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1. Introduction

1

The pui pose of this grant is to investigate the use and implementation of Ada

in distribt„ed environments in which reliability is the primary concern. In

particular, we are concerned with the possibility that a distributed system may be

programmed entirely in Ada so that the individual tasks of the system are

unconcerned with which processors they are executing on, and that failures may

occur in the software or underlying hardware.

Over the next decade, it is expected that many aerospace systems will use Ada

as the primary implementation language. This is a logical choice because the

language has been designed for embedded systems, Also, Ada has received such

great care in its design and implementation that it is unlikely that there will be

any practical alternative in selecting a programming language for embedded

software.

The reduced cost of computer hardware and the expected advantagc,-s of

distributed processing (for example, increased reliability through redundancy and

greater flexibility) indicate that many aerospace computer systems will be

distributed. The use of Ada and distributed systems seems like a good combination

for advanced aerospace embedded systems.

During this grant reporting period our primary activities have been:

(1) Continued development and testing of our fault-tolerant Ada testbed.

(2) Consideration of desirable language changes to allow Ada to provide useful

semantics for failure.

• Ada is a trademark of the U.S. Department of Defense
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(3) Analysis of the inadequacies of existing software fault tolerance strategies.
C`
1

(4) The preparation of various papers and preparations.

Except for the sequencer, the various implementation activities of our fault-

tolerant Ada testbed are described in section 2. The sequencer has been given a

new, relatively sophisticated control language, and It is described in section 3.

In our analysis of the deficiencies of Ada, it has been quite natural to consider
tF

what changes could be made to Ada to allow it to have adequate semantics for
f

is

handling failure. In section 4, we describe some thoughts on this matter reflecting,

what we consider to be the minimal changes that should be incorporated into Ada,

We consider it to be important that attention be paid to software fault
w	 f

tolerance as well as hardware fault tolerance. The reliability of a system depends	 r

on the correct operation of the software as well as the hardware. Software fault 	
E'

tolerance is rarely used in practice and when it is used, it is ad hoc with no

formalism or organization. One of the reasons for this state of affairs is the general

inadequacy of existing proposals for building software in a fault-tolerant manner.
4	 `;

Before reviewing Ada and trying to incorporate software fault tolerance

mechanisms into the language changes we consider necessary, we have reviewed the

state of the art and prepared a systematic set of criticisms of existing proposal for

the provision of fault tolerance in software. This set of criticisms is summarized

in section 5.

During the grant reporting period we have made various reports about this

work. Our activities in this area are described in section 6.
a
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2. Implementation Status

We have continued our Implementation activities of both the testbed and the

associated translator. 'rhe translator translates a subset of Ada which includes

most of the tasking and exception handling mechanisms In`.o code for the virtual

processors implemented by the testbed.

Some parts of the testbed	 have had to be redesigned and reirnplement.ed as a

result	 of obtaining a more accurate understanding	 of the way in which Ada

operates. In many cases, the language definition is very obscure and it is quite

difficult to determine exactly what is meant. In other cases, the semantics are

comprehensible but extremely complex making an accurate implementation

difficult. An area that has given us a great deal of difficulty is the exception

mechanism, It appears relatively simple and straight forward as first but the many

possibilities for exception generation during, processing of declarations for example

makes an accurate implementation very difficult. Om, implementation of the

exception mechanism has been redesigned and the implementation is being revised.

The overall state of the implementation can be gauged from the fact that the

simple program that we have used as an example in various papers and

presentations has been successfully executed using the translator. and the testbed.

The source text of the program that was executed is contained in the appendix of

this report. A small number of other >ests have been run and used to find errors in

the translator and testbed. We are just beginning a systematic effort to debug the

system.

The system continues to run on a single AJAX using UNIX processes to

simulate computers and UNIX pipes to simulate communications facilities. We had

intended to use a network of IBM Personal Computers as the target of this testbed.

I
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The use of the VAX/UNIX cornhination has always been viewed as an interim step

that allowed us to develop the software In a relatively convenient and friendly

environment. Clearly the facilities of the IBM PC are relatively limited although

probably adequate with sufficient care. The major problem of porting the testbed

to the IBM PC's would be the very long compile times resulting from the slow

processor, the small memories, and the use of floppy disks.

