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ABSTRACT

A framework for rigorously specifying the behavior of concurrent
systems is proposed. It is based on the widespread view of a concurrent
system as a collection of interacting processes, but unlike previous
approaches, no assumptions are made about the mechanisms for process
synchronization and communication. One is able to describe the
behavioral constraints imposed by such mechanisms without being forced
to consider the details of process interaction. A key element of the
proposed framework is a formal language that permits the expression of a
broad range of logical and timing dependencies, many of which are
inexpressible with existing techniques. The language is based on the
five logical primitives: ‘not', 'and', 'and_next', 'and_next#®' and
‘reverse'.
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1.0 INTRODUCTION

A concurrent system, in simplified terms, is a ccllection of
interacting elements. Thare may be as few as two or three elements, or
as many as a thousand or even a million. The elements may be as simple
as input switches or indicator lamps, or as omplex as entire
processors. They may be tightly coupled and located in close proximity
to one another, as in a highly paraliel computer, or they may be loosely
coupled and widely dispersed, as in a nationwide packet-switching
network. The interactions may involve the simple synchronization of two
elements, or they may entail a complex communication governed by a
communication protocol. ¢

A considerable number of attempts have been made to build concurrent
systems that fall at different points in this multidimensional spectrum.
Some of these attempts have succeeded, but many have been only
marginally successful and a few have been outright failures. These
experiences reflect a hard fact of life: the tools are not yet in hand
that allow us to design concurrent systems in a risk-free fashion. The
design of concurrent systems is today a difficult, risky and often
painful endeavor.

1.1 Specifying Behavior

While there are undoubtedly several reasons for this state of
affairs, one of the principal reasons must surely be our limited ability
to specify - in a precise, straightforward way - the behavior of a
concurrent system. For example, how do we express for a distributed
flight-contro! system the relationships and dependencies among various
sensor outputs, actuator inputs, status bits, and mode switches? The
problem is compounded by the fact that some dependencies are functional
in nature - engine thrust is a function of throttle-lever position -
while other dependencies are temporal in nature - landing gear lowered
seven seconds before expected touchdown. Still others combine both
functional and temporal requirements.

Because of this limited ability, there is no way to rigorously state
the required (intended) behavior of a conCurrent system, and without
such a formal statement, there is no way to rigorously verify that the
actual behavior matches the required behavior. Moreover, there is no
way to insure that the reguirements are, in fact, consistent. But
perhaps most importantly, there is no unambiguous medium for
communicating ideas among the sponsors, implementors and users of a
system.

To those who object to the need for formal techniques and argue that

the present informal methods are sufficient, there are two replies: (1)
Informal methods have not been notably successful in alleviating the
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serious problems encountered in the design of concurrent systems., (2)
formal (i.e., mathematical) techniques have been extraordinarily
successful in a variety of disciplines concerned with modelling system
behavior. (One can only wonder where electrical and aeronautical
engineering and control theory - to name a few disciplines - would be
today without their mathematical underpinnings.)

1.2 Background

We propose a framework for rigorously specifying the behavior of
concurrent systems. It is based on the widespread view of a concurrent
system as a collection of interacting processes [6] [7] [8] [9] [10]
[16] [173 [20] [21] [25] . In this view, the behavior of each process
is represented as a sequence of values, which - depending upon the model
- are interpreted either as states or events (actions).

Processes interact with one another, and thereby influence each
other's behavior, by any one of a number of different m=chanisms. It is
these synchronization and communication mechanisms that have received
the greatest attention. Semaphores [8], monitors [16], rendezvous [2]
{51 [24], path expressions [6), and exchange functions [9) [25}, are
some of the methods that have been proposed and investigated. But
because all of the zbove approaches are tied to a particular model of
process interaction, they are limited in their generality and expressive
power. The specification framework proposed here, however, is
independent of the underlying synchronization and communication
apparatus. It permits us to describe the behavioral constraints imposed
by such mechanisms without forcing us to consider the details of process
interaction. '

Although this implementation-independent approach increases
generality, it also creates a technical problem. We must now be able to
represent the composite behavior of a collection of interacting
processes. These behavioral representations must reflect the local
constraints imposed by individual processes, as well as the global
constraints stemming from process interaction. Moreover, it must be
possible to express essential constraints on behavior without being
forced to include superfluous constraints. Ffor example, it should not
be necessary to assign a temporal ordering to two event occurrences if
such an ordering is not essential to system behavior - that is, if the
two occurrences are ‘concurrent'. This last requirement immediately-
excludes the use of sequences (linear orderings) of states or events to
represent concurrent behavior - even though such sequences are used to
describe the behavior of individual processes,

The natural solution is to use partial orders on event occurrences
{or state holdings) to represent concurrent behavior. In such partial

‘orders, two event occurrences are always ordered if they relate to the

same process. If they relate to two different processes, then they may
be either ordered or unordered (concurrent). Two interpretations can be
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attached to the ordering relation. We may consider the ordering of two
occurrences to mean that the first precedes the second in time (which
assumes there is a global notion of time). Or we may consider the
ordering to mean that there is a causal connection leading from the
first to the second (which means that the first precedes the second by
every temporal measure).

The use of partial orders to represent concurrent behavior is not
novel. There has been research along these lines, [7] [10] [14] [18]
for many years. What is new in the present approach is a technique for
characterizing a set of partial orders, a technique that permits us to
express a broad range of logical and timing dependencies, many of which
are inexpressible within existing approaches.

1.3 Overview

The system model (described in Section 2) provides the basis for a
system specification. It is a multiprocess model in which the behavior
of an individual process is represented by a sequence of values drawn
from the process's 'type'. The composite behavior of an entire system
is represented by a partial order on 'instances', each of which
associates a process with a value. Instances may be interpreted either
as occurrences of events or holdings of states. A partial order on
instances is called 2 'trace'.

The proposed specitication technique has four major components: (1)
Type Definitions, (2) Process Declarations, (3) Synchronic Structure and
(L) Logical Specification. Each Type Definition (described in
Section 3) defines a set of values and a set of operations on those
values, The format for Type Definitions is provided by the mechanisms
of the Ada' programming language for declaring scalar and composite
types. Process Declarations (also described in Section 3) assigns to
each process a type.

The purpose of the Synchronic Structure and Logical Specification is
to specify, through restrictions, the set of permitted (or legal)
traces. The restrictions imposed by the Synchronic Structure (described
in Section 4) deal only with the structure of a trace when the values
associated with instances are ignored. Through the Synchronic
Structure, one can assign to a process a metric for time, which provides
the basis for expressing timing constraints.

The Logical Specification, in contrast to the Synchronic Structure,
deals only with dependencies involving instance values. These
dependencies ar= expressed in a formal language, two versions of which
are defined., UPL (for UniProcess Language} (described in Section §) is

! Ada is a registered trademark of the U.S. Department of Defense.
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the simpler version but is restricted to single-process systems. H#PL
(for MultiProcess Language) (described in Section 6) has no restrictions
but its semantics are more complex than those of UPL. UPL introduces
the four logical primitives

not and and_next and_next#
To these four, HPL adds
reverse

In both UPL and MPL, the first four primitives are used to define the
five auxiliary constructs

or or_next or_next% implies implies_next

Through these various primitives and constructs, it is possible to
express a wide range of logical and timing dependencies. However,
because these primitives and constructs are relatively 'low level’, UPL
and MPL can be extended to inciude the following sorts of higher-level
statements (in which P and Q represent either states or events,
depending on context):

) P is followed N time units later by Q.

e (Q is inevitable within N time units fcllowing P.

e Q for N time units following P.

e Following P, always Q.

. Following P, Q as long as R.

e Following P, Q until R.

. Following P, Q is repeated every N time units.

Each of these statements represents a statement in either standard UPL
or standard MPL.

The four components of a system specification - Type Definitions,
Process Declarations, Synchronic Structure and Logical Specification -
are illustrated (in Section 7) for a simple example: the
Alternating-Bit Protocol.

A R Y
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2.0 THE SYSTEM HODEL

A (myltiprocess) system is an ordered quadruple <T,P,D,X> where
T is a set of types

P is a2 set of processes
D is a set of process declarations
% is a set of permitted traces

A type is a set of valuyes. Process declarations is a mapping from the
set of processes to the set of types. Each process p is thus
associated, through its type, with a set of values - denoted Type(p).
Both processes and values are considered here to be atomic entities,

Although not essential, it is sometimes useful to consider two
classes of processes: event processes and state processes. The values
of an event process are interpreted as events, while the values of a
state process are viewed as states. A communication port is typical of
an event process since the values of the process are most usefully
interpreted as the events of sending and receiving particular messages.
Sensor outputs, displays, mode switches and status bits, however, are
more conveniently represented 2s state processes since in these cases it
is usefui to view behavior as a sequence or states.? In the parlance of
modern software engineering (and the Ada programming language), a state
process would be called an 'object’,

The permitted traces of a system represent the allowed (or legal)
behaviors of the system. Each trace is a partial order on a set of
'instances'. :

2.1 Instances

An instance is a triple <p,v,n> where p is a process, v is a value
in Type(p), and n is a positive integer.® Depending on whether p is
interpreted as an event process or state process, <p,v,n> can be viewed

Note that we are speaking here of 'local' states and not ‘global!
states.

Adding a positive integer to an instance merely allows us to create
distinct instances having the same process and value. The choice of
positive integers is arbitrary - any countably infinite set will do.
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as either the occurrence of an event or the holding of a state. For the
instance <p,v,n>,

Process (<p,v,n>) = p
Value (<p,v,n>) = v

We say that Instance <p,v,n> is an instance of Proccss p. Depending on
the interpretation for p - as a state process or event process - <p,v,n>
may be regarded as the condition of Process p assuming Value v or as the
event of Process p performing the action represented by Value v.

2.2 Traces

A trace is a partial order on a finite set of instances suzh that
all instances belonging to the same process are totally ordered. The
restriction on the instances of a process means that the behavior of
each process is represented by a (linear) sequence of values.

The instances in a trace, like all instances, each have a positive
integer associated with them. However, since these integers have no

significance other than to distinguish instances having the same process

and vilue, we consider two traces to be identical if they differ only in
their integer assignments.

Let T be.a trace defining the partial order S over a set I of
instances. Then

Instances(T) = 1

For x,y in Instances(T), x precedes (comes before) y and y follows
(comes after) x if x<y. x and y are concurrent if x and y are unordered
with respect to < ~ that is, if neither xSy nor ysx.

Notice that the foregoing relations depend only on the partial order
defined by T and not on the process associated with each instance. That
is not the case for two concepts central to our specification approach:
the ‘next' and 'last' relations. Let Process(x)=X and Process (y)=Y.
Then y is the next instance of Y following x if y follows x and for all
2z in Instances(T),

z follows x and Process (z) =Process (y) => zmy or z follows y

x is the last instance of X preceding y if x precedes y and for all z in
Instances (T},

2 precedes y and frocess (2)=Process (x) => zmx or z precedes X

o v
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Note that because the instances of each process are totalily ordered, if
there are any instances of Process Y following (preceding) Instance x,
ther there must be a next (last) instance following (preceding) x.

