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PREFACE

NASALewis Research Center developed and has been conducting research on
an enlarged engine structures program since 1979. Development of advanced
methods of nonlinear structural analysis of engine components is a significant
part this enlarged engine structures program and is an integrated research
effort involving Lewis, industry, and the university community.

A two-day workshop was held at Lewis Research Center on April 19 and 20,
1983, to report recent progress in nonlinear structural analysis for engine
structures. The workshop was organized into three sessions as follows:
Session I - New Concepts/Formulations, Session II - Algorithms/Convergence,
and Session III - Inelastic Analysis and Interactive Elements.

Newconcepts/formulations include (1) the slave finite-element formula-
tion for space and time where interpolation polynomials (amenable to explicit
integration) are used to express all variables entering the formulation over
the element domain, (2) new variational principles leading to new formulations
for hybrid stress finite elements that possess ideal characteristics, such as
minimum sensitivity to geometric distortion, minimum number of independent
stress parameters, and rank sufficiency, (3) shear-deformed shell finite
elements for laminated composites based on the total Lagrangian description
accounting for anisotropic material behavior, dynamic response, arbitrary
laminate configuration, and arbitrary ply properties, and (4) large-aspect-
ratio finite elements for nonlinear shell-type structures analysis based on a
higher order "degenerated: shell element with nine nodes and accounting for
elastic-plastic behavior.

Algorithms/convergence include (1) self-adaptive solution strategies
focusing on alternative formulations for developing algorithms that avoid the
need for global updating and inversion, (2) element-by-element solution proce-
dures where approximate factorization is considered for solving the large
finite-element equation systems that arise in nonlinear structural analyses,
(3) automatic finite-element generators, where the use of VAXIMA (MACSIMAin
VAX) is used to generate the equations that describe the finite-element formu-
lation, and (4) convergence criteria considering the effects of underintegra-
tion on the element approximations.

Inelastic analysis and interactive elements include (1) inelastic and
dynamic fracture, focusing on large, dynamic crack propagation by developing
methods for new path-independent integrals, for generalized inelastic consti-
tutive relations, and for new complementary energy approaches, (2) interactive
finite elements where novel methods are developed to describe the bearing/-
support interaction for general engine structural dynamics analysis, (3) non-
linear composite structures analysis applicable to high-temperature composite
material behavior, and (4) three-dimensional inelastic analysis via boundary
integral, concentrating on the development of discrete element analysis based
on boundary integral concepts having the potential for substantial computa-
tional efficiency for local concentrations compared with traditional finite-
element analysis.
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Collectively, the papers included in these proceedings are representative
of cutting-edge methodology in all three disciplines. The authors of the
papers are nationally and internationally recognized experts in their respec-
tive areas. The reader should bear in mind that the papers describe research
in progress. Results and conclusions reported are subject to revision as
additional results become available. In any event, these results and conclu-
sions are those of the respective authors and not of the U.S. Government.

As workshop coordinator, I would like to thank all the authors for pre-
paring their papers on time as well as the attendees whose extensive
contributions to the workshop discussions helped make the workshop a very
successful technical information exchange forum. Finally, I thank all those
who helped with the mechanics of organizing and conducting the workshop.

C. C. Chamis
Lewis Research Center
Cleveland, Ohio
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SLAVE FINITE ELEMENTS: THE TEMPORAL ELEMENT

APPROACH TO NONLINEAR ANALYSIS*

Slade Gellin

Bell Aerospace Textron

SUMMARY

A formulation method for finite elements in space and time incorporating non-
linear geometric and material behavior is presented. The method uses interpolation
polynomials for approximating the behavior of various quantities over the element

domain, and only explicit integration over space and time. While applications are

general, the plate and shell elements that are currently being programmed will be
used to model turbine blades, vanes and cumbustor liners.

INTRODUCTION

The extension of the finite element method to the solution of transient field

problems by discretizing in time as well as in space has been investigated in the

last fifteen years. The works most often cited are those byArgyris and Scharpf
(Ref. i) and Fried (Ref. 2). The starting point of their work was Hamilton's

principle. Generally, sample problems consisted of axial thrust members, and only

linear geometric and material properties were assumed. There were some arbitrary

decisions made concerning the proper use of the initial conditions in the global

system in order to derive the correct set of equations for the given problem. Many
of the theoretical fine points were explained by Simkins (Ref. 3), who demonstrated

his findings using point mass structures. His results indicated that very high
levels of accuracy can be obtained with only a very small number of elements. He

notes that the temporal elements are well suited to handle sudden changes in load

function, extending the interval of solution indefinitely without restart, and
providing great detail to the solution in any subinterval. Furthenaore, conven-

tional step-by-step integration algorithms may call for a large number of time

steps, particularly for the hyperbolic equations of structural dynamics should the

excitation or material properties change rapidly in time. It is within this spirit
that this research was undertaken.

During the course of this work it was found that many theoretical questions
needed to be answered. Some of these questions have deep physical and mathematical

importance, others are exercises in intellectual gamesmanship. Hopefully, they will

be addressed in forth-coming papers. The focus here will be on incorporating non-
linear geometric and material behavior into the temporal element approach, within

the framework of the ground rules discussed in the following paragraphs.

*This work was performed under NASA Contract No. NAS3-23279.



First, the elements will be of what will be referred to as the "prismatic"

type. The space time domain is thought of as a long, prismatic, member in four

dimensions, with the "length" dimension corresponding to time. The three dimen-
sional "cross-section" is the spatial model of the structure. A prismatic element

consists of the space-time domain occupied by a spatial finite element from t=t i

to t=tj. Geometrically, this is a well defined set of "longitudinal fibers" over
a certain "length". A set of local coordinates is chosen with the time direction

the same as global time, but translated so that the time interval goes from 0 to

T=tj-t i. See Figure i.

Second, all field quantities will either be derived from the displacement

field directly or calculated at grid points and then interpolated with their own

shape functions over the space-time domain. This will facilitate the explicit

integration that also will be required for the procedure. Note that certain

spatial geometries for the element may require special handling. Isoparametric

representation of elements may not be desirable as only numerical integration
schemes will generally be feasible.

Finally, it will be assumed that the constitutive laws will be linear be-
tween the time derivatives of the appropriate kinematical and dynamical quantities.

Some linearization must be available in order for the matrix techniques of finite

element analysis to be applicable.

The non-linear algorithm is derived in the following section. In the sub-

sequent section, a simple, but purposely poorly constructed example conducive to

hand computation is presented. Finally, some brief comments about the current

research being done using the temporal element concept will be given.

Non-Linear Algorithm

Like most non-linear algorithms, the one presented here is based on an

iterative procedure involving quasi-linearization. The difference in philosophy

between the method presented here and the conventional step-by-step methods, such

as the tangent modulus or residual force methods, is demonstrated graphically in

Figure 2. In both Figures 2(a) and 2(b), the heavily drawn curve represents the
"exact" time history of quantity A, which may be thought of as the displacement

of a certain point, or a stress at a point, etc. In Figure 2(a), the step-by-step

method has calculated the path OA, representing the history up to that point. At

A, the procedure generates successive approximations ABi until convergence to the

path AB is achieved. The procedure is now repeated at B. For the algorithm

presented here, Figure 2(b) indicates that successive iterations generate an

entire load history. This load history allows for determining loading and unloading

paths for the entire time interval of interest, eliminating the guesswork or sub-

interval changes usually associated with the step-by-step methods. Iterations

converge until the curve OC is obtained.

The theoretical basis for the algorithm is Hamilton's law of varying action.

Essentially, it is the principle of virtual work integrated over time. It is

expressed mathematically as

T .... }T{F_}__ f (_'0 - 6v " p) dVdt - {_u = 0 (i)
ui V



where g, _, v and p are the strain, stress, velocity and momentum fields,

respectively, and {u} is the set of element degrees of freedom (d.o.f.). Note that

each element of {u} represents a displacement measure at a certain point in place

and time. The vector {F*} represents the equivalent point impulse-m_mentum

difference due to known body forces and tractions applied over S_, the portion of

the surface S where tractions are specified and thermal loading as well as "known

momenta" applied over the time boundaries and equivalent loads exerted on the

element by its contiguous neighbors. The variations in (i) are taken with respect

to the displacement field_, which is expressed in terms of shape functions

[N_,t)] as

u = [N]{u} (2)

The displacement u is assumed to be admissible. In this case, that means the shape

functions IN] are interelement continuous, as well as continuously differentiable

in the space-time domain. The strain-displacement law may be written formally as

= f(u) (3)

where f is a function of u and its spatial partial derivatives, and, in general,

is non-linear. Taking variations of (3) yields

6_ = f'(u)6u (4)

where the prime has a general meaning relating to derivatives with respect to u and

its partial derivatives. In a similar manner, the velocity-displacement relations

may be expressed as

v = g(u) (5)

where g, like f, is a (non-linear) function of u and its spatial and temporal first

derivatives. Taking the variation of (5) yields

_v = g "(u)_u (6)

It is also interesting to note the time derivatives of (3) and (5):

O O
........... (7a)
€ = f'(u) u

v = g (u) u (7b)

Constitutive laws between g and _, and v and p may be formulated, according to the

groundrules specified above, as

o o o

O = [E , ,_,x,t,...) + T (O,g,@,x,t,...) (8a)

O O u

p = [p(_,g,@,x,t,...)]_+ _ (d,_,@,x,t,...) (8b)



where O is the temperature field. Equations (8) are integrated from 0 to t; thus,

t O

= / _ dt" + _ (9a)
o o

t o

p = f p dt" + Po (9b)o

where o and p are the values of the stress and momentum at local time t=0. These
o o

may be approximated by

L = [N_(_)]_o} (10a)

= NpPo [ (x)_Po } (10b)

where the number of parameters in {oo} and {po } is arbitrary. Ideally, [No] is
interelement continuous, and both [N_] and [ND] are as sophisticated as the stress
and momentum fields derived from [N] in the linear theory, though neither require-

ment is really mandatory.

In the iterative procedure to be used, "current" values of displacement,

stress, strain, etc., for the entire load history are in hand. These values are
. __. o . -_ are calculated

used to evaluate ]_ , g , [E], _, [0] and o__ The quantities _ and o
from (2) where the set {u} are unknown, _representing the "updated"Usolution.

Similarly, {go}and {Po } are unknowns.

Equations (3)-(7) may be re-expressed as

6__= [f'][N]{6u} (lla)
O

= [f'][N] {u} (llb)

6v = [g'][N]{_u} (llc)

O

v = [g'][N]{u} (lld)

where If'] and [g'] are 6x3 and 3x3 operator matrices, respectively. Stress and
momentum matrices are defined by

t o

Es] = f EE]Ef'][N]dt" (12a)
°t o

[M] = f [p]Eg'][N] dt" (12b)
O

and stress and momentum vectors are defined as

to

T = f T dt" (13a)
o

___ t °

= f _dt" (13b)
o
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Using (i0), (12) and (13) in (9) yields

O = [S]{u} + • + [No]{O o} (14a)

p = [M]{u} + _ + [Np]{p o} (14b)

Equations (14) may be evaluated at t=T. (Quantities evaluated at this time are

given a T subscript.) Assuming that [No] and [Np] can also approximate °T and _T'
equations (14) take on the form

[ST]{U} + Tr + [NO] {(_o-aT} = {0} (15a)

[MT]{U} ":-rf-_T+ [Np] {po-PT } = {0} (15b)

at t=T. Equations (15) are used as subsidiary conditions to the problem. They

are added to (i) with the use of lagrange multiplier fields. In particular, the

choices for the stress and momentum fields, respectively, is given as

= NO 10I(7 [ ]{ } (16a)

Ip = [Np]{kp} (16b)

These fields are used with (15) and integrated over the volume. These conditions,

as well as equations (lla), (llc), and (14) are used in (i) to give

{_u}T([Ke]{U} - {F*} - {F_}-{F_}+[A_]{(7O} - [Ap]{Po})

e

+ _({%O} T([B_]{u} + [Co]{(7o-OT} - {q_} )

+{kp}T'rBel[p]{U} + [Cp]{po-PT} - {q_}) = 0 (17)

where
T

[Ke] = °f vf ([N]T[f']T[s] - [N] T[g']T[M] ) dVdt (18a)

T

[A_] = °f vf [N]T[f']T[No]dVdt (18b)

T

lAp] = _ vf [N]T[g']T[Np]dVdt (18c)

[B_] = vf [No]TEST]dV (18d)



[Bp] = v/ ENp]T[MT]dV (18e)

[C$] = $ [N_]T[No]dV (18f)

[C_] = _ [Np]r[Np]dV (igg)

T

L f[N]r[f']r
{F } = - T dVdt (18h)

v

T

{q_} = - _No]T _TdV (iSj)
v

{q_} = - v_Np]T gTdV (iSk)

The set of equations generated by (17) when variations are taken on {u}, {go },

{Po}, {IO } and {Ip} are T T

[Ke]{U} + [A_]{Oo} - [A_]{po}+[B_] {_} + [Bp] {%p}

= {F*}+ {F_}+ {F$} (19a)

[C_]{%_} = {0} (19b)

[Ce] {_ } = {0} (19c)
P P

Ce
[B_]{u} + [ O]{Oo-OT } = {q_} (19d)

e

[Bp]{U} + [c_e]{po-pT}p = {q_} (19e)

Note that the matrices _C_] and e[Cp_will be square and invertible, thus making
the mulipliers identically zero. They may then be omitted from equation (19a).

Equations (19a, d, e) are assembled into the systems

[K]{u} + [A ]{_} - [Ap]{p} = {P} (20a)

[B ]{u} + [C ]{_} = {qy} (20b)

[Bp]{U} + [Cp]{Po} = {q_} (20c)



where the assembly enforces the conditions of continuity across a time boundary
for stress and continuity of momentum across a time boundary to the extent that no

impulses per unit volume are applied, and, if such impulses are implied, an

appropriate discontinuity is maintained. The results should leave [C_] and [C ]
square and invertible. Thus, equations (20b,c) are solved for {_} and {p} and_
used in (20a) to derive the global stiffness equations

A A

[K]{u} = {P} (21)

where

[K] = [K] - [A ] [C ]-lIB ] + [Ap][Cp]-l[Bp] (22a)

[P] = [>] - [AO] [Co]-l[q T] + [Ap][Cp]-l[q_] (22b)

Equations (21) are solved for {u} and then back-substituted into all the pertinent
equations to calculate the important quantities to be used in the next iteration.

A Simple Numerical Example

To demonstrate some of the procedures developed, a numerical example will
be worked out. A rod of length L, and cross-sectional area A built in at both

ends, is loaded at its midpoint by a continuously time varying load p(t) given as

P(t) = 2_ A(t )
y _ (23)

where T is the time interval of interest and _y is the nominal yield stress of the

material satisfying the uniaxial stress strain law of the Ramberg-Osgood type
(Reference 4)

_ [i + 3 (_y) 8
= _ _ ] (24)

where E is the elastic modulus of the material. The loading is assumed quasistatic

and thus dynamic effects may be ignored. (Note that if P(t) is discontinuous,

dynamic effects must be introduced in order to maintain continuity of displacement

and stress across a time boundary.) The rod is initially in the undeformed state;
thus, not only is u(x,0)=0, but _(x,0)=0. See Figure 3.

The problem is discretized using four elements, each of dimensions L/2 by
T/2, as seen in Figure 4. Each element is of the type shown in Figure 5. The

displacement field for this element is modeled using the bilinear shape functions

, , e ,)e (l-x/L)(1-t/T )+u21 (I-x/L (t/r')u(x, t)=Ull

e (x/L') (l-t/r' e ,)+ u12 )+u22 (x/L')(t/r (25)

7



where the e superscript is a reminder that the quantities in (25) refer to local

numbering and local axes. It can be shown, using methods derived in (Ref. 3),

that the element statics equations for a linear elastic rod are

" e _ _

AET" 1/6 1/3 -i/6 -i/3 F21 (26)

L" e

-1/3 -1/6 1/3 1/6 u12 IF121

-1/6 -1/3 1/6 1/3 u22 _kF22)

For the structure being studied here, L"= L/2 and T'= T/2; furthermore, only u22

and u32 are non-zero. The global stiffness equations for the linear elastic
system are thus

AET 4/3 1/3 u22 = OyAT (27)
L 1/3 2/3 [u32 5/12

The solution is u22 = 1/40yL/E, u32 _ 1/2 _yL/E. The stress state is _2 = O(T/2)

= i/2_y and _s = _(T) = _y , where the values are in tension on the left half of
the rod and in compression for those on the right. The results are exact.

When the non-linear behavior is incorporated, the formulation described here-

in is used. The non-trivial matrices to be found are [Ke] , [A_], [B_] and [C_].

The rate dependent form of (24) is

O O

O = E _ g (28)

w ere[
For the problem at hand, the stress state is assumed (for each element) to be a
function of time only. Thus,

[N ] = i (30)

The matrix [E] is approximated as a linear function in time by interpolating through

the end points of the time interval; specifically,

[E] = KS(0) [i - t/T'] + E_(T')(t/T') (31)

Note how extremely poor this approximation is for the desired time step used

in this example.

For the bilinear shape functions,

o 1
[f'][N]= El -1 -1 i] (32)L'T"

8



Incorporating (31) and (32) into (12a) yields

Es]= E T" * ,El-1-1 i] (33)

Evaluating (33) at t=T , noting (30), and integrating over the volume yields

[B_] = EA [_(0) +2 C_(T')] [1 -1 -1 1] (34a)

Ece] = AL" (34b)

Using (33) in (18a) gives

+ el ._o e_JL eo +__ _ + e
8 + 24 8 24

_ (_# +_) 5_o24+ _18 5_o24+ 8-_I _ (52_+_

[Ke] - AET" (_ -i4)

_5_o24+_ -(@+_) -(_4°+_) 5_--°+_24

where s° = _(0) and _l = _(T'), and using (30) in (18b) yields

-i/2

-1/2

[A_] = AT" (36)
u

1/2

1/2

Global assembly is now performed. First, it is remembered that only u22 and
are non-trivial; secondly, it is known that _(0) = _I = 0 and thus _(07 = _I u?=31.

Let a 2 subscript be used for quantities associated with t=T/2, and a 3 subscript

be associated with quantities evaluated at t=T. Furhter, by symmetry, the value
of the tension in an element on the left hand side of the structure would equal the

value of compression in the corresponding element on the righ-hand side of the

structure, so _Left = aRight at a given time t. Finally, it is to be remembered

that for the current discretization T" = T/2 and L" = L/2. All these imply that
(20a) and (20b) may be written as

AET 12 -4- _ Iu22 t + AT _2=OyAT _ (37a)

4 12



EA(I + _2)[ 1 0 ] Iu22 1 AL2 u32 - _- _2 = 0 (37b)

Solving (37b) for 02 and using the results in (37a) yields the global stiffness

equat ions

° ° I I
_2 _ _3 ] 1/2

_+ 2 12 4 - 12 u22

AET = OyAT _ (38)

L + _2 _3 5_2 + _j [ u32 _5/1212 4 12 4J

Note that if the structure is considered linear elastic that _2 = _3 = I, and

equations (38) become identical to the elastic global equations (27).

Equations (38) were solved iteratively for u22 , uR?, 02 and 03 using a
hand-held calculator maintaining four-place accuracy in_he coefficients of the
stiffness matrix. Table 1 lists the results of each iteration where the elastic

case is taken as the initial condition. It should be noted that the trend indi-

cated by the table implies that greater accuracy must be retained to achieve con-

vergence; however, three place accuracy is reached rather quickly. The results

are not bad when considering the absolutely horrendous approximations used in the

example. It is concluded that the general method is viable.

Related Research

As noted in the introduction, there were many theoretical questions which

were needed to be answered that arose during the course of this study. Many of the

questions concerning the incorporation of the initial conditions to the transient

problem into a formulation that is inherently suited to boundary type conditions

were answered both independently and through (ref. 3). There were other questions

concerning non-prismatic or semi-prismatic discretizations, and their possible use

in both formulating elements and in modeling specific problems in space and time.

Several modified or hybrid variational formulations were developed to model ele-

ments possessing certain qualities, such as an embedded hole or non-rectangular

geometry for grid elements, where interelement continuity would be more difficult

to maintain. A search for a four-dimensional, unified theory for elastic dynamic
solid mechanics was undertaken in order to better understand the parallel conditions

that must exist between the spatial and temporal properties of a structure. Not to

be overlooked are the various computer programming difficulties, particularly the

large numbers of d.o.f, per element that could be generated for elements of this

type, and the adaptability of element modules with a solution procedure provided

by another host program.

CONCLUDING REMARKS

The Slave Finite Element approach to non-linear analysis has been presented.

Despite the large number of dof in the system for any given problem, the anticipated

I0



reduced number of calculations, the ease in changing time steps by using various

grid options, the increased detail within any subinterval, and the accuracy demon-

strated in elastic problems demonstrates the viability of the method. Continued

research is necessary to fully understand and exploit the potential of the method.
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TABLE i: NUMERICAL COMPUTATIONS FOR SAMPLE PROBLEM

Iteration # u22E/OyL u3eElOyL o2/ y o3/oy
0 .2500 .5000 5000 1.0000 .9852 .2059

1 .2409 .6252 4782 .9359 .9896 .3058

2 .2423 .6016 4821 .9475 .9889 .2853

3 .2420 .6061 4813 .9452 .9890 .2892

4 .2420 .6053 4813 .9457 .9890 .2884

5 .2420 .6054 4813 .9457 .9890 .2887

(no further change in stiffness matrix)

EXACT .2504 .7143 .5000 1.0000

% ERROR 3.4 15.3 3.7 5.5
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NEWVARIATIONALFORMULATIONSOF HYBRIDSTRESSELEMENTS*

T.H.H. Pian,t K. Sumihara tt and D. Kangtt
Massachusetts Institute of Technology

SUMMARY

In the variational formulations of finite elements by the Hu-Washizu and
Hellinger-Reissner principles the stress equilibrium condition can be maintained
by the inclusion of internal displacements which function as the Lagrange multi-
pliers for the constraints. These new versions permit the use of natural coordi-
nates and the relaxation of the equilibrium conditions and, render considerable
improvements in the assumed stress hybrid elements. These include the derivation
of invariant hybrid elements which possess the ideal qualities such as minimum
sensitivity to geometric distortions, minimum number of independent stress param-
eters, rank sufficient and ability to represent constant strain-states and bending
moments. Another application is the formulation of semiLoof thin shell elements
which can yield excellent results for many severe test cases because the rigid
body nodes, the momentless membrane strains and the inextensional bending modes
can all be represented.

INTRODUCTION

In the original formulation of the assumed stress hybrid elements by the
modified complementary energy principle (ref. I) and the later extension using
the Hellinger-Reissner (ref. 2) the assumed stress are made to satisfy the equilib-
rium equations a priori. This restricts the derivation to the use of physical
coordinates such as Cartesian coordinates and shell surface coordinates, etc. and
to the coupling of the various stress components by the equilibrium equations.
Such restrictions are the chief obstacles for the construction of shell elements
by the hybrid method and the main reasons why the element properties often deterio-
rate rapidly when unfavorable reference coordinates are used for stresses and/or
when the element geometry is distorted.

Recently new versions of the Hellinger-Reissner and the Hu-Washizu principles
have been suggested for more efficient formulations of hybrid stress elements
(refs. 3 and 4). This paper presents two specific applications of these principles:
(I) the formulation of invariant hybrid stress elements by the Hellinger-Reissner
principle and (2) the derivation of semiLoof shell elements by the Hu-Washizu
principle.

The research reported here is one part of a program the objective of which
is to advance the numerical tools for analyzing engine structures which needs to
be modelled by 3-D solids and/or shell structures.

The work was sponsored by the NASALewis Research Center under NASAGrant
No. NAG3-33.

tprofessor of Aeronautics and Astronautics

ttGraduate Student
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FORMULATIONOF INVARIANTHYBRIDSTRESSELEMENTS

The modified version of the Hellinger-Reissner principle for the formulation
of the element stiffness matrix may be stated as

_R = f [-½ _TS _ + _T(D Uq) - (DTo)T ul]dV : Stationary (I)

where _ = stress, S = elastic compliance, V = element volume, uq = element
displacements that a_e interpolated compatibly in terms of nodal dlsplacements q
and u_, = additional internal displacements which are expressed in terms of para_e-
tars ~ I that can be statically condensed. Here

(DT_) = 0 (2)

is the equation of equilibrium. Hence the last term in the functional plays the
role of conditions of constraint with the corresponding Lagrange multipliers. Thus,
the assumed stresses _ need not be coupled initially and the introduction of dis-
placement parameters _ will reduce the number of independent stress parameters.

As an example, the derivation of the quadrilateral membrane element is
presented. Here, for the o stresses, the nine terms are complete in linear terms
in the natural or isoparam_tric coordinates _, n,

o : Oy : I _]q " (3)

T _q B9£ xy

The element displacements are interpolated by bilinear polynomials in the
natural coordinates. Here it is expected that in the limiting case of rectangular
elements the present formulation should yield the 5-B hybrid stress element (ref. 5)
that is known to have excellent properties.

