduced" three-body effect, the top 0 atoms can
come closer to form* peroxide bridges.

The present interaction potential function does not utilize any covalency
or ionicity concepts, nor does it catagorize the interactions between particles
into short or long range. This concept, although it may be quite useful in
many other modelling procedures, would be ..rather difficult to assess, in par-
ticular, at the surface region of in the vicinity of a defect.

One of the most important outcomes of the present investigation is they
fact that three-body potentials, even in a simple analytic form (but, ade-
quately represented by triplet summation), can provide stable Si0 2 crystal-
line forms involving thermal fluctuations. This work, in this respect, may be, 	 }
regarded as a first attempt at investigating the multi-body effect in the ener-
getics and structure-related properties of S02 phases. Calculated potential
energy parameters reported in this paper represent only a sample case for 	 p
comparison. The test for the ability of these parameters to reproduce other
macroscopic quantities of the corresponding compounds is an enormous job
that was only performed partly in this investigation. Therefore, reported
numerical results may be only semi-qualitative in nature, and should be
treated accordingly.

The computational time required for these simulation runs were con-
siderably higher than the usual calculations based on two-body interac-
tions alone. For example, an equilibration run for a system containing
approximately 200 relaxing particles may take up to an hour of CPU time
in a CDC 7600 machine. The largest part of this computation time is
spent, to calculate the three-body interactions. Despite this relatively long
computer time requirement, simulation runs for S02 systems based on the
present potential energy function are well within reach.
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APPENDIX 1.

0.

In the present model the 'bare' taco-body potential, u(rsj) for a par-
ticular pair is always represented with the same functional form associated
with the sameparameters irrespective of the immediate surrounding. The
effect of the neighboring particles (which is the many- body effect) is ac-
counted for via the three-body term. Therefore, the evaluation of the
two-body part can be accomplished using simply diatomic data. How, ever,
extreme care must be exercised in extracting such information from ap-
proximate ab initio calculation results.

For any given two atoms the "bare" two-body potential is a function
of the internuclear separation, r ij, and formally it may be defined as:

u(r;,) = E(rij) — E( rijco)	 Al

where, E(r; j) and E(r; jam) denote 'the total ground state energies for the
two particles at a separation 'f ij and at an infinitely large internuclear
separation, respectively. Based on first principle quantum mechanical'con-
siderations, E(r;j) and E(r;j,,.) may be exactly calculated by:

E(rt?) = E(HF)(r=j) + E(CORR)(rtj) 	 A2

E(-, joc ) = E(HF)( 1 ) + E(CORR)(1) + E(HF) (2) ,+ E(CORR)(2) A3

where, E(HF)(rij) and E(CORR) r tj) are the total Hartree-Fork and electronic
correlation energies for the two particles at a separation r;j , and E(HF)(1),
E(C01111) (1) and E(HF)(2), E(CORR)(2) denote corresponding energies for
the isolated particles 1 and 2, respectively. In the absence of any ex-
ternal field, both E(r,j) and E(r,jo,,) represent, the lowest energy level
for the corresponding systems. Accordingly, the function u(rij) can be
derived continuously from the long range dispersion limit to the short
range steep repulsion region which also corers the region around the min-
imum. Obviously, the quantum theory for such a curve does not re-
quire separate approaches for the long and short range regions.

In particular, for many electron systems, an exact evaluation of u(r,j)
based on first principles, at the moment, is not possible due to various
computational difficulties. To overcome some of these inherent difficulties,
various approximate methods have been proposed. In the majority of
these methods for calculating u(r=j) involving many electron systems, one
generally assumes a.. particular hybrid type for the bonding between the
atoms. Accordingly, calculations produce a u(r=j, h) curse which is a tr. o-
body potential .curve for the particular hybrid type imposed. For different
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hybrid types one obtains a series of u(r,,., h.) curses some of which may
coincide with u(ri) for a certain range of ri . In principle, the louver
envelope the these u(r;j, h) curves must coincide with u(r,j) of equation