Our department has been fortunate in receiving funds for the purchase of

some Apollo workstations, We feel these computers might be more approp:fate for

the support of the testbed so we have chosen not to attempt porting, the testbed

until all the Apollo computers have arrived and been installed. They are equipped

with reboti,ely large main memories and hard disks, and in general are more

powerful	 computers than the IBM PC's,	 The; Apollo's	 also support	 a variant	 of

UNIX which should allow porting the testbed quite simply. However, in order to
i

avoid spending inordinate amounts of time hivestigating	 the idiosyncrasies 	 of the

Apollo system or building pieces of support software, we have decided to wait

until other research projects have successfully used the Apollos and demonstrated i,

that they can provide the facilities we need before attempting to use them. 	 r
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3. Sequencer Control Language

Recall that the testbed is trying to allow experimenters to answer "what if.."

questions about concurrent Ada programs, The sequencer control In wage Is the

experimenters interface with the testbed and so its form and facilities are

extremely important.

Why is control of parallel programs any different from sequential programs?
i

The reason is that "what if.," questions about tasking, cannot be answered easily

(sometimes never) because, in most implementations, a set of tasks cannot be forced
s

into the necessary state that leads to the "what if..." question. This is not the calve
IC

with sequential languages because. they are deterministic. 	 In most debugging
1
T

systems for sequential languages there Is a single-step facility whereby effects of

individual instructions within aprogram can be studied in detail. Concurrent
?* i

languages, on the other hand, are nondeterministic.. There is no guarantee that a

particular state of interest Is reached on any given execution. For example, suppose

a set of Ada tasks is executing asynchronously on the Ada testbed with the
p 8

scheduler controlling which task runs when. The experimenter may be interested

in asking questions such as; "What would happen if this particular task were

forced into a certain state in its execution and this other task were forced to stop at

a specific point in its execution?" and then "What do the contents of memory look

like for a particular virtual processor at this point?". These questions are typical of

those asked for controlling parallel programs. This is the level of control that is

essential for the monitoring and experimentation of these Ada tasks. Hence, the

main function of the command language is to provide the facilities for performing

this ' control. Control is needed not only to single-step individual tasks, but to

single-step them in relation to each other.

i
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The command language interpreter provides the Interface between the user

command level and the sequencer module of the testbed. It receives the command

line, interprets it, and passes the validated information to the rest of the sequencer

which is then responsible for actually performing the actions to carry out these

commands.

In the design of the sequencer command language, there are basically two

elements essential to the design for control of Ada tasks. They are the ability to

monitor, in some meaningful way, the tasking activity so as to understand the

behavior of the parallel tasks, and the ability to perform experiments based, either

implicitly or explicitly on the information gathered, Through the interaction of

these two elements, the user can attempt to gain an understanding of the causes of

existent errors or at least to note where the implementation and the expected

behavior of the parallel tasks differ,
	 i

l
The overall strategy that is taken in the design of the command language is to

control Ada tasks, not to debug Ada programs. First, the testbed must be viewed

from an operational semantic definition standpoint: semantic in that it pertains to
R

answering questions of language meaning; operational in that it allows programs to

be executed and their actions to be observed. Furthermore, the definition must 	
^I

provide the ability to answer the "what if..." questions

Given these general requirements, we established the following minimal set of

detailed requirements for control of the sequencer and hence the testbed:

(1) Starting a desired experiment. This requires the availability of the compiled

Ada code to be interpreted and the map showing how the abstract processors

for the experiment are to be mapped to physical processors.

1
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(2) Executing; named tasks, This requires a list of the task names (any number)

that the experimenter wishes to start executing,, This command was

originally separate but It has been Included with the command for restarting
a

tasks which have been stepped. Thi, was done since the Involved tasks are

each at their own fixed code location anti the one command for starting could 	 p

then be viewed as a set of tasks being suspended at a particular breakpoint

(breakpointing being; the ability to temporarily halt an executing program);

for the initial starting up of a task's execution then this breakpoint, would be

defined at location zero. 'rhe start would always be from a current

breakpoint,

(3) Exiting from the existing test environment, A provision must be made to

allow the experimenter to have a summary of Important system information

listed upon exit,

(4)	 Stopping	 or artificially	 suspending	 named	 tasks	 no matter	 what	 they	 are j

doing,	 As with starting task execution, a list of the tasks, again any number,

the user wishes to stop or suspend must be given,	 A common example of a

situation	 that would use this command would be one in which there was the

desire to observe temporary	 suspension	 of all	 but one process in order to

eliminate interference from any of the other processes.

(5)	 Causing a particular abstract processor (AP) to fail. 	 Since a major point of the ^	 1^'

testbed	 is to see if	 software	 strategies	 can tolerate	 processor	 failures,	 the

experimenter	 should	 be provided	 with	 the ability	 to fail	 any	 processor.

Giving the AP number of the particular	 AP to be failed would cause the ii
physical processor owning the subject AP to cease to schedule it.