Thus, four internal displacement terms are need. They are, indeed, the same
ones used by Wilson et al. (ref. 6) in their incompatible elements, i.e.

u_ = _i(I-_ 2) + _2(l-n 2) (4)
v_ = X3(I-_2 ) + X4(l-n 2)

It is noted that these additional displacement terms are essential because they now
make the displacements u complete in quadratic terms.

In the actual formulation it turns out that the four _ terms yield only two
independent equations of constraints for the B's. It was found necessary to
consider the element geometry with a small perturbation as shown in Figure I. With
the x and y components of the perturbation represented by ±Ax and ±by the Jacobian
is
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ij I a2n ) bI + b2n + Ay(l-n 2)= (5)
a3 + a2_ -2Ax_n b3 + b2_ - 2Ay_n

where el = 1 (_Xl + x2 + x3- x4); bl : 1 (-Yl + Y2 + Y3- Y4)

a2 : 1 (x I _ x2 + x3 - x4 ); b2 : 1 (Yl - Y2 + Y3 - Y4 )

a3 = _ (-x I - x2 + x3 . x4); b_o = (-Yl - Y2 + Y3 + Y4)
(6)

Here / I-x_'yi are the coordinates of the corner nodes and the ratio Ay/Ax is equalto bI

In this case the four _-terms yield four equations of constraints and R_, B6,
B8 and BQ can be expressed in terms of B3 and B5. The assumed stresses canrearranged in matrix form as

I
OX 0 1 0 a_n a_ _.I

_--oi oOy (7)

Txy 0 0 1 albln a3b3__ _5

In the case of a rectangular element with _ and n in parallel with x and y,
b] and a3 vanish and the 5 B-terms of reference 5 is obtained. For hybrid stress
elements, particularly of higher orders, there exist many possible choices for the
assumed stress. The new variational principle, thus, provides a rational procedure
to establish the appropriate stress terms for hybrid elements both of regular
shape and with geometrical distortions. Because the present formulation is based
on natural coordinates the resultant element stiffness matrix is always an
invariant. It can also be shown that it always has sufficient rank. The element,
of course, can also pass the constant strain patch test.

It turns out that the same result can be obtained when the stresses based
upon the basis vectors of the natural coordinates _ and n are expressed as

{ ilI
TII 1 0 0 n 0 ._I

T = T22 = 0 1 0 0 _ (8)

T12 0 0 l 0 0 5
• • , °

and in convertingthe tensor stress Tlj to the physical componentoIj by

ij i " k_
= Jk J_ T (g)

the value of the Jacobianat (_,n)= (0,0) is used. By such a step the constant
stress state can"be maintainedhence the resultingelementcan pass the patch test.
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A tapered and swept panel with one edge clamped and the opposite edge acted by
a distributed shear load was used bt Cook (ref. 7) for testing the sensitivities of
finite elements to geometric distortions. The resulting normal stress distributions
along the mid-span section are determined by the following four elements using the
same 4x4 mesh as shown in figure 2:

(I) Element Q-4 by bi-linear assumed displacements.

(2) Element HG by original 5-B assumed stress method with the global x-y
axes as reference.

(3) Element HL by original 5-8 assumed stress method with the reference
x'-y' axes located at equal angles with the natural _-n axes.

(4) Present invariant hybrid stress element.

A solution obtained by element HL using 16x16 mesh is used as a reference.
It is seen by the result by the present element is already very close to the
reference solution while the solutions by the other elements all have much
larger errors. The assumed stress given by eq. (8) is thus the optimal choice
for assumed stress hybrid elements.

Eight-node solid elements have also been constructed by the same approach. It
is used to analyze the bending of a rectangular bar with two elements which are
distorted. The effect of the element distortion on the tip deflection and normal
stress is shown in figures 3 and 4. Also included for comparison are the results
obtained by the assumed displacement method and by the original hybrid stress
method using the beamaxis as reference. It is seen that under large distortions
the original hybrid stress element may become almost as rigid as the assumed
displacement element, but the present invariant element is much less sensitive
to distortions.

THIN SHELLANALYSESBY SEMILOOFELEMENTS

Thin shell elements are formulated by the Hu-Washizu principle with additional
internal displacements for enforcing the stress equilibrium conditions and with
relaxed continuity conditions along the interelement boundaries. The principle
is expressed as

_HW= fv [ ½ ........._Tc e - T + oT(D Uq) _ (DT)T u_ ]dV - aVf TT~(_q-_)ds~

= stationary (I0)

where strains e, stresses o and element displacements uQ and u. and boundary
displacement _~are indepenBent. The key step in the f_6ite el_ment formulation
is that both ~o and e are approximated by the same function, i.e.

= P_ and o = PB (II)

where P are not coupled among different components. The displacements Uq, ux and
are ~interpolated by

~
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Uq : Nq ; u_ = ~~M_; and ~_= ~~Lq (12)

and the functional _HWis reduced to

_ 1 Tj _ _ 8TH_ + 8TGq _ 8TR)_ (13)_HW- 2 ............

where J = Z pTc P dV ; H = Z pTp dV
~ V .... V ~~

G = I pT(D N)dV ; R = f (DTp)TM dV (14)
~ V ~ V

Here H is a symmetric and positive definite matrix which can be partitioned with
submatrics located only along the diagonal. Thus, the inversion of H reduces to
that of the individual submatrices. ~

Variation of _HWwith respect to 8, _ and _ in the element level will enable
the solutions of the_ variables in terms _f q and the following expression can be
obtained for the element stiffness. ~

k = GTwG - GTwR (RTw R)-I RTw G (15)

where

W = H-Ij H-I (16)

and the order of RTwR is the same as the number of equilibrium constraint equations
obtained by _. ~ ~ ~

~

To maintain good qualities a thin shell element must be able to represent
(I) the rigid body modes, (2) the momentless membrane strains and (3) the inexten-
sional bending modes. By using the Hu-Washizu principle for'which the assumed
strain and stress components are uncoupled the last two deformation modes can be
easily included and by satisfying the equilibrium conditions in the element level
the rigid body displacements can be guaranteed.

Another condition that is desirable for the formulation of thin shell elements
is for the three displacement components u, v, and w to be of the same order. For
ordinary shell elements for which the nodal displacements w and w. and w _ are
needed to interpolate the lateral displacements while only u and '_v are 'mused for
the assumed inplane displacements, these displacement components will naturally be
unbalanced. In a semiLoof element, however, all the displacement components are
interpolated in terms of their own nodal values hence are automatically of identical
orders. By the assumed stress hybrid method the continuation of the normal rota-
tions w n along the boundary are imposed through the boundary displacements _.
Thus, i_ addition to the advantage of expressing equilibrium equations at th_
boundary nodes with only three degrees of freedom, a semiLoof element is also most
natural for the balanced assumed displacements.

Hybrid semiLoof elements for triangular and quadrilateral planform with
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24 and 32 DOFrespectively were constructed based on the shallow shell theory of
Marguerre and the optimal number of B's and _'s were determined. The nodal displace-
ments are u, v and w at each corner node and each mid-side node and w at I/3 way
points of all edges. ,n

The semiLoof approach has also been used to construct two hybrid quadrilateral
elements of 32-DOF based on the cylindrical shell theory using 36 and 38 B-parame-
ters respectively. The stresses are later constrained by using 7_'s. For the
36-B element the in-plane and moment components are complete in quadratic terms.
The element has two kinematic deformation modes, hence a 38-B element is also
developed by adding cubic terms for _he in-ol_ne stresses components £II and £22
For the internal displacements the u_ and 'u_ components each contains 3 terms

o

while the w component contains only _ single :term.

Figures 5 and 6 present comparisons of vertical deflections at the edge of a
cylindrical shell roof under gravity loads by three 32 DOFsemiLoof quadrilateral
elements, one which is based on the shallow shell theory and the other two, by the
deep shell theory. Also included for comparison are the solutions by the assumed
displacement methods. The result by Dawe's (ref. 8) is by_54-DOF triangular elements
based on the deep shallow theory. Dawe's element Is known to be an excellent element
although it is not easily adopted because of its _se of higher derivatives as nodal
displacements and its difficulty for handling the intersection of shells. The
result by Cowper et al. (ref. 9) is again obtained by the triangular elements based
on the shallow shell theory. That element as well as the degenerated solid element
with reduced integration (ref. I0) all coverge to that by the shallow shell theory.
On the other hand, the solutions by the hybrid semiLoof elements based on the
cylindrical shell theory, converge to the solution obtained by the deep shell
theory. This is a clear indication that the appropriate shell theory must be
incorporated in the construction of shell elements. Figure 7 shows stress distri-
butions obtained by the semiLoof element with 38B using 3x3 and 4x4 meshes.

Morley (ref. II) has proposed a challenging test example which consists of
a thin circular cylinder with reciprocal shear tractions applied along a cut in the
axial direction resulting in a state of uniform torsion (fig. 8). This problem is
very sensitive to the assumed displacement fields in the finite element. Another
severe test case is a thin cylindrical shell under internal pressure for which the
element used must be able to represent momentless membrane stresses. It has
been found that the present semiLoof cylindrical shell element with 36B and 7_
can pass these tests successfully.

CONCLUSIONS

The new versions of the Hellinger-Reissner and Hu-Washizu principles using
additional internal displacements open up the options for constructing hybrid
stress elements. A new hybrid stress element developed by the present method has
invariant properties and has been demonstrated to be much less sensitive to
geometric distortions. Several semiLoof shell elements have been constructed and
proved to be successful even for very severe test examples. Introduction of the
new variational principles, thus, represents a significant advancement in the
finite element development.
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A SHEAR DEFORMABLE SHELL ELEMENT

FOR LAMINATED COMPOSITES i

W. C. Chao and J. N. Reddy
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SUMMARY

A three-dimensional element based on the total lagrangian description of the

motion of a layered anisotropic composite medium is developed, validated, and used

to analyze layered composite shells. The element contains the following features:

geometric nonlinearity, dynamic (transient) behavior, and arbitrary lamination

scheme and lamina properties. Numerical results of nonlinear bending, natural

vibration, and transient response are presented to illustrate the capabilities of
the element.

INTRODUCTION

Composite materials and reinforced plastics are increasingly used in

automobiles, aircrafts, space vehicles, and pressure vessels. With the increased use

of fiber-reinforced composites as structural elements, studies involving the

thermomechanical behavior of shell components made of composites are receiving

considerable attention. Functional requirements and economic considerations of

design have forced designers to use accurate but economical methods of determining

stresses, natural frequencies, buckling loads, etc. The majority of the research

papers in the open literature on shells is concerned with bending, vibration, and

buckling of isotropic shells. As composite materials are making their way into many
engineering structures, analyses of shells made of such materials become

important. The application of advanced fiber composites in jet engine fan or

compressor blades and high performance aircraft require studies involving transient

response of composite shell structures to assess the capability of these materials
under dynamic loads.

A review of the literature indicates that first, there does not exist any

finite-element analysis of geometrically nonlinear transient response of laminated
anisotropic shells, and second, the 3-D degenerated element is not exploited for

geometrically nonlinear analysis of laminated anisotropic shells. The present study

was undertaken to develop a finite-element analysis capability for the static and

dynamic analysis of geometrically nonlinear theory of layered anisotropic shells. A

tA more detailed account of this paper can be found in NASA CR-168182.
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3-D degenerated element with total Lagrangian description is developed and used to

analyze various shell problems.

INCREMENTAL, TOTAL-LAGRANGIAN FOR!_LATION OF A CONTINUOUS MEDIUM

The primary objective of this section is to review the formulation of equations

governing geometrically nonlinear motion of a continuous medium. In the interest of

brevity only necessary equations are presented (see [i-5]).

We describe the motion of a continuous body in a Cartesian coordinate system.

The simultaneous position of all material points (i.e., the configuration) of the

body at time t is denoted by Ct, and Co and Ct+6t denote the configurations at

reference time t = 0 and time t + 6t, respectively. In the total Lagrangian

description all dependent variables are referred to the reference configuration.

The coordinates of a typical point in Ct is denoted by tx = (txl,tx2,tx3). The

displacement of a particle at time t is given by

t t o t t o
u~= ~x- ~x or u.z = xi - xi (i)

The increment of displacement during time t to t + 6t is defined by

t+6t t

ui -- ui - ui (2)

The principle of virtual displacements can be employed to write the equilibrium

equations at any fixed time t. Xhe principle, applied to the large-displacements

case, can be expressed mathematically as

t+6t'" t+6t S. (t+6t )dV
f Po u. 6u. dV + f lj 6 Eij oV z z o V

o o

= f t+6tT. 6ui dA + f t+6tF. 6u. dV (3)1 O 1 1 OA V
o o

where summation on repeated indices is implied; Vo, Ao, and Po denote, respectively,

a volume element, area element, and density in the initial configuration, Sij are

the components of second the Piola-Kirchhoff stress tensor, gij the components of

the Green-LaKrangianstran tensor,Ti the componentsof boundary stresses,and Fi

are the componentsof the body force vector. _he superposeddots on ui denote

differentiationwith respectto time, and 6 denotes the variationalsymbol. In

thewritingkinematicEq"(3)relationsit is assumed that Eij is related to the displacement components by

t+6t 1 (t+6tui + t+6t t+6t t+6tEij=y ,j u.. + u u .) (4)3,z m,i m,3

where ui,j = 5ui/Sxj.
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t+6t
The stress components S.. can be decomposed into two parts:

13

t+6t S t S.
ij = lj + Sij (5)

where Sij is the incremental stress tensor. The incremental stress components Sij

are related to the incremental Green-L_grange strain components, Eij = eij + qi j, by
the generalized Hooke's law:

Sij = Cijk%gk%, (6)

where Cijk% are the components of the elasticity tensor. Using Eqs. (4)-(6), one

can be express Eq. (3) in the alternate form

f Po t+6t ""u.6u. dV + f Cijki(eki6_j + _ki6eij )dVV I 1 o V o
o o

+ f tsij 6eij dVo = 6W- f ts'i 6_i j dVo (7)V V 1
o o

where _ is the virtual work due to external loads.

FINIT_ELEMENT MODEL

The coordinates of a typical point in the element can be written as (see

Fig. i)

n n

= Z _(_i,_2)_____ (x )top + Z +j(_1,_2 ) i_ j
xi j=l j=l -- (Xi)bottom (8)

where n is the number of nodes, li(_l,_2 ) are the finite-element interpolation (or

shape) functions, which, in the element take the value of unity at node i and zero

at all other nodes, _i and _2 are the normalized curvilinear coordinates in the

middle plane of the shell, and g is a linear coordinate in the thickness direction
i i i

and Xl, x2, and x3 are the global coordinates at node i.

t
In the present study the current coordinates x. are interpolated by the

expression i

t n j 1 t^jx = Z qbj(tx + (9)
i j=l _ Chj e 3iO_

and the displacements by

n
t ° ^ ° ^ "

u = E +j [tuJ'l+ I (t J _ o Ji _ _hj e3i e3i) ] (i0)
j=l

^ •

n I t+AteJ teO ) ] (ii)u = Z + [uj +- _h (
i j i 2 j 3i 3i

j=l
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tu_ and ul denote, respectively, the displacement and incremental displacement
Here

components in the xi-direction at the j-th node.

Substitution of Eqs. (4)-(6) and (9)-(11) into Eq. (7) yields

f Po[T]t{u}dVo + (t[KL] + t[KNL]){A } = t+6t{R} - t+6t{F} (12)
V
o

where t[KL] , t[KNL], {R}, and {F} are the linear and nonlinear stiffness matrices,

force vector, and unbalanced force vectors

Application of the New,hark direct integration scheme (see [2]) for the
approximation of the time derivatives in Eq. (12) leads to

[K]{A} = t+6tlR I - t+6t{F}(k-l) (13)

where

[K] = a t[M] + t[K]
O

^ _i (t{ t{t+6t{R} = t+6t{R} + a2 [t{Pl} _ P2} - P3})] + a3 {P4} (i4)

and ao, a2, etc. are the parameters in the Newmark integration scheme.

DISCUSSION OF THE N[_ERICAL RESULTS

The results to be discussed are grouped into three major categories:

(1) static bending, (2) natural vibration, and (3) transient response. All results,

except for the vibrations, are presented in a graphical form. All of the results

presented here were obtained on an IBM 370/3081 computer with double precision
arithmatic.

Static Analysis

i. Cylindrical Shell Subjected to Radial Pressure Consider a circular

cylindrical panel, clamped along all four edges and subjected to uniform radial

inward pressure. The geometric and material properties are

R = 2540 am, a = b = 254 am, h = 3.175 am,

0 = 0.I rad, E = 3.10275 kN/mm 2, v = 0.3

Due to the symmetry of the geometry and deformation, only one quarter of the panel

is analyzed. A load step of 0.5 KN/m 2 was used in order to get a close

representation of the deformation path. Figure 2 shows the central deflection

versus the pressure for the panel dimensions a = 254 mm and b = 254 mm. The

solution for agrees very closely with that obtained by Dhatt [6] and the shell

element of Peddy [7].
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2. Nine-Layer Cross-Ply (0°/90°/0°/...) Spherical Shell Subjected to Uniform

Loading Consider a spherical shell laminated of nine layers of graphite-epoxy

material (EI/E 2 = 40, GI2/E 2 = 0.6, G13 = GI2 = G23 , v12 = 0.3), subjected to

uniformly distributed loading, and simply supported on all its edges (i.e. ,

transverse deflection and tangential rotations are zero). A comparison of the load-

deflection curves obtained by the present element with those obtained by Noor [8] is

presented (for the parameters h/a = 0.01 and R/a = i0) in Fig. 3. The results agree

very well with each other, the present 2-D results being closer to Noor's

solution. This is expected because Noor's element is based on a shell theory.

3. Two-Layer Cross-Ply and Angle-Ply (45°/-45 °) Shells Under Uniform Loading
The geometry of the cylindrical shell used here is the same as that considered in

Problem I. The shell is assumed to be simply supported on all edges. The material

properties of individual lamina are the same as those used in Problem 2. A mesh of

2x2 nine-node elements in a quarter shell is used to model the problem. The results

of the analysis are presented in the form of load-deflection curves in Fig. 4. From

the results, one can conclude that the angle-ply shell is more stiffer than the

cross-ply shell. The geometry and boundary conditions used for the spherical shells

are the same as those used in Problem 2. The geometric parameters used are: R/a =

i0, a/h = i00. The load-deflection curves for the cross-ply and angle-ply shells

are shown in Fig. 5. From the plots it is apparent that, for the load range

considered, the angle-ply shell, being stiffer, does not exhibit much geometric

nonlinearity. The load-deflection curve of the cross-ply shell exhibits varying
degree of nonlinearity with the load. For load values between i00 and 150, the

shell becomes relatively more flexible.

Natural Vibration of Twisted Plates

4. Natural vibration of cantilevered twisted plates Here we discuss the

results obtained for natural frequencies of various twisted plates. This analysis
was motivated by their relevance to natural vibrations of turbine blades. Consider

an isotropic cylindrical panel with a twist angle 6 at the free end. Table 1

contains the natural frequencies of a square plate for various values of the twist
angle e and ratios of side to thickness. A 2x2 mesh and 4x4 mesh of 9-node elements

are employed to study the convergence trend. The results of the refined mesh are

included in the parentheses. The results agree with many others published in a

recent NASA report.

Transient Analysis

5. Spherical Cap Under Axisymmetric Pressure Loading Consider a spherical

cap, clamped on the boundary and subjected to axisymmetric pressure loading, Po"
The geometric and material properties are

R = 22.27 in., h = 0.41 in., E = 10.5 x 106 psi, v --0.3,

p = 0.095 ib/in 3, 6 = 26.67 °, Po = i00 ksi, 6t = 10-5 sec.

This problem has been analyzed by Stricklin, et al. [9] using an axis_nmetric shell

element. In the present study the spherical cap is discretized into five nine-node

2-D or 3-D elements. Figure 6 shows the deflection of the center as a function of

time. The present solutions are in excellent agreement in most places with that of
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Table 1 NaturalFrequenciesof TwistedSquare Plates

_= _a2#'6h-7D, D - Eh3 , u = 0.32
12(l-v )

a Twist Mode
-h Angle l 2 3 4 5 6

0° * 3.4556 8.4110 22.0999 28.2089 31.9740 55.1625
(3.4583) (8.3353) (21.0238) (26.7465) (30.I454) (52.0784)

15° 3.4359 10.2920 21.5199 27.2054 32.7430 44.5375

20 30° 3.3790 13.7014 19.9840 25.0943 34.3341 45.8987
(3.3694) (14.2222)(18.9795) (26.8104) (34.4591) (45.7547)

45° 3.2908 18.1009 15.9097 23.5680 35.5332 45.7013

60° 6.1800 17.8319 15.5635 24.1842 36.1466 44.9152

0° * 3.33916 7.3948 I0.8083 18.4930 23.7907 26.0552
•*(3.3390) (7.3559) (10.883) (17.757) (22.769) (24.125)

15° 3.31713 7.4816 10.8053 18.4043 23.6767 24.9474
(3.3170) (7.4504 (I0.774) (17.771) (22.694) (24.083)

5 30° 3.2538 7.7593 10.5248 18.4091 23.3734 24.6116
(3.2538) (7.7089) (I0.478) (17.795) (22.471) (23.943)

45° 3.1570 8.1435 I0.1270 18.3843 22.9126 24.0566
(3.!569) (8.0728) (10.062) (17.79) (22.117) (23.651)

60° 3.0370 8.5855 9.67198 18.3089 22.3670 23.3533
(3.0366) (8.4814) (8.5911) (17.730) (21.684) (23.160)

* 2x2, 9-node mesh
*-3x3, 9-node mesh
t 4x4, 9-nodemesh
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Stricklin et al [9]. The difference between the solutions is mostly in the regions
of local minimum and maximum.

6. Two-Layer Cross-Ply Cylindrical Shell Under Uniform Load A cylindrical

shell with a = b = 5", R = i0", h = 0.i" is simply-supported on the four edges. The

deep shell is laminated by 2 layers (0°/90 °) and exerted by a uniform step load

^ (a4p/E2h4P = ) Figure 7 contains a plot of the center deflection versus time for 2-

D and 3-D elements. The time step used is 6t = 0.i x 10-4 sec. The solutions

obtained 2-D shell element and 3-D degenerate element are in good agreement.

7. Four-layer Angle Ply (45°/-45°/45°/-45 °) Cylindrical Shell Under Uniform

Load Here we present result for a cylindrical shell which has the same geometry as
^

in Problem 3 above. The shell is subjected to a uniform step load P = 50. Figure
4.8 contains a plot of the center deflection versus time for 2-D and 3-D elements.

The two elements yield solutions that agree very well in the beginning of the cycle,
and the 2-D element gives negative values of the deflection at the end of the

cycle. The discrepency is due to the fact that the 2-D element does not account for

geometric changes from one time step to next.

8. Two-layer Angle-Ply (45°/-45 °) Spherical S_ell Under Uniform loading

Consider a spherical shell with a = b = i0", R = 20" and h = 0.i", simply supported

at four edges and is exerted by a uniform step load. The shell consists o_ two
layers, (45°/-45°). Figure 9 shows the center deflection versus time for P = 50

^

and P = 500 with time step 0.2 x 10-5 sec. For the small load the curve is

relatively smooth compared to that of the larger load. This is due to the fact that
^ A

the geometric nonlinearity exhibited at P = 50 is smaller compared to that at P =
500.

The results of Problems 3, 4, 6, 7, and 8 should serve as references for future

investigations. For additional results the reader is referred to Reference i0.
This completes the discussion of the results.

CONCLUSIONS

The present 3-D degenerated element has computational simplicity over a fully
three-dimensional element and the element accounts for full geometric nonlinearities
in contrast to 2-D elements based on shell theories. As demonstrated via numerical

examples, the deflections obtained by the 2-D shell element deviate from those

obtained by the 3-D element for deep shells. Further, the 3-D element can be used

to model general shells that are not necessarily doubly-curved. For example, the
vibration of twisted plates cannot be studied using the 2-D shell element discussed

in [7]. Of course, the 3-D degenerated element is computationally more demanding

than the 2-D shell theory element for a given problem. In summary, the present 3-D
element is an efficient element for the analysis of layered composite plates and

shells undergoing large displacements and transient motion.

The 3-D element presented herein can be modified to include thermal stress

analysis capability and material nonlinearities. While the inclusion of thermal

stresses is a simple exercise, the inclusion of nonlinear material effects is a

difficult task. An acceptable material model should be a generalization of Ramberg-

Osgood relation to a layered anisotropic medium. Another area that requires further
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Figure 6. Center deflection versus time for a Figure 7. Center deflection versus time for a

spherical cap under axisymmetric dynamic two-layer cross-ply cylindrical shell

load (Po = i00 psi) under uniform step load



Figure 8. Center deflection versus time for four- Figure 9. Center deflection versus time for two-

layer angle-ply [450/-450/45°/-45 °] layer angle-ply [45°/-45 °] spherical
cylindrical shell under uniform load shell under uniform load



study is the inclusion of damping effects, which are more significant than the shear
deformation effects.
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NONLINEARFINITE ELEMENTANALYSISOF SHELLSWITH

LARGEASPECTRATIO*

T. Y. Changand K. Sawamiphakdi
The University of Akron

SUMMARY

A higher order 'degenerated' shell element with 9-nodes was selected for large
deformation and post-buckling analysis of thick or thin shells. Elastic-plastic ma-
terial properties may also be included. A description on the post-buckling analysis
algorithm is given. Using a square plate, it was demonstrated that the 9-node ele-
ment does not have shear locking effect even if its aspect ratio was increased to
the order 108 Two sample problems are given to show the analysis capability of the
shell element.