• Al.	 t
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, ;.ble i	 Lattice Sums for Crystalline SlOyForz,s

`	 a-c:rist.	 C^-quartz	 ^-crict.	 ^-quartz

4.0575	 4.1146	 4,0388	 4,1048

9722.33	 0328.'37	 9796.98	 9870.78

41,3494	 36,7629	 42,0266	 48,1561

a0"	 5861,17	 4164,88	 4698.4E	 4929.74

a ll 	 5.2401	 5.6759	 5.0999	 I	 5.6325

a2	 202.442	 166,962	 202,892	 204.702

a"Z 	 19.5795	 20.2410	 19.3041	 21.5124

#	 101.221	 94.4946	 101,444	 102.302

7/11	 5.7840	 6.3242	 I	 4,94088	 8.0688

T112. 	 j	 -117.663	 -202.276	 -175.685

122 •	 _T	 174.512	 195.381	 167.158	 195.231

:212	 62.0504	 76.5891	 I	 57.5318	 73.9876

22-1	 174 .555	 195.427	 167.131	 195.237

T2^^ 	 -47.6405	 -29.42,%8	 -50.5788	 -•43.9041
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calculated experimental
set	 41	 set	 02

p(-c -441 .4 -435 , 0 -430. 5+22

-q -456.6	 I	 -428.3 - 431,2+17

-c I	 -452.2	 f	 -443.7 - 436.1+17

-q -445.2	 `	 -433.8 - 436.5+15

*	 Experirental	 cohesive	 energies were	 obtained for	 the
folIoking reaction.

(c)= Si (g)+2 0(g)
u s i n a	 standard	 enthalpies	 of formation for the	 reactants	 and
products,03, 46-65)
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Table 2	 Cohesive Energies for Crystalline SiO2 Forms*
(in Kcal/mole)



x 'ihese two sets of parameters satisfy eq,6 and eq.14for
both DR-c and Ot q ,

{,-.	 ,rte

set	 01 set	 #2

E(Sr-co	 eK) 47354. 58869,

ro	•_p)	 ^ ►̂ > 1	 622 1	 578

Sr''-5i-0	 'F}•Y^) 565902.6, 317513,

r^^}► A9) 4485348, 7$+09849.
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Table. 4 1,tan Peak Positions for RDF and ADF

type	 of

Sia,form
source	 of

data*
d^_S, d _ d ds-„p i-O-Si

angle
O-Si-O
angle

temp(K )A*

cal
se t 	 i1 _ 3,06 2.57 1.59 155 109 300

cal
set	 112 3.07 2,60 1.60 147 106 300

exp	 (39)(66) 2.60 1.605, 106.0 ^^pC-c
3.077 2.65 1.608 146.44 1 11	 7 3 0 1

exp	 (67) 2.56 w 1.60 iv

2.63 1,61 147 298
cal

set	 •1 3.06 2,58 1,59 146 107 300
cal

set	 42 3.06 2.61 1160 144 111 300
exp	 (67) 2,60ry 1.60 N

2.67 1,61 144 296

exp	 (60) 2.616, 1.6091 143,5,
3.0577 2.619 1.611 143.7 108.75 296

I	
ExP	 (4	 ) 2,60 ns 1.616 106.5ni

3,058 2.67 1.620 141,87 111,6 296
(-q exp	 (69) 1.597,

1,617 296
exp	 (70) 1.606,

1.612 298
exp	 (71)

143.45 296
Exp	 (72)

143,65 298
exp	 (73) 106,75,

109,32 296
exp	 (74)

110.63 296

cal
set	 E1 3,09 2.55 1,57 160 109 300

cal
set	 82 3,09 2. 56 1,56 155 106 300

B-c I	 exp	 (.'si) 2,60 iv 107 .6
r ► 3.068 2,69 1,612 14.6.69 112.8 503

xp	 (67)
2,53 1.55 573

cal
set	 s1 3.10 2.59 1.59 158 106 300

cal
set	 62 3.10 2.60 1. 6 1 151 110 300

R
-q exp	 ( 41) 2.59 ti ' 101.3 N

3.10 2.70 1.62 146.9 I	 116.1 873
ex p 	 (67)