"k 1
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(0) Setting and unsettinf! breakpoints, The Qeneral problem regarding breakpoints

Involves the desire to have tasks suspended in the middle of statements. Since

AP code may be shared among tasks, specification of breakpoints by location

only Is Insufficient, Therefore, a breakpoint has to be defined such that It Is
I

named by the source-level task name (task id) and r;, code location, It Is also

considered desirable that the effects of a breakpoint be delayed so that a task

roust execute that code lotion more than once before "hitting" the

breakpoint. This latter facility is required to provide more flexibility to the

user and his desire to perform experiments with loops or end conditions

(7) Restarting tasks' executions. As described above, a list of task names would be

given to start or resume aly number of tasks executing. This would allow the

named tasks to run until they encounter a breakpoint or terminate. The 	 i

ability to restart task execution is important because many fault-tolerant

strategies call for automatic replacement of defective hardware.

(8) Single stepping a particular task. This would require the name of the task

that is to be involved and the number of instructions that are to be executed

before the subject. task Is temporarily halted; absence of the count should yield

a default of single stepping the named task through the Interpretation of

exactly one instruction. This capability would allow a user to deal with tasks

through a perspective which Is more microscopic than the Ada source language i

level.	 For	 instance,	 each process can be brought to the desired	 state	 by f

executing	 to a breakpoint set for that process and single stepping	 for fine
i

adjustment from there.

(9)	 Displaying	 the sequencer's tables.	 These displays	 would provide a quick and

useful reference of which tasks are running, where and what there current
k	 1
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breakpoints art, tic;.

( 1 0) Displaying the state of the testbed's data structures. This level of control

would be valuable in decisions that must be made regarding, branches. The

user could breakpoint before the branch, display the memory contents and
i

decide what to do next on the basis of that. All of these display capabilities
I

would provide the means of monitoring, whether the fault-tolerant strategy

that Is being tested works or not,

( l l) Calling upon a help facility. This would permit the ttsc:r at any time before,

during, or after the experiment to view the available commands that are

allowed; syntax and usage of each comet-: nd would be provided.

(12) Recalling commands. This would allow the experimenter to lool; at a log of

commands that he has used. 	 r t

With this sat of command facilities, the experimenter will have a g(x)d basis

for implementing the kind of control that is needed in a first, elementary, but

useful control mechanism for Ada tasks, It satisfies the two elements initially

described as essential to the control of Ada tasks; it po..r..reoses commands to allow
ai

the ability to monitor the tasking activity at a microscopic level and it provides

the ability at any moment of the inspection to perform experiments as to the

k	 future endeavors of those tasks. This set is by no means complete and there exists

a lot of remaining issues that require investigation before further expansion of the 	 i

control mechanism can be made,	 !^

Listed below are the actual commands of the command language interpreter as

presently implemented:

3
1
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NEW

Start an experiment. The names of the files containing the Al' to PP map and

program must be given.

QUIT

Exits an experiment without having a summary dump listed.

QUITD

Exits an experiment and has a summary clump listed.

RESUM4

Starts or resumes any number of tasks executing; execution will stop when a

breakpoint Is hit. The name., of the tasks to be resumed must be listed; a "*" In

place of the task name list will resume all currently started tasks.

STU?)

wlops any number of tasks executing, The names of the tasks to be stopped

must be listed; an "*" In place of the task name list will stop all tasks that are

running,

KILL

Causes one AP to be killed (failed). The AP number to be killed must be given.

BREAK

Sets a breakpoint according; to a named location. The task name and address in

the task at which to set the breakpoint must be given. An optional count may

be given to indicate the number of times to execute the instruction before

stopping occurs; the default is one.

UNSET

Unsets a breakpoint according to a named location. The task name must be
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given. An optional code offset may be given (o Indic--ate  the address in the task

at which the break';?oint was set. If no code offset is given, all brc;al points for

that task are unset.

SINCYL11ITEP

Executes the named task one instruetia,t at a time for the given number of

instructions. The task name must be given. A count is optional to give the

count of instructions to execute with the default being one.

DISPLAY APTOPPMAP

Displays the AP —number to P1 1 —number map.

DISPLAY VPTOAPMAP

Displays the VP_narrie to AP—number map,

DISPLAY TASKTOVPMAP

Displays the task —id to VII —name table,

DISPLAY VPDATASTRUCTURE

Displays the VP data structure.

DISPLAY VPSTATE

Displays the state and location of the named VP.

DISPLAY BREAKPOINTS

Displays all of the breakpoints in the current experiment..

HELP

Displays all of the available commands with the ability to give a description of

each.

,

r

FLASHBACK

Displays the last specified number of commands. If no number is provided it

i
1

1

J
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defaults to 15,

The command language Interpreter also provides in its command language

several other capabilities and features including abbreviations for the commands,

good error handling and feedback of the error messages to the user, checks made on
3

all	 parameters,	 a UNIX-like MORF facility	 for	 certain	 commands	 like	 the

flashback command, and sensible screen layouts..