2.3 Example of a Trace

A typical trace is illustrated pictorially in Figure 1. Eacn vertex
represents an instance, with the vertex type indicating the associated
process. Thus

Process(a,) = A Process (by) = B
Process(a,) = A Process(b,) =8
Process(a,) = A Process (b,) = 8
Process(a;) = A Process(b;) = B

An edge (arrow) feading from Instance x to Instance y means that x
precedes y. Notice that the requirement that all instances belonging to
the same process be totally ordered is satisfied.

The trace in Figure 1 establishes a number of relationships among
the eight instances. A few are listed here:

a, precedes a,

a, follows a,

b, precedes a,

a, follows b,

a, and b, are concurrent

b, and a, are concurrent

by is the next instance of Process B followfng a,

a, is the last instance of Process A preceding b,

a; is the next instance of Process A following b,

b, is the last instance of Process B preceding a,

Note that the 'next' and 'last' relations are not, in general,

converses of one 2ncther. If x is an instance of Process X, y an
instance of Process Y, and X apd Y ar¢ not the same process, then the

two relations

y is the next instance of Process Y following x
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Legend

® Process A
®& Process B

as

Figure 1. A Trace

X is the last instance of Process X preceding y

are independent. Both relations may hold, neither may hold, or one may
hold without the other. For example, in Figure 1:

° b, is the next instance of Process B following a,, and a, is the
last instance of Process A preceding b,.

e b, is not the next instance of Process B following a,, and a, is
not the last instance of Process A preceding b,.

° a; is the next instance of Process A following b,, but b, is not
the last instance of Process B preceding a,.

If X and Y happen to be the same process, then the two relations are
equivalent - they both hold or they both fail to hold. Thus, in
Figure 1, a, is the next instance of Process A following a,, and a, is
the last instance of Process A preceding a,.

Although each vertex in Figure 1 is labelled with the name of an
instance, in many cases we may wish to indicate explicitly the process
and value associated with the instance. Since the process is already
given by the vertex type, we need add only the value. Suppose, for
example, that the type of Process A is Integer and that the type of
Process B is Boolean. Suppose, furthermore, that

Value(ay) = 17 Value(b,) = T
Value(a,) = -3 Value(b,) = F
Value(a,) = 4 Vatue (b,) = F
Vajue (a,) = 9 Value(b,) = T

~
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Then the trace in Figure 1 can be made explicit by replacing instance
names with instance values as shown in Figure 2.

2.4 Permitted and Prohibited Traces

Central to the notion of system is the idea of constrained behavior.
Except for degenerate (and uninteresting) cases and except for
malfunctions, the behavior of a system is constrained by certain bounds.
Behaviors lying within those bounds are said to be.permitted (or
allowed, or legal, or possible), while those lying outside those bounds
are said to be prohibited (or disallowed, or illegal, or impossible).

In our system mode! we have chosen to represent system behaviors as
partial orders on instances - traces. The set of permitted traces in
the definition of a system (see "The System Model" on page 5) thus
represent the permitted behaviors of the system.

2.5 Systen Specification

Having provided a formal model of system behavior, we turn now to
the task of formally specifying that behavior, The framework described
in the subsequent sections has four components, each of which can be
related to the components of the system model, Type Definitions defines
the process types, the values associated with each type, and the
operations defined on each type. Process Declarations defines the
processes and identifies their types. The Syrnchronic Structure and the
Logical Specification together define the set of permitted traces.

3.0 TYPES

A type defines a set of values and a set of operations on those
values. How then to specify a type? For a variety of reasons, it seems
prudent to adopt the mechanisms of the Ada programming language for
declaring scalar and composite types.? These mechanisms, which are
quite extensive, provide the ability to define the sorts of structures
likely to be encountered in specifying system behavior. Furthermore, by
adopting Ada syntax, we insure compatibility of the specification
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Figure 2. A Trace with Values

tanguage with what is likely to become the pre-eminent programming
language for real-time, embedded systems.

We will not attempt to give here a complete description of the Ada {
constructs for defining scalar and composite types. Any number of 4
references, such as [2], [5] or [24], are adequate for that purpose. It B
will be helpful, however, to give a brief overview of the scalar and :

composite types illustrated in Figure 3.

3.1 Enumeration Types

Type definitions take the form
type NAME is ... ;

The words 'type' and 'is', as well as all other lower case words in our
examples, are reserved words with special meanings in Ada and can be
used only as indicated. 'NAME' is 2 user-supplied word that denotes the
name of the type being declared. ... represents the body of the type
definition and must be filled in using an appropriate format.

In addition to scalar and composite types, Ada also has access,
private and task types. These are not needed for specification
purposes and are omitted from the discussion.

10
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Figure 3. Classification of Types
Enumeration types are the simplest types. The type definition is
merely a list of the type's values. Thus
type NAME is (VALUE1,VALUE2,VALUE3);

declares NAME to be an enumeration type with values: VALUEY, VALUE2, and
VALUES3.

Of special interest is the predefined enumeration type BOOLEAN whichA
may be considered to have the definition:

type BOOLEAN is (FALSE,TRUE);

3.2 Numeric Types

There are two predefined numeric types, INTEGER and REAL. These may
be used directly or subsets may be declared using the 'subtype'
statement. The statement

subtype NAME is INTEGER range M..N;
declares NAME to be a subtype of INTEGER that has just those integers in
the range M to N inclusive as its values. A similar interpretation
bolds for the statement

subtype NAME is REAL range M..N;

3.3 Array Types

The standard format for declaring an array type is:

11
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type NAME is array (INDEX1_TYPE,INDEX2_TYPE) of ELEMENT_TYPE;

This statement declares NAME to be an array type whose values are
two-dimensional arrays. INDEX1 provides the indices for the first
dimension, and INDEX2 the indices for the second dimension.
ELEMENT_TYPE indicates the type of elements making up the array.

3.4 Record Types

A record is a composite object with named components. A component
of a record is accessed through its name using dot notation. If RECORD
is a record object with a component named COMPONENT, then
RECORD.COMPONENT denotes that component. The simplest format for
declaring a record type is:

type NAME is
record
COHPONENT1: COMPONENTY_TYPE;
COMPONENT2: COMPONENTZ_TYPE;
COMPONENT3: COMPONENT3_TYPE;
end record;

This statement says that NAME is a record type with three components:
COMPONENT1, COMPONENT2 and COMPONENT3. COMPONENTiI_TYPE indicates the
type of COMPONENTI. : ‘

It is sometimes necessary to define a record type in which part of
the structure is fixed for all objects of that type and part of the
structure is variable. Depending on the value of a special component,
called a 'discriminant', the variable part i:ay assume one of several
alternative forms. The format for declaring a discriminated-record type
is:

type NAME (DISCRIMINANT: DISCRIMINANT;TYPE) is
record
COMPONENT1: COMPONENT1_TYPE;
case DISCRIMINANT is
when DISCRIMINANT VALUE2 => -
COMPONENT2: COMPONENT2_TYPE;
when DISCRIMINANT_VALUE3 =>.
COMPONENT3: COMPONENT3_TYPE;
end record;

Here, DISCRIMINANT is a component of the NAME record type that helps
determine the structure of the type. While COMPONENTY is common to all
objects of the type, COMPONENT2 pertains only tc those objects for which
NAME.DISCRIMINANT takes on the value DISCRIMINANT _VALUEZ, and COMPONENT3
pertains only to those objects for which NAHME.DISCRIMINANT takes on the
value DISCRIMINANT_VALUES3.

12
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3.5 tExample of a Type Definition

The Ada syntax just described provides an extensive capability for
describing data structures, a capability that is illustrated in the
following realistic example. It is a partial definition of the cockpit
interface for a typical commercial aircraft. We emphasize that the
definition is incomplete.

type COCKPIT is
record
FLIGHT_CONTROL: FLIGHT_CONTROL_STATE;
FLIGHT_MANAGEMENT: FLIGHT_MANAGEMENT_STATE;
AIRCRAFT_SYSTEM_MANAGEMENT: AIRCRAFT_SYSTEM_MANAGEMENT_STATE;
COMMUNICATION: COMMUNICATION_STATE;
end record;

type FLIGHT_CONTROL_STATE is

record
INERTIAL: INERTIAL_STATE:
AIR_DATA: AIR_DATA_STATE:
RADIO_NAVIGATION: RADIO_NAVIGATION_STATE;
FLIGHT_DIRECTOR: FLIGHT_DIRECTOR_STATE;
PRIMARY_PILOT_CONTROLS: PRIMARY_PILCT .CONTROLS_STATI;
'SECONDARY_PILOT_CONTROLS: SECONDAR{:PILOf_CONTROLS_STATE;

end record;

type INERTIAL_STATE is

record
PITCH: UNITS.DEGREES range ~-90.0..4+90.0;
ROLE: UNITS.DEGREES range -180.0..+180.0;
HEADING: UNITS.AZIMUTH_DEGREES;
RATZ_OF _TURN: UNITS.DEGREES_PER_SECOND range -10.0..+10.0;
SLIP: UNITS.FEET_PER_SECOND2 range ~-10.0..+10.0;

end record;

type AIR_DATA_STATE is
record
COMPUTED_AIR_SPEED: UNITS.KNOTS range 30.0..450.0;
MACH_NUMBER: REAL range 0.0..0.9;
ALTITUDE: UNITS.FEET range -1000..45000;
VERTICAL_SPEED: UNITS.FEET_PER_MINUTE range ~-6000.0..46000.0;
end record;

type FLIGHT_DIRECTOR_STATE is
record
PITCH_COHMMAND: DISPLAY_SCALE;
ROLL_COMMAND: DISPLAY_SCALE;
SPEED_COMMAND: DISPLAY_SCALE;
AUTOPILOT: AUTOPILOT_HODE;
end record;

13
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type PRIMARY_PILOT_CONTROLS_STATE is
record
ROLL_CONTROL_WHEEL: UNITS.DEGREES range -70.0..470.0;
PITCH_CONTROL_COLUHMN: UNITS.INCHES range -L4.0..+10.0;
RUDDER_PEDAL: UNITS.INCHES range -3.0..+3.0;
end record; g

type MODE_DISCRIMINANT is (DISENGAGED, CONTROL_WHEEL_STEERING, COMMAND);

type AUTOPILOT_MODE (AP_ENGAGE_MODE: MODE_DISCRIMINANT) is
record
case AP_ENGAGE_NODE is
when DISENGAGED =>
nulls
when CONTROL_WHEEL_STEERING =>
null; ’
when COMMAND =>
THRUST_SPEED: THRUST_SPEED_SUBHODE;
VERTICAL: VERTICAL_SUBMODE;
LATERAL: LATERAL_SUBHODE;
end record;

type THRUST_SPEED_SUBMODE is
record
SPEED_HOLD: BOOLEAM;
“AUTO_THRUST: BOOLEAN;
COMMANDED_SPEED: KNOTS range 30.0..450.0;
end record;

type VERTICAL_SUBMODE is

record
ALTITUDE_HOLD: BOOLEAN;
VERTICAL_SPEED: BOOLEAN;
VERTICAL_NAV: BOOLEAN;
COMMANDED_SPEED: FEET_PER_MINUTE range -3000.0..+6000.0;
COMMANDED_ALTITUDE: FEET range 0..45000;

end record;

type LATERAL_SUBMODE is
record
HEADING_HOLD: BOOLEAN;
VOR: BOOLEAN;
RNAV: BOOLEAN;
LOCALIZER: BOOLEAN;
LAND: BOOLEAN;