2.60 1.63 144 873

A cal: calculated valve, exp: experimental value
temp: the 'temperature at which the data were obtained:
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FIGURE CAPTIONS

FIGURE 1. Radial Distribution Function for a-cristobalite at 300'x.
The curve is obtained from the positions of Si and 0 atoms averaged over
500 steps after full equilibration.

FIGURE 2. Distribution Function of 0 ---- Si -- 0 and Si --- 0 -- Si
angles for a-cristobalite at 300°K. The results represent averaged values
over 500 steps after full equilibration.

FIGURE 3. Schematic representation of the regular (100) surface of
a-cristobalite; (a) before and (b) after relaxation. The top view shows
one of the periodic cells from the Z-direction (perpendicular to the exposed
surface). The side view shows the same cell viewed from the x-direction.
During the relaxation process, only the top 0 atom was displaced slightly,
while the rest of the system remained virtually unchanged. (Large open
circles represent Si atoms, and small solid circles are 0 atoms,)

.7IGURE 4. Schematic representation of the reconstructed 
0. 

rich (001)
surface of a-cristobalite. Peroxide bridges formed by excess 0 atoms are
responsible for the surface reconstruction. (Si and 0 al oms are shown in
large open and small solid circles, respectively.)
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Crack p ropagation studies in two-dimensional

triangular lattices.

CHAPTER U.,



.

­-7

3C.

PROPAGATION OF CRACKS IN 2D LATTICES

This investigation is an extension of the earlier study which

had been carried out last year oonsidering a static approach.

General characteristics of the model considered in this new study

0	

,..	 ..	 _..	
t 
r

are basically similar to the previous one. Again a 2D triangular

lattice has been used with particles interacting via Lennard-Jones

type potentials. However, in this case, the effect of the temper-

ature was taken into account by using a molecular dynamics simu-

lation technique. Therefore, the results are expected to be more

realistic. Simulations for two-dimensional systems are rela-

tively easier to analyze than results for three-dimensional

systems. First of all, 2D systems contain a smaller number of

particles and, therefore, require less computer time. Results can

be represented by simple 2D plots and problems arising due tr/ the

multi-particle character of the system are easily identifiable.

Thus, the analysis of the 2D system provides considerable infor-

mation not only about the microscopic nature of the crack growth

phenomenon, but also provides some knowledge about "how to

interpret the simulation results." The question of the

credibility of these 2D results, of course, remains unanswered.

At this stage, it is not known how to extrapolate results obtained

from a 2D simulation to a 3D domain. However, the results obtained

in this study together with several other reports [1,2] in the

literature indicate that 2D systemst in most cases, do exhibit

characteristics similar to 3D systems.

Atomistic level anaXpsis of the crack propagation process
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using computer simulation techniques has been the subject of

several earlier investigations. In the literature we could find

only a few reports relevant to the study carried out in this

investigation. In the report by Ashurst and Hoover [1] ► the

fracture phenomenon was investigated based on a truncated Hooks

law force.	 They have found that, even with this very simplistic

force law ► their static simulation furnished results for energy ►

entropy, stress concentration and crack structure all to be con-

sistent with expectations from macroscopic elastic theory.

The other relevant and more recent study was reported by

Dienes and Paskin [2]. In this modeling study they also consi-

dered a 2D triangular lattice with particles interacting via the

Lennard-Jones function. A crack has been introduced in the

interior of a pre-stressed sample. The crack was initiated by

"cutting" the bonds between a given number of atoms at the central

portion of the sample. The interatemic potential was artificially

set to zero between these atoms. According to their report, the

condition would correspond to the insertion of a very thin knife

to create the crack. Furthermore, in the energy and force calcu-

lations, they only considered nearest neighbor interactions (by

taking Rout = 1.6 ro). In their model ► the crack was aligned

parallel to close-packed rows and displayed a linear path in its

propagation. Finally, they found that their results are quantita-

tively good at the early stages of the propagation process.