0
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4. Ada And Hardware Fault Tolerance

We have summarized our concerns about Ada's inability to deal with

processor failure by pointing out that the problem is basically one of omitted

semantics. Nothing Is stated in the Ada Language Reference Manual about how

j	 programs are to proceed when a processor is lost in a distributed system although

the manual does specifically include distributed computers as valid targets.

We have proposed additional semantics to deal with this situation. The heart

of these additional semantia-, is the notion that the loss of a processor and

consequently the loss of part of the program can be viewed as equivalent to the

execution of abort statements on the lost tasks. Thus in all cases, failure semantics

would be equivalent to the semantics of abort.

We have also proposed a comprehensive mechanism for implementing these

semantics. This mechanism requires quite extensive changes to the execution-time

support for Ada but it is feasible as we have shown in our testbed implementation.

The use of abort semantics	 is not the	 most	 elegant	 approach.	 There are

numerous a^nsequences that seem rather extreme if considered out of context. For

example, abort semantics imply that all the dependent tasks of a task that is lost

must be terminated even if they are still	 executing on non-failed computers. The

overwhelming	 advantage of abort semantics	 is that they do not require that the

language be changed.

A more elegant and clearly preferable approach in the long run is to modify

the language and to introduce language structures that include appropriate failure

semantics. During the grant reporting period we have been considering what form

these language structures might take.

k
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Although Ada ignores this problem, other languages do not and language

designers have proposed various schemes in the literature. For example, Liskov has

proposed "guardians" [1), and "atomic actions" [2) have been proposed by several

people. We have co ,AsIdered both along with other schemes, as candidates for

inclusion in Ada. None of these proposals seem appropriate however because they

are not able to provide the performance level that is required in the kind of

applications for which Ada is intended. The naive introduction of atomic actions

into Ada would reduce performance substantially; probably making the language

worthless,

Given that language structures	 with	 more sophisticated 	 semantics probably

cannot be added to Ada, we have considered what more modest changes could be

made that would be in the spirit of' the language but would provide acceptable

performance. We have broken the lack of failure semantics in Ada into two parts

and addressed each separately. The two parts are entrapment in canmimucation and

loss oy context, both of which we have documented extensively in the past.

Entrapment in communication can be dealt with in a revised language much

like it is with abort semantics. Raising an exception in a task that is th ,4 subject of

entrapment is a reasonable way to inform the task of the problem and to provide a

mechanism to allow it to proceed. The difficulty that follows from something like

Us is the subsequent difficult 'with redirection of communication. Given that a

task has been lost and cannot be used in further communication, it is necessary to

communicate with its alternate.	 Since Ada (as presently	 defined) requires that the

caller explicitly use the name of the callee in a rendezvous, a different call must be

used for the alternate.	 This means that	 all communication	 must be guarded

(probably by an IF statement) so that different entry calls can be made. This is a

^+	 ^1a

f

r;

r
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large burden to put on the programmer, and it can hardly be described as elegant.

We have no well-defined suggestions on preferable language structures at th;a time.

We also observe that the Ada rendezvous makes no provision for broadcast:

messages. There are plenty of occasions when a single task needs to communicate

with a whole set of other tasks; for example starting a set of real-time services or

informing a set of tasks about machine failure at the level of the application

software. This seems like a serious omission.

The loss of context problenj is actually far more serious. With abort

Is r

semantics, loss of context requires that parts of the program be removed when this

may not be strictly necessary. One solution that we have considered is to require

that the general nesting structure of the program be reflected in the way tasks are

assigned to processors, For example, only tasks at the outermost level would be the

subject of controlled distribution. All nested tasks would be required to be

assigned to the same processor as their parent. This seems like a reasonable solution

since any loss of context takes with it all the ob jec?s that could reasonably use that

context. It is however a major restriction on the forms that programs may take.

The key problem with this type of limitation is that it may not be suitable at

all for certain applications. Consider for example a system which includes a

special-purpose hardware processor; a fast-fourier transform unit for example.

The Ada code which provides access to the services of this unit will obviously

reside on th,y unit. The fast-fourier transform functions may be required from

many parts of the program but the programmer might be reluctant to make these

routines global. Good programming practice may well dictate that such routines be

nested. A l lowing nested objects to be distributed seems almost mandatory.
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In considering this problem we have concluded that it really is essential to be

able to locate nested objects separately from their parents, To solve the resulting
r

loss of context problem, we propose that Ada's scope rules be enhanced to Include

objects that are distributable and have limited scope. We propose that the objects 	 t

to be distributed be a new form of package and that the scope of objects in the P

package be limited to that package only. Access to the package would be through

the objects made visible in the specification of the package in the usual way. 	
it

Our consideration of this topic is not complete. We will continue to look at
t

desirable extensions to Ada and complete the definition of the enhanced	 l
P

communications mechanism and the distributable packages.

