
NASA
Technical Memorandum 86136

A DEVICE-INDEPENDENT
INTERFACE FOR
INTERACTIVE IMAGE DISPLAY

D. C. Perkins
M. R. Szczur
J: Owings
R. K. Jamros

MAY 1984

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

ABSTRACT

NASA's Goddard Space Flight Center (GSFC) has developed
a Transportable Applications Executive (TAE) for use in
implementing portable applications software that can be
shared by different research projects. Since many of
the supported disciplines require the interactive
display and manipulation of remotely sensed images, a
device independent Display Management Subsystem (DMS) is
being writ ten as a TAE extension. The DMS attempts to
abstract and standardize the device dependent functions
that are used in the display and manipulation of image
data on image analysis terminals. This paper explores
the structure of DMS and the interface routines that are
available to the applications programmer for use in
developing a set of portable image display utility
programs.

1.0 INTRODUCTION 3

2.0 DMS CONCEPTS 4
2.1 Images 5
2.2 IAT Categories 6

3.0 DMS STRUCTURE 7
3.1 DMS Data Structure Management 8
3.2 Generic Image Manipulation Services 9
3.3 Device Dependent Services 11
3.4 Image I/O Support 12
3.5 Utility Programs 13
3.6 Implementation 13

4.0 SUMMARY 14

5.0 ACKNOWLEDGEMENTS 15

6.0 FOOTNOTES 15

7.0 REFERENCES 16

Figure 1: Device Name-Characteristic Association 5

Figure 2: DMS Components 6

1.0 INTRODUCTION

Much of the research carried out at NASA's Goddard
Space Flight Center (GSFC) involves computer-aided
analysis of remotely sensed image data obtained by
meteorological, oceanographic, or earth resources
satellite missions. The scientific analysis and
interpretation is aided by the ability to display and
manipulate the data quickly and easily using raster
devices, referred to here as image analysis terminals
(IAT) .

The rapidly changing market in lATs over the last
decade, combined with disparate system development
cycles and goals, has led to a proliferation of analysis
systems configured around different lATs. The result of
such a history of development is a collection of
programs, tailored to specific lATs, which cannot be
used on different lATs without spending considerable
time and ef for t on conversion. Yet, many of the
programs could otherwise be usefully shared among the
different systems.

The Display Management Subsystem (DMS) of the
Transportable Applications Executive (1) was conceived
as a means of standardizing the interface to a variety
of lATs in support of new projects. Its purpose was to
offer device independence so that programs could be made
portable among a variety of lATs. While it is a
subsystem to TAB, the concepts and techniques are
general and could be readily implemented outside of TAE.

The development of device independent concepts and
packages for data display on graphics and imaging
devices is an active subfield in computer science
research. Much of the work is relevant to DMS
development. For example, current standardization w o r k
by national and international committees (references 2,
8) is a rich source for ideas on device abstraction.
The design of subroutine packages, with respect to
internal relationships as well as portability
considerations, is an applicable discipline (references
5, 9, 10). Also, a direct relationship can be found in
work whose goal is to develop abstract models of raster
devices (references 1, 11).

However, DMS also has a goal outside of the realm
of defining a conceptual model of an IAT, namely, to
give a user easy access to displayed images by
cataloging them as named "files", with associated
attributes and user descriptions. Some approaches to
this goal can be found in various vendor-developed
systems, for example, the International Imaging Systems
System 575 (reference 7), which keeps a catalog of

- 1 -

user-supplied image names, with descriptive information
such as the spatial and spectral dimensions of the
image. DMS power lies in the combination of such
user-oriented features with its device independent
concepts.

In this paper we describe the DMS goals, design and
current implementation. Because the DMS development
cycle was constrained to meet the needs of ongoing
projects, the approach taken was to design and develop a
prototype which incorporated the device independent
advantages of the DMS concept, but with functions
limited to actual requirements of supported projects.
This approach had the advantage of producing an early
software implementation which could be evaluated before
more comprehensive decisions about a formal DMS model
were made. The functional capabilities referred to in
this paper are those of the DMS prototype.

In the next section of this paper we explore the
DMS concepts which support the goals of naming data and
providing generic devices. Following that we describe
the DMS data structures and the techniques used to meet
the goals. We also discuss actual prototype programs
and implementation details. Finally, we present a
summary of the work accomplished and discuss fu ture
plans.