The maid objective of the present study is to investigate

the crack propagation phenomenon at a microscopic level. For this

purpose, a 2D triangular lattice was taken into consideration and

the effect of a tensile load imposed on the system was analyzed.

vasis __^. _.	 .. __	 .... s: .	 > :	 • ^djc„ ^i.^ ^-.^+'	 ae.	
'.^`'	 ^	 ^,t:.:...
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In the following sections, first a perfect lattice, then a lattice

with a surface crack under various conditions was investigated.

PERFECT LATTICE

As a perfect 2D lattice, the basal plane of an hop lattice

was taken into consideration. A system of 2100 particles in a

rectangular shape ( 80 by 30) was first generated in static

equilibrium. A tensile load was applied in the [112] direction,

which is the close - packed direction. This direction was also

chosen as the x-direction in our cartesian coordinate system.

The load was imposed in small incremental straiets ( in this case

elongations) of 0.01. This was performed uniformly throughout the

system by factorizing all the x-compon e nts of the position vectors

describing the system. In the x -direction, periodic boundary

conditions ( PBC) were applied to provide continuity for the system

(in the tensile dire c tion), and also ;;) furnish two free surfaces

in the y - direction,.. In a general sense, the imposed PBC provides

the desired tensile strain on the system.

,.1
	 The system was relaxed after every incremental strain by a

molecular dynamics code. A cut - off radius. Rout, of 2.86 ro was

considered for the energy and force calculations. This Rout is

between the fourth and fifth neighboring shells surrounding the

central atom and provides 30 neighbors. The reduced time step was

taken as 0.01 and the reduced temperature was T * = 0.02 ( to com-

pare with real systems; e.g., for copper these represent 2..5E-15

seconds and 100 K, respectively. Additional information about the

cut-off radius and the molecular dynamics program are included in
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Appendix I and II. The stress-strain curve calculated as a result

of this elongation-relaxation process is shown in Fig. 1 up to e =

0.88.

2D LATTICE WITH AN EXISTING CRACK

A lattice with an initial surface crack was generated by

removing 9 particles from the lower surface region of a perfect

lattice (see Fig. 2). This system, now with an existing surface

crack, was elongated and relaxed by the molecular dynamics code in

a similar way explained above for the perfect case. First, the

effect of the temperature on the stress-strain curve was analyzed

up to a	 0.03. Figure 3 shows two curves, dotted and solid,

representing the stress-strain curves for T • = 0.1 and T* = 0.02,

respectively. The shift in the dotted curve (high temperature

curve) is mainly due to the thermal expanziion. For lower strain

values, these curves represent fully equilibrated systems.

However, for strains higher than 0.02, systems may require

additional relaxation times to equilibrate completely. The

difficulty involved in attaining the equilibrium is mainly due to

large fluctuations displayed by the stress values calculated as

derivatives of the energy. At this stage, we believe that the

general trend exhibited by these two curves is sufficiently

accurate for the present investigation, Any further incremental

elongations (in addition to e = 0.03) cause the crack to

propagate. Determination of the critical strain; i.e., the strain

at which the crack first starts to propagate, is difficult to

assess. For this purpose we performed three separate runs with

three different pre-strained systems, namely with e = 0.03,

c:
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e = 0.035 and e = 0,04, all at T*	 0.02. The 2D lattice with the

surface crack was strained in one single step from its original

length up to 3.0, 3.5 and 4.0% elongations. In the case of e

0.03, the crack did not exhibit any growth and the overall

configuration of the systems remained unchanged up to 3500 time

steps. However, for both e = 0.035 and 0.04 cases, the

propagation of the crack took place. In these prestrained eases,

we simulated the system under nonequilibrium isothermal

conditions. For the e = 0.035 cast, the crack growth "irst

initiated after 1000 iteration steps. Figure 4 displays the

stages of this relaxation process up to 3200 iteration ;5; at which

the system reached almost to an equilibrium statti. The darker

circles in the figures represent particles with higher stresses.