1
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5. Ada And Software Fault Tolerance

We have examined the literature on fault-tolerant software with the goal of

determining the adequacy of Ada in providing a software fault tolerance

mechanism. We find that Ada makes no prevision whatsoever for software fault

tolerance. Consequently we plan to consider what extensions to Ada might be

desirable to support fault-tolerant software.

In examining the literature we have concluded that the schemes that have

been proposed are inadequate	 in general and in many cases incomplete. 	 In this

section we review the inadequacies of previous work in software fault tolerance.

A general consideration	 for crucial systems is time. Boolean acceptance tests

and voting codes must be reached and reached on time for the results	 to be useful

at all. A common problem, which we refer to as the unexpected delay problem, is

that some unanticipated circurnstanw, e.g. an infinite loop, may cause a particular

section of code to be executed too late for its results to be useful or not to be

executed at all. If a scheme does not address the unexpected delay problem, then it

is insufficient for providing software fault tolerance in a real-time program since a
i!

program in that context needs only to be late to be considered faulty. Another	 !'

consideration for a fault-tolerance, scheme is the management of complexity. If

the use of a scheme involves too much effort on the designer's (programmer's) part,

it may be counter-productive in that more faults will be generated through the

use of the scheme than would otherwise occur. Furthermore, a fault in the

application of a fault-tolerance scheme might make the system more dangerous

t	 1
than if fault tolerance efforts had not been applied at all. A scheme supported by 	 t

i
a rigid, encasing, structured syntax allows design-time (compile-time) enforcement

of the accompanying semantic rules. Such a quality in a scheme allows for added

i

- -._ --- ---- -,- --..^	 __^_	 _M_	 ors y -...^	 p̂̂  ,.^^.•	 ..^ .	 _
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complexity without added faults,

5.1. Exceptions

Although claimed to be suitable for software fault tolerance, exception

handling can only deal effectively	 with anticipated	 faults, not the unanticipated	 !

faults addressed by an actual fault-tolerance 	 approach.	 A crucial system	 should

have anticipated	 faults removed before it is placed into service. Exceptions can be

used within systems to represent and deal with expected, normal, but unusual

situations.

	

In most languages, but particularly in Ada, when an exception handler is 	 t

t

entered there is no indication of exactly from where control transferred. Neither

is there an indication of how much of the state has been damaged. These problems

ri,ake it difficult for a handler either to repair the fault and transfer back to the

point where the exception was raised, or to replace the execution of the remainder

of the "procedure".
fi

Often the finite list of avaflable exception names (even when user defined

names are included) is very general, such as in A , x range—check, numeric—error,

constraint —error, and tasking—error. As a result, the exception could have been
i

raised in any of many statements (components), or in one of many places in one

statement. Consider, for exaanle, the following statement:

I : AW + BW + CW + D(M);

i

If the execution of this statement raises a subscript error, there are four different

	

subscript that could be involved. Also note that the subscript violation is a 	 G

1
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syinproin of the actual fault, The actual fault might li p., in the calculation of J or K

or L or M, or it might be in some decision computation that erroneously directed

control to this statement. Further, attempts to determine the extent of the damage

by examining values in the state could raise another exception. Since one fault

existed in the routine covered by the handler, it cannot be assumed that no others

will exist in a continuation that attempts the some algorithm. Since multiple

faults may have existed in that part of the routine already executed, ascribing the

erroneous state detected to one fault and "handling" that one may not correct the

state at all. Indeed, if the fault to which the detected error is ascribed is not one of

the actual faults in the routine, the actions of the handier may cause even more

damage.

Exception handling involves predicting or enumerating, the faults that may

occur in a system so a handler can be provided for each. This may be impracticable

in a complex system. A failure to predict an exception and provide a handler for

it could bring about the collapse of the entire control system or at the very least

wreak havoc within some part of it. if a handler is provided for an exception

with the expectation that that exception was only to be raised in one portion of a

routine, but it was actually raised in another portion or propagated up from a

component routine, the actions of the handler could be entirely inappropriate.

5.2. N-Version Programming

Although the method employs parallelism, it still implements software fault

tolerance in logically sequential parts of a system: It is not a concept or construct

for dealing with parallel programs.

ji
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The n-version programming proposals all assume that all versions will arrive

at the cross-check points -- they Ignore the unexpected delay or infinite loop

problem.