INTRODUCTION

Research work in finite element analysis applied to plates and shells has en-
dured for more than twenty years due to the complexity of the problems involved.
Continuing progress is still being made on topics relating to nonlinear shell analy-
sis. In particular, recent interest has been focused on large deformation and post-
buckling behavior of shells. Applications of such analysis problems can be found
in turbine blades, nuclear vessels and offshore tubular members, etc.

Development of a finite element procedure for plate or shell analysis can be
achieved by two distinct approaches: i) using classical shell theories or ii) de-
riving finite element equations directly from the three dimensional continuum theory.
Although there are several shell theories of different approximations [1] which are
useful for linear analysis, they cannot be readily extended to nonlinear cases with
sufficient generality. Consequently, most of the recent nonlinear shell research
was concentrated in the latter approach.

Based on the three-dimensional continuum theory, several different directions
can be pursued to formulate a shell element. One approach is to deduce a shell ele-
ment from a 3/D isoparametric solid by imposing necessary kinematic assumptions in
connection with the small dimension of the shell thickness. Adoption of isoparame-
tric formulation offers two immediate advantages: i) the requirement of rigid body
modes is satisfied, and ii) element properties are invariant with reference coordi-
nates. Several variations of isoparametric-base shell elements have appeared in the
literature. One class of elements is the so-called 'degenerated' shell family with
4 to 16 nodes, which was originally proposed by Ahmad, Iron and Zienkiewicz [2] for
linear shells. Although these elements are quite versatile for extension to nonline-
ar analysis, several numerical difficulties were experienced. The most notorious
problem is that the lower order elements exhibit shear-locking phenomenon as the
thickness of the shell becomessmall (or large aspect ratio-element size vs. thick-
ness). One way to circumvent this problem is to adopt a reduced integration tech-

*Work supported by NASAGrant NASG3-317.
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nique for evaluation of element stiffness. An alternate solution is to use higher
order elements, such as 9- or 16-node Lagrange element.

In this paper, some of the recent nonlinear analysis results for a 9-node 'de-
generated' shell element are reported. Nonlinearities considered in our work include
large deformations, post-buckling behavior and elastic-plastic materials.

DEGENERATEDSHELLELEMENT

Detailed description of this element can be found in [3,4] and therefore will
not be repeated herein. Wewill only briefly outline this element for the sake of
completeness. The geometry of the element is circumscribed by its middle surface
which consists of 9-nodes as shown in Fig. I. Each node has five degrees of free-
dom, three translations in the direction of global axes and two rotations about a
local system. Displacement patterns in the surface of the shell are represented by
quadratic polynomials. Whereas in the thickness direction, displacements are approx-
imated by Mindlin's plate assumptions. If the center node of the element is removed,
it reduces to an 8-node serendipity element. Otherwise, the element is called a 9-
node Lagrange element.

SOLUTIONMETHOD

The nonlinear shell equations are solved by an incremental tangent stiffness
approach. For each load increment, either the full or modified Newton-Raphson algo-
rithm can be optioned in conjunction with secant accelerated iterations. For shells
exhibiting softening behavior, the modified Newton-Raphson with or without acceler-
ated iterations was found most effective. On the other hand, for shells exhibiting
stiffening effect or near instability, the full Newton-Raphson algorithm is necessary
for obtaining convergent solutions. However, if one is to follow the structural re-
sponse of a shell beyond its instability point (post-buckling behavior), any of the
aforementioned algorithms fails to apply due to the singularity of tangent stiffness
matrix. For this purpose, a different algorithm must be employed.

There are at least four different methods available for post-buckling analysis:
i) Artificial spring, ii) specified displacements at nodes, iii) use of current
stiffness, and iv) constrained arc length. A comprehensive review of these methods
was given by Ramm[5] and Riks [6]. Of all the methods that have been applied to
post-buckling analysis of shells, the constrained arc length is most effective due
to its generality. Actually, in concept this method is equivalent to a displacement
control analysis, in which numerical instability of a system is circumvented by
specified boundary displacements.

There are several ways of defining constrained arc length [7-9,4], but the most
general definition is as follows. For the i-th iteration of a load increment, we
calculate an arc length ds by

2 _2ds = _ {q1+l(>'i+l)}T {qi+l(_i+l)} + _ i+l {AR}T {AR}

46



2

: _ {qi(_i)}T {qi(_i)} + B_i {AR}T {_R} (I)

and ds must be kept constant, where ds is the arc length at the beginning of the load
step. In Eq. (I), the following definitions are given:

qi = Incremental displacement vector from time t to t+At after i-th iteration.

hi : A load factor after i-th iteration.

_,B = Scaling factors, 0 < _,B > I.

For a given problem, the analysis will proceed incrementally with the standard load
control and the determinant ratio of tangent stiffness is monitored. Whenthe de-
terminant ratio reaches a small value, i.e. ]det KT/det Kol < tol., the structure is
considered to be near unstable. Then the analysis procedure is switched to a con-
strained arc length method. Thus, the post-buckling behavior of a shell structure
can be traced without encountering any numerical difficulty.

ASPECTRATIO

It is known that the use of 'degenerated' shell elements for thin plate or thin
shell analysis may give unsatisfactory results due to the so-called shear locking
phenomenon. This phenomenon was demonstrated for 4- and 8-node elements. One way
to alleviate this problem is to use a reduced integration scheme [I0,II]. However,
this approach can, at best, postpone the problem and it breaks down when the shell
thickness is further reduced. An alternate solution to the shear locking problem is
to adopt higher order Lagrange elements with 9 or 16 nodes. From our study, we found
that the 9-node element gives very satisfactory results. For discussion purpose, we
define.

Aspect Ratio Ra = (Largest Element Dimension)/Thickness

To determine how thin a shell can be modeled by the 9-node elements, a clamped plate
subjected to uniform load was analyzed by varying the aspect ratio ranging from 10
to 108. The following cases were considered:

Case I. 8-node elements with 2 x 2 integration order
Case 2. 8-node elements with 3 x 3 integration order
Case 3. 9-node elements with 2 x 2 integration order
Case 4. 9-node elements with 3 x 3 integration order

Using symmetry condition, one quarter of the plate was sufficiently modeled by a
4 x 4 mesh. The plate was loaded well into the large deformation range and the re-
sults are compared at a load factor (qa4/Eh 4) = 200. The finite element results for
all four cases in conjunction with an exact solution are shown in Fig. 2. It is
clearly seen that the 9-node Lagrange element does not show any shear locking up to
a ridiculus value of aspect ratio i0 _ The problem was also analyzed for a simply-
supported condition and the same results were obtained.
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NUMERICALEXAMPLES

Two sample problems are presented herein to demonstrate the analysis capability
of the 9-node Lagrange element together with the post-buckling algorithm described
in the previous section.

i. Large Deflection of an Elastic-Plastic Sandwich Cap

A sandwich spherical cap, shown in Fig. 3, was made of two identical aluminum
face sheets and a honeycomb core. The face sheets were assumed to be bilinear elas-
tic-plastic, whereas the core was elastic. The cap was subjected to pressure with
two variations_ i) pressure with constant direction, and ii) pressure always normal
to the deformed surface (follower pressure). This problem was previously analyzed
by Sharifi and Popov [12] using two-dimensional axisymmetric elements and the experi-
mental results were obtained by Lin and Popov [13]. The pressure load was applied
incrementally in fifteen steps up to 0.8 Pu, where Pu = ultimate pressure of the cap.
Then the load increment was reduced in half to complete the analysis. As the pres-
sure was approaching to the ultimate value, the load control analysis was switched
to constrained displacement method. Throughout the analysis, the modified Newton-
Raphson iterations with secant acceleration was exercised. It is noted that the se-
cant acceleration for iteration is activated only if the number of iterations re-
quired is greater than two (2). On the average, 4-5 iterations per load step were
used when the cap was becoming structurally unstable. For the case of constant-di-
rection pressure, our calculated ultimate pressure was found to be 30.15 psi, which
is fairly close to the buckling load 30.6 psi predicted by Plantema [14] and 29.3 psi
reported in [12]. For the follower pressure, our calculated ultimate pressure is
somewhat lower than the constant direction case, i.e. Pu = 27.6 psi. This value is
compared favorably with the experimental results 27. psi in [13]. The plastic hinge
was found at a location of 0.8 a from the center of the cap (a = half span of the
spherical cap). This location is identical to that given in [12].

2. Post-Buckling of a Spherical Shell

A spherical shallow shell, subjected to a concentrated force at the apex and
supported by fixed hinges, was considered. Two different cases of material proper-
ties were included: i) linearly elastic material, ii) elastic-perfectly plastic ma-
terial. This problem was previously analyzed by Argyris et al. [15] using triangular
shell elements and Parisch [16] using 4-node 'degenerated' shell elements.

In the case of elastic material, a load increment Ap = 0.I Pu, Pu = ultimate
load, was imposed to the shell. Since this structure exhibits prolonged softening
behavior, the use of modified Newton-Raphson iterations gave considerable difficulty
in obtaining convergent solution, the full Newton algorithm with 3-5 iterations had
to be employed. When the load was increased to about 0.9 Pu, the constrained arc
length method was exercised. From our analysis, the ultimate load was found to be
Pu = 53.5 lb., slightly higher than the values 51.5 lb. in [16].

For elastic-plastic material, our analysis was conducted in four stages in ac-
cordance with the structural behavior:

I. Stable region with small deformation (OA in Fig. 4). In this region, nonline-
arity of shell is merely caused by elastic-plastic deformation and no numerical dif-
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ficulty was experienced. With the use of full-Newton-Raphson, only two iterations
were needed per load step.

2. Materially unstable, pre-buckling stage (AB). The structure became mildly un-
stable due to the progression of plastic zone. After the plasticity had spread to
some extent, internal plastic unloading was taking place as a result of geometric
change of the shell surface (i.e. large deformation effect). Therefore, there was
an actual stiffening phenomenon shown in Fig. 4. In this loading range, the determi-
nant ratio of the shell stiffness was less than 0.I, and consequently convergence
was difficult to obtain. Analysis was conducted by using the constrained arc length
method.

3. Post-buckling stage (BC). The structure is highly unstable and the correspond-
ing structural stiffness became negative, but still definite. The constrained arc
length method together with full Newton-Raphson algorithm must be used in order to
obtain convergent solution. The external load was gradually reduced until a mini-
mumvalue was reached (at C). The number of iterations per load step required for
this region is about 4-5. It is noted that the curvature of the shell surface, as
a result of large deformation, was changed from convex to concave shape.

4. Membraneaction (CD). After the shell was completely turned upside down, only
membraneaction was present. In this case, the structure has much greater stiffness,
and hence resumed its stable condition. Correspondingly, the analysis was switched
back to load control with either modified or full Newton-Raphson iterations.

The load vs deflection responses for both elastic and elastic-plastic materials
are compared with those by Argyris [15] and Parisch [16]. Our results correlate
quite closely with Parisch's solutions, but differ substantially with Argyris' solu-
tion, especially the post-buckling response of elastic-plastic analysis.

CONCLUSION

Applications of a 9-node Lagrange shell element to large deformation and post-
buckling analysis of elastic-plastic shells have been demonstrated in this paper.
Based on our study, this element does not exhibit any shear locking effect for a
square plate problem even though the aspect ratio of the element was increased to
as much as I0 _. Obviously, this value is way beyond the range of any real-world
shell structures. Nevertheless, several additional topics need further attentions.
Those include the study of its applications to dynamic and creep buckling analysis,
more efficient ways of evaluating element stiffness to reduce computational effort.
The latter point may be improved by using a symbolic mathematical manipulation pack-
age to perform close-form integrations.
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SELF-ADAPTIVESOLUTIONSTRATEGIES

Joseph Padovan
University of Akron
Akron, Ohio 44325

ABSTRACT

The paper briefly overviews progress on the development of enhancements to cur-
rent generation nonlinear finite element algorithms of the incremental Newton-Raphson
type. The main thrust of the work is to introduce work on new alternative formula-
tions which lead to improved algorithms which avoid the need for global level up-
dating and inversion. To quantify the enhanced Newton-Raphson scheme and the new
alternative algorithm, the results of several benchmarks will be presented.

INTRODUCTION

The main thrust of this work is to overview progress on the development and mod-
ification of algorithms which improve the efficiency and stability of solutions to
nonlinear finite element (FE) simulations (ref. I). The emphasis will be threefold
namely, I) To review briefly progress on the development of enhancements to current
generation algorithms of the incremental Newton-Raphson (INR) type; 2) To introduce
progress on the development of new alternative algorithmic schemes and; 3) To present
the results of several benchmark problems.

OVERVIEWOF PROGRESSON ENHANCEDINR TYPEALGORITHMS

While numerous algorithms can be employed to solve the nonlinear algebraic
equations arising from FE formulations, the most popular scheme is the NR type.
This follows from the fact that it can handle kinematic and material nonlinearity
say as in elastic-plastic-creep behavior. Regardless of its adaptability, the
straight or modified INR suffer from several drawbacks namely:

I. Cannot handle turning points;

2. No direct control on successive iterates;

3. Difficult to ascertain zones of convergence as solution proceeds;

4. Requires global level updating and assembly;

5. Global level inversion/pseudo updating required;

6. Out of core blocking of solution awkward;

7. Control of individual degree of freedom excursions difficult;

8. Successive iterations occur on a global level hence control of individual
degrees of freedom difficult.

To circumvent the more difficult of the foregoing shortcomings, constraint
bounds were employed to:

*Supported by NASALewis Under Grant NAG3-54
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I. Handle turning points;

2. Control successive iterates;

3. Introduce self-adaptive aspects to algorithm;

4. Expand regions of stable convergence properties and;

5. Facilitate evaluation of zones of convergence as solution proceeds.

In order to facilitate such properties the INR can be reinterpreted as the intersec-
tion of a tangent extrapolation of the solution curve and a constraint surface. For
procedures such as the standard NR and those advocated by Wempner (ref. 2) and Riks
(ref. 3), the constraint surfaces are open hence leading to potential nonintersection.
In contrast, the use of closed constraint surfaces generally guarantees the intersec-
tion with the solution curve. While the circular constraint of Crisfield
(ref. 4) satisfies the closedness criterion, it requires the use of limited step
size increments. This follows from the manner in which the deflection and force ex-
cursions are interrelated in normed constraint space. In contrast, the elliptic and
hyperbolic constraints developed by Padovan and Tovichakchaikul (refs. 5-7) provide
for more flexible control of successive excursions.

The formal convergence properties of the constrained methology developed by
Padovan and Tovichakchaikul has been considered in a very recent series of papers
(refs. 8-10). This work illustrates various aspects of the formal properties of
constrained INR schemes namely (refs. 8-10):

i) The existence of global sized safety zones wherein convergence can be
guaranteed;

ii) The use of the various properties of the safety zones to establish self-
adaptive attributes;

iii) The existence of quadratic-superlinear convergence rates.

Based on this work, the elliptically and hyperbolically constrained INR algo-
rithm have been applied to a wide variety of benchmark problems. Specifically,

i) Elastic pre-postbuckling behavior of numerous structural configurations
(ref. 5);

ii) Elastic-plastic-creep problems including kinematic nonlinearity and poten-
tial pre-postbuckling (ref. 5-7);

iii) Nonlinear heat conduction (ref.ll,12) and;

iv) Rolling contact problems (ref. 13).

The results of this work (ref. 5-13) clearly illustrate the enhanced operating
characteristics of constrained type INR schemes. In particular, the scheme:

I. Is inherently stable;

2. Yields significantly improved operating efficiency;

3. Can be applied to a wide variety of problem types;

4. Is completely compatible with current architectures of general purpose (GP)
codes;

5. Handles turning points;

56



6. Controls successive iterates;

7. Introduces self-adaptive aspects to INR type algorithms;

8. Greatly expands regions of stable convergence, and;

9. Facilitates evaluation of zones of convergence as solution proceeds.

ALTERNATIVEFORMULATIONS

The constrained INR approach greatly extends the capabilities to solve nonlinear
problems. Regardless of this, the NR root of such a formulation still introduces
difficulties namely

a) Global updating and assembly;

b) Global level inversion or pseudo-updating;

c) Awkward blocking and I/0 for out of core problems;

d) Control of individual degree of freedom excursions
is difficult; and

e) Iteration occurs on a global level hence contributing to
difficulty of controlling individual degrees.

In the context of the foregoing, an alternative formulation will be sought. The
main motivations of this work are

I. Solution scheme should have hierarchial application levels
(degree of freedom, nodal, elemental, material group, substructural,
global);

2. Bypass need of global level inversion;

3. Bypass need of global level updating;

4. Develop algorithmic structure enabling simplified
I/0 data flow for out of core problems;

5. Possess self adaptive attributes enabling hierarchial control
(locally, globally) and;

6. Provide continuous hierarchial updating.

To establish an algorithm which satisfies the preceding requirements, an alter-
native starting point will be employed. Note, the Galerkin's and virtual work for-
mulations typically yield algorithms requiring matrix inversion. The use of energy
type formulations presents difficulties due to it'simplicit form and can fluctuate
in definiteness during anomalous iterative processes. In contrast, Rayleigh Ritz
type expressions are positive definite_explicit in form and yield derivatives with a
simplified structure.

Based on the standard virtual work principle, the governing FE field equations
associated with large deformation (small strain large rotation) theory take the
form (ref. I).

R(Y) = f [B*(Y)] T S(Y) dv = F (I)

o
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where F is the external load, _ the 2nd Piola-Kirchhoff stress tensor, andY the
nodal aeflections. Employing (I), the standard Rayleigh-Ritz (least square'_ ex-
pression takes the following form

E(Y) = IIR 112 (2)
where If( )II defines the usual Euclidean norm. To approximate (2), we can employ
Taylor series. Furthermore, since (2) is positive definite, it has essentially
quadratic properties about the minimizing solution YM" In this context we can recast
(2) as (ref. 14)

i ) Taylor approximation;

El(Y) = II R(YM) - F + [KT(YM)](Y - YM) II2 (3)
ii) Quadratic approximation;

Ell(y) YM + (Y YM)T -I: - [r M] (Y- YM) (4)

such that YM defines the minimum value of E(Y) and [KT(_M)] is the tangent stiffness.

To establish a hierarchial algorithm wherein degree of freedom level updating is
employed, El (Y) the quadratic approximation is recast in the form

el (y):Ei+l ~

_ + (y Yi)T 2(Ri(Y i) Fi ~ - KTi(Yi)) + 8i E_ (Y) (5)
where

EiII (Y) = Yi + (Y - Yi)T[ri ]-I(Y - Yi ) (6)

such that KT- is the (i) th column of [KT] and 8i is a scaling factor which controls
the amount~o# history of the (i) th degree of freedom admitted per any iteration.

Employing (5), the localized degree of freedom level algorithm is obtained by
requiring that the Taylor and quadratic approximation satisfy higher order continuity
requirements namely

EOli+l(Yi)~ = E_+I (Yi)~ (7)

d @I
(Ei+l(Yil)= (E +I(Yil) (el

d2 fEOl (Yi)) - d2dV ' i+l (Ei+l(Yi))
(9)

2 ~ dy2 ~
~ ~

After extensivemanipulations(7-9)yield the followingexpressions,that is

58



Yi+l : Yi - _i (Ri(Yi) - Fi)[ri] KTi (I0)

= 1 )T[Fi+l] _- ([Fi] - _i[ri](KTi (KTi)[ri ]T ) (II)

where _i is a scaling parameter controlling the modification of [Fi].

The efficient architecture of (I0 and II) follows directly from the fact that
partitioned matrix multiplication is employed to effect all necessary updating and
iterating. For example, noting (I0) it follows that only a narrow band of [F i] and
_Ti is employed to update _i+l" Specifically

[ri] _Ti =

-
0

i-b i

i =

i+b i

0

_ (12)

i-bi i i+bi

Similarlynoting (ll) we see that

(KTi)T (KTi) =

i-b. 0 0 0

i+bi 0 0 : 0 _/ 0
i-b i i+b.1

0 0 0
(13)u
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BENCHMARKING

To benchmark the new algorithm, two highly nonlinear problems have been chosen
to ascertain the operating characteristics. Figure 1 illustrates the geometry of a
centrally loaded spherical cap modelled with 8 node quadralateral isoparametric axi-
symmetric elements. Figure 1 also illustrates the load deflection behavior solved
via both the standard INR and (I0,II). As can be seen, while the standard INR re-
quired 70 load increments and a total of some 233 iterations, (I0,II) achieved a
converged solution in one load increment involving 7 total cycles through all the
degrees of freedom.

As a further demonstration of the use of (I0,II), we consider the centrally
loaded box truss structure given in Figure 2. This structure exhibits pre-post-
buckling behavior. By imposing linear constraints on the choice of E, the entire
pre-postbuckling behavior is traced. This example illustrates the ability of (I0,II)
to handle both pre-postbuckling situations wherein transitions in definiteness are
encountered.

CONCLUSIONSAND FUTUREOBJECTIVES: ALTERNATIVEFORMULATION

Based on the foregoing development and benchmarking it follows that the alter-
native formulation defined by (I0 and II) is:

I. Stable;

2. Significantly improves solution efficiency (problem dependent);

3. Provides for hierarchial application levels;

4. Eliminates need of inverse;

5. Architecture of data flow stream-lined;

6. Can handle problems with turning points (through use of constraints);
and;

7. Can handle general material properties.

The future objectives of work on the alternative algorithm will be several-
fold namely:

I. Benchmark algorithm extensively;

2. Investigate such items as;

i) Hierarchial application levels;

ii) Use of localized/globalized constraints to enhance
solution efficiency;

iii) Consider use with history dependent media and;

3. Establish convergence, stability characteristics on formal basis.
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ELEMENT-BY-ELEMENT SOLUTION PROCEDURES

FOR NONLINEAR STRUCTURAL ANALYSIS

Thomas J.R. Hughes, James Winget and Itzhak Levit

Stanford University

SUMMARY

Element-by-element approximate factorization procedures are proposed for solv-

ing the large finite element equation systems which arise in nonlinear structural
mechanics. Architectural and data base advantages of the present algorithms over
traditional direct elimination schemes are noted. Results of calculations suggest

considerable potential for the methods described.

INTRODUCTION

Despite the attainment of significant increases in computer storage and speed

in recent years, many contemporary problems of engineering interest are simply too

complex to be solved with existing numerical algorithms and presently-available

hardware. In this paper we address the subject of solving the matrix equations

arising from finite element spatial discretizations. In Appendix I a brief sketch

is given of how finite element equation systems emanate from various classes of

structural mechanics problems. The matrix equations, though sparsely populated,

still entail enormous storage demands, especially in three-dimensional cases. This

is the major drawback to matrix-based ("implicit") finite element procedures. The

types of methods we have developed to deal with this circumvent the need to form

and factorize large global arrays. These methods have their origins in procedures

which pervade the numerical analysis literature. Basically, the idea is to replace

a large, complicated array by a product of simpler arrays. The original concepts

apparently emanate from the so-called "alternating direction (ADI) methods" (ref's.

6, 7, i0, 35). There is a large Russian literature on methods of this type which
is summarized in the books of Marchuk and Yanenko (ref's. 31 and 38, resp.). In

these works the terminologies used are the "method of fractional steps", the "split-

ting-up method", and the "method of weak approximation". In the field of computa-

tional aerodynamics these techniques are often described as "approximate factoriza-
tion" methods (see e.g. Warming and Beam, ref. 37). The preceding references deal

primarily with finite difference methods in which the splitting is usually performed
by decomposing a multi-dimensional partial differential operator into one-dlmension ....

al operators. This, of course, places geometrical and topological limitations on

the discretizations. Generally these methods are used most effectively in the con-

text of rectangular domains, or domains which are at least topologically equivalent

to rectangles. When circumstances like this prevail, very large problems can be

efficiently solved. Progress has been made in developing analogous finite element

s.

Work performed under Grant No. NAG 3-319
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procedures (see ref's, i, 5, 8, 9, 12-15). However, these procedures do not retain

the full geometric and topological versatility of finite element dlscretizations.

The methods advocated herein derive many features from the preceding references.

The approximate factorization aspect of the present approach is facilitated by what
we feel are the most simple and natural constituents of the finite element process--

the individual element arrays. No more than one element array needs to be formed
and stored at one time and calculations proceed in an element-by-element (EBE) fa-

shion. There is no geometric or topological restriction imposed by the method, and

at the same time a remarkably concise computational architecture is achieved. It is

pointed out herein that the present approach has significant advantages when impli-

cit-explicit finite element mesh partitions are employed, and, what appears to be

most significant for the future, the method is amenable to parallel calculations on

multi-processor computers.

The idea of element-by-element factorizations was first proposed in Hughes,

Levit and Winger (re_. 22) in which a transient algorithm for heat conduction was
developed. Based upon this work, Ortiz, Pinsky and Taylor (ref. 34) constructed a

novel time-stepping scheme for dynamics. However, our research revealed stringent

accuracy requirements in certain circumstances, and we were led to reformulate the
procedure as an iterative linear equation solver (see Hughes, Levit and Winget, ref.