For the e= 0 . 0 11 case, on the other hand, the crack propagated much

earlier ( obviously because of the high strain imposed initially).

The crack started growing first at the 500 t th iteration step and

the system attained an equilibrium state at approximately 2400

iteration. The stages of this propagation process are shown in

Fig. 5. A.gaxn, the darker circles display particles with higher

^a

stresses. In both cases, the particles at the crack tip exhibited

high stresses consistently. Furthermore, the crack propagated

along the close-packed rows of the lattice and, at the same time,

tried to remain perpendicular to the applied load by choosing a

zig zatg path. These behaviors are very much consistent with

experiments and theories based on macroscopic considerations and,

therefore, indicate the adequacy of the present atomistic level

simulation procedure. The relaxation of the system can be



. t

followed	 in Fig.	 6 where the average stress is plotted versus the
4 t

iteration steps.	 The oscillatory behavior of this curve is	 a

temperature effect mainly due to vibrational motions displayed

by individual particles in the system.	 From the snapshots shown

in Fig.	 5,	 we also calculated the	 velocity of the crack propaga-
a

tion.	 The curve in Fig.	 7	 represents the	 variation in the crack 1

propagation velocity as a function of the calculated average

stress.	 The upper range of this curve is near the velocity of

sound	 propagation.	 This is expected according to a report by

Ashurst and	 Hoover	 111.
vl
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APPENDIX I

Many of the characteristics of a 2D Lenard-Jones lattice are known
[3]. Here, the energy and its derivatives of a 2D triangular lattice will be
formulated. For a perfect lattice, with particles interacting via two-body
central potentials, the total interaction energy of the bulk system can be
expressed as;

N
	= 2 u(r;)	 (1)

t
where, N is the total number of particles in the system, and u(r;) represents
the pair potential function between two particles in the system separated
by a distance r;! For the Lenard-Jones case we have;

u(rs) s E / 1 )12 (
rO )

0
	 (2)1	

( ri	 ri )

with E and ro denoting the energy and the internuclear distance at the
equilibrium, respectively. The stability criterion for a 2D system, in the
absence of an external force, is given by;

	

8A= 0	 (3)
where, A is the total area occupied by the system. For a system of N
particles we have:

	

A Na,	 (4)

with ao denoting the area per particle. For a triangular lattice a, is equal
to , 0.75d' where d denotes the nearest neighbor distance. Considering
lattice sum notations, from equations 1 and 2 we obtain:

= 
2E(

Bjt.(L )12 2Ba(d )s

where, N
B12	 d)12

r'

and

(5)

(6a)
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Many of the characteristics of a 2D Lennard-Jones lattice are known
(3J. Here, the energy and its derivatives of a 2D triangular lattice will be
formulated. For a perfect lattice, with particles interacting via two-body
central potentials, the total interaction energy of the bulk system can be
expressed as;

N
= 2	 u(r,)	 (1)

where, N is the total number of particles in the system, and u(r;) represents
the pair potential function between two particles in the system separated
by a distance r,. For the Lennard-Jones case we have;

u(r;) = E ( f0 )12 — ( L0
 )°	 (2)

r { 	r;

with a and r, denoting the energy and the internuclear distance at the
equilibrium, respectively. The stability criterion for a 2D system, in the
bbsence of an external force, is given by;

84 = 0	 (3)	
t

8A	 ^

where, A is the total area occupied by the system. For a system of N
particles we have:	 1

A = Na.	 (4)

with a, denoting the area per particle. For a triangular lattice a, is equal
to 0.75d' where d denotes the nearest neighbor distance. Considering
lattice sum notations, from equations 1 and 2 we obtain:

^ = 
2

E 
(B,2( d )12 — 2B°( d )°

where,
N

B12 = 1:( d )12

i	 i

and

B°=E(d)e
r;

n -aft- -e ^, Ls ..