2.0 DMS CONCEPTS

DMS has two primary objectives: to establish a
software environment for an interactive user that allows
that user to control, manipulate and do analysis using
an IAT without having to understand specific
characteristics of the hardware or supporting software;
and to allow programs which access lATs to be written
independent of any specific IAT type.

To meet these objectives, the DMS designers
established three major requirements;-

1. users of DMS must have services, similar to
operating system file management services/ for
managing data displayed on an IAT;

2. programs must be able to perform actions on lATs
without addressing a specific vendor's hardware
characteristics;

3. an interactive user must be able to exclusively
controller selectively (and deliberately) share a
particular IAT, and have that device used

- 2 -

automatically by programs he/she runs.

In support of these requirements, the DMS designers
formalized definitions of "images" and IAT categories
for DMS users.

2.1 Images

In an interactive image display and processing
system, the data base that is operated on by the
software consists of digital image (2) files and related
ancillary information. The images are stored in either
disk files, tape files or IAT refresh memories. The
last storage medium, refresh memories, d i f fers in that
the contents of one or more memories can be dynamically
directed to an IAT monitor for viewing by the user,
while being enhanced by application of transformation
tables or altered by zooming, panning, etc.

In a departure from earlier systems (e .g . ,
references 3 , 4) , which required that a user first place
data into refresh memories, then independently apply
intensity transformation (lookup) tables, configure the
memories for viewing, and finally, remember the details
of this configuration for later viewing, DMS combines
these types of sequences into single operations. The
result of an operation is named, and the entire
configuration can be later recalled by use of that name.
So, for example, in one operation a user can load three
bands of data, declare them to be a false color image,
and name that image WASHINGTON. Later, after displaying
other data sets or results, the user can type

VIEW WASHINGTON

to return to viewing the original false color image.

The following list summarizes the information about
a named image which is known to DMS:

o the refresh memories on which the data are stored

o the transformations applied to that data (e .g . ,
intensity or color assignments, shifts, zoom factor)

o the image type (e.g., full color, stereo, black &
white)

o the associated protection (locked (cannot be
replaced) , or unlocked (may be replaced by new
image))

- 3 -

o image age (oldest replaceable images are replaced
f i rs t)

o image size (height, width/ number of bits per pixel)

o the image start location in refresh memory

o the source of the data (disk f i l e (s))

o header labels (if any) from the source files

2.2 IAT Categories

DMS operations are based on the concept of generic
devices. To DMS, any one IAT is identified only as a
collection of capabilities for data storage and control.
Thus, specific individual lATs within a system are
described by their configuration. For example, a simple
device may be identified as having three 512 x 512
refresh memories, three lookup tables, one monitor, one
cursor, and one graphics overlay plane.

Each of these devices (collections of
characteristics) may be given one or more names. The
purpose of the naming is twofold. First, lATs can be
given meaningful names, which will allow users to
allocate them simply. Once a user allocates an IAT by
name, then DMS tracks the set of capabilities available
to that user for data processing.

Second, programs may also request lATs by name.
DMS requires that a program which accesses an IAT
declare what capabilities it expects to use. This
powerful feature allows programs to be concerned only
with what they intend to accomplish, not with specifics
of a device. DMS verifies this request against the
capabilities of the IAT owned by the user of the
program, rejecting the request if the program's
requirements cannot be met.

Rather than force a programmer to request a device
by listing a complete set of options, DMS defines some
standard groupings of characteristics. Thus, a program
may state its requirements by naming a particular
standard device. It may also request additional
features to be added onto its request, such as an extra
cursor.

For example, the IAT described above is a standard
category, called FULL for full color. A program might
declare that it needs FULL, along with an additional

- 4 -

overlay plane and hardware zoom. DMS would assure that
the user 's IAT has the required features.

Figure 1 is an example of a possible
name/characteristic association which could be used at a
DMS installation. It is expected that while a user will
allocate an IAT by its unique name (e.g. , TIGER),
programs will typically request devices by standard
names and options. The program can then be run using
any IAT supporting the required characteristics. Only
programs which require use of a particular IAT or a
particular model of IAT would use the unique names.

A program may also query characteristics of a
user 's IAT if certain requirements are flexible. E .g . ,
if 10 memories are adequate, but 12 would be better,
then the number actually available can be determined at
run time.