23). In this way the usual accuracy and stability properties of standard finite

element algorithms is attained. The problems that we have applied these procedures
to are all time dependent and mostly nonlinear. Nour-Omid and Parlett (ref. 33)

have applied similar procedures to static structures problems and also report en-

couraging results.

ITERATIVE ALGORITHMS

A variety of algorithms may be employed in conjunction with approximately-fac-
torized arrays. The following has been used in the numerical work presented herein.

Parabolic Regularization

The derivation of this algorithm is based upon replacing the algebraic problem

Ax=b

by a first-order ordinary differential equation whose asymptotic solution is x .
The terminology "parabolic regularization" is used slnce the algebraic problem is

replaced by what amounts to a spatially-discrete parabolic problem. The ordinary

differential equation is discretized by backward differences and the implicit opera-

tor is approximately factorized. Quasi-Newton updates and line searches are employed

to accelerate convergence. The flowchart summarizes the procedure for symmetric po-

sitive-deflnite arrays. Further details may be found in reference 23.
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Flowchart of the parabolic regularization (PR) algorithm with line
search and BFGS updates

Step i. Initialization:

m = 0 , _0 = ~0 , _0 = b~

_k = _k = ~0 (loop: k = i , 2 ,..., nBFGS )

A_ = B-I _0

Step 2. Line search:

s = AxT rm/AxT A Ax

=x +sAx
Xm+l ~m ~

Step 3. Convergence check:

llrm+lll <

Yes : Return

No : Continue

Step 4. Relabel old BFGS vectors:

_k-i : _k ' _k-i = _k ' (loop: k = 2 , 3 ,..., nBFGS)

Step 5. Calculate new BFGS vectors:

fnBFGS = (Axr rm )-I

_nBFGS = _m+l - (i - s½)rm

Step 6. New search direction:

z : rm+ I

z . z + (f_ z)gk (loop: k = nBFGS , nBFGS - i ,..., i)

z .B-I z

z .z + (g_ z)fk (loop: k = i , 2 ,..., nBFGS)

Ax=z

Step 7. m . m + i , go to Step 2.
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The notation in the flowchart is given as follows: m is the iteration counter;

the fk's and gk's are the BFGS vectors; nBFGS is the maximum number of BFGS

vectors allowed; B is a matrix which approximates A , but is more easily factor-

ized; s is the search parameter; _m is the mth approximation of _ ; _m = b -

_m is the corresponding residual; ][_m[[ is its Euclidean length; and _ is~a
preassigned error tolerance.

Remark i. The search parameter in step 2 is determined by minimizing the potential
energy

1 _(_m + s Ax)) (i)P(s) = - (_m + s Ax)T (b - _ ~

Remark 2. If we ignore the line search and BFGS update ingredients of the PR algo-
rithm, then the classical Jacobi method is obtained when B is taken to be the

diagonal of A .

Remark 3. Our recent research has indicated that the preconditioned conjugate gra-

dients method attains faster convergence than the PR algorithm (see ref. 28). In
addition, conjugate gradients requires only a fixed number of vectors which makes it

computationally more attractive than the PR algorithm with BFGS updates, because a

considerable number of BFGS vectors typically need to be stored. For these reasons,
conjugate gradients is currently our preferred procedure.

APPROXIMATE FACTORIZATION

The convergence rate of the algorithm presented in the preceding section

depends heavily upon the approximating matrix B It may be noted that if B =

then the exact solution x is obtained immediately. Numerous choices for B are
possible. This subject is explored in reference 28. We limit the following dis-

cussion to the methods used in computing the results presented herein. To describe
the procedures employed, we first consider matrices, A , written in the following
form:

= W=(I + E A)W a (2)

where I is the identity matrix, W is a positive-definite diagonal matrix,

is a scalar, and 6 is a matrix which has the same sparsity pattern as A . A is

to be thought of as an approximation of A . Specific choices of W , _~ and ~
are considered later. The second and final stage of the approximation is to define

B : WI_C WI_ (3)

where C is an approximation of I + g A Various choices are considered below:
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Two-component Splitting

Let A be decomposed as follows:

Then a possible definition of C is

C = (I + g AI)~ (I~+ g A--2)~ = I~+ g _~ + 2 AIA2 = I~+ _ A~ + O(E 2) (5)

The last par_t suggests the nature of the approximation. Computational simplicity is

gained if _i and _2 are very sparse and more easily factorized than A .

One-pass Multi-component Splitting

Consider a multi-component sum decomposition of A :

n

i=l

Let

n

c = n (!. _ Ai)
~ i=l

= (I + S _i )(I + S _2 ) ... (I + g _n )

= I + g E + O(g 2) (7)
~ ~

Clearly, this is just a straightforward generalization of the two-component splitting.

Two-pass Multi-component Splitting

This generalization of the preceding case has qualitative advantages under cer-

tain circumstances (Marchuk, ref. 31). Let

n i

Ei)EA.) ]I (I +-_c = _ (_+_~_ ~ ~
i=l i=n

(cont'd .)

69



_I)(I+ _- __n) ×= (I +_ ~ _A 2) ... (I +_ ~

× +  n_l)

= I + E: A'~+ 0(g2) (8)

If each _i is symmetric and positive semi-definite, then C is symmetric and
positive-definite. ~

Element-by-element (EBE) Approximate Factorizations

The EBE approximate factorization is simply a multi-component splitting in
which the components are the finite element arrays themselves. That is we assume

ne_,

i=l

where _e is the eth element contribution to A . Then C may be defined by
either The one-pass or two-pass formulae, viz. ~ ~

ne£

c = _ (!+_e) (i0)~

e=l

ne£ i

E _e) H (I + _ _e) ("Marchuk EBE") (ii)c = H (!+_~ ~ ~
i=l e=ne £

Remark i. We wish to use the term element in the generic sense of a "subdomain

model", where an element could be an individual finite element or a subassembly of

elements. Thus we allow limited assembly. Various equivalent terminologies have
been used to define this concept, such as "substructures" and "superelements". Sub-

domain finite element models inherit the symmetry and definiteness properties of the
global array. Consequently, the remark made after (8) applies.

Remark 2. Note that storage demands are vastly less in the EBE case. Only one

element at a time need be stored and processed. Whether or not it is desirable to

save factorized element arrays depends upon the availability of high speed RAM, and
the trade-off between CPU and disk I/O costs.

Remark 3. If elements are segregated into non-contiguous subgroups then calculations

are "parallelizable". For example, brick-like domains can be decomposed into eight

non-contiguous element groups (see fig. i). Because the elements in each subgroup

have no common degrees-of-freedom, they can be processed in parallel. The eight

groups, however, need to be processed sequentially. For analogous two-dimensional

domains, four element groups need to be employed. This feature has significant
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computational implications for vector and multi-processor machines.

Remark 4. It has been our computational experience that if A is symmetric and

positive-definite, then qualitatively faithful approximate factorizations which

preserve these properties, such as (ii), perform much better than those that do not.

In the numerical examples presented herein we have employed (ii) exclusively.

Remark 5. In Reference 28 we have explored the use of reordering the element factors

and of approximately factorizing the individual element arrays. Preliminary results

indicate that significant improvements over the basic scheme of (ii) can be made.

SELECTION OF W , g AND A

In the computations presented herein the following definitions were employed:

W = diagonal entries of A (12)

= _ W-_ A W-½ (13)

Thus

= W + A (14)

This choice is motivated by the derivation of the PR algorithm (see ref. 23).

Remark I. A study performed by Nour-Omid and Parlett (ref. 33) indicates that the

following procedure, suggested by Winger, is superior:

= !W "½ (A - W)W -½ (15)

where W is given by (12). This leads to

= A (16)

Remark 2. The implicit-explicit element concept (see ref's. 20, 21, 24-27) has a very

simple and clean implementation within EBE approximate factorizations. Recall that

an explicit element contributes only its diagonal mass matrix to the coefficient ma-

trix A . Thus W , according to the preceding definition (i.e., eq. (12)), totally
accounts for the explicit element contributions and the corresponding _e's are

identically zero. What this means is that explicit elements may be simply omitted

from the formula for C . In nonlinear problems this opens the way to time-adaptive
implicit-explicit element partitions. In calculating the element contributions to

the residual (i.e. "b") a check can be made whether or not the critical time step is
exceeded for the element. If it is not exceeded, a flag is set to indicate that ele-

ment contributions to C may be simply ignored. The potential savings in nonlinear

transient analysis procedures incorporating these ideas is clearly considerable.
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SAMPLE PROBLEMS

The computed results were obtained on a VAX computer using single precision
(32 bits per floating point word).

Elastic Cantilever Beam

The configuration analyzed is shown in figure 2. It represents one-half of a

plane strain beam modelled with 32 bilinear quadrilateral elements. A lumped mass

matrix was employed. The loading and boundary conditions are set in accord with an

exact, static linear elasticity solution (see pp. 35-39, ref. 36). However, here

the problem is forced dynamically. The beam is assumed initially at rest and all

loads are applied instantaneously at t = 0 + . In formulating the problem, the

Newmark algorithm is employed with B = _ and Y = ½ (see Appendix I). With these

parameters, unconditional stability is attained and no algorithmic damping is intro-
duced (see ref's. Ii, 17, 21).

The numerical solution is dominated by response in the fundamental mode. This

is illustrated in figure 3. At a time step of AtA_E 2.5 x 10-4 an essentiallyexact solution is obtained. At a larger step of = 2.5 x i0-3 , a very crude

approximation of the response is obtained. It is interesting to relate the sizes of

these steps to the critical time step for explicit integration, Atcrit = hmin/C D =
hmin/ _(% + 2H)/0 = 1.336 x 10-5 , and the approximate period of the fundamental

mode, T1 m .0122 (see table 1). As may be seen, both time steps are far outside the
range of explicit integration. The larger time step resolves the fundamental mode

with only 5 steps, and thus is larger than the maximum feasible for this problem.

In comparing the results of the various methods it is important to keep in mind
that all methods give identical solutions.* Consequently, the primary basis of com-
parison is the number of iterations needed to attain the solution. It was found

that the number of iterations per time step did not vary significantly from one time

step to another for a given method and specific step size. Results for the first

time step are presented in table 2. The following observations may be made: In
general the element-by-element results are superior to Jacobi. Use of line search

and BFGS updates accelerate convergence. The best results are attained by the ele-

ment-by-element procedure with line search and BFGS updates.

It is somewhat surprising that methods (v) and (vi) converge faster at the

larger time step than at the smaller. At this point we have no explanation for
this phenomenon.

Elastic and Elastic-Perfectly Plastic Cantilever Beam

The geometrical definition of this problem is identical to the previous one

except that the entire beam is discretized by a 64 element mesh (the lower part of

the beam was added to the mesh of figure 2). The boundary conditions were changed

to the following.

The convergence tolerance, 6 in step 3 of the flowchart, was taken to be .0111bl I.
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Ul(0, x2, t) = u2(0, 0, t) = 0 )Ix2 E I-c, +c] , t E [0, T]t2(L , x2, t) = Q (_)(i - (_)2

Q = 1,000 , T = 0.04 , L = 16 , c = 2

The boundary tractions are zero on the remaining boundary segments. The tensile

uniaxial yield stress was taken to be 3,000. Small deformations were assumed and

the elastic stiffness matrix was used on the left-hand side throughout. The radial-

return algorithm of reference 30 was employed to integrate the elastic-plastic con-

stitutive equation.

Figures 4 and 5 compare the elastic and plastic stress distributions at t =

.036. A fully developed plastic hinge is present at the root of the beam in the

plastic case. The elastic critical time step of this problem is Atcrit = 1.336 x

10-5 and the time step used was At = 2.5 x 10-3 = 187.1 Atcrit . The EBE method

with BFGS updates and line searches was employed. The average number of iterations
for both the elastic and plastic calculations was 4.

Elastic and Elastic-Perfectly Plastic Cantilever Beam with a Circular Hole

The geometric definition of the problem is shown in figure 6. The beam was

discretized using a 500 element mesh. The following kinematic and stress boundary

conditions were employed:

Ul(O , x2, t) = u2(0 , 0, t) ]

Ix2 E I-c, +c] , t _ [0, T]2

Q = 250 , T = 0.09 , L = 28 , c = 4

Where not specified to be nonzero, the tractions are zero. The uniaxial0Yieldlb
stress was taken to be i000. A critical time step of Atcrit = 5.41 x - was
calculated on the basis of the smallest element edge length. (The critical time

step based upon the shortest distance between opposite element edges, which may
be a more meaningful distance, is less than half this number.) Two time steps

were employed in the calculations: At = i0 x Atcrit and At = 50 x Atcrit

The EBE algorithm with BFGS updates was also employed for this problem. Results

for the smaller time step converged in i iteration, whereas for the latter, 7 iter-

ations were required on average.

Figures 7 and 8 show the stress distributions at time t = 0.09 for the elastic

and plastic solutions. A fully developed plastic hinge is present at the end of the
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beam and a secondary plastic hinge has partially developed in the stress concentra-

tion zone (plastic regions are shown dashed in fig. 8c).

We wish to remark upon the contour-line routine used to obtain the results

presented in this section. The finite element analyzer calculates the stresses at

the integration points. The data is then extrapolated to the nodal points by means

of a weighted average of all the integration points in the interior domains of all

elements connected to the nodal point. The weights are taken as the inverse of the

distance between the integration point and the nodal point. This type of data

smoothing ensures that the values obtained at the nodal points will be bounded by
the data calculated at the integration points which is an essential property when

plastic stresses are present and ensures continuity of stress contours between ele-

ment domains. However, this method has some drawbacks. For example, data which is

anti-symmetric about the neutral axis of the beam, such as _ii , will result in
linear distribution of contour lines in all elements having the center line as part
of their boundary even in the case where these elements have a uniform stress dis-

tribution (part of a plastic hinge). Data with symmetry with respect to the neutral

axis, such as the von Mises stress, does not suffer from this type of smoothing.

CONCLUDING REMARKS

In this paper EBE approximate factorization techniques have been proposed and

compared on test problems. The PR algorithm with BFGS updates performed well, how-

ever, the need to store BFGS vectors is considered a significant disadvantage, and

thus the fixed storage requirements and improved convergence characteristics of the

conjugate gradients algorithm renders it preferable (ref. 28). Improved behavior

has also been attained in reference 28 by employing reorderings of the element fac-
tors.

It should be kept in mind that the EBE concept has been explored herein as a

finite element, linear equation solving procedure. Although initial attempts at

directly using EBE ideas to develop time stepping algorithms had some deficiencies
it may still ultimately prove profitable to couple EBE concepts with the time-step-

ping loop and even the nonlinear iterative loop. It is interesting to note that the

multigrid method found its initial success as a linear equation solver, but in the

most recent and successful variants the multigrid philosophy permeates all aspects

of the methodology (see Brandt, ref. 4).

A step has been taken in the development of EBE solution of finite element equa-

tion systems. A considerable potential exists for the technique, but much research

still remains to be done to bring the methods to fruition.

APPENDIX I - DERIVATION OF LINEAR ALGEBRAIC SYSTEMS IN THE FINITE ELEMENT

ANALYSIS OF NONLINEAR MECHANICS PROBLEMS

Semi-discrete Equations of Nonlinear Mechanics

Consider the following semi-discrete system
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M a = F (I.I)

where M , a and F represent the (generalized) mass matrix, acceleration vector

and force vector, respectively. Equation (I.i) may be thought of as arising from a

finite element discretization of a solid, fluid, structure or combined system. In

general, M , a and F each depend on time (t) . Explicit characterization of

M , a and F may be given for particular systems under consideration.

Nonlinear Structural and Solid Mechanics

In nonlinear structural and solid mechanics the Lagrangian kinematical descrip-

tion is frequently adopted. In this case the important kinematical quantities are

, the material-particle displacement from a reference configuration; v = d ,
the particle velocity; and a = v = d , the particle acceleration. Dots~indicate

the Lagrangian time-derivative in which the material particle is held fixed. The
forces are assumed to take the form

F = Fext - N (1.2)
~

where Fext is the vector of given external forces and N denotes the vector of
internal forces, which may depend upon d , d and their histories. To make the

dependence precise, one need introduce equations whi_ _efi-_e t-_e_onstitutive (i.e.

stress-deformation) behavior of the materials in question. These equations vary

widely in type and complexity. For example, they may be algebraic equations, dif-

ferential equations or integro-differential equations. In addition, inequality

constraints may be present, such as in plasticity theory.

Time Discretization

To solve the semi-discrete problem, a time-discretization algorithm needs to be

introduced. For purpose of illustration we shall employ the Newmark family of meth-
ods (ref. 32). Generalization to other time integrators, such as the Hilber-Hughes-

Taylor algorithm (ref.'s. 16, 18, 19, 21) which possesses improved properties, may

be easily facilitated without essential alteration to the following formulation.

The Newmark "predictors" are given by

At2 (I.3)
_n+l = _n + At _n + 2 (i - 2_)an

_n+l = Vn + At (i - y)a n (1.4)

where subscripts refer to the step n.umber; At is the time step; _n ' Xn and _n

are the approximations to d(t n) , d(tn) and d(tn) , respectively; and B and
y are parameters which govern the accuracy and stability of the method (ref's. ii,

17, 29).
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Calculations commence with the given initial data (i.e., dO and v0) and a0
which may be calculated from

= _ext _ _0 (I.5)[0

if M is diagonal, as is common in structural dynamics, the solution of (I.5) is

rendered trivial. Otherwise, a factorization, forward reduction and back substitu-

tion are necessary to obtain _0 "

In the sequel we are only interested in members of the Newmark family for which
B > 0 .

In each time step a nonlinear algebraic problem arises which may be solved by

Newton-Raphson and quasi-Newton-type iterative procedures. There are several ways

of going about this. In the following implementation an algebraic problem is formu-

lated in which acceleration increments are the unknowns. This form of the implemen-
tation is useful in that disparate field theories, such as fluid mechanics and heat

conduction, may be formally considered as special cases.

Acceleration Formulation

i = 0 (i is the iteration counter) (I.6)

d(i) ~
~n+l = _n+l (I.7)

(i) ~
Vn+ I = Vn+ I _ (predictor phase) (1.8)

a"i'(_ = 0 (I 9)~n+l ~

_ext (i) •(i) (i)
R = _'n+l- Nn+l - _In+lan+l (residual, or out-of-balance, force) (I.i0)

* (i) _(i) .(i)
M = _n+l + ¥At _n+l + 8At2 (effective mass) (I.ii)~ _n+l

M* Aa = R (1.12)

a(i+l) (i)
~n+l = _n+l + Aa (1.13)

(i+l) (i)

in+l = !n+l + yAt Aa (corrector phase) (1.14)

d(i+l) _(i)

n+l = _n+l + _At2 Aa (1.15)
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If additional iterations are to be performed, i is replaced by i+l , and

calculations resume with (I.10). Either a fixed number of iterations may be per-

formed, or iterating may be terminated when Aa and/or R satisfy preassigned

convergence conditions. When the iterative phase is completed, the solution at
d(i+l) _ (i+l)step n+l is defined by the last iterates (viz. dn4-] = n_] ; Vn+l = Zn+l ;

(i+l] .........and a_±1 = a _I o ). At this point, n is replacedby n+l , and calculations
_ LLT.I. _ -i-.L.

for the next _ime step may begln.

In practice, dn , vn and an are generallysaved during the iterativephase
.(i+l) ~ oii+l) _ii+l) ma_ be computedas needed,on thealong with en+l ; but Zn+l and _n+l

elementlevel.

The matrices C and K are the tangent damping and tangent stiffness matrices,

respectively. These are linearized operators associated with N . For example, if

is an algebraic function of d and d , then

= _N/_d (I.16)

and

= aNla_ (I.17)

Generally in structural and solid mechanics, M , K and C are symmetric,

M and K are positive-definite, and C is positive semi-definite.

So-called implicit-explicit mesh partitions (ref's. 2, 3, 20, 21, 24-27) may

be encompassed by the above formulation simply by excluding explicit element/node
contributions from the definitions of C and K . A totally explicit formulation

is attained by ignoring C and K . In these cases it is necessary to employ a
diagonal mass matrix in explicit regions to attain full computational efficiency.

It may be observed that the preceding algorithm may be specialized to nonlinear
statics and linear dynamics and statics:

Nonlinear Statics

In this case ignore M and C and set v and a to zero throughout.

Linear Dynamics

In this case M , C and K are constant and

N = C v + K d (I.18)

Linear Statics

In this case ignore M and C , set v and a to zero throughout, K is
constant and
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N = K d (1.19)

To simplify the writing in the body of this paper we adopt the following nota-
tions in place of (1.12):

A x = b (1.20)

Thus during each step, at each iteration, we wish to solve (1.28) in which A is
assembled from element arrays, that is ~

ne%

A = _ Ae (I.21)
e=l
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Table i Comparison of time steps used in
calculations with characteristic

time scales.

At 2.5 x 10-4 2.5 x 10 -3

At 18.71 187.1
Atcrit

T1 48.9 4.89
At

Table 2 Number of iterations required for convergence

for the problem illustrated in Figure 2.

__ At 2.5 x 10-4 2.5 × 10-3

Method __ (= 18.71 atcrit ) (= 187.1 Atcrit)

(i) Jacobi 99 _(i)

(ii) Jacobi + LS 38 75

(iii) Jacobi + LS + BFGS 15 21

(iv) EBE 14 16

(v) EBE + LS 9 6

(vi) EBE + LS + BFGS 5 4

Key: LS = line search

EBE = element-by-element

Note: (i) No convergence attained after 150 iterations.
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Figure 1. Decompostion of three-dimensional domain into eight
groups of brick elements for parallel processing.
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Figure 2. Problem definition and finite element mesh
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The design and implementation of a software system for
generating finite elements and related computations are
described. Exact symbolic computational techniques are
employed to derive strain-displacement matrices and element
stiffness matrices. Methods for dealing with the exces-
sive growth of symboiic expressions are discussed.
Automatic FORTRAN code generation is described with
emphasis on improving the efficiency of the resultant code.

i. Introduction

Recent years have seen increasing interest in using computer-based
symbolic and algebraic manipulation systems for computations in both
linear and nonlinear finite element analysis. Application areas
include the symbolic derivation of stiffness coefficients [ref. i],
[ref. 2], the reduction of tedium in algebraic manipulation, the gen-
eration of FORTRAN code from symbolic expressions [ref. 3], [ref. 4]
etc. The benefits and usefulness of such an approach in engine struc-
ture research are evident. However, several problems need be solved
before this approach can become widely accepted and practiced:

(i) the efficiency of the symbolic processor and its ability to handle
the large expressions associated with practical problems.

(ii) the interface between a symbolic system and a finite element sys-
tem on the same computer, and

(ill)the inefficiencies that are usually associated with automaticallygenerated code.

The MACSYMA system [ref. 5] is a highly sophisticated computer
system for performing exact symbolic mathematical computations. It

*Work reported herein has been supported in part by NASA under GrantNAG3-298.
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provides many high-levelcommands for symboliccomputationsuch as dif-
ferentiation, matrix multiplication and matrix inverse. MACSYMA is
developedat the MassachusettsInstituteof Technologyand has recently
been made available on the VAX-II/780 computer which is an affordable
high-performanceminicomputer with a very large address space. The
version of MACSYMA on the VAX under the UNIX operationsystem [ref.6]
is known as VAXIMA [ref.7].

We describe our on-going research on the design and implementation
of a finite element generator running under the VAXIMA system and our
experience, so far, in dealing with the problems mentioned earlier.

2. _ specifications and _I_

The finite element generator (Generator)as a software system
should provide a set of predefined functionalitiesand be constructed
in such a way as to exhibit prescribed characteristics. These func-
tional specifications and design goals will then guide the detailed
program design and implementationof the software system.

From a functional point of view, the Generator will perform the
following:

(i) to assist the user in the symbolicderivationof finite elements;

(2) to provide routines for a variety of symbolic computationsin fin-
ite element analysis, includinglinear and non-linearapplications
especiallyfor shells [ref.8];

(3) to provide easy to use interactivecommands for most common opera-
tions;

(4) to allow the mode of operation to range from interactivemanual
control to fully automatic;

(5) to generate, based on symbolic computations, FORTRAN code in a
form specifiedby the user;

(6) to automatically arrange for generated FORTRAN code to compile,
link and run with FORTRAN-basedfinite element analysis packages
such as the NFAP package [ref.9];

(7) to provide for easy verification of computational results and
testing of the code generated.

In providing the above functions attention must be paid to making
the system easy to use, modify and extend. Our initial effort is
focused on the isoparametricelement family. Later the system can be
extended to a wider range of finite elements.
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_. Generationof element _ !R_

Symbolicprocessingcan play a very important role in the genera-
tion of element matrices, especially for higher order elements. As an
example, we shall describe the automatic processing leading to the
derivation of the elment stiffnessmatrix [K] in the isoparametricfor-
mulation. From user supplied input information such as the element
type, the number of nodes, the nodal degrees of freedom, the displace-
ment field interpolationpolynomial and the material propertiesmatrix
[D], the Generator will derive the shape functions, the strain-
displacementmatrix [B] and the element stiffnessmatrix [K].