SELECTED_COURSE: UNITS.AZIMUTH_DEGREES;
COMMANDED_HEADING: UNITS.AZIMUTH_DEGREES;

RUNWAY_HEADING: UNITS.AZIMUTH_DEGREES;
end record;

14
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type UNITS is

record
INCHES: REAL:;
FEET: INTEGER;
FEET_PER_MINUTE: REAL;
FEET_PER_SECOND2: REAL:
KNOTS: REAL:;
DEGREES: REAL:
AZIMUTH_DEGREES: DEGREES range 0.0..359.9;
DEGREES_PER_SECOND: REAL;

end record;

type DISPLAY_SCALE is REAL range ~100.0,.+100.0;

3.6 Process Declarations

Once an appropriate set of types has been defined, the processes of

a system can be declared. There are three possible formats for a
process declaration:

PROCESS_NAME is of type TYPE_NAME;

PROCESS_NAME is an event process of type TYPE_NAME;

PROCESS_MNAME is a state process of type TYPE_NANE;
The first format is used when the values defined by TYPE_NAME are to be
left uninterpreted, the second means that the values are to be

interpreted as events, while the third means that the values are to be
interpreted as states. o

L.0 SYNCHRONIC STRUCTURE

The purpose of a synchronic structure - described in this section -
and a logical specification - described in the next section - is to
specify, through restrictions, the set of permitted traces. The two
types of specifications, however, provide two different sorts of
restrictions. The constraints imposed by a synchronic structure deal
only with the structure of a trace when the values associated with each
instance are ignored. Ffor example, one might want teo require that
between any two instances belonging to Process A there are 7 instances
belonging to Process B. This restriction says nothing whatsoever about
values. A logical specification, on the other hand, deals entirely with

15

e o~



I— — g — o i aaeat i it » ™

oy

e P e

P

A RE VR ema

o A g

dependencies involving values. Example: If Process A takes on Value vi,
then the next value taken on by Process B is v2.

The class of restrictions that we have chosen to call ‘synchronic’
is quite large and encompasses many extremely complex relationships. We
will not attempt to specify all such restrictions, but will focus
instead on a subset of those restrictions that permit us to express
logical and timing dependencies in a unified way.

4.1 Synchronous and Asynchronous Processes

So far we have said nothing about time. We have spoken only of
instances and partial orders on instances., It is clear, however, that
in order to specify real-time behavior, a way must be found to express
timing dependencies.

An obvious approach is to augment the definition of a trace by
adding durations either to instances - for a state process - or to edges
- for an event process. In the first case, the duration represents the
duration of a state holding, while in the second case the duration
represents the elapsed time between tws Cvent occurrences. This

approach, while perhaps workable, introduces a second level of discourse C

for expressing timing dependencies. It means having to express logical
relationships and timing relationships using two separate sets of
notions, a troublesome situation when the logic and timing of system
behavior are intertwined, as is often the case.

By following a slightly different course, it is possible to express
both logical and timing requirements within a single, unified framework.
This is accomplished by attaching to a process a granularity {(of time).
For example, we might declare Process A tc have a granularity of one
nanosecond. If Process A is a state process, then each instance of
Process A represents a state holding having a duration of one
nanosecond. A state holding with a longer duration is represented as a
sequence of instances. Thus, to represent a holding of five
nanoseconds, five consecutive instances are required. If Process A is
an event process, then one nanosecond represents the elapsed time
separating two successive occurrences of Process A. To represent an
elapsed time greater than one nanosecond, it is necessary to separate
the two occurrences by the appropriate number of instances. (To
accomplish this, null events may have to be introduced.)

The format for the synchronic structure of a system is a list of
declarations, each of which is in one of the following two forms:

PROCESS_NAME is synchronous with granutarity T;

PROCESS_NAME is asynchronous;

16



The meaning of the first statement is apparent. The second statement
says that there is no metric for time associated with the sequence of
instances representing the behavior of PROCESS_NAME. A single system
may contain both synchronous and asynchronous processes, and among the
synchronous processes there may be several distinct granularities.
There is one restriction, however, when there are multiple
granularities. We require that for any two granularities T, and T,,
either T, is an integer multiple of T, or vice versa. This restriction
is necessitated by the semantics of a synchronic structure,

4,2 Semantics of a Synchronic Structure

As we noted earlier, one of the purposes of a synchronic structure
is to restrict the set of permitted traces. We describe now the form
that that restriction takes.

Suppose that A and B are two synchronous processes with
granularities T, and T,, respectively. Assume that T,2T; and let
nsTA/TB. This means that there are n instances of Process B for every
instance of Process A. How can this property be expressed as a
restriction on traces? The approach adopted is to require each instance
of Process A to be concurrent with n instances of Process B. This idea

is itlustrated in Figure & for the case 1,/T;=5. Notice that therc are

exactly five instances of Process B - by, b,, by, b, and b, - concurrent
with a,. The remaining instances of Process B either precede a, or
follow a,. ’

The reader will also note that our requirement does not strictly
hold for a, and a,. There are only three instances of Process B - b,,
b, and b, - concurrent with a,, and likewise only three instances of
Process B - by, by and b,, - concurrent with a,. This probiem, which is
related to the finite nature of a trace, is purely technical and can be
remedied by a more precise statement of the requirement. The
restatement, which will also clear up some other details, is deferred to
a subsequent paper.

5.0 LOGICAL SPECIFICATION OF UNIPROCESS SYSTEMS

In Section 6 we describe a language, called MPL (for MultiProcess
Ltanguage), for specifying both logical and timing dependencies in the
context of the system model introduced earlier. Before addressing the
multiprocess case, however, it is useful to consider first the
uniprocess case - that is, the case where a system has just a single

17
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Figure 4. A Trace of Two Synchronous Processes

process. Although the syntax of the languages is essentially the same
for both cases, the semantics for uniprocess systems is simpler,
requiring less mathematical apparatus. One valuable benefit ef this
two-step approach is that it permits us to see how the concepts for
uniprocess systems generalize in a natural way to multiprocess systems.

Because we are dealing with systems having a single process, the
system model can be greatly simplified., A (yniprocess) system is an
ordered pair <V,X> where V is a set of values and ¥ is a set of
permitted value sequences, each of which is of finite length. As in the
multiprocess case, values may be interpreted as states or events, or
they may simply be left uninterpreted. In addition, the system may be
viewed as synchronous or asynchronous.

18
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5.1 Atemic Formulas

UPL (for UniProcess Language) is the language for expressing logical
and timing relationships for uniprocess systems, and, like any language,
it must have a set of basic building blocks. These are called atomic
formulas. Although the precise syntax for these formulas is nct
important in the present discussion, each such formula must define a
predicate on the set of values. The subset of values for which the
formula @ holds (is true) is denoted Values(Q). For example, if V is
the set of integers and Q is the formula 3<X<7, where X represents the
system process, then Values(Q)={4,5,6}.

5.2 Comnectives

UPE is an extension of the language of Boolean expressions. It has
four basic connectives: the familiar Boolean connectives ‘and' and
‘not', the new binary connective 'and_next' and the new unary connective
‘and_next*', The additional connectives ‘or', 'or_next', 'or_nextk',
‘implies' and 'implies_next' are defined as abbreviations:

P or Q for not {((not P) and, (not Q))
P or_next Q for not ({not P) and_next (not Q))

or_next* Q for not (and_next* (not Q))

A s N AR

P implies Q for {not P) or Q .
P implies_next Q for {not P) or_next Q
As 2 notational convenience when writing long expressions, we adopt
the folklowing shortened forms for the various connectives:
not - i
and - - A
and_next - A

and_next* - A

or -~ V
or_next - V
or_next® -~ V¢

implies -~ ->

19



implies_next =~ =>

Note that since 'and_next' is 2 binary connective while ‘and_next®' is a
unary connective, no confusion should arise from using the same symbol
for both connectives. The same observation applies to 'or_next' and
‘or_next®',

5.3 Concatenation

In order to define the semantics for UPL, we need some familiar
concepts from formal language theory. (See Hopcroft and Ullman [19]).)
If « and B are sequences, then «f denotes their concatenation. A
denotes the null string, for which the properties xa=« and u«r=« hold for
all strings a. If A and B are each a set of sequences, then

A‘B = {uple is in A and B is in B}

Thus, if A = {ab, bb} and B = {b, a, bab}, then A*'B = {abb, aba, abbab,
bbb, bba, bbbab}.

If A is a set of sequences, then A%={r} and A'=a'"t-p for i>0. The
closure of A, denoted A", is the set consisting of the null sequence A

and all finite-length sequences obtained by concatenating sequences in
A. Equivalently,

A* = A0 U AY U A2 .-

5.k Semantics

Each formula of UPL ultimately reoresents a predicate on V' (the set
of finite~length value sequences). Thus, the ultimate meaning of a
formula of UPL is given by the set of value sequences that satisfy the
formuia. In order to define this set, however, we need to introduce two
intermediate quantities for each formula. For a formula P, In(P) and
Ex (P), which are both subsets of V', represent the 'Included' and
'Excluded' value sequences, respectively, associated with P. In(P) and
Ex{P) are defined inductively, first for atomic formulas and then for
formulas constructed using each of the four basic connectives. In what
follows, Bo(P) denotes In(P) U Ex(P).
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S.h.1 Meaning of atomic formulas

"Each atomic formula will eventually be interpreted as a bredicate on

value sequences. Recall, however, that initially each atomic formula
represents a predicate on (individual) values, and that Values(P)
denotes the set of values that satisfy the atomic formula P. Now
interpret each value in Values(P) and in V (the set of all values) as a
sequence of length one. Then,®

In(P) = Values(P)

Ex(P) = V - Values(P)
In(P) is, thus, the set of those sequences of length one whose (only)
value satisfies P. Ex(P) is the set of those sequences of lengthk one
whose (only) value does not satisfy P.

5.4.2 Meaning of 'not!

The connective ‘not' merely interchanges the included and excluded
sets for an expression. Thus,

In(not P) = Ex(P)

Ex(not P) = In(P)

5.4.3 Meaning of 'and'

The definitions of the included and excluded sets for 'P ind Q' is
consistent with the usual intuition about ‘and':

In(P and Q) = In(P) N In(Q)

Ex(P and Q) = Ex(P) U Ex(Q)
Thus, a seguence is in In(P and Q) if it is in both In{P) and In(Q).
The definition of Ex(P and Q) is motivated by the need to have
In(P or Q) = In(P) U In(Q) (see below).