The proponents of n-version programming claim that the scheme is

inherently more reliable than, say, recovery blocks. The reliability of the scheme

depends upon the reliability of the voting criteria and test for agreement. That is

just as volatile as the recovery block's acceptance test. I-low to actually do the

voting is unspecified. There are discussions of different choices for dealing with

single numerical values, such as weighted sums, but not for the general case; of a

vector of values of differing types. The discussions on voting on single numerical

results concludes that that is very difficult, but most applications are going to need

long vectors of results of differing types. It would seem that voting in an actual

control system might become impossible. The proponents have admitted that n-

version programming may not be applicable in many situations [3].

The n-version programming strategy depends upon the ability to create

°dependent versions or programs derived from the same specification. As for how

the independence of versions	 is to be achieved, there are appeals	 to the use of

independent	 programming teams using different languages. Problems may arise

from common programming experience and current fashions in algorithms, or even

from a specification that specifies too much.

As for the use of different programming languages and translators, that can be

a source for faults. Translators for different programming languages are likely to

use incompatible representations for even the simplest data structures, and will

certainly provide incompatible synchronization mechanisms. The software that

attempts to rectify these differences in preparation for distribution of inputs and
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gathering and voting upon results, either becornes a bottleneck sub ject to single-

point failure or must Itself he made fault-tolerant If that ioftware Is made

fault-tolerant by n-version programming, the software providing the same service

for it comes Into question, ad infinitum,

Implementing an n-version program is not as easy as the desc. tions make It

out to be. It, appears at first easy to do n-version programming in i !a — just put

each version in its own task and let them execute. But problems arise in obtaining

the results in order to vote on them and even in ensuring that all or most versions

even reach the cross-check points! Infinite loop problems can occur, and arranging

for a faulty task to consent to a rendevous with the driver is no mean feat.

Voting in general presents a centralized bottleneck and is therefore undesirable for

9

distributed applications.

5.3. Recovery Blocks

Since the recovery block concFpt relies on syntactic support from the

programming language in use, and Ads fails to provide this syntax, recovery blocks

cannot be used in Ada as presently defined. However, there are fundamental

technical problems with recovery blocks also and we review them in this section.

In a recovery block, there is only one test for acceptability of results. How to

program the acceptance test to be both meaningful and allow a wide range of

alternate algorithms to pass it is unspecified. Design diversity in the primary and

the alternates, combined with the possibility of degraded service from the

alternates, implies that the acxeptance test must not be made very strict. It must

be possible for any results of the primary	 or any alternate (assuming they are
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correct) to pass the test, yet It must be strict enough to detect errors produced by

any of the primary or the alternates. This combination may not be pomdble. A,

test that Is general enough to pass all valid results might not be specific enough to

actually detect all errors within the construct. The strategies involved In the

primary and in the many alternates may be so divergent as to require separate

checks on the operation of each "try" as well as an overall check for acceptability

as regards the goal of the statement. The recovery block really needs multiple

tests, one for the primary and one specific to each of the alternate algorithms,

perhaps with a general overall test as a check on the various individual tests.

Like n-version	 programming, the recovery block schema depends upon the

generation of independent	 versions of software, in	 this	 case, to be used as We

primary and alternate, Due, to the degraded service concept, the alternates do not

have to produce results so close as to be able to vote upon them, but they also need

a certain degree of Independence to reduce the possibility that they will contain

the same or very similar faults. How to get independent versions for alternates is

not really addressed in the recovery block proposals.

The recovery block is strictly a sequential programming construct. It gives no

hint about recovery after inter-process communication. The conversation concept

is an appropriation of the recovery block concept, not an integral part.

There is the question of when a recovery block should be used. There is little

indication as to what portions of a program should be protected by recovery blocks.

If	 used on every routine and every statement	 sequence, the tests may become

trivial and fail to offer any benefit. If recovery	 blocks are only used at the

outermost levels, the acceptance tests may be so complex as to duplicate the

complexity of the primary or alternates. This may introduce more faults in the

9
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acceptance test than the primary alone, or it may squander processing resources so

that execution of an alternate would bring about a tinning failure.

The Infinite loop problem and Its generalization, the tinting; of control

program activities has remained unaddressed by the recovery block scheme.

How can we rectify the use of unrecoverable objects with the backward

recovery strategy? There is some discussion In	 the	 literature on how ret overy

blocks	 could	 be reconciled with	 nested recover'	 block commitment	 to

unrecoverabic, objects,

The problem of the latency	 Intervals	 for fault	 detection being linger than

commitment	 Intervals Is not addressed,	 That is related to the problem of how to

constroo meaningful acceptance; tests. It Is assumed that acceptance tests can be

constructed that can detect errors before they become so wide spread, or that

multiple layers of nested recovery blocks' acceptance tests can together detect

them. The possibility of nested recovery blocks allowing such errors to "escape"

should not be permitted.