The computationis divided into five logical phases (fig. I) each
is implementedas a LISP program module running under the VAXIMA sys-
tem. Aside from certain interface considerations,these modules are
quite independent and can therefore be implemented and tested
separately. This allows different people to work on differentmodules
at the same time. After the modules are individuallytested then they
can be integratedand verified together. Any problems can be isolated
to a module and fixed quickly. Detailed descriptionof these phases
follows.

i.l. Phasel : defineiipm_imlame.2ms_

The task of this phase is to interact with the user to define all
the input names, variables,and values that will be needed later. The
basic input mode is interactivewith the system prompting the user at
the terminal for needed input information. While the basic input mode
provides flexibility,the input phase can be tedious. Thus we also
provide a menu-driven mode where well-known element types together
with their usual parametervalues are pre-definedfor user selection.A
fully user-friendlyinput phase is a goal of our system.

The input handling features planned include :

(i) free format for all input with interactive prompting showing the
correct input form;

(2) editing capabilitiesfor correctingtyping errors;

(3) the capabilityof saving all or part of the input for use later;

(4) the flexibilityof receiving input either interactivelyor from a
text file.

_.2. Phase II : _ and [B] matrix computation

The strain-displacementmatrix [B] is derived from symbolically
defined shape functions in this phase. Let n be the number of nodes
then

H = (hi h2, hn), ---f

is the shape functionvector whose componentsare the n shape functions
hI through hn. The value for the shape functionswill be derived in a
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later phase. Here we simply compute with the symbolic names. Let r,s
and t be the natural coordinates in the isoparametric formulation and
HP be a matrix

I H'r ]

HP = H,s

H,t

where H,r stands for the partial derivative of H with respect to r.
The Jacobian J is then

J = HP . [x,y,z]

where x stands for the column vector [Xl,..., Xn] etc. Now the
inverse, in full symbolic form, of J can be computed as

j-i = invjdet(J)

By forming the matrix (invj . HP) we can then form the [B] matrix.

3.3. h£hg_s_III: m!m/ll tL n

Based on the interpolation polynomials and nodal coordinates the
shape function vector H is derived and expressed in terms of the
natural coordinates r.s and t in the isoparametric formulation. Thus
the explicit values for all hi and all their partial derivatives with
respect to r,s and t, needed in HP are computed here.

3.4. Phase IV: FORTRAN code _ for [B]

A fortran subroutine for the numerical evaluation of the strain-
displacement matrix [B] is generated for use with the NFAP package.
This NFAP package is a large FORTRAN based system for linear and non-
linear finite element analysis• It is developed and made available to
us by P. Chang of the University of Akron. It has been modified and
made to run in FORTRAN 77 under UNIX.

Assignment statements will be generated to define the components
of the shape function vector H and the various partial derivatives.
These variables are then used in assigning values to the FORTRAN array
corresponding to [B]. FORTRAN code generation is controlled by a "tem-
plate" file which is a skeleton FORTRAN program with special instruc-
tions for code generation•

Details of the FORTRAN code generator will be discussed later.

3.5. Phase V : _ and generate FORTRAN code for [K]

The inverse 6f the Jacobian, J, appears in [B]. By keeping the
inverse of J as INVJ/det(J), the quantity det(J) can be factored from
[B] and, denoting by [BJ] the matrix [B] thus reduced, we have

f [Bj]T [D] [BJ][K] = det(J) dr ds dt
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The determinant of the Jacobian involves the natural coordinates which

makes the exact integration in the above formula quite difficult. We
elect to evaluate det(J) at r=s=t=0 and factor it out of the integral.
The resulting integrand involves only polynomials in r,s and t which
are readily integrated. We believe this approximation is reasonable
and the resulting symbolic expression for [K] will still be more accu-
rate than results obtainable from numerical quadrature.

To avoid accumulating large amounts of symbolic expressions, we
generate the stiffness matrix [K] one entry at a time. Namely, the
integrand matrix is not formed all at once, instead each entry is com-
puted and integrated individually. Furthermore, the FORTRAN code of
each [K] entry is output after it is computed. Usually [K] is sym-
metric and only the upper triangular part need be computed. Although
there is a general purpose integration package routine available in
VAXIMA, we use a specially designed integration program to gain speed
and efficiency. The integration is organized in such a way as to com-
bine common subexpressions and produce FORTRAN code which is faster and
more compact. Details on this later.

4. The FORTRAN code generator

A set of LISP programs have been written for generating FORTRAN
code based on symbolic mathematical expressions derived in VAXIMA.
This code generator runs under VAXIMA and generates FORTRAN code by
following a given "template" file (fig. II). A template file contains
FORTRAN statements any of which may contain an "active part" which is
one or several correct VAXIMA statements enclosed in "{" and "}". A

typical template may look like the following.

SUBROUTINE STIFF2(ST,B,YZ,C,THICK,R,S,ND,KKK)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION ST(l) ,B(4,1) ,YZ(2,1) ,C(4,1) ,SK(18,18)

C
C KKK = 1 STIFFNESS CALCULATION
C KKK = 2 STRAIN-DISPACEMENT MATRIX CALCULATION
C

IF ( KKK .EQ. 1 ) GO TO 500
C Here are some active statements enclosed in {}

{ f77(det=detj), bfortran() }
RETURN

500 CONTINUE

C kfortran generates code for [K]
{ kfortran(b,dx,[r,s]) }

DO 510 I = 1 , ND
DO 510 J = 1 , ND

KL = KL+I
ST(KL) = SK(I,J)*THICK

510 CONTINUE
RETURN
END
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To invoke the FORTRAN generator the following VAXIMA command is used.

GENFORTRAN (templ ate- f il e-name, output- fil e-name)

GENFORTRAN reads the given template file and passes all characters
into the output file without modification except for the active parts
contained in "{" and "}". The VAXIMA commands in the active part will
be executed by the Generator in the order given and any resultant out-
put will be directed to the output file as well. Thus, in the above
example, we can see where the strain-displacement matrix [B] and the
stiffness matrix [K] are being generated. The output file will be the
template with all active parts replaced by generated code. This output
file will therefore be a syntactically correct FORTRAN file ready to
compile.

Comment lines are copied into the output file without checking for
any active parts. This allows the use of {, } inside comment lines.
Recursive invocation of GENFORTRAN from within a template is allowed.
This makes it easy to generate a set of related subroutines under the

control of GENFORTRAN. This arrangement is very flexible and works
quite well for our purposes.

When the code generator is fully developed, it will have the abil-
ity to generate code in separate sessions rather than all at once.
This means partially generated code can be completed later without re-
generating what's already been done. When substantial amount of code
is generated automatically, this feature will become important. To
help organize the code generated, multiple output files can be automat-
ically used to contain groupings of subroutines.

and of FORTRAN code

Previous work in using systems such as VAXIMA for finite element
computation uses user-level programs which does not allow much control
over the exact manner in which computations are carried out. As a
result, the ability of handling realistic cases in practice is very
restricted because of expression growth, a phenomenon in symbolic com-
putation when intermediate expressions become too large for efficient
manipulation.

We use LISP level programs with direct access to internal data

structures. Thus it is possible to construct programs which will carry
out computations in such a way as to avoid expression growth as much as
possible. Therefore, our programs will be able to handle practical
problems with efficiency. Let us illustrate the control of expression
growth by the [K] matrix computation.

First of all, the [B] matrix in the integrand is computed with
"unevaluated" symbols to keep things small. Thus a typical non-zero
entry of [B] looks like

hr 2 hs . y - hr . y hs 2

where hr 2 = the second component of H,r and y = [yl,...,yn]. But these
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symbols remain un-evaluated at this point. As stated before, we
proceed to generate the entries of [K] one at a time to keep expres-
sions small. In doing this, we apply the formula

[K]=i__ /[B]iT [D]ij [B]j dV

to collect terms with respect to [D].. Coefficients thus obtained
are kept in un-expanded form on a lis_which is consulted for dupli-
cates whenever a new coefficientis generated. This identifiescommon
(duplicate)subexpressions in different entries of [K] and keep the
resultingFORTRAN code compact and more efficient. When a new coeffi-
cient is formed then it is evaluated and expressed as a polynomial
involving the natural coordinates r,s and t. Now a special-purpose
integration routine is used. The integrationresult for each coeffi-
cient is converted into FORTRAN code and assigned to a temporary FOR-
TRAN variable. Thus a typical section of the code for [K] may look
like the following.

t30 = -((16*y3-4*y2-12*yl)*y4+(-12*y2-4*yl)*y3
1 +4*y2**2+8*yl*y2+4*yl**2)/3.0
t31 = ((16*x3-4*x2-12*xl)*y4+(-12*x3+4*x2+8*xl)*y2

1 +(-4*x3+4*xl)*yl)/3.0
t32 = ((16*x4-12*x2-4*xl)*y3+(-4*x4+4*x2)*y2
1 +(-12*x4+8*x2+4*xl)*yl)/3.0
t33 = -((16*x3-4*x2-12*xl)*x4+(-12*x2-4*xl)*x3
1 +4*x2**2+8*xl*x2+4*xl**2)/3.0
k(5,7) = 4*(d6*t33+d3*(t32+t31)+dl*t30)/detk
k(5,8) = 4*(d5*t33+d6*t32+m2*t31+d3*t30)/detk

In the above, t30 etc. are the temporary variables and dl,d2 etc. are
entries of the material propertiesmatrix [D]. Without the techniques
mentioned here, the code for each single [K] entry will require 5 to 8
continuationcards (for a plane 4-node element).

Experimentson the VAX-II/780 with the NFAP package together with
code for the [B] and [K] matrices generated show that there is a 10%
CPU time savings with the above described simplificationfor the 4-node
plane element. The savings will be much greater for larger problems.
Among other things,we are currently studying ways to further simplify
the expressionsfor the t's.
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STABILITY AND CONVERGENCE OF UNDERINTEGRATED

FINITE ELEMENT APPROXIMATIONS*

J. Tinsley Oden
The University of Texas

SUMMARY

An analysis of the effects of underintegration on the numerical stability and

convergence characteristics of certain classes of finite element approximations is

given. Particular attention is given to so-called hourglassing instabilities that
arise from underintegrating the stiffness matrix entries and checkerboard-instabili.-

ties that arise from underintegrating constraint terms such as those arising from

incompressibility conditions. A fundamental result reported here is the proof that

the fully integrated stiffness can be restored in some cases through a post-

processing operation.

INTRODUCTION

In virtually all finite element codes, numerical quadrature is used to evaluate

integrals defining various matrices in the equations governing the discrete model.
In recent years, many practitioners underintegrate various entries in the stiffness,

constraint, or mass matrices so as to either reduce the computational effort required

to solve a problem or in attempts to improve convergence characteristics of certain

methods. By "underintegration" we mean the use of quadrature rules of an order lower

than that required to produce exact integrals of the polynomials appearing in various
finite element matrices.

Unfortunately, the use of underintegration frequently leads to serious numerical

instabilities. Underintegration of the stiffness matrices, for example, may produce

spurious patterns in the displacement fields which are referred to as "hourglass,"

"chickenwire," or "keystone" modes, whereas underintegration of constraint terms such

as those arising from incompressibility conditions may lead to spurious oscillations

in stress or pressures known as "checkerboard" modes. An example of a checkerboard
pattern in a stress field in a highly-deformed hyperelastic cylinder under axial com-

pression, computed using eight-node isoparametric elements and reduced integration of

an incompressibility constraint, is shown in Fig. i. The hourglass-instability phe-

nomene has been discussed by Flannagan and Belytschko (ref. i) in recent times, where-

as instabilities due to underintegration of penalized constraints have been studied by

Oden, Kikuchi, and Song (ref. 2), Oden and Kikuchi (ref. 3), and Oden and Jacquotte
(refs. 3 and 4).

In the present paper, particular attention is given to the issue of hourglass in-
stabilities in the well-known four-node isoparametric element.

This work was supported by NASA Lewis Research Center under Grant NAG3-329.
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STUDY OF A MODEL PROBLEM

To focus on some key features of hourglass instabilities, it suffices to consider

a model boundary-value problem defined as follows:

Find a function u _ HI(_) such that (1)7a(u,v) = (f,v) for all v in HI(_)

where

a(u,v) == I.j Vu"fv Vv dxdy 1

(2)

(f,v) I dxdy

Here _ is a smooth bounded domain in the x,y-plane, f is a smooth function de-

fined on _, a(',') is a continuous bilinear form defined on the _sual space HI(_)
of functions with L2-first derivatives, and (',') denotes the L -inner product.

For simplicity, _ will generally be taken as rectangular. Problem (i), of course,
is a variational statement of the Neumann problem,

I

_u
-Au = f in _j _-_ = 0 on _

We next construct a standard, conforming, finite element approximation of (i) on

a uniform mesh of Ql-elements-(four node elements with bilinear shape functions),
the length of the sides of each element being h . The approximate problem is then

Find uh € HhC HI(_) such that

a(uh, Vh) = (f,vh) for all vh in Hh _ (3)

where

Hh = {vh € C0(_)[Vhl _ € Ql(_e )} (4)
e

To evaluate a(uh,v h) in (3), we use a Gaussian quadrature rule of the type,

E G

($.) (5)a(uh,Vh) = _ e e e
e=l j=l 3 n ~3 n ~j

where

E = the total number of elements in the mesh

G = the number of Gauss points (G > 4)
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e

w. = quadrature weights of element e (i < j < 4)

e

_j = Gaussian quadrature points for element e (1 _ j _ 4)

Similarly, (f,v h) may also be computed by Gaussian quadrature -- exactly whenever f
is a polynomial. In this way, we are led to the usual discrete system,

KU = F (6)

where K is the stiffness matrix, U the vector of unknown nodal displacements, and
F is the load vector. ~

Now instead of using (3), we wish to employ an underintegrated bilinear form

A A

ah (Uh,Vh) = _ WeU h(_e)vh(_e ) (7)
e

A

with __ the centroid of element e , corresponding to the use of only one integra-
tion polnt. Then we consider the problem

Find U--h_ Hh such that 1 (g)
ah(Uh,V h) = (fh,Vh) for all vh in Hh

where fh is an approximation of f to be defined later. This leads to the new
discrete problem

KU = F (9)

where F is a modification of F (defined below) designed so as to belong to the
range of the new underintegrated stiffness matrix K .

The major questions are:

i. What is the relationship between U and U (if any)?

2. Will _h converge to u as h tends to zero? If not, what can be done

to enhance the quality of the underintegrated approximation _h ?

We shall provide an explicit answer to (i) and, while u--h may not converge, we
shall show that uh can be obtained from _h by a simple post-processing operation_

HOURGLASS MODES

We note that (for smooth enough u and v)

f uvdxdy + J _u <Au,v> (i0)
a(u,v) =-

~ ~ _ _ _nnvds -
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and ker A = {i} (i.e., the solution to the model problem can be determined only to

within an arbitrary constant). Likewise, ker K = {(i,i .... ,i)}. However, the under-

integration of a(.,.) enlarges the kernel of A . Indeed,

ker K = {H,I} (ii)

where 1 = (I,i,...,i) and H is an houy_g_s mode. In particular, for a typical
element e ,

~e~h = 0,~K~e~l= ~0'hT~ = {i, -i, i, -I),

1T = {i,i,i,i) _ (12)
~

Thus, the presence of hou_glassing modes arises from the f_e of the undgrZntegra-
ted stiffness to adequately model the kernel of the operator defining the given boun-
dary- value p_blem.

Our first result in the direction of studying the hourglass mode is recorded as
follows :

Lemma i. Let a'(',') denote the bilinear form

a' = a - ah (13)

where a(-,') is defined in (2) and a_(.,.) is the underintegrated bilinear form
appearing in (7). Let H € ker A be a"(global) hourglass mode, i.e.

ah(H,v h) = 0 for all vh in Hh (14)

Then

= 0 for all wh in (ker _)J- (15)a' (H,wh)

where (ker Ah )i is the orthogonal complement of those functions vh such that

ah(Vh,V h) = 0 for all Vh _ Hh .[7

Details of the proof of this and several related results shall be the subject of

a later paper. It is sufficient to note here that for any vh we may take the pro-

jection into ker Ah as

H

(H'Vh) (H,H) ' H € ker

Thus, a typical function wh _ (ker Ah)l is of the form

(H,vh)
-- H (16)

Wh = Vh (H,H)

and one can show from this that (15) holds.
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It is clear from (16) that every vh _ Hh is of the form

vh = wh + %H , wh _ (ker _).h, % _IR

Hence,

a(uh,Vh) = ah(Uh,Wh) + Xa'(Uh,H)

= %(f,H) + (f,wh)

so that

a'(Uh,H ) = (f,H) H = hourglass mode (17)

a (Uh,W h) = (f,wh) for all wh _ (ker Ah) (18)

Since wh can be given by (16),

(f,wh) = (f (f,H) H,(H,H) Vh)

and, therefore,

(f,H) (H,Vh)ah(_,v h) = (f,vh) -

for all vh € Hh (19)

Hence, in (8) we take as fh the projection,

fh f (f,H) H (20)= - (H,H)

From (18), we have

ah(Uh,Wh) = (f,wh) - a' (Uh,Wh)

ah(Uh,Vh ) = (fh,Vh) - a' (Uh,Wh)

= ah(Uh,V h) - a'(uh,Wh)

Thus,
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ah(Uh-%,Vh) = -a'(uh,Wh)

(vh ,H)
' a' (Uh,H) (21)= -a (Uh,Vh) + (H,H)

This result seems to implv that u and _ do not diffe_ by an how_gfx_sin_" -h h
mode, else the right hand side of (21) would be zero. Thus, the procedures usually

used to correct underintegrated solutions (by adding multiples of H) may not improve

solutions. This issue is currently being explored and requires much further study.

CALCULATION OF STIFFNESS MATRICES

Confining our attention to a unit Q1 element, we introduce the matrices

T s,Ts = {1,-1,-1,1} , ~ = {i,i,-1,-1}

h T = {1,-1,1,-1} , 1T = {1,1,1,1}

= 2 3 4 T = {yl 2xT {xl,x ,x ,x } , y ,Y ,y3,y4} (22)

_{Y2-Y4, Y3-Yl, Y4-Y2, Yl-Y3 }

b2= 1_{x4-x I, Xl-X 3, x2-x 4, x3-x I}

where x.,y. = coordinates of node i, i = 1,2,3,4. We no longer confine ourselves

to a uni_or_ rectangular mesh. If (_,_) denote coordinates of a unit master QI-

element, then the stiffness matrix Ke of a typical finite element can be shown to
be given by

[ Axx TAT Ayy TA~~~~T

Kwe = f_\ yTAx + yTAx~ ~~ ]d_dn (23)

(_ = unit square)

A = -_ksl",s_T _ ss'T) + -_2(shT~~ -hTs)~~ 4- --_(hs 'T- s'hT)~~ (24)

whereas the underintegrated (one-point) stiffness matrix is

1 (blb 1 + b2b2) (25)
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and I_ I denotes the area of the element. The rank deficiency of K(1) follows im-
mediately from the fact that ~e

bTh = 0 bTl = 0 i = 1,2 (26)

O_ goal here is to compute exa_y K {or K^) from K(I) (or K (I)) by a
simple post-proc_sing operation. That this is possible foll_ws from th_ fact that

hTK h = 16 _ (27)~ ~e~

= K(1) + _yyr_e ~e ~~ (28)

where

y = h i (hTxbl-hTyb2)~~ ~ ~~ (29)

~ ~ I_e I

T 2

-- i I (_ s x- Bs'Tx) + (_(sTy -B(s'Ty)) 2
= ~ ....... d_dB (30)

g _ _ If_ I+e $_Ao+ _qBo

and

A = (y4-Y3) + (yl-Y2)o (Xl-X2) (x3-x4)

Bo = (y3-Y2) (Xl-X 4) + (yl-Y4) (x2-x 3)

Note that for parallelograms, _ = [(xq-x_) 2 + (x2-x4)2 + (yl-Y3)2 + (y2-Y4)2]/24[_e l

whereas for rectangular elements of digme[er he , _ = he/iml_el.

The difference matrix,

KI = K - K(I) (31)~e ~e ~e

can be written

KI i hhr
e = 3 [lh][2 (32)

It 11

Upon assembly, we obtain systems
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KU = F, K(1)U = F (33)

= F - FT_ (34)

in analogy with (3) and (8), respectively. In analogy with (21),

= i Ue(hTHH- he/llHiI (35)K [.... )
e

where u = h_U/i)heilm,, ,, and ^H= H/IIHB[. We can use this result to show that~e ~e ''~ ~ ~ ~ ~

IIK(1)(U-_)li < [IK'uB] (36)

Thus, the success of the underintegration method will again depend upon how small one

can make the norm IOK'uII. This issue is to be the subject of a forthcoming paper.

CONCLUSIONS

i) The fully integrated and underintegrated finite element approximations ap-

parently do not differ by an hourglassing mode. Thus, the introducing of orthogonal

hourglassing corrections may not be sufficient to produce acceptable solutions from

underintegrated solutions. This subject requires further study.

2) On the other hand, it is possible to generate exactly the fully integrated

stiffness matrix from the underintegrated stiffness matrix using fairly simple post-

processing operations. An exact formula for such calculations has been presented in

equation (30).

REFERENCES

i. Flannagan, D.P. and Belytschko, T., "A Uniform Strain Hexahedron and Quadrila-

teral with Orthogonal Hourglass Control," InternationalJournal of Numerical

Methods in Engineering, Vol. 17, 1981, 679-706.

2. Oden, J.T., Kikuchi, N., and Song, Y.J., "Penalty-Finite Element Methods for the

Analysis of Stokesian Flows," Computer Methods in Applied Mechanics and Engin-

eering, Vol. 31, 1982, 297-329.

3. Oden, J.T. and Kikuchi, N., "Finite Element Methods for Constrained Problems in

Elasticity," International Journal of Numerical Methods in Engineering, Vol. 18,
1982, 701-725.

4. Oden, J.T. and Jacquotte, O., "Stable Second-Order Accurate FiNite Element Scheme

for the Analysis of the Two-Dimensional Incompressible Viscous Flows," Finite
Elements in Fluids, Vol. V, edited by J.T. Oden et al., John Wiley & Sons, Ltd.,

London (to appear).

5. Oden, J.T. and Jacquotte, 0., "Stability of Some RIP Finite Element Methods for

Stokesian Flows," TICOM Report 82-8, Austin, 1982.

103





INELASTIC AND DYNAMIC FRACTURE, AND STRESS ANALYSES*

Satya N. Atluri

Georgia Institute of Technology

SUMMARY

The current work of the author and his students in the areas of (i) large defor-

mation inelastic stress analysis, (_) inelastic and dynamic crack propagation, is

summarized. The salient topics of interest in engine structure analysis that are
discussed herein include: (a) a new path-independent integral (T)in inelastic frac-

ture mechanics, (b) analysis of dynamic crack propagation, (c) generalization of
constitutive relations of inelasticity for finite deformations, (d) complementary

energy approaches in inelastic analyses, and (e) objectivity of time integration

schemes in inelastic stress analysis.

INELASTIC FRACTURE MECHANICS

The most widely researched topic in elastic-plastic fracture mechanics, in the

past decade or so, and one that has made certain impressive advances in ductile

fracture mechanics, has been the now well-known J integral (refs. 1,2). It is also

well known that J is in fact the component along the crack-line of a vector integral,

and its significance is in the context of incipient self-similar growth of a crack
in a (nonlinear) _ic material. In this case, J has the meaning of the rate of

energy-release per unit of crack extension. In deformation theory of plasticity,

which precludes unloading and which is mathematically equivalent to a nonlinear

theory of elasticity, J still characterizes the crack-tip field and is still a path-

independent integral. However, in this case, J does not have the meaning of energy-
release rate; it is simply the total potential-energy difference between two identi-

cal and identically loaded cracked bodies which differ in crack lengths by a differ-
ential amount. However, in a flow theory of plasticity, even under monotonic load-

ing, the path-independence of J cannot be theoretically established. Also, under

_b_y load _i_, which may include loading and unloading, J is not only not

path independent, but also it does not have any physical meaning.

Also, a significant amount of crack growth in a ductile material is necessarily

accompanied by a significant non-proportional plastic deformation which invalidates

the deformation-theory of plasticity. Thus, theoretically the validity of J is

questionable under these circumstances. However, for _ed _ou_ of crack-

growth, it has been argued (ref. 3) that the strain field undergoes a proportional
increment due to an increment in applied loading and that J is still a controlling

parameter. For such situations of J-controlled growth, the concepts of a tearing
modulus and J-resistance curves have been introduced (ref. 4) to analyze the stabil-

ity of such growth. Using the aboye concepts, and the related concept of CTOA, en-

gineering approaches to elastic-pl_stic fracture analyses were elaborated upon in
references 5 and 6.

Some results of research supported under NASA grant NAG3-346.
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Thus, further research is necessary to understand the mechanics of growth initi-

ation of cracks in elastic-plastic materials subject to arbitrary loading/unloading

histories. Also, more-theoretically-valid parameters/criteria are necessary to ana-

lyze situations wherein there may be substantial amounts of stable crack-growth
which are no longer within the limits of J-controlled growth.