Note that if we stopped at this point without introducing the

non-classical connectives 'and_next' and ‘and_next*', we would have the
semantics of classical logic. Let us call a formula classical if it is

constructed from the set of atomic formulas using only the classical
connectives ‘'and', ‘'or', 'not' and 'implies'. Then for each classical
forrula P, In(P) consists of the set of values that satisfy P in the

classical sense, while Ex({P), which is just the set-theoretic complement

(with respect to V) of In(P), consists of the set of values that do not

5 If A and B are sets, then A - B is the set coutzining those element

that are in A but not in 8.
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satisfy P in the classical sense. Hence, when ‘and_next' and
‘and_next*' are excluded, ‘and', 'or', 'not' and 'implies' can still be
used in the classical way.

When ‘and_next' and ‘and_next*' do become involved, however, In(P)
and Ex(P) are no longer necessarily complements of one another, and
interpreting the effects of the classical connectives on In(P) and Ex(P)
sometimes requires a little thought.

5.4.4 Meaning of ‘and_next'

Expressions involving the phrase 'and next' are common in everyday
life: "“First we'll do this, and next we'll do that.'" This notion of
temporal ordering is captured mathematically using concatenation. If a
and g are two sequences, then o8 embodies the idea 'a and next g'. This
theme provides the basis for our definition of the included and excluded
sets for 'P and_next Q':®

In(P and_next Q) = In(P)-In(Q)
Ex(P and_next Q) = Ex(P)Bo(Q) U Bo(P)-Ex(Q)

Each sequence in In(P and_next Q) thus consists of a sequence from In(P)

'and next' a sequence from In{Q). The definition of Ex(P and_next {J is.

meant to parallel the definition of Ex(P and Q). Hence, a sequence is
in Ex(P and_next Q) if it consists of a sequence from Bo(P) followed by
a sequence from Bo(Q) such that either the first sequence is in Ex(P) or
the second sequence is in Ex(Q).

To illustrate the definitions for 'and_next', consider the situation
where In(P)={a}, Ex{P)={b,c}, In(Q)={a,b} and Ex{(Q)={c}. Then

In(P and_next Q) = {aa, ab}
Ex(P and_next Q) = {ba, bb, be, ca, cb, ce¢, ac}l

Note that all the sequences in In{P), Ex(P), In(Q) and Ex{Q) are of
length one, while all the sequences in both In(P and_next Q} and

Ex (P and_next Q) are of length two. This is an illustration of a
general property: If all the sequences in In(P) and Ex(P) are of length
m and all the sequences in In(Q) and Ex(Q) of length n, then all the
sequences in both In(P and_next Q) and Ex(P and_next Q) are of length
mtn.,

We noted earlier that for the case when P is a classical formula,
In(P) and Ex(P) are the set-theoretic complements (with respect to V) of
one another. We now consider some of the ways in which that simple
relationship breaks down when the connective 'and_next' is introduced.
Assume P, }, R and S to be classical formulas throughout the discussion.

§  Recall that Bo(P) = In(P) U Ex(P).
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Now let F represent the formula 'P and_next Q'. Since In(F) and Ex(F)
are not subsets of V, they cannot be set-theoretic complements with
respect to V. But they are set-theoretic complements with respect to
V3. 1In fact, if P, *°+ P_are all classical formulas and F represents
the formula ‘P, and_next *** and_next P, ', then In(F) and Ex(F) are
set-theoretic complements with respect to V7,

Now let F represent the formula 'P and (Q and_next R)'. Applying
the above definitions, we have

In(F) = In(P) N (In(Q) *In(R))
Ex(F) = Ex(P) U (Ex(Q)*Bo(R)) U (Bo(Q) "Ex(R))

Since In(P) contains only sequences of length one and In{Q)*In(R) only
sequences of length two, In(F) is empty. Ex(F), on the other hand, is,
in general, non-empty and contains an assortment of sequences of length
one and length two. There is little that can be said about the
relationship between In(F) and Ex(F). They are not set-theoretic
complements with respect to any interesting set. They are, however,
mutually exclusive. But this is not always the case.

Let a, b, ¢, d and e be arbitrary values, and let P, Q, R and S be
defined such that

is in In(P)
is in In(Q)
is in Ex{Q)
is in In(R)
is in Ex(R)
is in Ex(S)

(1 BN -N s B e N » g -]

Now let F represent the formula
((Pv(PAQ))AQ) & (RV((RVS)AS))

(The meanings of 'or' and ‘or_next' are given below.) It is easily
verified that the sequence abcde is in both In(F) and Ex/F). Although
this example may seem counter-intuitive, it presents no problem in
defining the semantics for UPL and, in fact, there is a natura}l
interpretation for it (see Section 5.h4.114).
5.4.5 Meaning of 'and_nextt'

In order to express such temporal relations as “until", "as long as"

and "following', we need the ability to represent for a formula P the
following infinite expression:’

Aor P or (P and_next P) or (P and_next P and_next P) or <

The included set for this expression, obtained using the definitions
already given, is
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"} U In(P) U In(P)+In(P) U In(P)-In(P)-In(P) U ~*°
while the excluded set is

& N Ex(P) N Ex(P and_next P) N Ex(P and_next P and_next P) A ~-°°
The first quantity is just (In(P))*, while the second quantity reduces
to the null set. We are thus led to the following meaning for »
‘and_next* P', our represention for the above infinite expression:

In(and_nextx P) = (In(P))*

Ex{(and_next® P) = &
Notice that for the special case when P is a classical formula,
In(and_next* P) is just the set of all value sequences «a such that each
value in « satisfies P.
5.k.6 Meaning of 'or’

The connectives ‘or', 'or_next', ‘or_next*', 'implies' and
'implies_next' are atl abbreviations for expressions involving the four
hasic comnectives 'not', 'and', 'and_next' and 'and_nextk'. The
meanings of these five additional connectives, therefore, follow
directly from the preceding definitions.

For the connective '‘or', we have

In(Por Q) = In(P) UIn(Q
Ex(P or Q) = Ex(P) N Ex{(Q

A sequence is thus in In{(P or Q) if it is in either In{P) or In(Q).

5.4.7 Meaning of 'or_next'

By applying the appropriate manipulations to the meaning of
‘and_next', we obtain for ‘or_next', ’

In(P or_next Q) = In(P)-Bo{Q) U Bo(P) *In(Q)
Ex(P or_next Q) = Ex(P)-Ex(Q)
A sequence is in In(P or_next Q) if it consists of a sequence from Bo (P)

followed by a sequence from Bo{Q) such that either the first sequence is
in In{P) or the second sequence is in In(Q). Each sequence in

A denotes the ‘null formula'. By convention, In(A)={a} and Ex (1) =d,
¢ denotes the empty set.
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Ex(P or_next Q) consists of a sequence from Ex(P) ‘'and next' a sequence
from Ex(Q) .

As an illustration, consider the same example we gave for
‘and_next', where In(P)={a}, Ex(P)={b,c}, In(Q)={a,b} and Ex(Q)={c}.
Then

In(P or_next Q) = f{aa, ab, ac, ba, ca, bb, cb}

Ex(P or_next Q) = {bc, cc}

5.4.8 Meaning of 'or_next*'
The definitions for 'or_next%' parallel those for 'and_next#':
In(or_next* P) = ¢
Ex(or_next* P) = (Ex(P))’
For the special case when P is a classical formula, Ex{or_next* P)
consists of all value sequences &« such that each value in « satisfies
'not P'.
5.4.9 eaning of 'implies’
The connective 'implies', which is used almost exclusively in the
context of classical formulas, has a meaning that is consistent with
that usage:

In(P implies Q) = Ex(P) U In(Q)

Ex(P implies Q) = In(P) N Ex(Q)

5.4.10 Meaning of ‘'implies_next'

In specifying the logical behavior of systems, one repeatedly finds
the need to express the dependency: "“Whenever Behavior 1 cccurs, it
must be immediately followed by Behavior 2." If we assume Behavior {1 to
be represented by Formula P and Behavior 2 by Formula Q, then, as shown
below, this dependency can be expressed as 'P implies_next Q'. The
definitions that permit this interpretation are:

In(P implies_next Q) = Ex{P):Bo(Q) U Bo(P)'In(Q)
Ex(P implies_next Q) = In(P)-Ex(Q)

As an jllustration. consider once again the example given above where
In(P)={a}, Ex(P)={b,c}, In{Q)={a,b} and Ex(Q)={c}. Then
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In(P implies_next Q) = {ba, bb, bc, ca, ¢cb, cc, aa, ab}

Ex(P implies_next Q) = {ac}

5.k.11 Satisfaction and Truth

In the preceding sections, we have shown how to calculate the
quantities In(P) and Ex(P) for any formula P in UPL. Recall, however,
that ultimately a formula is to pe interpreted as a predicate on V* and
that the ultimate meaning of a formula is given by the set of value
sequences that 'satisfy' it. We now define, with the aid of Ex(P), what
it means for a sequence of values to 'satisfy' a formula P of UPL, We
select Ex(P), rather than In(P), for the role because we are interested
in expressing properties that constrain, or restrict, the set of
permitted value sequences. It is the excluded sequences of a formula
that provide these restrictions.

A sequence of values o satisfies a formula P of UPL if and only if a
contains no member of Ex(P) as a subsequence.® Thus, if B is in Ex(P)
and v is an extension of B (Y contains B as a subsequence), then ¥
cannot satisfy P. To illustrate this idea, consider the example used
several times earlier in which In{P)={a}, Ex(P)={b,c}, In(Q)={a,b} and
Ex(Q={c}. Let F represent the expression 'P implies_next Q'. As noted
above, Ex(F)={ac}. A sequence, therefore, satisfies F if and only if it
does not have ac as a subsequence. Examples of such sequences are: A,
a, b, ¢, ca, bb, abc, abab and abbca. Examples of sequences that do not
satisfy F are: ac, aac, ach, aacc and bbacbh.

The reader will note that because satisfaction is defined using only
Ex{P), the possibility that In{P) and Ex(P) may not be set-theoretic
complements or that they may intersect presents no technical problems.
Some situations do arise, however, that do not exist in classical logic,
but 'make sense' in the context of our model. For example, if P is a
formula in UPL, then it is possible for a sequence of values to satisfy
both P and ~P, or to satisfy neither P nor ~P.? To illustrate, let F
represent the formula 'P implies_next Q' where P and @ are classical
formuias., Because all the sequences in both In(F) and Ex(F) are of
length two, all sequences of length one satisfy, by default, both f and
~F. This is natural. If a formula of UPL expresses a constraint on
sequences of length n, then we expect all sequences of length less than
n to satisfy the formula by default. Now consider any formutla F for
which In(F) and Ex(F} are both non-empty. Let a be a member of In(F)
and § a member of Ex(F). The sequence aff then has subsequences in both

Sequence « is a subsequence of sequence B if and only if there exist
sequences Y and & such that B=vab.