5.4. Conversations

As with recovery blocks, the use of conversations requires programming

language support,	 Again, Ada fails	 to provide any but this	 is not too surprising

since there are no satisfactory proposals in the literature. This is one of the major

shortcomings of conversations.

Conversations have been criticized in the past for failing to provide a

mechanism preventing "desertion". Desertion is the failure of a process to enter a

conversation when other processes expect its presence. "Whether the process will
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never enter the conversation, is simply late, or enters the conversation only to take

too long or never arrive at the acceptance test(s), does not matter to the others if

they have deadlines to meet, as Is likely in a crucial system, Thus, desertion is

another form of what we have callec' the infinite loop problem. The processes in a

conversation must be extricated if the conversation begins to take too long, rash

process may have its own view of how long, It is willing to wait, especially since

processes may enter a conversation asynchronously, Also, a deserter can be

considered erroneous, but determining which process is a deserter could be difficult.

Only the concurrent recovery blocs* scheme even addresses the desertion problem.

The solution there Is to enclose the entirety of each participating process within

the conversation. Not only can a process fall to arrive at a conversation, it cannot

exist outside of the conversation.

The original conversation proposal made no mention of what was to be clone

t

if the processes ran out of alternates, Two presumptions may be made. that the

retries proceed indefinitely, which is Inappropriate for a real-time system, or that

ar, error is to be automatically detected in each of the processes, as is assumed in all

of the proposed conversation syntaxes. what the syntactic proposals do not address

is that, when a process fails in a primary attempt at communication with one

group of processes to achieve its goal, it may want to attempt to communicate with

an entirely different group as an alternate strategy for achieving that goal. This is

the kind of divergent strategy alluded to above. The name4inked recovery block

and the conversation monitor schemes do not mention whether it. is an error for

different processes to make differem numbers of attempts at communicating.

Although they may assume that is covered under the desertion issue, that may not

necessarily be true if processes are allowed to converse with alternate groups.
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Russell's work [41 permitting the applicat ion to have direct control over

establishment, restoration, and discard of recovery points has Its own set of

problems. First of all, his premise ignores the possibility that the information

within a message can contaminate a process' state, When the receiver of a message

is rolled back, he merely replaces the same message on the message queue. This was

the main "advantage" derived from knowing the direction of messat .ie transmission.

His application area Is that of producer-consumer systems. The control systems we

are considering are feedback systems. A producer almost always wants to be

informed about the effects of the product, and a consumer almost always wants to

have some influence over what it will be consuming in the future. The

relationships between sensors and a control system and between a control system

and actuators can be viewed as pure producer-consumer relationship .- but sensory

and actuators are more accurately modeled as unrecoverable objects. The scheme

allows completely ^mstructured application of the MARK, RESTORE, and PURGE

primitives, This fact, along with the complicated semantics of conversations,

which they are provided to create, affords the designer much more opportunity to

introduce faults into the software systern.

All of Kim's proposals [5] use monitors for inter-process communication. In a

distributed system, monitors and any other form of shared variables are vulnerable

to extensive delays. While a monitor may be implemented as a fully-replicated

distributed database, most other implementations leave its information vulnerable

to processor failure. With an independently executing process, as one would

simulate a monitor in Ada, the application could decide upon appropriate times to

save copies for use by a replacement after reconfiguration. But the traditional

monitor is not active and long periods may pass without any process calling a
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procedure that updates a replacement monitor's state.

Since the name-linked recovery block prolxisal makes no mention of the

method of communication among processes within a conversation, It remains open

to charges of permitting smuggling. If processes use monitors, message buffers, of

ordinary shared variables, other processes can easily "reach in" to examine or change

values while a conversation is in progress. Kim also states that ensuring proper

nesting of name-linked recovery blocks is impossible,

The conversation monitor is designed to prevent smuggling but., as Kim's

description stands, it allows a problem that is even more insidious than smuggling.

A monitor used within a conversation is initialized for each use of the

conversation, but not for each attempt within a conversation. This allows partial

results from the primary or a previous alternate to survive state restoration within

	

	 f
i

the individual processes. Since such information is in all probability erroneous, it

is likely to contaminate the states within this and all subsequent alternates.