Turning to the problem of crack growth in structures operating at elevated tem-

peratures --the so-called problem of creep crack-growth, numerous experiments have

recently been undertaken (refs. 7,8 for example) with the purpose of finding a pa-
rameter which may correlate with the creep crack-propagation rate. Most of these

investigators considered as candidate parameters, KI, some form of net section
stress, or in more recent studies, C*. The parameter C* has been introduced in

reference 9 and is valid only in pure steady-state creep (_ ~ an). This situation

is characterized by: (i) the body being essentially at steady-state creep condi-
tions which implies very slow crack propagation and (i_) the creep-damage process

zone being local to and therefore controlled by the crack-tip field. However, sup-

pose a particular material and geometry result in a crack-propagation rate such that

elastic strains are not negligible compared to creep rates (ie., non-steady creep)

and that at the same time, creep strains are no longer localized to the crack-tip
region. While C* is not a valid parameter for this case, it appears reasonable to

expect that crack growth rate is still determined by the local crack-tip field since

the creep damage process zone is still assumed to be local to the crack-tip. Fur-

ther, even though C* is a path-independent integral at steady-state creep condi-
tions, it does not seem to have any physical meaning even under such conditions.

These and other difficulties with C* have been noted in recent literature (refs. 7,
8). Thus, there is a need to explore alternatives to C* which remain valid even

under non-steady creep conditions, which are path-independent integrals and which

have a well-defined physical meaning so that they may be measured in laboratory
specimens in an unambiguous manner.

With the above objectives, the author has studied (ref. i0) certain path-inde-
pendent integrals, of relevance in the presence of cracks, in nonlinear elastic and

inelastic solids. The hypothesized material properties included: (_) finite and

infinitesimal elasticity, (ii) rate-independent incremental flow theory of plastic-

ity, and (ill) rate-sensitive behavior including viscoplasticity and creep. In each

case, finite deformations were considered, along with the effects of body forces,
material acceleration, and arbitrary traction!displacement conditions on the crack

front. Also, the physical interpretations of each of the integrals either in terms
of crack-tip energy release rates or simply the energy-rate differences in two com-

parison cracked bodies were explored. Several differences between the presently
obtained results and those considered well established in literature were pointed
out and discussed.

We omit the mathematical details of the development but present here the end re-

sults for incremental, path-independent, vector integrals which are of relevance in

ductile fracture mechanics under arbitrary load histories. Further, for simplicity,
we consider: (i) quasi-static crack growth initiation and stable crack growth and
(i_) the deformations to be small, so that the distinctions between various stress

measures disappear. Consider a generic increment of external load (load-control)

from an initial state with stresses % and initial displacements u. Let the incre-

mental stresses be &T and the incremental displacements be Au. We consider two

paths FI and F2 surrounding the crack-tip. We allow the incremental potential AU
for AS to be an explicit function of the location of the material particle through

parameters _ (which can be i for plastic loading and 0 for elastic unloading) and
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g (the strain-hardening parameter). Thus, there can be plastic loading/or elastic

unloading from a plastic state/or pure elastic-loading taking place arbitrarily near
the crack-tlp as well as elsewhere in the body. Then it has been shown (refs. i0,ii)

that the following path-independent integrals prevail:

(&T)p =frl+rc[!:A__+ AU)N_ - _N'T'Ae~~ - N.AT.e]ds_~ ~

+_Vt_Vl[_! + ½VA_):A_ - (_ + ½VA_):A_]dv

f
2+r [(/:Ae + AU)N - N-T-Ae - N.AT-e]dsc

+ _V [(V_ + ½VAT):Ag - (V_ + ½VAs):AT]dv (i)
t-V2 ..........

and (&T*)p = _ [(r:ge + AU)N - N.r.Ae - N-AT.e]ds
€

= _[(T:Ae + AU)N - N.T.Ae - N.A!.e]ds

+iV-V [Ar:(_V_ + ½_VA£) - A_:(VT + ½VA !)]dv (2)

In the above Vt is the total volume of the cracked body, VI and V2 are the volumes

enclosed by FI and r2, F_ is a path arbitrarily close to the crack-tip, and Vg is
the volume enclosed by Fs. It can be shown (ref. ii) that path-independence in the

sense of equations (1,2) prevails even when there is arbitrary loading/unloading

occuring in V1 and V2 and thus between V2 and VI. In the above, (~).(~) implies a

tensor inner product and (~):(~) implies a trace (see ref. i0 for details). It has

been shown (ref. ii) that in Mode I, (AT1) P has the meaning: (_) it is the incre-
mental area corresponding to an incremental load between the load-deflection curves

of two identical and identically loaded cracked bodies with crack lengths differing

by a differential amount, (_) this physical meaning remains valid in loading as

well as unloading, and (_) under monotonic loading when near-proportionality pre-

vails near the crack-tip, EAT D = J (the summation is for all increments of loading,
using rate theory of plasticihy). In reference ii, a numerical experiment was also
discussed wherein a compact tension specimen was loaded to a certain load level,

unloaded to a compressive load, and reloaded again. The observations are: (_) dur-

ing loading E(ATI) m = J and (_) (ATI) p remains strictly path-independent even for
subsequent unloading and reloading, whereas, J not only has no meaning during un-

loading, but its numerical value varies widely (±50%) over different paths.

Thus, while much further work remains to be done, it is evident that the inte-

grals in equations (1,2) provide a theoretical basis for elastic-plastic fracture
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mechanics under arbitrary loading and when the material behavior is characterized by

realistic rate theories as opposed to a simple deformation theory. Analogous deri-

vations of path-independent incremental vector integral (AT) c valid in gen_ _-

steady creep, and a discussion of its merits as compared to the C* integral, have
been presented elaborately by Stonesifer and Atluri (refs. 12-14).

DYNAMIC FRACTURE MECHANICS

We first consider linear elastodynamic crack propagation in a self-similar fash-

ion. Consider, for instance, a two-dimensional problem. Let the velocity of crack

propagation be denoted by the vector C, with modulus C. Consider a small loop rs,
of radius _, centered around the crack-tip at time t, and assume that the crack-tip

moves by an amount (dt__C)into F_ at time t+dt, ie., s > Cdt without loss of general-

ity. Let the unit outward normal to r_ be N, and let the kinetic energy density be
T(= ½pv.v, where v is the absolute velocity of a material particle and p the mass

density)] Note that v is singular near the propagating crack-tip. From studies in

reference i0, it is seen that the rate of energy release rate G per unit of elasto-

dynamic crack growth is given by:

G = (l/C) Lt C F [(W+T)N - _.e]dP = (I/C)C'G (3)

Now we consider the problem of analyzing crack-propagation in an arbitrary body,

the shape of which and the loading on which, we suppose, preclude any possibility of

an analytical solution. Suppose that we have to use a numerical solution. Such a

numerical solution may be based on a "propagating singular element" within which the

asymptotic mixed mode solution is embedded; and hence the K-factors can be evaluated

directly, as demonstrated by the author's group (refs. 15-18). However, in order to

use a simple numerical procedure, say using distorted (singular) isoparametric fi-

nite elements or non-singular isoparametric elements, it is convenient to have

available path-independent integrals which have the same meaning as the energy re-

lease rate G of equation (3). If so, the integral can be evaluated on a path that

is far removed from the crack-tip and hence is insensitive to the details of model-
ing of crack-tip stress-strain fields.

Such a path-independent integral has been derived based on general conservation

laws, as shown in references i0 and 19, and is given below:

_' = fF[(W+T)N- _-e]dF +__ v [p(a-F)-e - _T]dv

+fF [(W+-W-)_+ + (r+-r-)_+ - _-e]dF = G (4)
c

where (+) and (-) refer, arbitrarily, to the "upper" and "lower" crack faces; N+ =

-N- is the unit normal to Fc+; and _ are prescribed tractions on the crack fa_e.
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The practical application of the above new path-independent integral has been
demonstrated in references 20 and 21.

GENERALIZATION OF CONSTITUTIVE RELATIONS

TO FINITE DEFORMATIONS

At a symposium on finite strain plasticity held at Stanford University in 1981,

Nagtegaal and de Jong (ref. 22) presented some interesting results for stresses

generated by simple shear of elastic-plastic and rigid-plastic materials which ex-

hibit anisotropic hardening. In the equation for the rate of change of the shift

tensor _, they used the Zaremba-Jaumann-Noll rigid body rate of _. They found the

rather spurious result that the shear stress is oscillatory in time.

The above 'anamoly' has prompted a series of investigations by Lee and his
associates (refs. 23,24). As a 'remedy', Lee et al. (refs. 23,24) suggest the use

of a 'modified' Jaumann derivative of _ in the evolution equation for _. While the
use of such a modified derivative in the specific problem of simple shear has been

illustrated in references 23 and 24, its generalization to three-dimensional, non-

homogeneous cases is not yet fully developed. It has been suggested in reference

23 that "a complete investigation of the micro-mechanics and the structures of poss-

ible macroscopic constitutive relations will no doubt be needed to fully understand

this phenomenon and to generate a fully-tested theory".

Recently the author has shown (ref. 25) that the anamolies as described above

are not peculiar to the anisotropic plasticity alone; similar behaviour in finite

shear may result even in the case of hypo-elasticity and classical isotropic-harden-

ing plasticity theory. Thus, in reference 25, the central problem of 'generalizing'
to the finite deformation case, of the constitutive relations of infinitesimal

strain theories of elasticity (hypoelasticity), and of classical plasticity with

isotropic or kinematic hardening was discussed in detail. It has been shown in ref-
erence 25 that the current controversies surrounding the choice of stress rate in

the finite-strain generalizations of the constitutive relations and the anamolies

surrounding the kinematic hardening plasticity theory are easily resolvable.

Here we briefly illustrate the case of kinematic hardening plasticity. In this

case, considering a simple J2 theory, the current yield surface can be represented
by:

2-2
f = (o' - a'_:Co' - _') - o = 0 (5)

where (~)' denotes the deviator of a tensor, _ is the Kirchhoff stress tensor, and

is the back stress. The normality condition is:

P
= %(_fl_o) (6)

We define, as in reference 25, generalized 'objective' rates, @* and _* of _ and

respectively, as follows:
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_* = _0 _ .y.7(_.€ ) _ y8(a._) (7)

_nd 4" = _0 _ y7(_._) _ y8(a._ ) (8)

where _0 can be any one of the currently-used stress-rates. For instance,

60 = _m T- e-o- _-e (Oldroyd) (9)

_0 = 6TM~ + ~eT'°~+ o-e~~ (Cotter-Rivlin) (i0)

_0 = _m _ _'@ + _'_ (mixed-l) (ii)

60 _m +,e T T~ = ~ ~ "_ - _-e (mixed-2) (12)

_0 = _m + _'_ _ _'_ (Zaremba-Jaumann-Noll) (13)

In equations (7-13), e is the velocity gradient, _ the strain-rate, _ is the spin,
and _m is the non-objective material rate. Since, for a classical continuum without

body couples, the material rate @m should be symmetric, the generalized stress rates

0* and _* are defined in reference 25, such that:

_7 = Y7 = Y8 if @0 is that of Zaremba-Jaumann-Noll (14)

_7 = (Y7+I) = (Y8+I) if @0 is that of Oldroyd (15)

P7 = (Y7-I) = (Y8-1) if @0 is that of Cotter-Rivlin (16)

_7 = (Y7-I) = (Y8+I) if @0 is that of mixed-i (17)

_7 = (Y8-I) = (Y7+I) if 60 is that of mixed-2 (18)

The linear kinematic hardening theory of Prager, as generalized to finite deforma-
tions, states that:

., P
= c_ (19)
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where c is a constant of proportionality. It can be shown (ref. 25) that the plas-

tic strain-rate can be written, for the yield function given in equation (5), as:

P 3 ~ ~') -__ ) (20)
- 2c_2 [(°'-_ :_*](@' ,

Using equations (7,8), (14-18), and (20), the material rates @m and _m can be writ-
ten as:

_m~= ccP~ + m._~- e._~~ + _7(_-__~ + ~._'_) (21)

om 3_ ]
~ ~') ~ ~'_

= 2_ + %(s:I)I - 2_ (c+2_)_2 [_:(o'-_ ](o'-e J

+_.o - @_ + _7(o.§ + §.o) (22)

In a finite shear problem, we may prescribe velocities:

vI = 2rex2 v2 = 0 (23)

such that the strain-rate E and the spin _ are, respectively:~

= 0 and _ = 0 (24)
0 o

Lee et al. (refs. 23,24) consider the case when: (_) Y7 and Y8 are zero in equa-

tions (7) and (8); (_) _7 = 0 in equations (14,21,22) ie., they consider the case
when @0 is the Zaremba-Jaumann-Noll rate. The obtained solutions are oscillatory in~

references (23,24). Thus, the generalization of Lee et al. (ref. 23,24) /6 _prope)_.

On the other hand, it has been shown by the author (ref. 25)that if _7 is ±i in equa-

tions (21,22), the ob._.ined sollggio_6 for s_esse6 are n0n-os_0ry. Furthermore,

it is seen that the condition _7 = ±i can be satisfied even when any one of the
stress-rates as in equations (9-13) are used. The way to do this is to _e the

generalized st_ess-r_es _* and _* as in equatY_ns (7,8) and to choose ¥7 and ¥8 as
in equations (14-18). ~

COMPLEMENTARY ENERGY APPROACHES IN INELASTIC ANALYSIS

Recently Reed and Atluri (refs. 26-31) presented comprehensive studies of a new

hybrid-stress finite element algorithm, suitable for analyses of large, quasistatic,

III



inelastic deformations. The algorithm is based on a new complementary energy prin-

ciple for rate type materials given earlier by Atluri (ref. 32). The principal var-
iables in this formulation are the nominal stress-rate and spin, and the resulting

finite element equations are discrete versions of the equations of compatibility and
angular momentum balance.

The algorithm produces true rates, time derivatives, as opposed to 'increments'.

There results a complete separation of the boundary value.problem (for stress-rate

and velocity) and the initial value problem (for total stress and deformation);

hence, their numerical treatments are essentially independent. In references 30-31,

a comprehensive discussion of the numerical treatment of the boundary value problem

and detailed examination of the initial value problem covering the topics of effi-

ciency, stability, and objectivity were presented. Several problems dealing with
homogeneous as well as inhomogeneous large deformations of inelastic materials were

solved, and the solutions discussed in detail. In the following, we present a brief
outline of the methodology.

The boundary-value problem for the rates of stress and spin is governed by a
variational principle corresponding to the stationarity of the functional:

Hc(_,'t) = _v{-R([,_)- ½T:(_-_)+ _:_}dV +/S n.[.v dS (25)
v

where m is the spin, and E is the rate of the first-Piola stress as referred to the

current configuration. In the above, R is the rate of complementary energy density,
is the current Cauchy stress, _ are prescribed velocities at the boundary-segment

Sv of the solid, n is a unit outward normal to Sv, and V is the volume of the solid.

In equation (25), the following definitions and a priori constraints apply:

V-[ + 06 = 0 in V or t = V × i + _b (26)

n.t = T at S (27)

DR

_ - _ (28)

T
= ½(t + T'_ + _ "T + iT) (29)

In the above, V is the gradient operator in the current configuration of the body,
and _ are prescribed body forces; _ is a first-order (once-differentiable) stress-

function, _b is a particular solution for _; and s is the strain rate. The Euler-
Lagrange equations that follow from _ = 0 are:

c

(Eq_)'T + t = "tT + T-(_4_ T) (30)
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m

v = v at S (31)
-- -- V

_Vv= (£+_)T (32)

Equation (30) is the angular momentum balance condition, equation (31) is the veloc-

ity boundary condition, and (32) is the kinematic compatibility condition for the

rate problem.

In the finite element formulation, we assume for each element:

NQ
i

Z = _ _iqN ; _ = isoparametric shape
functions (33)

i=l

NW

= _ QWie N where QWi + QWI = 0 (34)
i=l

NT

~_= _ QTiSN + ~_b where QT._m= _V × -Ii" and _V'tb~ =-ob_ (35)
i=l

where NQ is the number of velocity parameters, NW is the number of spin parameters,

and NT is the number of stress parameters.

Use of equations (33-35)in (25) can be shown to lead (ref. 30) to the algebraic

system:

Kv* = f (36)

where v is the vector of global.nodal velocities. Solution of (36) leads to global
velocities, from which the rate t and the spin W in each element can be computed.

We are thus led to initial value~problem to integrate v, t, and _ in time to find

the solution for displacement, total stress, and rotation at each material point.

In references (30-31) an elaborate study of various time-stepping schemes for

integration of the above initial value problem as to their efficiency, stability,

and objectivity was presented. In the following, we limit ourselves to a brief

description of an important and interesting aspect of this time integration--which

pertains to the question of maintaining "objectivity" of numerical integration.
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OBJECTIVITY OF NUMERICAL INTEGRATION

In order to be called objective, a numerical approximation for a physical entity

must transform between two observer frames according to the same rule as the entity
itself. An algorithm which produces an objective approximation will itself be call-

ed objective.

Suppose that as an objective rate one were to consider the Zaremba-Jaumann-Noll

rate, ie.,

D_

@0 =--_ + _.m _ m._ (37)
~ Dt ....

Suppose also that the solution at time t = T is known, ie., o(r) = _ at t = T. If

the usual Euler integration approximation were used, ie.,

£(T+At) = O(T) + (_0 _ _._ +!._)At (38)

the result will be in error, since (I + _&t) is not an orthogonal tensor.

Recently two algorithms were presented (refs. 33-34) which preserve the stress-

integration and give a proper expression that is different from equation (38). In

reference 30, Reed and Atluri presented an approach that is slightly different from

that of references 33-34 in that numerical objectivity is treated as a general ques-

tion without specific reference to stress-integration. This approach involves the

concept of the so-called Jaumann integral (ref. 35) using which objectivity can be
preserved in any numerical integration. Here, we present the use of the Jaumann in-

tegral in stress-integration.

The Jaumann stress-integral, which can be viewed as operation inverse to the

Jaumann-differential of equation (37), can be written (ref. 30) as:

T(t) = J-I(t)Q(t)-T(T)-QT(t) +l [Jt(_)Q(t)'QT(_)'@0(_)'Q(_)'QT(t )]d_ (39)

where T is the true stress, and Q(t) is the solution of the differential equation:

_(t) = _(t)-9(t) ; Q(T) = I (40)

Now let to be the time such that

to = _ + OAt 0 < 8 < i (41)

we replace equation (40) by an approximate differential equation:
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_(t)--ee.g(t); _0 = _(_+ OAt) (42)

and treat G0 as a constant in equation (42). The exact solution of equation (42)
would be:

9e = 9(te) = (exp. _ete).l

sin_@t@ (i - cos0)ot6) 2
= I + _ + _e (43)

~ we ~6 _6

where _o6 = _½98:_8 (44)

Now let 91 = Q(tl) = 9(T + At) (45)

Then, an approx2matXon to the Jaumann integral, equation (39), can be written as:

r r~T(r+ At) = J-l(tl)T"91"_'9~+ [(At)Jl(to)-Ql'-Qe'-°_'Q8"Q~ ~ ] ; 0 < e < 1 (46)

where tI = T + At. For 6 = ½ we obtain the so-called "generalized midpoint rule",
which agrees with that presented earlier in reference 34. The formula of reference

33 cannot be recovered since they use a midpoint constitutive evaluation but fall

to properly rotate the resulting stress increment. The present concept of "objec-

tive integration" has the advantage that it provides a general framework for any

time-integration.
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INTERACTIVE FINITE ELEMENTS

FOR GENERAL ENGINE DYNAMICS ANALYSIS*

Maurice L. Adams
Case Western Reserve University

Joseph Podovan and Demeter G. Fertis

The University of Akron

SUMMARY

The major objective of this work has been to adapt general nonlinear finite-

element codes for the purpose of analyzing the dynamics of gas turbine engines. In

particular, this adaptation required the development of a squeeze-film damper ele-

ment software package and its implantation into a representative current generation
code. The ADINA code was selected because of our prior use of it and familiarity

with its internal structure and logic. This objective has been met and our results

indicate that such use of general purpose codes is a viable alternative to special-

ized codes for general dynamics analysis of engines.

INTRODUCTION

There is currently a considerable interest and level of activity in developing

computational schemes to predict general engine dynamic behavior. The general feel-

ing among researchers working on engine vibration problems is that various modes of

operation, such as blade-loss events, require a high level of analysis sophistication
to realistically model the engine. Proper account of system nonlinearities (parti-

cularly at the bearings, dampers and rubs) appears to be necessary if analytical

predictions are to be realistic. The approach described in this paper seeks to make

use of already proven general finite-element nonlinear time-transient computer codes
which are available on the open market.

Present-day jet engine configurations have evolved to a substantial degree

through a trial-and-error process involving extensive testing. There are many fun-

damental dynamic phenomena which take place within these engines for which basic

description and understanding have yet to be generated. Nonetheless, they work well.

Modern aircraft engines are typical of current high-technology products in which the

recently acquired computing capabilities of today are being used to better under-

stand and improve what is already designed, built and operating.

A better understanding of the basic dynamic characteristics of existing and new

engine configurations is a prerequisite for producing acceptable engine efficiencies

on advanced configurations (i.e., smaller rotor/stator running clearances). Also,

*This work is sponsored by NASA Lewis Research Center under grant NSG-3283; NASA

Technical Monitor, C.C. Chamis.
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a better definition of engine dynamic response would more than likely provide valu-
able information and insights leading to reduced maintenance and overhaul costs on

existing configurations. Furthermore, application of advanced engine dynamic simu-
lation methods could potentially provide a considerable cost reduction in the deve-

lopment of new engine configurations by eliminating some of the trial-and-error

process done with engine hardware development.

The emergence of advanced finite element codes, such as NASTRAN, NONSAP, MARC,

ADINA, ANSYS and ABAQUS and related algorithmic advances, have placed comprehensive
engine system dynamic analyses within reasonable reach. What remains to be done is

to develop new component element software to properly model engine rotor/stator

interactive components, such as the squeeze-film damper, within the algorithmic logic
of already proven finite-element codes. This is the major mission of this work.

For good reasons, aircraft gas turbine engines use rolling element bearings

exclusively. This design philosophy has, until recent years, deprived engines of

beneficial damping inherent in many other types of rotating machinery where fluid-

film journal bearings are used. The implementation of squeeze-film dampers in
recent engine designs has now provided engine designers with an effective means of

vibration energy dissipation. The net result is that engines with squeeze-film
dampers are less sensitive to residual rotor imbalance and better able to control

vibration and transmitted force levels resulting from various excitation sources
within the engine.

The field of rotor dynamics has evolved to its present state primarily through

the solution to problems in classes of machinery older than aircraft engines. In

most other types of rotating machinery (e.g., steam turbines, centrifugal pumps and

compressors, fans, generators, motors, etc.) the rotor can be adequately modeled as

an Euler or Timoshenko beam [i]. In addition, the support structure holding each

bearing can often be adequately modeled as a separate mass-damping-stiffness path to

ground (i.e., to the inertial frame). Also, for most purposes, bearing dynamic pro-
perties are characterized as stiffness and damping elements, linearized for small

vibration amplitudes about some static equilibrium state. With few exceptions (e.g.,
Hibner [2]), it is this level of sophistication that has been utilized for the most

part in rotor-dynamics analyses of aircraft engines.

Present day aircraft engines are structurally far more complex than most other
types of rotating machinery. The multi-shaft configuration, plus the fact that the

shafts are thin rotating shells, creates unique but significant complicating diffe-
rences between aircraft engines and other machinery. Also, the stator structural

support at each rotor bearing represents anything but a separate mass-damper-stiff-

ness path to an inertial frame. In fact, setting the inertial frame for the engine

is not a simple matter when the full range of in-service maneuvers is realized. Dy-

namic paths between different bearings exist not only through the rotor but through
several other paths within the nonrotating engine structure, i.e., a "multi-level,"

"multi-branch" system. As many as eight significant "levels" have been identified.

Adams [3] demonstrated the use of a free-free modal vector space for the rotor

in the numerical integration of the motion equation with nonlinear journal bearings

and base-motion inputs. The resulting computer code (ROTNL) has been applied to
large steam turbine blade-out unbalance, instability limit cycles and base-motion

excitation of nuclear machinery (earthquake and underwater explosive shock). This

same approach was later applied by Gallardo et al., [4] in developing the TETRA code

for double-spool shaft gas turbine engines. The approach used in references [3] and
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[4] uses a standard code (i.e., NASTRAN) to generate the free-free undamped normal

modes and natural frequencies for rotor and stator configurations. Nonlinear forces

and connections between substructures are carried on the right hand side of the

equations of motion, and updated at each time step of the particular numerical inte-

gration scheme. In this approach, a special purpose code is used to perform the

integration of the motion equations, and handle input and output processing. Consi-

derable flexibility and continual program advancement is therefore convenient. Also,

this provides easier control of the basic mathematical model.

On the other hand, the major advantage of the approach summarized in our work is

that full advantage can be taken of the multiplicity of computational and modeling

advancements typical of the capability in current generation nonlinear general pur-
pose finite-element codes. The disadvantage is that the general purpose code is more

of a "black box" than one's own special purpose code.