Do not confuse the statement 's does not satisfy P' with the
statement '« satisfies ~P'. The first statement says-that « has a
subsequence that is in Ex{P), while the second says that no
subsequence of « is in Ex{-P).
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In(F) and Ex{(F). But since In(F)=Ex(~F), «B has subsequences in both
Ex(F) and Ex(=F) and hence satisfies neither F nor ~F. This too is
natural. If a formula of UPL expresses a constraint on sequences of
length n, then we expect there to be sequences of length greater than n
that wviolate the constraints of F in one location and violate the
constraints of =F in another location.

The last order of business in providing the semantics for UPL is the
notion of 'truthf, A formula P of UPL is true (with regard to a given
system) if and only if every permitted value sequence satisfies P. In
other words, P is true if and only if no permitted sequence has a member
of Ex{P) as a subsequence. True formulas thus specify, by restriction,
the set of permitted value sequences, and they are the mechanism by
which a logical specification constrains system behavior.

5.5 Rlgebraic Properties

In much of the preceding discussion, we have tacitly made use of
certain ‘'algebraic' properties of UPL. For example, in writing 'P
and_next P and_next P' we assumed that 'and_next' represents, in some
senss, an associative operator. Let us say that two formulas of UPL are
‘equal ' if their included and excluded sets are the same. Then the
foliowing algebraic properties involving the classical operations A, V
and = follow from the above definitions. '

o .

xAx=x and xVx=x (idempotence)
xXAy=yAx and xVy=yVx ' (commutativity)
xA({yAz)=(xAy)Az and xV{yVz)=(xVy)Vz . (associativity)
xA(xVy)}=x and xV{xAy)=x (absorption)
xA{yvz) = (xAy) V{xAz) and xV(yAz)=(xVy)A(xVz) {(distributivity)
~{xAy) =oxV-y and ~(xVy)="xA-y (DeMorgan's Laws)
~x=x (involution)

An algebra satisfying these properties is called a DeMorgan algebra.
(See Balbes and Dwinger [1], Chapter XI.} The interesting thing about a
DeMorgan algebra is that it satisfies nearly all the usual properties of
3 Boolean algebra. In fact, it would be a Boolean algebra with the
addition of the Law of the Excluded Middle: xV-x=1,

The properties that involve the non-classical connectives 4, V are:
x& (y8z)=(x8y) 82z and xV{(yV2)=(xVy)Vz _ (associativity)

= {xAy) ==xV~y and = (xVy)="x4~y (DeMorgan's Laws)
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5.6 Examples of Statements about Uniprocess Behavior

Having provided the formal semantics for UPL, we now show how some
common logical/temporal dependencies can be expressed within UPL. For
simplicity, we assume in the following examples that P, Q and R are
classical formulas - that is, formulas constructed from the set of
atomic formulas using only the connectives ‘and', ‘or', ‘not' and
‘implies'. 1In addition, we define T (F) to be an atomic formula that is
satisfied by all (no) values.

5.6.1 Example 1 (invariance)

The simplest assertion that one can make about system behavior has
the form: "P is true", where P is a classical formula. From the
semantics provided above, it follows that P is true if and only if every
value in every permitted value sequence satisfies P. Therefore, saying
that P is true is equivalent to saying that P is always true. A
statement that is always true is commonly called an invariant.

5.6.2 Example 2

Concider the statement:

"p is followed three values later by Q."

This is a shorthand way of saying: "If a value satisfies P, then the
third value following this value must satisfy Q." Or expressed a little
differently: "If a value satisfying P is (immediately) followed by two
arbitrary values, then the next value must satisfy Q. When stated in
this way, the dependency is seen to have the same meaning as the
following two (equivalent) formulas of UPL:

(P and_next T and_next T) implies_next Q

P implies_next (F or_next F or_next Q)

5.6.3 Example 3 (inevitability)

Consider the statement:

Q is inevitable within three values following P.”

In other words: "If a value satisfies P, then at least one of the next
three values must satisfy Q." Expressed a little differently: "If a
value satisfies P, then the next value or the next value or the next
value must satisfy Q." When put this way, the statement has a direct
transtation into UPL:

P implies_next (Q or_next Q or_next Q)
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Note the parallel with the second formula in Example 2. Note also that
this approach to expressing inevitability does not generalize to
‘unbounded’' inevitability. To express '"Q is inevitable following P"
would require the infinite expression: “P implies_next (Q or_next Q
or_next *--'",

5.6.4 Example &
Consider the statement:
"Q for three values following P."

Or equivalentiy: "If a value satisfies P, then the next value and the
next value and the next value must all <atisfy Q", the obvious
translation of which is:

P implies_next {(Q and_next Q and_next Q)

This formula, however, does not precisely capture the intended meaning
of the above statement. The formula expresses a constraint on value
sequences of length four (and, by extension, to sequences of length
greater than four), but places no constraints on sequences of length
less than four. For example, if the first value of a length-two
sequence satisfies P, then the formula imposes no restrictions on the
second value -~ it may, or may not, satisfy Qi A formula that correctly
expresses the intended meaning of the above statement is the following:

P implies_next Q

-

and
(P and_next T) implies_next Q
and

(P and_next T and_next T) implies_next Q

5.6.5 Example 5 (following)
Consider the statement:
“"Following P, Q."
This is shorthand for: "If a value satisfies P, then all future values
must satisfy Q". Or put another way: If a value satisfying P is
followed by a finite number (including zero) of arbitrary values, then
the next value must satisfy Q.'" When expressed in this way, the

statement can be translated directly into UPL as:

(P and_next (and_next* T)) implies_next Q
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5.6.6 Example 6 (as long as)

Consider the statement:

N Y SRR

“"Following P, Q as long as R."

This is another way of saying: "If a value satisfies P, then any
following value must satisfy Q if that value and all intervening values
satisfy R." Or put another way: "If a value satisfying P is
(immediately) followed by a finite number (including zero) of
consecutive values satisfying R, then the last value (in the sequence of
consecutive values satisfying R) must satisfy Q." In UPL the statement
becomess

(P and_next (and_next* R)) implies_next (R implies Q)

5.6.7 Example 7 {(until)

Consider the statement:

"Following P, Q until R."

Which is to say: "If a value satisfies P, then any following value must
satisfy Q provided that no intervening value satisfies R." Or
equivalently: "If a value satisfying P is (immediately) followed by a
finite number (including zero) of consecutive values satisfying 'not R',
then the next value must satisfy Q." The corresponding formula in UPL

iss

(P and_next (and_next* (not R))) implies_next Q

5.6.8 Exampié 8
Consider the statement:
“Q holds for all odd-numbered values‘following p."
Thus, if a value saticfies P, then the first, third, fifth *** value
following that value must satisfy Q. This constraint is expressed in

UPL as:

(P and_next (and_next* (T and_next T))) implies_next Q

5.6.9 Remarks

We make two observations about the preceding examples. First,
except for Example 1, each statement is in the form of an implication
stating what must be true in the future given some current condition.
It should be clear, however, that there are analogous statements
involving past behavior. For example, "Preceding P, Q" is the
counterpart to "fFollowing P, Q'. Such statements, which are as
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legitimate as those predicting future behavior, are expressible within
UPL because the language has no fundamental bias towards elther the past
or the future.

The second observation about the above examples concerns their
interpretation when the system process is declared to be synchronous and
is assigned a granularity. With such a declaration, formulas of UPL
take on a temporal meaning. Suppose, for example, that the system
process is declared to be synchronous with a granularity of one
millisecond. Then the formulas in Exampies 2, 3 and 4 can be
reinterpreted as follows:

“P is followed three milliseconds later by Q."
"Q is inevitable within three milliseconds following P."
“Q for three miliiseconds following P."

Such is the way in which logical and timing constraints are integrated
into a single framework.

6.0 LOGICAL SPECIFICATION OF MULTIPROCESS SYéTEﬂﬁ .

MPL (for MultiProcess Language) is the language for specifying both
logical and timing dependencies in multiprocess systems. It has much in
common with UPL. Except for the addition of a unary connective (called
'reverse'), the syntax of MPL is identical to that of UPL. The basic
connectives 'not', 'and', 'and_next' and ’'and_next%' are used in the
same way, while the auxiliary connectives 'or', 'or_next', ‘or_next¥,
‘implies' and 'implies_next' are defined as the same abbreviations.

Like the uniprocess case, the semantics for each formula P of HPL is
given by the two sets In(P}) and Ex(P) which, again like the uniprocess
case, are defined inductively, first for atomic formulas and then for
formulas constructed using each of the basic connectives. Furthermore,
In(P) and Ex(P) retain their original forms - as expressions involving.
union, intersection and concatenation - when P is constructed using any
of the original UPL connectives. For example, Ex(P and_next Q) =
Ex (P) Bo(Q) U Bo(P)*Ex{(Q) in both the uniprocess and the multiprocess
case. However, because the formulas of MPL are eventually to be
interpreted as predicates on (partially ordered) traces rather thzn
predicates on (totally ordered) value sequences, it is necessary to use
a different type of structure within the included and excluded sets for
a formula P. In the uniprocess case, In(P) and Ex{(P) are each a set of
value sequences, while in the muitiprocess case, In{P) and Ex(P) are
each a set of trace~like objects, called 'templates', This change from
sequences to templates entails two modifications to uniprocess
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semantics: (1) the included and excluded sets for atomic formulas must
be redefined and (2) the notion of concatenation must be adapted to
templates.

The following sections focus primarily on the structure of
templates, their use in included and excluded sets, and their ultimate
interpretation as 'templates' for traces.

6.1 MPL Syntax

As in the case of uniprocess systems, we assume the existence of a
set of atomic formulas. As above, we are not concerned with the
particular syntax for atomic formulas, but we do assume that each atomic
formula Q is associated with a unique process - denoted Process (Q) -~ and
represents a predicate on.the values belonging to Process(Q)'s type.

The subset of values in Type{(Process(Q)) for which Q holds (is true) is
denoted Values (Q) .

Composite formulas of MPL are constructed from the set of atomic
formulas using the four basic connectives of UPL - 'not', 'and’',
'and_next' and 'and_next* - plus the new unary connective 'reverse' -
denotcd ~. The auxiliary conneciives ‘or', 'or_next', ‘or_next¥,
‘implies' and 'implies_next' retain their original meanings as
abbreviations. .

6.2 Templates

Informally, a ‘template' is a directed graph whose vertices are
instances'® and whose edges (arrows) come in two types: those labelled
'next' and those labelled 'last!'. Formally, a template is an ordered
triple <I,N,L> where I is a finite set of instances and where N and L
are each a set of directed edges on I. Although there are no
restrictions on the structure of a template, only those templates that
correspond to partial orders -~ those without (directed) circuits - will
be of interest. For a template <I,N,L>,

0 Recall that an instance is a triple <p,v,n> where p is a process, v

is a value in Type(p), and n is a positive integer.
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Instances (<I,N,L>) = I
Next (<I,N,L>) = N
Last (<I,N,L>) =L
The head (tall) of a template is the set of those instances that have no

emergent (entrant) edges. The null template <é,é,4> is denoted by A.
To illustrate these ideas, let T be the template depicted in Figure 5.