Our conclusion fro-.0 all of this is that Ada makes no provision for fault-

tolerant software but that none of the proposed technologies are really complete

and ready for use. Extensive wort: is needed to complete the theory before

practical use can be made in Ada and similar programming languages. 	 ^!
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6. Professional Activities

During the grant reporting period we have prepared several papers and made

various presentations about this work.

t
We were invited to a workshop sponsored by Westinghouse Space and

Electronics Center In Baltimore Maryland. The purpose of tho workshop was to

GE

	

	
allow Westinghouse personnel to become familiar with various technologies for

crucial systems, and to expose researchers to the present and pending DoD-related

projects requir ng very high reliability.
1	 l
k

We were also invited to participate in a panel session at the Distributed
t

Processing conference held in San Francisco in May. This panel addressed

distributed Ada and the other panel members were David Fisher from Gensoft
S

Corporation, Robert Firth from Tartan Laboratories, Bryce Barton from Hughes

Aircraft, and Dennis Cornhill from Honeywell. There was some agreement among

u	 the panelists and substantial disagreement. Nothing that was said affected our
1

position on the inadequacies of Ada for distributed computing.

In the 1983annual report for this grant we included copies of two papers that
k

had been submitted to the Fourteenth Fault-Tolerant Computing Systems

Symposium (FTCS 14). One of those papers (appendix 3 in the report) was rejected.

We disagree with many of the comments made by one of the referees and have

writtea to the conference organizers requesting clarification. The second paper

(appendix 4 in the report) was accepted and was presented at FTCS 14.

t 
We have revised the paper rejected by FTCS l4 and submitted it to the IEEE

Computer Society's Fourth Symposium on Reliability in Distributed Software and

Database Systems. We have also prepared a paper entitled Difficulties With Ada As

A Language For Reliable ,Distributed Processing and submitted it to the IEEE

J17
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Computer Society's 1984Conference on Ada Applications and Environments. Both

of these papers have been supplied to the Sponsor separately from this report.

A lengthy paper describing most of our work on Ada in some detail was being

prepared when we submitted our 1983 annual report. A preliminary version of

that paper was included in that report as appendix S. That paper has been

completed and submitted to the IEEE Transactions on Software Engineering. We

are awaiting an editorial decision from that journal.
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APPENDIX

procedure EXAMPLE is

task CALLER is
pragma distribute—to(1);
pragma priority(]);

end CALLER;

task SERVER is
entry E;
pragma distribute—to(2);
pragma priority(] );

end SERVER;

task ALTERNATE—,SERVER i
entry ABNORMAL—START;
entry E;
pragma distribute—toM;
pragma priority(]);

end ALTERNATE—SERVER;

task body CALLER is
SYSTEM —STATE : integer;

begin
SYSTEM —STATE := l;
write(] ,1);
loop

MAIN _BLOCK:
begin

if' SYSTEM —STATE = l then
write(1,2);
SER VER.E;
write(1,3);

else
write(l k;
ALTERN?ATE_SER VER.E;
write(1,5);

end if;
exception

when TASKING_ERROR=>
SYSTEM —STATE := 2; — abnormal

end MAIN_BLOCK;
end loop;

end CALLER;
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task body ALTERNATE —SERVER is
begin

write(2,1);
accept ABNORMAL—START;
loop

write(2 2);
accept E;

write(2,3);
end loop;

end ALTERNATE—SERVE-R,,

task RECONFIGURE_1 is
entry FAILURE(WH1CH : in integer);
pragma distribute_to(1);
pragma priorit.y(2);
for FAILURE use at 10;

end RECONFIGURE_1;

task body RECONFIGURE-1 is
begin

loop
write(,3,1);
accept FAILURE(WHICH : in integer) do

writfA 3,w);
ALTERNATE_SERVER.ABNORMAL_START;
write(3,3);

end FAILURE;
end loop;

end RECONFIGURE_1;

task ALTERNATE —CALLER is
entry ABNORMAL—START;
pragma distribute_to(2);
pragma priority(1);

end ALTERNATE—CALLER;

task body ALTERNATE_CALLER is 	 a
begin

write(4,1);
accept ABNORMAL_START;
loop

write(4,2);
SERVER.E;
writ.e(4,3);

end loop;	 I
end ALTERNATE —CALLER;	 f

N^D

t

1

rt



32

task body .SERVER is
begin

writc(5,1);
1001)

write(5,2);
accept E;
write(5,3 );

end loop;
end SERVER;

task RECONFIGURE-2 is
entry FAILURE(WHICH ; in integer);
pragma distribute_to(2);
pragma priority(2);
for FAIL.URE use at 10;

end RECONFIGURE-2;

task body RECONFIGURE-2 is
begin

write(6,1);
accept FAILURE(WHICH ; in integer) do

write(6;2);
ALTIRNATE_CALLER.ABNORMAL_START;
write(6,3);

end FAILURE;
end RECONFIGURE-2;

begin
null;

end;

fi

t
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