TIME-TRANSIENT NONLINEAR DYNAMIC ANALYSES

In recent years it has become evident that an important class of engine dynamic

phenomena can not be studied without accounting for the highly nonlinear forces pro-

duced at bearings/dampers, labyrinths and other close-running rotor/stator clearances

under large amplitude vibrations. In such cases, linear theory typically predicts

vibration amplitudes larger than the actual running clearances. Furthermore, impor-

tant vibratory phenomena, such as subharmonic resonance and motion limit cycles, are

"filtered" out of the problem with a linear model, giving grossly erroneous predic-

tions, qualitatively as well as quantitatively [3].

With few exceptions, nonlinear dynamics problems must be solved numerically as

time-transient responses, whether the sought answer is a steady-state periodic

motion or is strictly a transient phenomenon. The problem is mathematically catego-

rized as an initial value problem in which the displacements and velocities of the

complete system must all be specified at the beginning of the transient. From that

point forward in time, the equations of motion are numerically integrated (known as
"marching) as far in time as one wishes to study the system motions and forces. If

the system is dynamically stable, the transient motion dies out yielding the steady
state response which in a system with a periodic force excitation will be periodic

motion. In a stable system with no time-varying force excitation, the transient will

die out as the system comes to rest at one of its stable static equilibrium positions.

If the system is unstable, the transient does not die out but continues to grow in

time unless or until some nonlinear mechanism in the system limits the motion to

what is frequently called a "limit cycle" [3].

In order to study the general dynamical characteristics of aircraft engines,

nonlinear dynamics computational schemes are required. The approach taken is to de-

velop software packages to model engine components which are not typically found on
dynamical structures and therefore are not already built into existing nonlinear

finite element structural dynamics computer codes. The initial effort has concen-

trated on developing such a software package for squeeze-film bearing dampers.
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OVERALL APPROACH-INTERACTIVE ELEMENTS

Considering the typical engine structural complexities, an improved computa-

tional approach is necessary if a proper transient/steady-state model is to be deve-

loped for gas turbine engines. In this approach, it appears that the finite-element

method is one of the attractive modeling techniques for such problems. Its inherent

capabilities include features essential to modern engines: i) automatically handles
multi-branch, multi-level structures in a more direct and efficient manner than fle-

xibilities approaches, 2) well-suited to handle nonlinearities associated with struc-

tural kinematic and kinetic effects [7], 3) easily accommodates various types of

boundary and constraint conditions, and 4) easily accommodates material nonisotropy
and nonlinearity [7,8]. A body of established and proven algorithms are available

which can handle these various important effects [7,9] as well as geometric comple-
xities (e.g., beam, plate, 2-D and 3-D elements [i0].

The required features which are presently not available with general purpose

finite-element codes are provisions to handle rotor/stator interactive forces origi-
nating from squeeze-film dampers, seals and rub/impact events. Presented herein are

the results of an effort to develop a squeeze-film damper computer software package
which can be "plugged" into existing finite-element codes. This work is detailed in
references [5] and [6].

DEVELOPMENT AND IMPLANTATION OF SQUEEZE-FILM DAMPER ELEMENT

The basic implant approach is quite simple as shown in Figure 1. In addition

to the standard structural element input provided for the particular general purpose

code (i.e., host program) being used, an additional small block of fixed inputs is
provided for each damper in the model. In the computational stream for numerical

integration of the motion equations, the damper software routine is called at each
time step of the marching scheme, and provides the total instantaneous interactive

force generated in the fluid film of the squeeze-film damper. This instantaneous

force is then applied to the structures as an "external" force. The damper also

provides an option to compute the instantaneous tangent stiffness and damping matri-

ces for the damper if such is needed for improvement to the numerical integration

scheme of the host program. Details of the formulation and solution technique used
in the squeeze film software package are detailed in reference [5].

To "experiment" with the damper element independent of a general purpose code,
a small four degree-of-freedom host program was written which treated the rotor and

stator each as point masses with two degrees of freedom apiece, "joined" to each
other only by the squeeze-film damper (see Figure 2). Sample runs are shown in
Figures 3, 4, 5 and 6.

As detailed in reference [6], the damper element was successfully "implanted"
into the ADINA code and several case studies were made. These are summarized here

in Figures 7, 8 and 9 for a multi-bearing simple rotor and different types of
transient loading.

122



EXPERIMENTAL CONFIRMATION

A two-bearing two-damper test rig was designed and fabricated. The rotor con-
sists of a slender constant diameter shaft with a concentrated diskmast at the

center of the bearing span (see Figure i0). Extensive testing was performed with

this set up and rotor vibrational orbits were measured using Bently proximity probes

and signal conditioning instrumentation. We are currently completing this work by
making runs for this configuration using the ADINA program with squeeze-film soft-

ware package implanted. We anticipate completing our correlations of experimental
and computational results in the immediate future.
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Figure 8 Multi-bearing Example Computation
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(a) Complete Test Coop With Instrumentation

(b) Rotor Test Bed With Squeeze-Film Dampers

Figure i0 Existing Experimental Test Facility Rotor

Dynamical Studies With Squeeze-Film Dampers.
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NONLINEAR ANALYSIS FOR HIGH-TEMPERATURE

COMPOSITES - TURBINE BLADES/VANES

Dale A. Hopkins and Christos C. Chamis
NASA Lewis Research Center

SUMMARY

An integratedapproachto nonlinearanalysisof high-temperaturecomposites
in turbineblade/vaneapplicationsis presented. The overall strategyof this
approach and the key elementscomprisingthis approachare summarized. Preliminary
results for a tungsten-fiber-reinforcedsuperalloy(TFRS)compositeare discussed.

INTRODUCTION

A major thrust of currentaeropropulsionresearch is directed at improving
the performance/efficiencyof aircraftgas turbineengines. One area of research
where effortshave been focusedconcernsthe potentialuse of advanced and high-
temperaturecompositematerialsfor criticalengine hot-sectionapplications
such as high-pressureturbine (HPT)blade/vanecomponents. The temperature-
limitedcapabilityof the conventionalmaterials (mostlynickel- and cobalt-
based monolithicsuperalloys)used in HPT blades/vanesis a key factor affecting
the ability to augmentengineperformance/efficiency.

The ability to increasethe maximum engine operatingcycle temperature
and, thus, improveengineperformance/efficiencywould be greatly enhanced
by improvingthe elevatedtemperaturecapabilityof turbineblade/vane
materials. For this reason a particularfamily of the refractory-fiber
metal-matrixcategoryof high-temperaturecomposites,namely the tungsten-
fiber-reinforcedsuperalloys(TFRS),are being investigated(refs.1-2) as
a potentialalternativeto conventionalmonolithicsuperalloysfor use in
HPT blade/vanecomponents. Moreover,a specificTFRS compositehas been
identified(ref. 3) as having an excellentcombinationof complementary
propertiesto make it a viable candidateas a first-generationcomposite
turbineblade/vanematerial.

From a qualitativeviewpoint,the potentialbenefitof using high-
temperaturecompositematerials in engine hot-sectionapplications,such
as TFRS for HPT blades/vanes,is evident. Despitethe promisingoutlook,
a dilemmaexists regardingthe lack of adequatemethods availableto
quantitativelyassess a high-temperaturecompositein an enginehot-section
application. For example,any present attemptto analyzethe behaviorof
TFRS in a HPT blade/vaneapplicationwould be forced to rely on experimental
evaluationswhich are economicallyimpractical. A definiteneed exists
for an analyticalcapabilitywith which to make a quantitativeassessment
of the mechanicalperformanceand structuralintegrityof high-temperature
composites,such as TFRS, in engine applications,such as HPT blades/vanes.
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In view of the above discussion,a formalprogramwas initiatedat the
NASA Lewis ResearchCenter to developa structural/stressanalysiscapability
specificallytailored for the nonlinearanalysisof TFRS compositeHPT blades/
vanes. Although the capabilityhas been tailoredfor a specificapplication,
the overallapproachof this analyticalcapabilityis generaland as such is
applicableto the analysisof practicallyany compositestructurewhere
materialnonlinearityis a concern.

The emphasisthroughoutthe developmentof this structural/stressanalysis
capabilityfor TFRS compositeHPT blade/vanecomponentshas been to incorporate
the physics governingthis applicationinto the analyticalformulationof the
problem. The blade/vanecomponentsof the HPT sectionoperate in severe
environmentswhich subjectsthem to complexand cyclic thermomechanicalloading
conditions. These loads give rise to highly nonlinearmaterial behaviorwhich,
for the case of TFRS composites,is assumedto be attributableto a stress-
temperature-timedependencyof the constituent(fiber/matrix/interphase)
material properties. Furthermore,in the extendedserviceelevatedtemperature
environmentof a HPT blade/vane,TFRS compositesare subjectto a metallurgical
phenomenonknown as fiber degradationwhich involvesa chemicalinteraction
at the fiber-matrixinterfaceand results in the generationof an interphase
of material.

To develop a nonlinear structural/stress analysis capability for TFRS
composite HPT blade/vane components, the COBSTRAN computer code was used as
a foundation. COBSTRAN is a software package developed as an in-house research
tool at the NASA Lewis Research Center to perform linear-elastic structural
analyses of composite blade structures. The resulting nonlinear version of
COBSTRAN incorporates the appropriate nonlinear thermoviscoplastic (TVP)
material relationships, fiber degradation expression, composite micromechanics
equations, laminate theory, and global structural analysis to relate the global
nonlinear structural response of a HPT blade/vane component to the behavior
of the TFRS composite constituent materials.

Developmentof a nonlinearversionof COBSTRANwas undertakenas an
evolutionarytask. The intent is to "fine-tune"nonlinearCOBSTRANthrough
an iterativeprocess of empiricalinvestigationand analyticalmethodolgy
refinement. During this iterativeprocess,nonlinearCOBSTRANwill be used
as a tool to conductparametric/sensitivitystudiesto isolatethe critical
factorsaffectingthe behavior of TFRS compositesin HPT blade/vaneapplications.
Informationfrom the parametricstudieswill be used to identifyappropriate
experimentalinvestigationsto furtherexaminethe criticalfactorsthat
warrant accountabilityin a structuralanalysis.

ANALYTICAL APPROACH

The overall approach taken here for the nonlinear structural analysis of
a TFRS composite HPT blade/vane component is illustrated in the schematic in
Figure I. This schematic is representative of the general solution strategy
of nonlinear COBSTRAN. This approach is referred to as an upward-integrated
top-down-structured analysis. Figure I illustrates the levels of heirarchy
involved in this approach and summarizes the key elements comprising this
approach.
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The circulararrangementof Figure 1 is intendedto illustratethe
incrementalnature of a nonlinearstructuralanalysisand the iterative
process involvedin the solutionof such a problem. The cycle corresponds
to the analysisof each distinct load increment. The solutionprocess for
a nonlinearanalysisby this approach involvesiterationat two levels.
A primary iterationoccurs for the load incrementsof the total solution
range. For each increment,a secondaryiterationoccurs to establish
equilibrium,in the integratedsense, of the global structuralresponse.

NonlinearThermoviscoplasticRelationships

As pointed out earlier,material nonlinearityfor a TFRS composite
HPT blade/vaneis attributedto a stress-temperature-timedependencyof the
constituentmaterialproperties. To accountfor or model the materialnon-
linearityin a structuralanalysis,the nonlinearTVP relationshipsshown
in Figure 2 have been implementedinto nonlinearCOBSTRAN for the purpose
of updating the constituentmaterial propertiesat each iterationduring
the analysissolutionprocess.

As shown in Figure 2 the nonlinearTVP expressionsprovide a relationship
between the currentvalue (P) and referencevalue (Po) of a materialproperty
accordingto the currentand referencestateof the constituentmaterial as
describedby the indicatedfield variables. The propertiesbeing modified
include;normal moduli (Ell, E22), averageheat capacity (C), thermal
conductivities(KII, K22), thermal expansioncoefficients(_II,_22), and
remainingstrengths (SII, $22, S12).

These particularnonlinearTVP relationshipsare presentedwith the
realizationthat they do not representan exact or completemathematical
model for describingthe nonlinearmaterialbehavior for a compositestructure.
The expressionsin Figure 2 representan attemptto accountfor the material
nonlinearityinvolved in the applicationof TFRS compositesin a HPT blade/
vane compenentsby treatingthe problem at the fundamentallevel.

CompositeMicromechanics

In short, compositemicromechanicsis the branch of compositemechanics
which provides the formal structureto relate the behavior of a composite
lamina to the behavior of the constituents. Compositemicromechanicsequations
have been derived to predict; the materialproperties (mechanical,thermal, and
uniaxial strength)of a unidirectionalfiber-reinforcedlaminabased on the
correspondingpropertiesof the constituentmaterials,and, the distribution
of microstressesin the constituentmaterialsresultingfrom the stress state
occurringin a lamina.

In the lamina transversedirections (2- and 3-directions,see Figure 3),
the distributionof constituentmicrostresses(022, o12, 023) is non-uniform
through the thicknessof the ply. By virtue of the nonlinearTVP relationships
discussedearlier,this intralaminarnon-uniformityof transversemicrostresses
results in a non-uniformityof transversematerial propertiesfor the constituents.
This intrlaminarnon-uniformityis illustratedin Figure 3 in terms of the
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regions or zones used to characterizethe non-uniformity. Figure 3 also
lists the equationsused to calculateaverageconstituenttransverseproperties.

The compositemicromechanicsequationsfor predictinglaminamechanical
propertiesare shown in Figure 4 togetherwith a schematicdefiningthe material
propertycoordinateaxis system. Similarequationsexist for predicting
laminathermalpropertiesand uniaxial strengthsas well as for predicting
the distributionof constituentmicrostressesfrom the correspondinglamina
stresses.

In a sense, the compositemicromechanicsequationspresentedhere can
be thoughtof as a first level of approximationfor idealizingan inhomo-
geneous laminatedTFRS compositeHPT blade/vanecomponentas a pseudo-
homogeneousstructure.

LaminateTheory

In short, laminatetheory (laminatedplate theory)providesthe formal
structureto describe the behavior of a laminatedcompositestructurein terms
of the individuallaminaecomprisingthe laminate. A cursorysummaryof the
governingequationsof classicallaminatedplate theory is given in Figure 5.
Just as the compositemicromechanicsequationswere consideredas a first level
of approximation,laminatetheory can be thoughtof as a second level of
approximationin idealizingan inhomogeneousTFRS compositeHPT blade/vane
componentas a pseudo-homogeneousstructure.

Global Structural Analysis

The global finite element formulationof a general linear structural
analysisproblem is summarizedby the equationsshown in Figure 6. Although
this collectionof equationspresentsa superficialview of the finite element
method of structuralanalysis,these equationsare representativeof the
governingequationsof structuralanalysisas implementedin a generalpurpose
finite elementcode such as NASTRAN.

The basis of the integrated approach presented here for the nonlinear
analysis of a TFRS composite HPT blade/vane component involves the application
of the linear finite element formulation summarized in Figure 6 in an incre-
mental manner.

PRELIMINARY RESULTS AND DISCUSSION

Resultswere obtainedfrom the analysisof a single unidirectional
TFRS compositelaminausing the integratedapproachjust presentedas
implementedinto nonlinearCOBSTRAN. Detailsof the analysisare left
out here as the purpose of presentingthese resultsis merely to: illus-
trate the capabilitiesof this integratedanalyticalapproachby showing
the types of informationobtainable;identifytrends of material behavior
being accountedfor and traced in a nonlinearanalysisby this integrated
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approach, and; point out the possible significance of a fabrication
process in conducting a nonlinear analysis of a composite engine
structure such as a turbine blade/vane.

The results in Figure 7 were obtained from the analysis of a
single unidirectional TFRS composite lamina subjected to a temperature
load representative of the cooling portion of a typical fabrication
process. The first plot illustrates the large longitudinal normal
residual stresses (_II) existing in the constituents at the end of
this fabrication process. These stresses are the result of the
difference in thermal expansion coefficients between the constituents.
The second plot shows the variation of longitudinal normal modulus

(Eli) for the constituents and ply during the fabrication process.
Note that the modulus for the matrix initially increases but then
decreases continuously for the duration of cooling. This reflects
the relative influence or effect of the individual dependency terms
in the nonlinear TVP relationships presented earlier. At first,
the temperature-dependency dominates and, as might be expected, the
modulus increases to a point where the residual stress becomes
large enough such that the stress-dependency becomes dominant. The
results for the fiber and interphase (degraded zone) can be explained
in a similar manner. The result for the ply, as determined from the
corresponding micromechanics equation, reflects the behavior of the
fiber and matrix as the volume fraction of interphase was nominal in
this case.

The third plot in Figure 7 illustrates the variation of remaining
strength available in the ply and constituents during the fabrication
process. The results are consistent with the corresponding nonlinear
TVP relationship for strength. Finally, the last plot shows the

build-up of transverse normal residual microstress (_22) in the
constituents similar to that shown for _11" The point to be noted
here is the difference in microstress fr6_ region to region for the
matrix and interphase (degraded zone). This reflects the intra-
laminar non-uniformity discussed earlier.

The conclusionto be drawn from these results is that perhaps
the fabricationprocess for individuallaminae,laminatepanels, and
a compositecomponentitselfshould not be neglected.
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SYMBOLS

k volume fraction

n, m, 1 exponential constants (equations, Figure 2)

t total time

z distance to lamina (equations, Figure 5)

A laminate membrane stiffness matrix

C heat capacity, laminate coupled membrane-bendind
stiffness matrix, or global structural damping
matrix

Cl, C2, C3 constants (equations, Figure 2)

Do, D initial fiber diameter and current fiber diameter
or laminate bending stiffness matrix

E normal modulus or material property matrix

G shear modulus

K thermal conductivity or global structural
stiffness matrix

M laminate moment resultants or global structural
mass matrix

N laminate stress resultants

NT, Nm thermal and mechanical load cycles (equations, Figure 2)

Po' P initial and current value for a property (equations,
Figure 2)

R lamina transformation matrix

So, S, Sc, SF initial, current remaining, cumulative, and fracture
strengths (equations, Figure 2)

To, T, Tm initial, current, and melting temperatures (equations,
Figure 2)

thermal expansion coefficients

£, _o strain, and laminate midplane strains

< laminate curvatures

Poisson'sratio
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_o, _ initial, and current stress

°o, °, _H initial, current, and reference maximum stress
rates (equations, Figure 2)

vibration frequency

subscripts:

c composite or laminate

F, M, D, L fiber, matrix, interphase, and lamina

I, 2, 3 lamina material property coordinate axes

x, y, z global structural axes
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Figure 4 - Composite micromechanics equations for predicting average
mechanical properties of a unidirectional fiber-reinforced ply
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THREE-DIMENSIONAL STRESS ANALYSIS USING THE BOUNDARY ELEMENT METHOD*

Raymond B. Wilson

Pratt & Whitney Aircraft

Prasanta K. Banerjee

State Universuty of New York - Buffalo

SUMMARY

The boundary element method will be extended (as part of the NASA Inelastic

Analysis Methods program) to the three-dimensional stress analysis of gas turbine

engine hot section components. This paper outlines the analytical basis of the

method (as developed in elasticity), summarizes its numerical implementation and

indicates the approaches to be followed in extending the method to include
inelastic material response.

NOTATION

V interior of three-dimensional body

S surface of three-dimensional body

ui displacement vector

eij strain tensor
stress tensor

oij

ni unit normal vector

ti traction vector

fi body force distribution

Kronecker delta
8ij
e. arbitrary unit vector

3
E Young's modulus

v Poisson's ratio

shear modulus

coefficient of thermal expansion

temperature

*Work done in support of NASA contract NAS3-23697.
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INTRODUCTION

It has been established that the durability of hot section components is a
major driver of gas turbine engine costs, in design, manufacture and maintenance.

Major savings will be realized if the lives of these components can be extended and

their cost reduced. The NASA HOST (Hot Section Structural Technology) program is

supporting a variety of approaches to these problems. As part of the HOST program a
need has been identified for an improved inelastic three-dimensional stress

analysis capability which is efficient enough for use in the design cycle. NASA

Contract NAS3-23697 (3-D Inelastic Analysis Methods for Hot Section Components),

recently awarded to the Commercial Engineering Division of Pratt & Whitney
Aircraft, is directed at the development of analysis tools to meet this need.

The analysis requirements are severe. Hot section components, and the related
stress analyses, are characterized by:

i. Extreme geometrical complexity. The components typically include surfaces

of very general shape. Small structural details must be accurately

represented, since these are frequently life limiting locations. The
components usually contain holes of various sizes to allow for air and

fuel flow and these can both weaken the overall structure and act as local

stress risers. It may also be necessary to account for the presence of
single or multiple cracks within the structure.

2. Loading complexity. Loads typically include gas path and cooling air
pressures, mechanical loads due to other components, thermal loads

(derived from unsteady temperature distributions) and, in some cases,

extremely significant centrifugal loads. Durability analysis for hot

section components requires consideration of the stress-strain history

throughout a flight cycle, and thus all of the boundary conditions and
other loads are potentially time dependent. °

3. Complex material response. In all cases the elastic material response in

hot section components is inhomogeneous due to the high temperatures
involved and the temperature dependence of elastic modulus. In some cases

the materials are anisotropic. Inelastic response usually occurs, at least

in local regions, over some part of the flight cycle. In some cases global

inelastic response (plasticity, creep or both) of the component is
encountered.

The requirements of the design process cannot readily be met using a single

analysis tool. The early phases of the design process require rapid and inexpensive

analyses of a variety of designs. In the final phase of design analysis a very

accurate determination of the stress-strain state is required for final life

prediction, but greater analysis time and cost are acceptable.

Much of the work in the present program will be devoted to the development of
simplified (beam, shell) analysis methods for use in early design and to the

development of special purpose finite element modules for the efficient analysis of
hot section components. Significant effort will also be devoted to the extension of

the boundary element method to the three-dimensional stress analysis of hot section

components. This will provide a complementary method which can be used as an

alternative to finite element analysis. It is expected that, for some problem

classes, accuracy and efficiency will be improved relative to the use of finite
element analysis.
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The remainder of this paper reviews the analytical development of the elastic

boundary element method, briefly discusses its numerical implementation, gives an

example of its use for a rather complex structure and indicates the approach to be

adopted in extending the method to inelastic analysis.

ELASTIC ANALYTICAL FORMULATION

The boundary element method is a numerical method applicable to the solution

of problems in homogeneous elasticity. It is similar to the finite element method
in utilizing piecewlse approximations to geometry and field quantities. These

approximations allow the effective treatment of complex structures such as those

encountered in gas turbine engines. The boundary element method is based on an
entirely different mathematical development than is the finite element method, and

this leads to profound differences in the numerical implementation. The key feature
of this development is the use of classical results in mechanics and potential

theory to reduce the dlmenslonality of the problem. Thus a three-dimenslonal

elasticity problem is solved solely in terms of the surface of the body. The

mathematical development is discussed below. Further details may be found in
reference i.

The starting point for the development is the Reciprocal Theorem (ref. 2)

ij elj dV = oij eij dV

v v (1)

where (°ii- li) and (o_i *, Eli) are the stresses and strains derived
from any _woedlsplacemen_ fields satisfying the equilibrium and compatibility

equations. Use of the strain displacement equations and the divergence theorem

allows the recasting of the Reciprocal Theorem in an alternate form involving

surface integrals of the displacement and traction fields, and volume integrals of

the displacement fields and body force distributions.

S* >* /* >*i ui dS + i ul dV = i ul dS + i ui dV (2)
S V S V

The displacement states chosen are completely arbitrary, except for the

requirement that equilibrium be satisfied. For isotropic, homogeneous materials one

can identify the (*) solution with the displacement field due to a unit force
• *

applled in the direction ej at the point Yi (the Kelvin solution, ref. i).
Formally this is the displ_cement field satisfying

ao_j , .
8x----_- = _ij 6(x,y) ej = fi (3)
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and it can be represented in the form

* * (4)
ui (x) = Gij (x,y) ej (y)

where

I [ jGij =16_ (l U)r (3 - _P) 6ij + (xi - Yi)(xj -Yj) (5)- r2

(r = Ix - Yl )

The strains, stresses and (on the surface, S) the tractions can be represented

in similar forms,

_ij = Bijk ek

* * (6)
oij : Tij k ek

t_ = oij nj = Tij k nj e_ = Fik e_

where the tensors Biik, Tii k and Fik are derived from the displacement

tensor, Gij , by appr6priat_ differentiation and use of Hooke's Law. A similar
approach is available for anisotropic materials, although closed form

representations are not generally available.

By substituting u_, ti and fi in the Reciprocal Work Theorem
and utilizing the formal definition of f_, an identity (Somigliana's identity)
can be derived which expresses displacements at an arbitrary interior point in

terms of the displacements and tractions on the surface. Appropriate
differentiation and use of Hooke's Law allow derivation of similar results for

stresses and strains, solely in terms of boundary data.

uj(y) = fti(x) Gij(x,y) - Fij(x,y) ui(x)] dS(x) + fi(x) Gij(x,y)dV(x) (7)
S V

It then becomes possible to carry out a limiting operation in which the

interior point y approaches a specific point xo on the surface of the body. The

functions G.. and F.. both become singular, and the integral involving Fij13 1j
must be evaluated as the sum of a principal value integral and a separately

calculated jump term. After the required manipulations have been carried out, the

boundary integral (constraint) equation

[i - _ij(x)] uj(Xo) = 7[ti(x) Gij(X,Xo) - Fij(X,Xo) ui(x)] dS(x)

s (8)z"

+ 7fi(x) Gij(X,Xo) dV(x)
V
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is obtained. The tensor _ii is due to the jump term in the integral of Fij. At
any point at which the sur£ace is smooth, _ij = 1/2 _ij" At other points zts
behavior is more complex.