(5)

(6a)

(66)
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are the 2D lattice sums. Now, the condition for the minimam energy
expressed by equation 3 gives:

=: (Be 
)
1/8
	

(7)

d	 B12

The definition of the equilibrium condition based on this equation is very
Important for calculating the nearest neingbor distance d with respect to
the equilibrium distance ro of equation 2. The value of ro/d depends on

	

the total number of particles included in the summations of equation 6. A	 1
consideration of a finite cut-o8 radius, Rou t, in the lattice sum calculations,
therefore, would affect the values of ro/d as well as 41 Accordingly, Rcut
becomes a part of the potential function, in particular, for smaller cut-off
radii.

In the computer simulation studies the stress and the elastic constants
are calculated at the atomistic level for every individual particle. The
Lagrange strain parameters, e..p, for a 2D lattice may be expressed as;

= xi + 2eszx? + 2eyyyZ + 2esyx iyi + 2eyxyi2i	 (g)

The stress, for example, in the a-direction is given by:

Qs:	 A Oe-zz

or,
,t

N	 1

ass _ 
BE

	

[(!0 )12 _ ! ro 16 2i	 (9^
ao i	 ri	 l ri 1	 ri	 }

Similarly, for the y-direction we have:

N	 2
Q.y = 6E	 (ro )12 _ ! fp 1Q yi	 (10)

ao :	 ri	 l ri !
	

ri

The elastic constants, Ca p js, of it 2D triangular lattice have already been
calculated by Esbjorn and Jensen [3], and following relations have been
obtained:

C:::: = Cvvyy 3CZzyy	 (11a)

and

Cs::r = CyyyZ = 0.	 (116)
1

where,	 °{
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E	
[7( LQ )12 -- 4( r0) z'	 (12)Cssss

F	 a	 ri	 ri	 ri° E 
As it was stated above for ro/d and 0 cases the values of vap and O pye
are also dependent on the cut-off radius considered in the summations. Of
course, for a system at the equilibrimn (i.e., in the absence of external
forces and if the condition described by equation 3 is satisfied) the stress

E

	

	 components era should be equal to zero. In investigating the effect of R,.t,
it is very helpful to analyze the system in terms of neighboring shells. Table

r 4 gives these neighboring shell distances and the occupation numbers. Table
2, on the other 'hand, tabulates calculated values for the lattice sums, r°/d,
0 and C'ssss upto 20'th shell.
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COMPUTER SOFTWARE (TENST)
This package has been prepared mainly for investigating behaviors of

two or three-dimensional monatomic systems under tensile loads. Simulations
are based on a molecular dynamics technique which uses a Nordsleck-
Gear algorithm. The program was prepared in a vectorized form for the
Cray usage. It can handle sytems containing up to 10000 particles within
reasonable computation time. The result of the calculations for positions
and individual stresses can be stored for any desired intervals for further
analysts. This program has also a graphics option for trajectory plots. If
desired trajectories of every moving particle can be plotted for a visual in-
spection.

INPUT DATA AND THE DEFINITION OF PARAMETERS
(i) I/O data:
1) TITLE (Title card up to 80 characters)	 •
2) XTIME,NRUN,NCONT,NEtiV,IPSTEP,MI EN,X-MAX
3) IFREQ)IMEAN,ISTRES
4) NSTEP,NMEAN,IPDATE,NSBSV,NSBTS,NFINTS
5) XELO,NELO,JDIM
5) TEMP,DT,RCUT
7) FP,RO,AMASS,MOVE,FAC,LAYER
........................................... I......................