Then

Instances (T) = {x,5, Xy0 X504 Xgs Xgze Xgo Xgs Xq}

Heéd(T)

{xg» X3}

Tail(T)

{xg, x,}

Next {(T)

{<xgiXy>e <xy0Xg>y <Xpu%,>, <Xg,X,>)

Last (T) = {<x,,Xg>s <XgyXg>, <XgoX,>}

6.3 A Partial Order on Templates

In defining In(P) and Ex(P) for a formula P of MPL, we will make use
of a partial order on templates which is intended to capture the idea of
one template being 2 'simpler' or less ‘'restrictive' version of another.
The ordering depends on the notion of a 'morphism' between two
templates.

Let T, ard T, be templates. A mapping ¥ from Instances(T,) to
Instances(Tz) is called a morphism from T, to T, if for all x,y in
Instances(T,),

e Process(x) = Process (¥ (x))

e Value(x) = Value(¥(x))

e  <x,y> in Next(T,) => <¥(x),¥(y)> in Next (T,)
® <xX,¥> in Last(T,) => <y (x),¥{y)> in L#st(Tz)
e X in¥Head(T,) => ¢ (x) in Head(T,)

e x inTail(T,) => ¥(x) in Tail(T,)
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Figure 5, A Template

If the mapping ¥ is one-to-one, then the morphism is also said to be
one-to-one. ' :

We now use the notion of morphism to define the partial order < on
templates.'? If T, and T, are templates, then T,sT, if and only if at
least one of the following conditions holds:

(1) T, and T, are both the null template.

(2) T, and T, are both non-null and there exists a one-to-one
morphism from T, to T,.

(3) T, and T, are both non-null and there exists a morphism from T,
to T, but no morphism from T, to T,. '

We note first that the null template x» is isolated by £ from all other
templates. Condition 2 says, in effect, that there is an exact copy
(except for instance numbering) of T, embedded in T, and that the head
(tail) of this copy is contained in the head (tail) of T,. Condition 3

' A mapping ¥ is one-to-one if distinct elements in the domain of ¥
have distinct images under V.

2 In claiming that < is a partial order, we consider two tempiates to
be identical if they differ only in their instance numbers.
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says that there is a 'collapsed' version of T, embedded in T, and that
the head (tail) of this version is contained in the head (tail) of T,.
Condition 3 also requires that there be no similar version of T,
embedded in T,.

To illustrate the concept of template ordering, consider the three
templates in Figure 6. Assume that like-named instances in separate
templates have the same process and value. Assume, furthermore, that
Process (x,) =Process (x,') and that Value(x,)=Value(x,') Notice that an
identical copy of T, is embedded in T, and that the head (tail) of this
copy is contained in the head (tail) of T,. Thus, T,<T, */ Condition 2.
(This relationship also follows from Condition 3 if x, and Xq inT,
differ in either process or value.) Now notice that there is a
‘collapsed' version of T, embedded in T, and that the head (tail) of
this version is contained in the head (tail) of T,. Notice also that
there is no similar version of T, embedded in T, (assuming that x, and
X, differ in either process or value) . Hence, T,sT4 by Condition 3.

To help motivate the last requirement in Condition 3, suppose that
x, and x, in template T, of Figure 6 have the same process and value.
There is then a morphism from T, io f,. Now if the last requirement in
Condition 3 were omitted, it would follow that T,sT,. But because T,<T,
by Condition 2, the antisymmetry property of < would be violated.
Hence, the need for the last regquirement in Condition 3.

6.4 Concatenation of Templates

Concatenation of templates is analogous to concatenation of
sequences. If T, and T, are templates, then T *7, = <I,N,L> where!3

I = Instances(T,) U Instances(T,)
N = Next(T,) U Next(T,) U (Head(T,) X Tail(T,))
L = Last(T,) U Last(T,)

T,°T, is thus obtained by connecting the head of T, to the tail of T,
with a set of 'next' edges. :

As an illustration of concatenation, consider the two templates T,
and T, in Figure 7. T, consists of ‘he instances Xgs X4» X, and x, and
the two edges connecting those instances. T, consists of the instances
X4+ Xgs Xg and x, and the three edges connecting those instances. T,°T,
is the composite graph obtained by connecting T, to T, with the two
edges <x,,x,> and <x,,x,>, which are indicated by dashed lines.

8 X denotes Cartesian product.
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Figure 6. Three Ordered Templates

As in the case of Sequences, sets of templates can also be
‘concatenated'. TIf T, and T, are each a set of templates, then Ty*T, is
the set of all those templates T for which there exist T, in T, and T,
in T, such that Instances (T,) n Instances(T,) = ¢ and TeeT, T, 14
(Note that {T}eq1,} # {T¢°T,}) 7 and T' are defined as before for
sequences.

' When concatenating two templates, we want to consider them as two
separate and distinct objects. This cannot be done, however, when
there is a naming conflict between the instances of the two
templates.  Thus the requirement in the above definition that
Instances({T,) and Instances (T.) be disjoint. For the sets of
templates we will pe considering, no concatenated templates will be
lost because of this restriction since it will always be possible to
replace conflicting templates by equivalent, nen-conflicting ones.
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Xo

Template T, Template T,

Figure 7. Concatenating Two Templates
6.5 Well-Structured Sets of Templates

As already noted, In(P) and Ex(P), for a formula P of HPL, will be
defined as sets of templates. These sets wiil turn out to have two
important properties: 'upward closure' and the '‘minimality condition’,

Let X be a set of elements partially ordered by €. X is said to be
upwardly closed (with respect to %) if .

xSy and X in X => y in X

X satisfies the minimality condition (with respect to <) if for each
element y in X there exists a minimal element x of X such that xsy.'S
When X is both upwardly closed and satisfies the minimality condition,
we say that it is well structured. An important property of a
well-structured set X is that it can be characterized by its set of
minimal elements - denoted Min(X).

The following are four important results relating to well-structured
sets of templates.

PROPERTY 1. If T, and T, are well-structured sets of templates, then
T,UT,, 'l',m‘2 and T, T, are alsc well-structured sets of templates.

In other words, the operations of union, intersection and concatenation
preserve weli-structuredness.

S Note that a minimal element - untike a minimum element - need not be

unique. A set may have more than one minimal element.
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PROPERTY 2. If T, and T, are well-structured sets of templates, then

Min(T,UT,) = Hin(Min(T,) U Min(T,))

Thus, to find the minimal templates of T,UT, we need only look for the

"minimal templates in Min(T,) U Min(T,).

PROPERTY 3. If T, and T, are well-structured sets of templates, then
Min(T,NT,) = Min(A) where A is the set of templates T for which there
exist templates T, and T, such that

e T, is in Min(T,) and T, is in Min(Tz)
e T,s<Tbymorphism ¥, and T, S T by morphism v,

e Each instance in T is the image under ¥,  of an instance in T, or
the image under ¥, of an instance in T,.

e Each 'next' ('last') edge in T is the image under ¥ of a 'next'
(*1ast') edge in T, or the image under ¥, of a 'next' ('last')
edge in T,. "

Property 3 says something non-obvious. It says that to find the minimal
templates of T, 0T, we do not look for the minimal templates in Min(T) N
Min(T,) . Instead, we look among the templates formed by 'merging' a
template from Min(T,) and a template from Min(T,).

PROPERTY u; If T, and T, are well-structured sets of templates, then

Min(T,"T,) = Hin(Min(T,) ‘Min(T,))

The minimal templates of T,'T, can, thus, all be found in
Min(T,) “Min(T,) .

6.6 Semantics

Each formula of MPL will ultimately represent a predicate on the set
of traces. Thus, the ultimate meaning of a formula in MPL is given by
the set of traces that satisfy the formula. However, as in the case of
UPL, we need first to intruduce the intermediate quantities In(P) and
Ex (P} for each formula P of MPL., For UPL, these quantities were sets of
sequences, but for HPL they are sets of templates. As with UPL, In(P)
and Ex(P) are defined inductively, first for atomic formulas and then
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for formulas constructed using each of the five bhasic connectives.
(Recall that we now have an additional basic connective, 'reverse'.)

For all cases, In(P) and Ex(P) will be well-structured sets of
templates. The definitions of these two quantities for the case when P
is an atomic formula will insure that the property is met for the basic
building blocks of HPL. The definitions of In(P) and Ex(P) for
composite formulas will all be expressed in terms of the operations of
union, intersection and concatenation, each of which preserves
well-structuredness (Property 1). By having the included and excluded
sets of all formulas well-structured, we are able to understand the
meanings of the various connectives in terms of their effects on minimal
templates.

6.6.1 Meaning of atomic formulas

Let P be an atomic formula. P, therefore, has associated with it a
process - denoted Process (P) - and a set of values - denoted Values(P).
Let V = Type(Process(P)). For the uniprocess case, In(P) is defined as
the set of those sequences of length one whose (only) value is in
Values (P). Ex(P) is defined as the set of those sequences of length one
whose (only) value is in V-Values(P).

For the multiprocess case, In(P) is the set of all those templates T
for whicn there exists an instance x such that

® Process(x) = Process(P)
e Value{x) is in Values (P)
. <{x}.o, o> < 7T

In other words, In{P) is the set of all those templates T that have
embedded within them an isolated instance x such that Process(x) =
Process (P) and Value(x) is in Values(P}). (Note that x is in both the
head and tail of T.) From the definition it follows that In(P) is well
structured and, therefore, is characterized by its minimal templates.
These are easily described. They are all templates of the form
<{x},d,4> where Process(x) = Process{P} and where Value(x) is in
Values (P). These minimal templates are in one-to-one correspondence
(ignoring instance numbers) with the length-one sequences that define
In(P) for the uniprocess case.

Ex{(P) in the multiprocess case is the set of all those templates T
for which there exists an instance x such that

o Process(x) = Process (F)
o Value(x) is in V-Values(P)

o <{x},b,d> < T
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Ex(P) is, thus, the set of all those templates T that have embedded
within them an isolated instance x such that Process(x) = Process (P} and
Value(x) is in V-Values(P). Like In{P), Ex(P) is well-structu:~d and
its minimal templates are easily described. They are all templates of
the form <{x},$,4> where Process (x) = Process(P) and where Value(x) is
in V-values (P).

6.6.2 Keaning of 'not'

As in the uniprocess case, the connective 'not' simply interchanges
the included ard excluded sets of an expression. Thus,

In(not P) = Ex(P)

Ex{not P) = 1In(P)

6.6.3 Meaning of ‘and’

The definitions of the included and excluded sets for 'P and Q' have
the same forms used for the uniprocess case:

In(Pand Q) = In(P) N In{(Q)

Ex(P and Q) = Ex(P) U Ex(Q)
Thus, a template is in In(P and Q) if it is in both In(P) and In{Q), and
is in Ex(P and Q) if it is in either Ex{P) or Ex(Q). To understand

these definitions and to see how they differ from the ones given earlier
for UPL, let us look at the definitions in terms of minimal templates.