DEVICE NAMES DEVICE CHARACTERISTICS DEVICE HARDWARE

Figure 1: Device Name-Characteristic Association

3.0 DMS STRUCTURE

DMS is founded upon a set of data structures which
capture and identify the main DMS concepts. Several
software components have been developed to manipulate
the data structures and to allow programmer access to
the lATs. These include:

- 5 -

o Data structure management

o Generic image manipulation services

o Device dependent services

o Image input/output support

o Image display utility programs

Figure 2 illustrates the relationship of the DMS
components to each other and to programs using them.

(CRT) '

USER'S

1
I A T)

STATION

DEVICE
DEPENDENT

SERVICES
(DDs)

DMS
DATA

STRUCTURES

I
APPLICATIONS

AND
UTILITIES

USER'S
IMAGE
DATA

°;

GENERIC
SERVICES

(XDs)

s^ f

IMAGE
I/O

(XLs)

—

DATA
STRUCTURE

MANAGEMENT
(DMs)
i \

Figure 2: DMS Components

The following sections describe the characteristics
.andjasage of the various,.components, _ followed by: _
specific software implementation details.

3.1 DMS Data Structure Management

Four data structures support all environmental and
control information maintained by DMS:

Device ID Block. This block identifies the IAT
currently owned by a user. It is accessed by the DMS
initialization routine whrch^every program ^call's to - -
attach itself to a user 's IAT.

- 6 -

Display Memory Table. The DMT associates images defined
by a user with a device's memories and maintains
characteristics of all images, e.g., image type, name,
physical location(s), age, lock switch, etc. This table
is used extensively by DMS routines to translate between
a user's image and device-specific addresses and
registers. The table is accessible through a subroutine
package, known as the DM package (3) , which queries and
updates table entries. The following is a sample of DM
routines:

o DMCHAR - verify characteristics of a user's IAT
o DMCTYP - get image type
o DMDEFI - define image
o DMDID - validate IAT name
o DMGETM - get refresh memory IDs for an image

Pisplay Device Table. The DDT contains a physical
description of IAT characteristics (e.g., number of
refresh memories, number of cursors, number of buttons,
other hardware features) plus user information (e .g. ,
name of IAT, current owner) . IAT hardware
characteristics are initially identified to DMS through
an interactive program which is run as part of DMS
installation. Whenever a facility adds a new IAT or
wishes to modify an existing IAT description, the
extension is a simple "edit" of the table. Thus, an IAT
can be upgraded without changing existing application
software.

Device Name Table. The DNT contains all names by which
any IAT on a given system can be known. lATs may have
more than one name, and names may be generic (e.g. ,
monocolor device), specific (e.g. , XYZ 60) or
facility-inspired (e.g. , TIGER). The table is
established as part of the DMS installation procedure
through an interactive program. This table may also be
edited.

3.2 Generic Image Manipulation Services

Application programs interact with lATs through a
set of generic DMS image manipulation functions,
collectively known as the XD package. Use of this
package for all device interaction makes the program
usable on any IAT within a system.

The XD package serves the purpose of hiding all DMS
table manipulation and physical device access from the
application programmer. A program makes an initial call
to XDGETD to declare what IAT category and optional
characteristics it requires to function. Thereafter,

- 7 -

the program merely issues instructions to perform the
required action on the IAT.

For example, a program initializes itself by
calling XDGETD to declare its device requirements. It
then calls XDZOOM to zoom an image. XDZOOM performs the
following sequence of events:

o calls table management routine DMGETM to get the
memory IDs associated with an image;

o calls XDCOTR to translate from image to screen
coordinates;

o calls DDZOOM (device dependent zoom routine) to
perform the actual image zoom. Whether the zoom
action is done in hardware or software, and the
specifics of the actual protocols for accomplishing
the task, are transparent to the programmer.

DMS also handles the windowing of IAT-resident
images at the XD level. Incoming data may be written
into the refresh memory at an offset f rom the base
coordinates of that memory. The data is mapped into the
window by element - no spatial transformations are
performed. Any subsequent references to points in the
resulting image are made relative to the beginning of
the image. That is, a user works .in the coordinates of
the image; DMS translates between that system and
refresh memory coordinates.

The following is a sample of the available XD
routines.