x repeat, LAYER times
8) W(J,K),NOO(J,K),LSQUAR
..................................................................
9) PP(1), PP(2), PP(3), FACPBC
(ii) Definition of parameters:
TITLE= Title card up to 80 characters.
XTBIE Time limit for internal check. It should be less than the

time allocated for the program run for normal termination.
NRUN= Maximum number of steps for the run.
NCONT= 1 For initial runs.
NCONT= 2 For continuation runs.
NEW= .O
IPSTEP= Trajectory plotting routine will be called in every IPSTEP

times. If IPSTEP =0 no plot calls will be made.
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XNaN, XMAX :Minimum and maximum points on the plot (even it
IPSTEP=O )WIN and :VVM must be defined).

ICREQ, IMEAN : In every WREQ steps, averages of the individual
stresses will be calculated for the last IMEAN steps. Always IMEAN.LE,IFREQ
should be satisfied.

ISTRES= 1 Averages for stresses will be taken..
ISTRFS= 0 No stress calculations will be performed.
NSTEP = Step number at the start (usually NSTEP=O). It has no

effect if NCONT=2.

	

N	 T= Number of steps averages to be taken. This is for the
periodic printnig only.

IPDATE= Number of steps between neighbor list update,
N$BSV= Number of steps between savings of variables (coordinates

and averaged values).
NSBTS= Number of steps between temperature scalings.
NFINTS= Number of step at which temperature scaling will be turned

off.
XELO= Elongation factor to be multiplied by the x component of

the positions for incremental elongation. (If XELO =1 no elongation will
be imposed).

NELO= Number of steps between elongations
JDIM= Dimensionality of the system. (For a two-dimensional system

JDIM:=2).
TEMP= Temperature (in deg. Kelvin).
DT= Time steps in seconds.
RCUT Cut-off radius (in A)
12= Energy parameter, epsilon (in deg.)
R0= Equilibrium distance for two-body interaction (in A).
AMASS= Atomic mass (in atom gram).
MOVE= Number of mobile particles. (In general MOVE should be

equal to the total number of particles).
FAC= Factor used in generating lattice points.
LAYER= Number of input files required for lattice generation.
NV(J,K)= First three describe the coordinates of the original atom.

Following three are the unit cell dimensions.
NOO(J,K)=Number of particles to be generated in x,y and z direc-

tions.
ISQUAR= 2 Takes square root of the IV(J,K) values before the lattice

is generated. If ISQUAR.NE .2 no action will be taken.
PP(1)= Length of the periodic box in the x-direction. This is for the

PBC option and must be consistent with the genereted lattice coordinates.
PP(2)= 0.
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PP(3)= U.
FACPBC= Factor for PP(1) to provide the correct length for PBC,
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TABLE CAPTIONS

1. neighboring shells, number of particles in every shell, total

number of particles, the distance squared and distances of

shells from a central particl a are given for a two-dimensional

triangular lattice.

2. For every shell the values of lattice sums (B 6 and B 121 ro/d,

total potential energy 0 and the elastic constant Cxxxx are

tabulated for a two-dimensional lattice (see Appendix V.
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1	 6

	

2	 6

	

3	 6

	

4	 12

	

5	 6

	

6	 6

	

7	 12

	

8	 6

	

9	 12

	

If	 12

	

11	 6

	

12	 6

	

13	 12

	

14	 12

	

15	 6
	16	 12

	

17	 12

	

18	 12

	

19	 6

	

20	 18

	

21	 12

	

22	 12

	

23	 12

	

24	 12

	

• 25	 6

	

2 6	 1a
	27	 i2

	

28	 6

	

29	 ' 2
	30	 12

	

31	 6

	

32	 12

	

33	 24

	

34	 12

	

35	 12

	

36	 6

	

37	 12

	

38	 R

	

39	 12

	

40	 12

	

41	 12

	

42	 12

	

43	 6

	

44	 12

	

45	 12

	

46	 12

	

47	 24

	

48	 12

	

49	 6

	

50	 18

	