Suppose that P and Q are atomic formulas. Then the minimal
templates in In{P), In{Q), Ex(P) and Ex{Q) are all of the form
<{x},4,06>. From Property 3, it follows that Min{(In(P and Q)) contains :
two classes of templates: ‘

(1) those in Hin(In(P)) N Min(In(Q))

(2) those of the form <{x,y},4,4> such that <{x},d,4> is in

Min(In(P)) but not Min(In(Q)) and <{y},o,4> is in Min{(In(Q)) but ;
not Min(In(P))

In analyzing these classes, two cases need to be considered:

Process (P} = Process(Q) and Process(P) # Process(Q). When Process(P) = :
Process (Q), the templates in Min(In(P)) N Min(In(Q)) are in one-to-one ;
correspondence (ignoring instance numbers) with the values in Values(P) ¢
N Values(Q). This corresponds to the classical, uniprocess case. The

templates in the second class above, however, represent a divergence

from the classical, uniprocess view.'® When Process(P) = Process(Q),

these templates are in one-to-one correspondence with pairs of values

{x,y} such that x is in Values(P)-Values(Q) and y is in ;
Values (Q) -Values (P). (Such 'nonclassical' templates turn out to be f
useful in expressing certain logical dependencies.) For the casec above
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when Process (P) # Process(Q), the templates in the second class are the
only templates in Min(In(P and Q}) since Hin{(In(P)) N MHin(In(Q)) is
empty. These templates are all templates of the form <{x,y},d,¢> such
that <{x},4,¢> is in Hin(In(P)}) and <{y},&,4> is in Hin(In(Q)).

The situation regarding Ex(P and_rext Q) is considerably simpler
than that for In(P and_next P). From Property 2, we see that

Hin(Ex(P and Q)) = Min(Ex(P)) U Min{Ex(Q))

(for both atomic and non-atomic formulas). Thus, the definition of
Ex (P and_next Q) for MPL corresponds completely to the definition for
UPL.

Having considered the case when P and Q are both atomic, let us
consider a second special case. Suppose that the templates in In{P) and
In{(Q) are Independent in the sense that no instance appearing in a
template of In(P) has the same process and value as an -instance
appearing in a template of In(Q). From Property 3, it follows that
Hin(In(P and Q)) = Min(A) where A is the set of composite templates
obtained by 'juxtaposing' a template from In{P) with a template from
In(Q). For example, if Min(In(P)) consists of the single template shown
in Figure 8(a), if Min{(In(Q)) consists of the single template shown in
Figure 8(b) and if Xy and x, differ from x, and x, in either process or .
value, then Min{(In(P and Q)) consists of the composite template shown in o '
Figure 8(c).

6.6.4 Meaning of ‘and_next®

oo

The meaning of 'and_next' in the context of MPL paraliels the
definition given earlier for UPL. There is no change in the expressions
defining the included and excluded sets but concatenation now applies to
templates instead of sequences. Hence

In(P and_next Q) = In(P)-In(Q) , f
Ex{(P and_next Q) = Ex(P)-Bo(Q) U Bo(P) Ex(Q)

Each template in In(P and_next Q) thus consists of a template from In(P)
‘and next' a template from In(Q). A template is in Ex(P and_next Q) if
it consists of a template from Bo(P) 'and next' a template from Bo{Q)
such that either the first template is in Ex(P) or the second template
is in Ex(Q).

As we did for 'and', let us consider the special case when P and Q
are both atomic. The minimal templates in In(P), In(Q), Ex(P) and Ex(Q)
are then all of the form <{x},4,4>. From Property L, it follows that
the templates in Min(In(P and_next Q)) are all those with the structure

This departure from UPL changes the meanings of certain formulas
representing invariants (see “ection 6.8.1).
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(o) Template 1

next
Xy O————=0 Xy

(b) Template 2

next :
X ————=@ x;

next
X3 @——————=9 Xy

(¢) Composite Template

Figure 8. Juxtaposing Two Templates

<{x,y}, {<x,y>}, &> suca that <{x},4,$> is in Min(In(P)) and <{y},é,4>
is in Min(In(Q)). It also follows that the templates in

Min(Ex (P and_next Q)) are all those with the structure <{x,y}, {<x,y>},
&> such that either (1) <{x},¢,4> is in Min(Ex(P})) and <{y},$,4> is in
Min(Bo(Q)) or (2) <{x},¢,4> is in Min(Bo(P)) and <{y},s,4> is in
Min(Ex(Q)). As an illustration, let Min(In(P)) consist of the two
single-instance templates shown in Figure 9(a), Hin(Ex(P)) the
single-instance template in Figure 9(b), Min(In(Q)) the two
single-instance templates in Figure 9{c), and Min(Ex(Q)) the
single-instance template in Figure 9(d). Then Min(In(P and_next Q))
consists of the four single-edge templates in Figure S(e) and

Min(Ex (P and_next Q)) the five single-edge templates in Figure S(f).
Note the parallel with the UPL example in Section 5.4.4k. There, the
elements of In(P and_next Q) and Ex(P and_next Q} are value sequences of
length two. Here, the elements of Nin(In(P and_next Q}) and

Min(Ex (P and_next Q)) are templates, each consisting of two instances
connected by a 'next' edge.

The principles illustrated for the case when P and Q are both atomic
extend in a straightforward way to the case when either P or Q is
non-atomic.

>6.6.5 Meaning of 'and_nextx'

As in the uniprocess case, there is a need to represent the infinite
formula:

A or Por (P and_next P) or (P and_next P and_next P) or <*

L2



® xp & x¢

(0 Templates in Min(n(F))

® x;

-(b) Templates in Min(Ex(P))

® X3 ®x,

(c) Templates in Min(In(Q))

® Xxg

(d) Templates in Min(Ex(Q))

-~ next raxt next’ next
XQO————w=Ox3 X ——"Oxy X@———=Ox3 Xp‘——""o)g

(e) Templotes in Min(in(P and_next Q))

next next next next next
X2O———=@xy XpO——0Oxy X0—Bx5 X@——Oxs5 XP—xg

() Templotes in Min(Ex(P ond..nexf Q)

Figure 9. Meaning of 'P and_next Qf

As before, the included set for this formula is given by the infinite
expression

{\} UIn(P) U In(P)-In(P) U In(P) In(P) In(P) U ~---
while the excluded set is given by
& N Ex(P) N Ex(P and_next P} N Ex(P and_next P and_next P) N *=--

The first quantity is still just (In{P))°, while the second quantity
still reduces to the null set. Hence, the expressions defining the

—— e ——— W -
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included and excluded sets for ‘and_next* P', which represents the above
infinite formula, remain the same:

In(and_next* P) = (In(P))°*
Ex (and_next% P) = &

For the special case when P is an atomic formula, Hin(In(ahd_next* P))
is just the set of all 'linear' templates whose instances belong to
In(P) and whose edges are labelled with ‘next’.

6.6.6vHeaning of ‘reverse’

Although a template is defined as having two types of edges, 'next’
and 'last', the discussion so far has focused only on the first type,
To see how 'last' edges enter the picture, consider what would happen if
all the arrows in a trace were reversed. This is equivalent to
reversing the past and future. If Instance x precedes (follows)
Instance y in the original trace, then x follows (precedes) y in the
reversed trace. Moreover, if x is the last instance of Process X
preceding y in the original trace, then x is the next instance of
Process X following y in the reversed trace. Similarly, if x is the
next instance of Process X following y in the original trace, then x is
the last instance of Process X preceding y in the reversed trace. As an
illustration, consider the two templates i Figure 10. Each is the
reverse of the other. Observe that a, pFetedés‘bé in the left trace but
follows by in the right trace. Note also that a; is the next instance
of Process A following b, in the left trace but is the last instance of
Process A preceding by in the right trace.

These observations motivate the definitions for the ‘reverse'
connective, whose purpose is to reverse the ‘polarity' of a formula P of
MPL. This polarity reversal is accomplished by performing a simple
transformation on each edge in each template of In(P) and Ex(P). If we
take a 'next' edge from Instance x to Instance y to mean intuitively
that y is a next instance following x, and if we take a 'last' edge
from x to y to mean intuitively that x is a last instance preceding vy,
then it is clear from the above discussion that the appropriate
transformation is:

X next y -=> y last x
x last y --> y next x

These transformations are reflected in the following definitions for
'‘reverse P'.17

In(reverse Q) = {<I,L Y\, N"">I<I,N,L> is in In(Q)}
Ex{reverse Q) = {<I,L-',N"'>I<I,N,L> is in Ex(Q)}
As an illustration of these definitions, suppose that the template

depicted in Figure 5 on page ‘34 is in In(Q). Then the 'reversed'

Ly
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Legend

© Process A
8 Process B

Figure 10. A Trace and its Reverse

template shown in Figure 11 is in In(reverse Q). To construct the
template of Figure 5 in the first place, iat Py *-+ P, be atomic
formulas such that Process(x;) = Process(P ) and Value(x,) is in’
Values (P) for 05i<]. The template is then contained in In(Q) where Q is
the formula:

.

((P, and_next P,) and (P, and_next P,)) and_next

(reverse ((P; and P;) and_next Py and_next P,))

6.6.7 Heanings of auxiliary connectives

The connectives 'or', ‘or_next', 'or_next*', ‘implies' and
'implies_next' are all abbreviations for expressions involving the four
basic connectives 'not', ‘and', 'and_next' and 'and_next*'. The
meanings of these additional connectives, therefore, follow directly
from the preceding definitions. We list here those meanings ard refer
the reader to the uniprocess discussion for a further elaboration.

InPor Q = In{P) U In(Q
Ex(P or Q) = Ex(P) N Ex(Q)

‘7 R°! denotes the converse of the binary relation R. <x,y> is in R™'
if and only if <y,x> is in R.
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Figure 11. A Reversed Template

In(P or_next Q)

Ex (P or_next Q)

In(or_next® P)

Ex (or_next# P)

In(P implies Q)

Ex(P implies Q)

In(P implies_next Q)

Ex(P implies_next Q)

6.6.8 Satisfaction and Truth

In(P) *Bo (Q) U.Bo(P)'In(Q)
Ex(P) <Ex{(Q) N

L

(Ex(P))*

Ex(P) U In(Q)

In(P) n Ex(Q)

Ex(P)*Bo(Q) U Bo(P)-In(Q)

CIn(P) tEx(Q)

In defining the semantics for UPL, we said that a sequence of values
a 'satisfies' a formula P if « contains no member of Ex(P) as a

ke
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subsequence. A parallel notion is used for MPL. The definition here is
stated not in terms of a value sequence conta2ining a subsequence, but in
terms of a trace having a template that 'fits' it.