Initiation and Termination Routines

o XDGETD - connect an application to an IAT
o XDILUT - initialize lookup tables
o XDCLR - initialize refresh memories
o XDMNDF - define button menu
o XDEXIT - clean up at end of "process

Image transfer and setup

o XDDROP - move image from disk to IAT
o XDSAVE - move image from IAT to disk
o XDDEFI - define a new image
o XDIMRD - read image subarea
o XDIMWR - write image subarea

Image viewing and--alteration-of - viewing

- 8 -

o
o
o

o
o
o

o
o
o

XDSDIW -
XDVIEW -
XDLUTR -
image
XDLUTW -
XDLUTI -
XDALIN -
trackball
XDENGR -
image
XDFADE -
XDFLIC -
XDSHFT -

set (define) image window
display an image on the screen
read the lookup table(s) associated with an

write lookup table(s) for an image
write a linear lookup table
register images interactively (e .g . , by
)
logically "OR" graphics overlay with an

fade between images
loop through a sequence of images
shift image (horizontally or vertically)

XDZOOM - zoom an image (by pixel replication)

o
o
o
o
o
o

XDCRDF
XDCRON
XDCROF
XDCRRD
XDCRWR
XDWTIR
key)

- defi
- turn
- turn
- read
- move
- wait

Cursor and interrupt routines

e shape (s) of cursor (s)
on cursor
off cursor
the cursor position
the cursor to a given position
on interrupt (f rom cursor or function

o
o
o

Miscellaneous routines

XDCOTR - translate between image and screen
coordinates
XDFILI - retrieve source file name of IAT image
XDWAIT - pause for a given amount of time
XDXCOL - translate color names into red-green-blue
values

3.3 Device Dependent Services

The DMS software layer which directly addresses an
IAT is known as the DD package. Where the XD package is
portable across lATs, the DD package must be
reimplemented for each different IAT architecture, and
thus serves as a "device driver". The DD routines are
called by the XD routines. It is possible for an
application program to call DD routines (or , for that
matter, vendor supplied routines) directly. However, it
will no longer be transparently portable to other lATs.

Unlike the XD routines, which deal in "images" and
windows, DD routines w o r k with refresh memories and
other hardware elements and access an IAT directly
through vendor supplied or other device specific

- 9 -

software.

3.4 Image I/O Support

As part of the DMS development effor t , an ancillary
package to perform I/O on disk-resident image data was
implemented. DMS was targeted for use on several
systems, each of which had its own disk-based data
structures for images. Rather than try to accommodate
system-specific formats, the DMS team developed a set of
protocols for accessing image data which could be
layered over locally used I/O, and which were
independent of any physical data structure. (4)

This package, known as XL, allows an application
program to read, write and update image files and their
labels. In its initial implementation, the XL package
requires that an image file be a single band image
stored as a disk file. Subsetting of a disk-based image
for input is supported. (Note: XL can also handle a
single refresh memory as an input or output image.)

The XL routines maintain their independence of data
structure by using keyword parameters to describe the
data. Thus, when a program needs a particular kind of
information, such as pixel size, it calls an XL routine
with that keyword. The XL routine queries the data
structure and returns the required information. The
implementation of the XL routines and the tables they
use are system dependent. The calls are generic. Use
of these routines will facilitate the porting of
programs to other systems which also have an XL
implementation. The following lists some XL routines.

o XLOPEN - Open an image file
o XLREAD - Read from an image file
o XLWRIT - Write to an image file
o XLCLOS - Close an image file
o XLFTCH - Retrieve information about a file
o XLADD - Update file description information
o XLUNIT - Get a logical unit number for a file name
o XLGET - Retrieve fields from image file header
o XLPUT - Put fields into image file header

It should be noted that this package was developed
as a convenience for application programmers. It is
used within DMS only in those few XD routines which do
disk-based I/O.