51	 12

	

52	 12

	

53	 12

	

54	 12

	

55	 12

	

56	 18

	

57	 12

	

58	 12

	

59	 12

7o f& ^(

6
12
18
30
36
.42
S4
6D
72
84
90
96

lr8
120
126
138
150
162
168
186
198
210
222
234
240
252
264
270
282
294
320
312
336
348
360
366
378
384
396
408
420
432
438
450
462
474
498
510
516
534
546
558
570
582
594
612
624
636.
648

ORIGNAL PAC-I* tom'

OF POOR QUALITY

164arce
S^ uc^iQ

1.PDOIIcrzz
3.O2E000O$
4.rOPCCPBO
7.rDDD0D0E
9.rCEDOFDO

12.22000030
13.20202000
16.E000PPO0
19.DOD0C00D
21.D0EaC00E
25.00620000
27.rOD00PD0
28.06IIIIODDO
31.rD0DO1300
36.0D00DBEO
37.DDD6DEIIII
39.2DIICIIDDO
43.00060000
t3.C6CDDCBO
49.00000600
52.202210DOO
57.PBDDD000
61.00002BOO
E3.rBD0DDDD
64.DOODODDO
67.60000200
73.EDBOPBOO
75.DIIBCCDDD
76.00DOD200
79.DOBDOOZZ
E1.020II0000
64.13DBODODO
91.00600660
93..00600000
97.DODBDCDO
IrD.OP2DEP0B
1P3.6DDBDBDB
128.00000000
109.00060000
111.D0O0EE60
112.00202060
117.00000000
121.DPODDDOO
124.00000000
127.D00ODDOD
129.00060220
133.IIEBBEODO
139.00000200
144.02000DED
147.00000000
14B.CDODDP00
151.0000R02II
156.002OODOO
1S7.D000301^7
163.0002OCZe
169.0000.0000
171.000000.00
172.0POBOEDO
175 DOEODDDO

R
1 . ¢OE2L'020
1.73205081
2.0200ECOO
2.64575131
3.CP00C2CD
3.,4641E162
3.£0555128
4.CCE2rD00
4.35889E94
4.56257569
5.CEE2CCEE
5.19615242
5.29150262
5.56776436
6.22OBEC20
6.28276253
6.244998ED
6.55743E52
6.92820323
7.EC0C2DII0
7.21110255
7.54983444
7.81024968
7.93725393
B.EPCCCCCP
8.18535277
8.544PC375
8.66025.04
8.71779789
8.88819447
9.E00EPr
9.165151:;9
9.53930201
9.643ESD76
9.84865760

l0.PC2CECD0
10.14669157
10.39230485
10.44032651•
10.53565375
10.58300524
10.81665383
11.000OCEL•0
11.13552873
11.26942767
11.-5761669
?1.53256259
11.78982E-12
1'.2000CZPO
12.12435565
12.16552506
12.2882C573
12.49999600
12.52996409
12.76714533
13.00000000
13.07669683
13.11467705
13.22875656
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FIGURE CAPTIONS
a

F

1. Stress - strain curve for a perfect 2D triangular lattice.

Stress values indicate average stresses calculated for the

system ( in reduced units).

2. A system with a preexisting surface crack at equilibrium.

3. Temperature effect , on the stress - strain curve for a system

containing a surface crack. Solid and dotted lines represent
i

T O = 0.02 and T O = 0.1 cases, respectively.

^}.	 Stages of the crack propagation for a system with a surface

crack pre-strained for a	 0.035. Darker circles represent
F

t

particles with higher stresses. Numbers at the right side of
kt

snapshots are the iteration steps. i
r

5. Stages of the crack propagation for a 	 0.04. See caption

for Fig. 4.
t.

6. Variation in the average stress as a function of the iter-

anon st eps. For the e = 0.04 case.

7. Crack propagation velocity versus the average stress. ( Units	 f
j

for the velocity are calculated for copper.)
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