The basic content of this equation is that a well posed three-dimensional

elasticity problem can be solved solely in terms of surface displacements and

tractions. The equations represent constraints on the unknown boundary data which

ensure that they will be in equilibrium with the prescribed boundary data.

ELASTIC NUMERICAL IMPLEMENTATION

While the analytical form of the boundary integral equation is of considerable

theoretical interest, there are almost no geometry and loading combinations of any

practical interest for which an exact solution exists. Classical forms of

approximation, such as series solutions, are cumbersome and, often, of questionable
accuracy. Practical exploitation of the equation thus requires a technique for

reducing it to a linear algebraic system.

Since the boundary integral equation is written in terms of the displacements

and tractions on the surface of the body, it is necessary to define a convenient

geometric approximation to the true surface and to define approximations to the
displacement and traction variation over this surface. This allows the evaluation

of the required integrals in terms of the algebraic parameters defining the
displacement and traction variation and, thus, reduction of the overall system to a

set of linear algebraic equations. If nonzero body forces are involved, then an

appropriate interior approximation may also be required. It need not be related to,

or consistent with the surface approximation. The solution is still carried out
solely in terms of boundary data.

Two major approaches have been taken to the three-dimensional numerical

implementation:

I. The surface is modeled as an assembly of plane triangular patches.

Displacement and traction are taken to be either constant (ref. 3) or

linearly varying (ref. 4) over each such patch. Using these approximations

it is possible to evaluate all required integrals over each surface patch

in closed form. This leads to an efficient and highly accurate calculation

of the coefficients in the resulting algebraic system. However, the

representation of complex geometry requires the use of a large number of
elements, and the limitation to linear variation of surface data tends to

reduce accuracy in cases where significant bending or large surface

element aspect ratios are involved.

2. The surface is modeled using quadratic isoparametric (fig. i) surface

patches (either quadrilateral or triangular). These are derived from the

use of similar elements in finite element analysis. Surface data is then

modeled, over each element, using the linear, quadratic or cubic
isoparametric shape functions (ref. 5). Experience with this form of

representation has shown that complex geometries can be modeled using a

reasonable number of elements. The use of quadratic surface data variation

yields a significant improvement in accuracy, so that a geometrically

satisfactory model normally possesses sufficient refinement to give

sufficient definition of stresses and strains. The use of cubic variation

153



has not been found necessary in modeling gas turbine engine components.

The use of these more general approximations requires the (at least

partial) use of numerical integration in evaluating the coefficients of

the linear equation system.

Using either form of approximation, it is possible to develop algebraic

representations for interior quantities.

While both the boundary element and finite element methods are numerical

stress analysis techniques, significant differences exist between them. In

particular:

i. In the finite element method displacements are approximated throughout the

body. Stress and strain are always derived quantities. In the boundary

element method only the surface variations of both displacement and

traction are modeled. Interior results are calculated only at points where

they are desired. These interior quantities satisfy the exact equations of
elasticity.

2. A single finite element is a structure. That is, an elasticity problem can

be posed and solved for a single element. A single patch used in boundary

element method modeling is not a structure. It requires an assembly of

patches enclosing a volume before an elasticity problem can be solved.

3. The structure of a finite element system matrix and a boundary element

system matrix differ. A finite element matrix is typically large (since

the entire volume must be modeled) but is banded and symmetric. The

boundary element method matrix is significantly smaller but is typically

full (because of the surface integrals) and nonsymmetric.

TURBINE RIM COOLING HOLE

The boundary element method has been applied (using both the forms of

approximation discussed above) to the calculation of stresses.and strains at

turbine cooling hole exits, which are possible life limiting locations for turbine
disks (ref. 6). A test program was carried out, using a large scale model (fig. 2),

to determine the strain variation around the exit of a radially oriented hole

intended to feed cooling air to the blade (fig. 3). The program was designed to

study the effect of different strategies for blending the sharp corner of the hole
exit.

An initial attempt was made to analyze the structure using a three-dimensional

finite element code. It did not prove possible to resolve the strain concentration

at the hole exit at a reasonable cost (for either model generation or computer

time). In order to resolve the local behavior a boundary element analysis, using

plane triangular elements (the BINTEQ code), was carried out. The quarter section

shown in figure 3 was modeled, as shown in figure 4, using 436 surface patches.
Boundary conditions were taken from the finite element analysis, based on the

assumption that the overall load transfer in the finite element analysis was

correct. Results from the analysis showed good agreement with the strain gage data
from the model tests (fig. 5).
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The boundary element method analysis was later redone using isoparametric

elements (the BASQUE code). The model (fig. 6) required only 97 patches, a
reduction factor of 4.5. This reduction is directly related to the use of curved

elements, particularly in the doubly curved region at the hole exit. The results of

this analysis showed even better agreement with the data than did those of the

original analysis using plane triangles (fig. 7). The cost was significantly less,
although computing system changes make an exact comparison impossible.

The results of these analyses suggest that the boundary element method is

particularly effective in resolving rapid stress and strain variations, especially

when accurate geometrical modeling is also required. This observation is consistent
with results obtained in other analyses as well (ref. 6, 7). It is not yet clear

whether the boundary element method will be competitive with finite elements for

the solution of general three-dimensional load transfer problems not involving high

gradients. In general, the methods should be viewed as complementary, not as

competitors, of which only one will eventually be used.

INHOMOGENEOUS AND INELASTIC ANALYSIS

It was noted above that the analysis of hot section components typically

involves centrifugal and nonsteady thermal loads, as well as both inhomogeneous and
inelastic material response. Both the centrifugal and thermal loads can be

incorporated directly as body forces. For the centrifugal loads (where R is the

distance from the axis of rotation)

fi (_ P_2R (9)

while for the thermal loads

- _E

=_i - (i - 2 u)e'i (10)

It should be noted that these representations are not unique. The use of the

divergence theorem allows transformations of the body force terms to be carried

out. While the resulting representations are analytically equivalent the choice
made can have significant numerical effects.

The introduction of inhomogeneous and inelastic response is more complex. The

homogeneous, elastic boundary integral equation can be written, in operator

notation, as

L(v) = F (Ii)
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where L is a linear operator, v is the unknown surface data and F is derived from

all known loads and surface data. Other linear operators exist for the calculation

of any desired interior results:

u = lu(V ) + Fu

(12)
e = le(V) + Fe

O = Io(V ) + Fo

The stresses and strains obtained using the operators IE and I_ will satisfy
Hooke's Law using the assumed homogeneous elastic modulus. If either inhomogeneity
or inelastic response occurs, then the interior stresses and strains will not

satisfy the true stress strain relation. This imbalance can be represented in terms
of modified body forces and surface tractions or as volume distributions of initial

stress or initial strain. If, for example, the body force representation is chosen,

then the imbalance can be cycled back to the boundary integral equation

S V

where f_ is derived from the interior imbalance evaluation. The new boundary
solution u_, t_ will produce interior results which reduce the interior
imbalance due to the inhomogeneous and inelastic behavior. In matrix form the

system equation becomes

[T] _i + [U] t_I = £+ f__l (14)

It is particularly important to note that the kernel functions and the

matrices [T] and [U] remain unchanged during the iteration process. Thus the

calculation of these matrices and the decomposition of the system matrices need be

done only once for the entire analysis. The overall solution sequence, written in
operator form is then

calculate L 1

calculate N single elastic calculations (15)
calculate L-I

calculate F

fo = 0
Vi = L-I(F + fi) inelas tic/inhomogeneous time/load
+i

= N (Vi) iteration stepping

t = t + At
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The sequence presented above is valid for a single time or load increment. The

quantities u, t and F must, for an inelastic analysis, be regarded as either
increments or rates depending on the type of inelastic material model used. In

either case a number of time steps or load increments will be required for the

complete solution. The key point to be noted is that the surface and volume

problems have been uncoupled. In a sense the overall structural analysis problem is

solved on the surface while the complex material response is evaluated in the

interior. It remains unnecessary to have compatibility between the surface and
volume discretlzations.

Significant progress has been made in the application of these techniques in

two-dimenslonal analysis (ref. 8, 9). It is to be expected that, with careful

attention to the details of the numerical implementation, the inelastic

three-dlmensional boundary element method will prove to be highly effective for
many problems of practical importance.
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SUMMARY
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Significantresults,conclusions,and issuesaddressedat the Lewis/
Industry/UniversityWorkshopon NonlinearStructuralAnalysisare summarized
below by discipline: New Concepts/Formulations,Algorithms/Convergence,and
InelasticAnalysis and Interactiveelements.

New concepts/formulations.- (1) The slave finite elementapproachto
nonlinearanalysisis viable. The large number of degreesof freedom (DOF)
associatedwith this approach,however,would requireinnovativecomputational
algorithmsto obtain computationaleffectivenesscomparedwith traditional
approaches. The ease in changing incrementsteps, the increaseddetailed
informationavailablewithin the subinterval,and accuracydemonstratedto
date for elasticproblemsare promising. (2) A new variationalprinciplehas
been developed. This principleis based on the combinedHellinger-Reissner
and Hu-Washizuprincipleswith additionalinternaldisplacementDOF. Hybrid
stress elementsbased on this new principlehave invariantpropertiesand are
less sensitiveto geometricdistortions. This new variationalprincipleis
consideredto representa significantadvance in finite elementdevelopment.
(3) The three-dimensionaldegeneratedelementsoffer modelingand computa-
tionalefficiencyfor the analysisof generalshellswith layeredstructure,
undergoinglarge deformations(in-plane,bending,and shear) and transient
motions. As expected,these elements take more computationaltime for special
shell problemscomparedwith finite elementsbased on deformableshell
theories. (4) A nine-nodeLagrangeshell finite elementproved effectivein
the buckling,postbuckling,and elastic-plasticanalysesof shells. This ele-
ment did _ot exhibit "shear locking"even in very large aspect ratio shells
(up to 10_). Applicationof the elementto other nonlinearproblemssuch as
dynamic, creep buckling,and ratchetingrequiresadditionalresearch. The
magnitudeof the effort requiredto developthe elementformulationfor these
other nonlinearproblemsmay be substantiallyreducedusing symboliclanguage
manipulators.

Algorithms/convergence.- (1) The new computationalalgorithmdeveloped
for self-adaptivesolutionstrategiesproved to be very effectivein the solu-
tion of two highly nonlinearproblems (snap-throughload-deformationhistory
of a sphericalcap and a box-truss). This new algorithmis stable,eliminates
the need for global inverse,and handles problemswith turningpoints and
generalmaterial properties. Formalestablishmentof convergenceand stabil-
ity characteristicsof the algorithmrequiresadditionalresearch. (2)
Element-by-element(EBE) approximatefactorizationtechniqueswere comparedto
test problemsfor elasticand elastic-perfectlyplasticcantileverbeams with
and without a circularhole. The EBE solutionmethod convergedwith seven
iterations(with the hole) and four iterations(withoutthe hole). EBE is a
linearequation-solvingprocedure. Direct use to developEBE time stepping-
solution algorithmsrequiresadditonalresearch. (3) Finite elementgenera-
tors using symbolicmanipulatorlanguages(VAXIMA)are viable. Initial
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results show that the lines of program required to generate the strain-
displacement and stiffness element matrices can be reduced substantially. (4)
The stability convergence of underintegrated finite element approximations can
be improved by simple post-processing operations. These operations can be
described by an exact formula in some cases. Additional research is needed
for more general cases.

Inelastic analysis and interactive elements. - (1) Elastic-plastic frac-
ture under arbitrary loading and material behavior, characterized by realistic
crack-growth rates, can be described by two integral equations. A new
path-independent integral has been derived to describe dynamic crack propaga-
tion. A set of equations/conditions has been developed which generalizes the
constitutive relations for inelasticity and finite deformations. Variational
principles were used to derive a hybrid finite element for describing dynamic
crack propagation. (2) Interactive finite elements can be used to describe
the dynamic interaction of rotating squeeze film bearings, shafts, and sup-
ports. This type of analysis is the only one available to date which
describes the dynamic interaction in an integrated manner and which can be
used as a "plug-in" in general purpose finite element codes. The interactive
finite element approach is presently being confirmed experimentally using a
two-bearing, two-damper test rig. (3) An upward-integrated and "top-down
traced" computerized capability has been developed for the nonlinear analysis
of high-temperature composites applicable to turbine blades and vanes. This
theory accounts for the complex thermoviscoplastic behavior of composites in
turbine environments and includes effects of the fabrication process. Initial
results indicate that the fabrication process induces a substantial thermo-
viscoplastic stress state in the composite. (4) Boundary element methods have
proven computationally effective for two-dimensional linear problems. Exten-
sions to three-dimensional, nonlinear and time-dependent problems is the
subject of current focused research. It is anticipated that boundary elements
will provide a complementary analysis methodology to finite element methods.

Collectively, the summary points out the multidisciplinary approach
necessary to develop methods for complex nonlinear structural analysis
problems. This multidisciplinary approach encompasses new formulations and
concepts, invention of more general variational principles, finite element
generators, development of interactive elements, innovative solution algo-
rithms, adaptive solution strategies, and formal criteria for a priori assess-
ing solution stability and convergence. The contributors to these proceedings
describe what can be done, future potential, and direction in each discipline.

The goal of the highly focused research described in these proceedings is
to develop methodologies which lead to designs of more cost-effective and
reliable engine structures and components. It is hoped that, in addition,
these proceedings will provide a valuable source of information of on-going
research and future direction in nonlinear structural analysis in general.
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INDEX

Acceleration,secant,48 Composites(cont.)

Admissible,3 InhomogeneousTFRS, 134

Admissible,3 Intralaminar

Ahmad,45, 49 Microstresses,133

Algorithm, Non-uniformity,134

Hierarchial,58 Lamina,133

Hybrid-stressfiniteelement,111 Mechanicalstrength,133

IncrementalNewton-Raphson,55 Mechanics,133

Newmark,12 Micremechanics,133, 134

Newton-Raphson,46, 49 Refractory-fibermetal-matrix,131

Parabolicregularization,66, 67 Thermalstrength,133

Analysis UnidirectionalTFRS, 134, 135

Boundaryelementmethod, 154 see Tungsten-fiber-reinforcedsuperalloys
Global 132 Computercode

Postbuckling,46 ADINA, 122

Thin plate,47 COBSTRAN,132, 133, 134
Thin she11,47 FORTRAN,85, 86

Top-down-structured132 FORTRAN77, 88, 89

Upward-integrated132 Interactiveprompting, 8T

Applicationlevels,hierarchial,51 LISP,8T, 89, 90

Arc length,constrained,46, 49 MACSYMA, iii,85, 86

Aspectratio,Large,iii Menu driven, 87

Attributes, self-adaptive, 56, 51 NASTRAN,120, 121, 134
TETRA, 120

Beam, cantilever,11 User-levelprograms,go

Bearingdampers,squeeze-film,121 VAXIMA,86, 87, 89

Bearings Computeroperatingsystem,UNIX, 86, 88

Fluid-filmjournal,120 Computers,VAX-II/T80,86, 91
Rollingelement,120 Concaveshape,49

Behavior Configuration,multi-shaft,120

Inelastic,156 Conservationlaws, 108

Inhomogeneous,156 Constitutivelaws,3

Pre-postbuckling,60 Constitutiverelation,105

Rate sensitive,106 constraint

Bending Circular,56

Modes, inextensional,20 Hyperbolic,56

Static,35 Surfaceof, 56

Bilinear,9T Contourline, 74

Blade/vanecomponents,high-pressureturbine convergence,162

(HPT),131, 132 Criteria,iii

Boundaryelement,154, 155, 162 Rates,superlinear,56
Boundaryelementmethod, 149 Stable,57

Boundaryintegral,iii convexshape,49
Coordinates,curvilinear,33

Cap cowper,22

Sandwichspherical,48 Crack propagation

Spherical,36, 60 Dynamic, 105, 162
Closednesscriterion,56 E1astodynamic,108

Composites Self-similar,1052, 108
Constituentmaterials,132 - 134 See also creep

Fiber reinforced,31 Creep

High-temperaturematerials,131, 162 Behavior,elastic-plastic,55, 56
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Creep (cont.) Elliptic, 56
Crack-growth, 106 Energy, complementary, iii, 112
Damageprocess, 106 Equation
Steady-state 106 Boundary integral, 153

Cycle, limit, 121 Euler-Lagrange, 112
Micromechanics, 132

Dampers, squeeze-film, 120, 122, 123 Euclidean norm, 58
{)awe,22 Euler-Lagrange,112
Deflection,large,48 Factorization,16

Deformation Alternatingdirectionmethod,65

Elastic-plastic,48 Element-byelement,65, 66, TO, II, 16l

Inelastic,ll2 Fractionalstepsmethod,65

Large,46, 47 Methodsof discretization,65, 66

Theoryof, 105 Splitting-upmethod,65

Determinantratio,49 Weak approximationmethod,65

Derivative Finiteelements,33, 85, 86, Ill

Spatial,3 Analysis,45, 55

Temporal,3 Conforming,approximation,97
Discretizations,65 Generatorsof, 161

Non-prismatic,10 Global, 134

Semi-prismatic,10 Hybridstress,iii

Displacements Interactive,iii, 162

Constrained,48 Nonlinearsimulation,55

Internal,20 Slave,iii, 16l

Staticallycondensed,18 Flow theory,rate-independent,106
Distortions,geometric,20 Forceexcitation,periodic,121
Dynamics,nonlinear,121 Formulation

Galerkin,57

Eight-node,20 Rayleigh-Ritz,57

Elastic-plasticmaterial,Bilinear,4(3 Virtualwork, 57
Elastic-plastic,46 Fracture

Elasticity Dynamic, iii

Finite, 106 Mechanics, 105, 107
Infinitesimal, 106 Elastic-plastic, 107, 162

Element-by-element, iii Frequencies, natural, 121
Elements Function,bilinear,7, 8

Bilinearquadrilateral,72 Functional,ll2
Boundary,15l

Cylindrical shell, 22 Global inversion, 57
Degenerated, 161 Global updating, 57
Higher order, 87 Green-Lagrange, 32, 33
Hybrid, II Growth,self-similar,105
Hybridsemi-Loof,21

I_licit-explicit,11 Hamilton'slaw, 1, 2

Invariant,17, 20 Hardening,anisotropic,109
Isoparametric,155 Heat conduction,nonlinear,56

Lagrange,46 Heirarchy,132

Nine-node,47 Hellinger-Reissner,17, 18
quadralateralisoparametric,60 Higherorder,46

Semi-loof,17,20-22 Hinge,plastic,4(3

Thin shell,20, 21 Hu-Washizu,17

Three-dimensionaldegenerated,31, 32, 40 Hybridelements,17

Time-adaptivein_)licit-explicitpartition Hypo-elasticity,109
of, II

Twe-dimensional,40 Incompressibility,95
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Inelastic analysis, iii, 149 Modes (cont.)
Instabilities, hourglass, 92 Free-free undampednormal, 121
Instantaneous, 122 Hourglass, 95, 98, 99
Integral Keystone, 95

Path-independent, 105, 106, 108, 109, 162 Rigid body, 20
Principal value, 152 Morley, 22

Integration Motion, geometrically nonlinear, 32
Reduced, 45 Multi-branch, multi-level system, 120, 122
direct, Newmark, 35 Multi-cemponent splitting formulae

Interphase, 132, 135 Two-pass, 69, 70
Invariant, 18 One-pass, 70
Iron, 45, 49 Multiprocessor computer, 66
Isoparametric,18
Instabilities,numerical,95 NFAP,88, 91

Iteration,Newton-Raphson,48 Ne_rnark,35, 75

0 integral,105 Newton-Raphson,46

Oaumannintegral,ll5 Nonlinear,85

Jump term, 152, 153 Nonlinearity

Kinematic,55

Labyrinths, 121 Material,55

Lagrange,46 Noor, 36

Lagrangeelement Normalitycondition,109

Higherorder,47
Nine-node, 48 Objectivity, 113, 105, 114

Lagrangian
Kinematical, 75 Panel, circular cylindrical, 35
Total, 32 Parallelizable, 70

Lamina transverse directions, 133 Partitions, implicit-explicit mesh, 77
Laminate theory, 132, 134 Patch test, 18
Large global arrays, factorizing, 65 Patches
Limit cycle, 121 Quadratic isoparametric surface, 153
Load, temperature, 135 Triangular, 153
Loading/unloading histories, 106 Path-independent, iii

Patterns, spurious, 95
Manipulation, algebraic, 85 Phenomenon,transient, 121
Marguerre, 22 Piola-Kirchoff. 32, 58
Material Plastic deformation, non-proportional, 105

Elastic, 48 Plastic zone, 49
Elastic-plastic, 48, 109 Plasticity theory
Elastic-perfectly plastic, 48, 12, 13 Linear kinematic hardening, 110
Rigid-plastic, 109 Isotropic-hardening, 109

Matrix Plates, twisted, 36
Lumpedmass, 72 Polynemials
Tangentdamping,77 Bilinear,18

Tangentstiffness,IT Interpolation,88
Membrane Quadratic,46

Action,49 Positivedefinite,71, 17

quadrilateral, 18 Positive semi-definite, 17
Stresses, momentless, 22 Postbuckling, 48, 49

Meshpartitions, implicit-explicit, 66 Algorithm, 48
Micro-mechanics, 109 Analysis, artificial spring method, 46
Mindlin, 46 Prebuckling, 49
Modes Pre-postbuckling, elastic, 56

Checkerboard, 95 Pressure, 48
Chickenwire, 95 Follower, 48
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Pressure (cont.) Shell theory
Constant-direction, 48 Cylindrical, 22

Principle, variational, iii, 18, 161 Deep shallow, 22
Prismatic, 2 Shallow, 22
Propagating singular element, 108 Solid element, degenerated, 22

Solution

Quadrature Curve, 56
Gaussian, 98 Self-adaptive, 161
Numerical, 95 Semigliana's identity, 152

Quadrilateral planform, 21 Space-time, 3
Splitting, two-cemponent, 69

Ramberg-Osgood,7 Stationarity, 112
Ramm, 46, 50 Stiffness,incrementaltangent,46

Rank, 18 Strain

Rate Green-Lagrangian,33

ObJective,109, lIO MementIessmembrane,20

Strain, 111 Rate, 111

Stress, 110, 112 Stress

Zaremba-Oaumann-No11,111 Dependency,135

Rayleigh-Ritz,58 Hybrid, 19

Relations,macroscopicconstitutive,109 Incremental,33

Resonance,subharmonic,121 Largedeformationinelasticanalysis,105

Response,transient,35, 36 Tensor,Piola-Kirchhoff,32, 58

Riks, 46, 50 Stress-strainfield,Crack-tip,108

Roilingcontact,56 Stricklin,36
Rotor-stator Structuralanalysis,134

As interactivecomponents,120 Structure,box truss,60

Clearances,121 SubdomainmodeI,lO
Interactiveforces,122 Subgroups,Non-contiguous,70

Rub/impact,122 Substructures,lO
Superelements,70

Safetyzones,56 Sweptpanel,20

Seals,122 S_ymbolic,85, 86

Secantaccelerated,46 Expressions,89

Self-adaptive,iii Processing,87

Semi-discrete,15 TFRS, see Tungsten-fiber-reinforcedsuperalloys

SemiLoof,see Elements Tangentstiffness,singularityof, 46

Sensitivitystudies,132 Taylorseries, 58

Serendipity,46 Temperaturedependency,135

Shape function, 87 Temporal,3
Shear Test rig, 123

Locking,45, 47 Theory
Finite, 111 Deformation,105

Shell Four-dimensionalunified, 10

Angle-ply,36, 40 Laminate,132

Cross-ply,36, 40 Thermoviscoplastic(TVP),nonlinear,iii, 132,
Cylindrical,36, 40 133, 135
Degenerated,45, 47 Thinplate analysis,47

Elements,47 Thin shellanalysis,47

Laminatedanisotropic,31 Top-downtraced,162

Largeaspect ratio,161 Transient,geometricallynonlinear,31
Shear-deformed,iii Triangularelements,21, 22

Spherical,36 Tungsten-fiber-reinforcedsuperalloys(TFRS),
Sphericalshallow,48 131,132, 134

Theory,22 Blades/vanes,133

Thin rotating,120 Fiber degradationof, 132
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Tungsten-fiber-reinforced superalloys (cont.) Vibration, natural, 35, 36
Fiber-matrix interface of, 132 Viscoplasticity, 106
Nonlinear analysis of, 132

Turningpoints, 56 Work theorem, reciprocal, 152

Underintegration, 95 Zienkiewicz, 45, 49
Bilinear, 9B Zone, degraded, 135

Unstable, 48
Upward-integrated, 162
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