- 10 -

3.5 Utility Programs

A set of image display utility programs are
provided along with the DMS. These programs serve two
purposes. They do many simple image display operations,
making it unnecessary for each installation to code
them. They also serve as a model of the application
interface to DMS for the discipline specific programs
that are developed by each site. The following lists
many of the DMS-supplied programs.

o ALLOC - allocate an IAT to a user session
o DEALLOC - free a previously allocated IAT
o IATINIT - set the IAT and DMS tables to a known

initial state
o IATSTAT - list capabilities, status of system lATs
o TOTV - create an image on an IAT from disk image

f i le(s)
o FROMTV - create disk image f i le(s) from an IAT

image
o IMGLST - list current images with their attributes
o IMGUTIL - update image list
o VIEW - display an image on a monitor screen
o LOOP - show a sequence of images
o ALIGN - interactively register images by shifting
o FADE - interactively fade between two images
o SPLIT - display portions of images simultaneously
o ZOOM - enlarge an image area by pixel replication
o PAINT - dynamically make assignments to grey

levels
o STRETCH - make LUT assignments for contrast

alteration
o HIST - compute the intensity histogram of an

image
o PROFILE - list the intensity values along a line
o LOADLUT - load lookup tables to the IAT
o SAVELUT - save lookup tables to disk

3.6 Implementation

A prototype DMS has been implemented on a VAX
11/780 under VMS. The primary implementation language
for table manipulation and image I/O (DM and XL
packages) is C, while FORTRAN 77 is used for other
subroutine packages. All routines for application
programmers are FORTRAN-callable.

Device independence is attained through layering
the software into link and run time libraries.
Application programs link to the XD package. The
selection of the particular DD package to be used (i.e.

- 11 -

the mapping to a particular IAT) is done at run time,
based on a user's allocated IAT. Under VMS, DMS uses
sharable libraries to provide the run time library
linking.

The DMS control tables are stored in a global
section.

Detailed DMS documentation (Functional
Specification, Applications Programmer's Guide, System
Programmer's Guide) is available from the authors.

4.0 SUMMARY

Advancing technology and increasing maintenance
costs on older equipment will continue to make system
upgrades necessary. In particular, more powerful and
less expensive image analysis terminals are being
marketed by a variety of vendors. At the same time,
research laboratories like GSFC have invested tens of
man years in program development for applications that
are not commercially available. A great deal of effor t
has been expended in making the user interface to these
programs a "tool that fits the hand" of the scientist.
To preserve the unique algorithms and familiar user
interfaces, difficult and expensive (and boring)
conversions are required to add new lATs to an existing
facility.

The DMS is an attempt at making these changes
easier than in the past. The requirement to make the
software more portable among disparate image devices is
basic to the design of the DMS. In particular, the DMS
distances both the end user and the applications
programmer from the IAT hardware. We are persuaded that
the systems we build based on the DMS will be more
portable, easily maintained, and usable than without it.

The DMS prototype was completed in the Spring of
1984. Its functional capabilities are those discussed
in this paper. Some areas of refinement for development
of a mature DMS are being explored. To date, these
include expanding control for the display of data (e .g . ,
managing viewports); generalizing the concept of image
type, for example, to support n-band images associated
with arbitrary transformation tables; supporting the
naming of groups of images, for example, for loop
sequences, mosaics, or images combined through boolean
operations; supporting new functions such as creation
of perspective images, image rotation, and Fourier
transforms,; and formalizing the .relationship _between
DMS and graphics packages.

- 12 -

5.0 ACKNOWLEDGEMENTS

DMS is being developed by the Image and Information
Analysis Center of the NASA/Goddard Space Flight Center.
The work is sponsored by the NASA Information Systems
Office, which is part of the Office of Space Science and
Applications.

The first use of DMS is in the upgrade to the
Atmospheric and Oceanographic Information Processing
System being developed for the Goddard Laboratory for
Atmospheric Sciences. The EROS Data Center of the U.S.
Geological Survey and the upgraded GSFC Land Analysis
System (LAS) will also be DMS users.

The authors would like to acknowledge the
significant contributions of Shernaz Contractor, William
Kilmartin, and Arnold Voketaitis, all of Goddard, and of
Stephen Ryan, of the EROS Data Center, to both the DMS
software development and refinement of DMS concepts. We
would also like to express our appreciation to Michael
Girard of JPL for his collaborative w o r k on the XL
package design, and to Dr. Milton Hal em and Lawrence
Novak, both of GSFC, for their helpful review of this
paper.

6.0 FOOTNOTES

1. The Transportable Applications Executive was
developed by the NASA/Goddard Space Flight Center's
Image and Information Analysis Center to provide a
standard and portable interface for users of scientific
research and analysis systems (reference 6). It is
being used within the GSFC on several systems, and at
several other research facilities within and outside the
USA.

2. An image is defined here to be a set of intensities
at grid points on an MxN grid. More formally, an image
I is the set of i = f (x , y) where x,y are integers such
that x lies between 1 and m and y lies between 1 and n.
The i may be single points or vectors. When i =
(il, i2 ,. .. , ik) , I is said to be a K-band image.

3. The convention for naming subroutines within the
different components of the DMS is to use the two-letter
package mnemonic followed by up to four descriptive
letters, e.g., DMDEFI (define image), XDZOOM (zoom an
image).

4. Early design work on the XL package was done with the
Jet Propulsion Laboratory under a collaborative software

- 13 -

development agreement between the JPL Multimission Image
Processing Laboratory and the TAE project.

7.0 REFERENCES

1. Acquah, J., J. Foley, J. Sibert and P. Wenner, "A
Conceptual Model of Raster Graphics Systems", ACM
Computer Graphics, Volume 16 No. 3, pp. 321 - 328

2. Bono, Peter R. , Jose L. Encarnacao, F. Robert A.
Hopgood, and Paul J. W. ten Hagen, "GKS - The
First Graphics Standard," IEEE Computer Graphics,
Volume 2, No. 5, pp. 9 - 2 3

3. Bracken, P.A., J.T. Dalton, J.B. Billingsley, J.J.
Quann, Atmospheric and Oceanographic Information
Processing System (AOIPS) System Description", NASA
X-933-77-148, March, 1977

4. Dalton, J.T. , R.K. Jamros, D. P. Heifer , D. R.
How ell, "The Visible and Infrared Spin Scanning
Radiometer (VISSR) Atmospheric Sounder (VAS) Ground
Data Systems", Society of Photo-Optical
Instrumentation Engineers Technical Symposium,
April, 1981

5. Hamlet, R.G. and R.M. Haralick, "Transportable
Package Software", Software - Practice and
Experience, Vol. 10, 1980, pp. 1009 - 1027

6. Heifer, Dorothy P., David R. Howell, Jan Owings,
Martha R. Szczur and John T. Dalton, "A
Transportable Executive for Interactive
Applications", Proceedings of the Harvard Computer
Graphics Conference, July, 1981

7. International Imaging Systems, "System 575 Software,
Digital Image Processing System Version 3.0, User 's
Manual", June, 1983

8. International Standards Organization, "Graphical
Kernel System (GKS) - Functional Description,"
Draf t International Standard ISO/DIS 7942,
November, 1982

9. Krusemark, Scott, and R.M. Haralick, "An Operating
System Interface for Transportable image Processing
Software," from Computer Vision, Graphics and Image
Processing Vol. 23, 1983, pp. 42-66

- 14 -

10. Meyer, Bertrand, "Principles of Package Design",
CACM, Volume 25, No. 7, pp. 419 - 428

11. Warnock, John and Douglas K. Wyatt, "A Device
Independent Graphics Imaging Model for Use with
Raster Devices," .ACM Computer Graphics, Volume 16
No. 3, July, 1982, pp. 313 - 319

- 15 -

BIBLIOGRAPHIC DATA SHEET

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle

A Device - Independent Interface for Interactiv
Image Display

5. Report Date

May, 1984

6. Performing Organization Code

7. Author(s) Dorothy C. PerTTns, Martha R. Szczur,
Jan Owings, Rita K. Jamros

8. Performing Organization Report No.

9. Performing Organization Name and Address
NASA/Goddard Space Flight Center
Image & Information Analysis Center/630.3
Greenbelt, Maryland 20771

10. Work Unit No.

11. Contract or Grant No.

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Goddard Space Flight Center
Greenbelt, Maryland 20771 14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

NASA's Goddard Space Flight Center (GSFC) has developed a Transportable
Applications Executive (TAE) for use in implementing portable applications
software that can be shared by different research projects. Since many
of the supported disciplines require the interactive display and
manipulation of remotely sensed images, a device independent Display
Management Subsystem (DMS) is being written as a TAE extension. The DMS
attempts to abstract and standardize the device dependent functions that
are used in the display and manipulation of image data on image analysis
terminals. This paper explores the structure of DMS and the interface
routines that are available to the applications programmer for use in
developing a set of portable image display utility programs.

17. Key Words (Selected by Author(s))

Raster devices, Image display
Device- Independence,
Transportable Applications
Executive,Portability

18. Distribution Statement

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

'For sale by the National Technical Information Service, Springfield, Virginia 22151. GSFC 25-44 (10/77)