A template T fits a trace Z if there exists a mapping ¥ from
Instances {T) to Instances(Z) such that for aill x,y in Instances(T),

. Procéss(x) = Process (¥ (x))
e Value(x) = value (¥(x))

e <x,y> in Next(T) => ¥(y) is the next instance of Process(y)
following ${x) within 2

o <x,y> in Last(T) => ¢(x) is the last instance of Process (x)
preceding ¥(y) within Z

Consider the template, trace and mapping ¥ (indicated by dashed lines)
depicted in Figure 12. Assume that like-named instances in the template
and trace have the same process and value. Thus, the process and value
of a, in the template and the process and value of a, in the trace are
the same. Now observe that for each 'next' edge <x,y> in the template,
Y (y) is the next instance of Process{y) following ¥(x) within the
template. Specifically, a, is the next instance of Process A following
a,, and a, is the next instance of Process a following b,. Hotice also
that for each 'last' edge <x,y> in the template, ¥ (x) is the last
instance of Process(x) preceding ¥{x) within the template. 1In
particular, b, is the last instance of Process B preceding a,. We
conclude that the template fits the trace.

‘Using the notion of a template 'fitting' a trace, we define the
concept of satisfaction. A trace Z satisfies a formula P of MPL if and
only if there is no template in Ex(P) that fits Z. A formula P of MPL
is true (with respect to a given system) if and only if every permitted
trace satisfies P.

Justification for our practice of using the minimal elements of a
set of templates to represent that set is provided by Property 6, which
is a direct consequence of Property 5.

PROPERTY 5. Let T, and T, be templates and let Z be a trace. Then
TsT, and T, fits Z => T, fits I )

PROPERTY ©&. A trace Z satisfies a formula P of MPL if and only if there
is no template in MNin{Ex(P)) that fits Z. :

L7
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(@) A Template (b) A Troce

Figure 12, Fitting a Template to a Trace
6.7 Algebraic Properties

All the algebraic prope-ties listed for UPL carry over to MPL.
Thus, the operations of ‘not', 'and' and 'or' form a DeMorgan algebra on
the formulas of MPL {in the sense described above). Moreover,
‘and_next' and 'or_next' are associative and satisfy DeMorgan's Laws.

6.8 Examples of Statements about Multiprocess Behavior

MPL is capable of expressing a broad range of complex logical and
timing dependencies. An attempt to delineate the expressive power of
MPL, however, is beyond the present scope. We limit ourselves instead
to discussing how the examples given ear)ier for UPL transiate to the
multiprocess case.

6.8.1 Invariance

An invariant (in both the uniprocess and multiprocess case) is a
true formula constructed from atomic formulas belonging to a single
process using only the connectives 'and', ‘'or' and 'not'. Ffor the
uniprocess case, the meaning of an invariant {§ {(interpreted as a true
formula) is straightforward: Every value in every permitted value
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sequence must satisfy Q. For the multiprocess case, there is a slight
variation.

In giving the meaning earlier for the connective 'and', we observed
that when P and Q are both atomic formulas belonging to the same
process, In(P and Q) contains certain templates that have no analog in
the uniprocess case. These nonclassical templates do not affect the
interpretation of 'P and Q' since it is Ex(P and Q) ~ not In(P and Q) -
that determines which traces satisfy the formula.  The situation is
reversed, however, for the formula 'P or Q' because the nonclassical
templates now appear in Ex(P or Q). Suppose, for example, that P and Q
are atomic formulas belonging to Process A and that v,, v,, v, and v,
are the values of A's type. Suppose, furthermore, that:'®

Min(In(P)) = {{vy}, {v,}}

Min(Ex(P)) = {{v,}, {v;}]
Min(In(Q) = {{vy}, {v,}}
Hin(Ex(Q)) = {{v,}, {v,;}}

It then follows that:

#t

ﬂin(In(P or Q) = {{v,}, {v }, {v,}}

Min(Ex(P or Q) = {{vy}, {v,,v,}}

i

The single-instance template {v,} in Kin(Ex(P or Q) has a counterpart in
the uniprocess case, but the two-instance template {v,.vQ} has no such
counterpart, Let us consider what each template says. The first says
that Process A can never take on the value v, in a permitted trace. The
second says, in effect, that Process A can never take on the values v,
and v, in the same permitted irace. ; *

A little reflection reveals the difference in interpreting the
formula 'P or Q' for the uniprocess and multiprocess cases. For the
uniprocess case, 'P or Q' means that 'P or Q' holds tor all values of
Process A in a permitted value sequence. For the multiprocess case,

'P or Q' means that either P holds for all values of Process A or Q
holds for all values of Process A in a permitted trace. (This
difference in interpreting the connective 'or' ertends to the case when
P and Q are non-atomic formulas.)

8 Since only one process is being considered and since the templates

under discussion contain no edges, we represent each template by the
values associated with its instances.
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6.8.2 Other Examples

Examples 2 through 8 in Section 5.6 carry over to the multiprocess
case with little change. One difference applies to the formulas in
Examples 2, 4, 5 and 8. Since we are no longer dealing with just a
single process, the atomic formula T, which is universally true in the
uniprocess case, must be replaced by an atomic formula that is
associated with a particular process. Thus, in Example 2, the atomic
formula 7 must be replaced by T, where A is the process associated with
either the atomic formula P or the atomic formula Q. T, is satisfied by
all the values in Type(A).

6.9 Extended MPL

Although the five basic connectives and five auxiliary connectives
of MPL provide a concise and powerful set of primitives for specifying
multiprocess behavior, it often awkward to express certain relationships
in terms of these primitives alone. For this reason, we permit
higher-level constructs to be introduced. Some suggested ones are the
following: (Their translation into standard formulas of HPL should be
appaircnt from the discussions in Sections 5.6 and 6.8.)

e P followed N time_units later_by Q.

e Q inevitable within N time_units following P.
e Q for N time_units following P.

e Following P, Q.

e Following P, Q as_long_as R.

e Following P, Q until R.

e Following P, Q repeated_every N time_units.

6.10 Format for Logical Specifications

Each of the first three components of a system specification ~ type
declarations, process declarations and synchronic structure - have a
syntax that either is borrowed directly from the Ada programming
language or is adapted from Ada. That convention is followed again for
the logical specification, The format for a logical specification is:
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specification SYSTEM_NAME is
declarationi;
declaration?;
declaration3;

begin
MPL statementi;
MPL statement2;
MPL statement3;

end;

Each declaration, which has the form of an Ada object declaration,

provides a variable, universally quantified over a specified type, for
use in the MPL statements.

7.0 SPECTIFICATION EXAMPLE: THE ALTERNATING-BIT PROTQCOL

The alternating-bit protocol [3] [&4] [15] [22] [23] provides a
simple mechanism for achieving reliable communication over an unreliable
channel. We consider the simplified case in which a 'source' accepts
'messages' for transmission to a ‘destination'. To each accepted
message, the source attaches a 'bit' and then transmits the resulting
'packet' repeatedly until an acknowledgement with the same bit is
received. After such an acknowledgement, the source accepts a new
message for transmission but this time the bit attached to the message
is reversed (hence the name of the protocol).

Seven asynchronous, event processes are used to model the source,
destination and initializer:’

SCURCE_INPUT - input port for messages

TRANSMISSION_ACK - acknowledges transmi#sion of message
SOURCE_SEND - transmitting port for packets

SOURCE_RECEIVE ~ receiving port for ack;owledgement bits
DESTINATION_RECEIVE - receiving port for packets
DESTINATION_SEND -~ transmitting port for acknowledgement bits

DESTINATION_OUTPUT - output port for messages .
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INITIALIZER - initializes source and destination
S ) We present the formal specification of the alternating-bit protocol in
terms of the constraints imposed on these seven processes, The next

a4 four sections contain, respectively: type definitions, process
declarations, synchronic structure and logical specification.

7.1 Type Definitions

type MESSAGE_TYPE is INTEGER;
—_— type PACKET_TYPE is
: record
MESSAGE: MESSAGE_TYPE;
BIT: BCOLEAN;
end record;
type ACKNOWLEDGE_TYPE is BOOLEAN;

type INITIALIZE_TYPE is (INIT);

\ 7.2 Process Declarations

SOURCE_INPUT is event process of MESSAGE_TYPE: 18
TRANSHISSICN_ACK is event process of ACKNOWLEDGE_TYPE;
SOURCE_SEND is event process of PACKET_TYPE;
SOURCE_RECEIVE is event process of ACKNOWLEDGE_TYPE; -
DESTINATION_RECEIVE is event process of PACKEf_TYPE;
DESTINATION_SEND is event process of ACKNOWLEDGE_TYPE;
DESTINATION_OUTPUT is event process of MESSAGE_TYPE;

v INITIALIZER is event process of INITIALIZE_TYPE;

i ¥  In addition to the values in its type, we assume that each event

process may also take on the value NULL. NULL is distinct from all
other values in a type and is used to indicate the absence of all
| (non-null) values.
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7.3 Synchronic Structure

SOURCE_INPUT is asynchronous;
TRANSMISSION_ACK is asynchronous;
SOURCE_SEND is asynchronous;
SOURCE_RECEIVE is asynchronous;
DESTINATION_RECEIVE is asynchronous;
DESTINATION_SEND is asynchronous;
DESTINATION_OUTPUT is asynchronous;

INITIALIZER is asynchronous;

7.4 Logical Specification

specification ALTERNATING_BIY_PROTOCOL is . 0 .

MSG: MESSAGE_TYPE;
BIT: ACKNOWLEDGEMENT_TYPE;

begin

Following
SOURCE_INPUT/=NULL,
SOURCE_INPUT=NULL

~until
TRANSMISSION_ACK/=NULL;

-- A new message is not given to the source until
-- the preceding message is acknowledged.20

20 A double dash (--) is the Ada convention for a comment.
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. Following
INITIALIZER=INIT,
SOURCE_SEND=NULL
until
SOURCE_INPUT/=NULL;

Following initialization, no packets are.
sent before the first message is sent.

INITIALIZER=INIT
and_next
(and_next* SOURCE_INPUT=NULL)
and_next
SOURCE_INPUT=MSG
implies_next »
SOURCE_SEND.MESSAGE=MSG and SOURCE_SEND.BIT=0;

The bit of the first packet sent following
initialization is 0.

Following
SOURCE_SEND.MESSAGE=MSG and SOURCE_SEND.BIT=BIT,
SOURCE_SEND.MESSAGE=MSG and SOURTE_SEmu.BIT=BIT
until -
SOURCE_RECEIVE=BIT;

A packet is sent repeatedly until appropriate
acknowledgement is received.

SOURCE_SEND.MESSAGE=MSG and SOURCE_SEND.BIT=BIT
and_next .
SOURCE_RECEIVE=BIT,
implies_next
TRANSMISSION_ACK=1;

-- When a packet is acknowledged, the transmission of
-- the message is acknowledged.

Following

SOURCE_SEND.MESSAGE=MSG and SOURCE_SEND.BIT=BIT
and_next

SOURCE_RECEIVE=BIT,

SOURCE_SEND=NULL
as_long_as

SOURCE_INPUT=NULL;

-~ Once a packet is acknowledged, no new packets
~- are sent before a pew message is provided.
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SOURCE_SEND.BIT=BIT
and_next
(and_next* SOURCE_SEND=NULL)
and_next
SOURCE_INPUT=MSG
implies_next
SOURCE_SEND.MESSAGE=MSG and SOURCE_SEND. BIT-(not BIT).

The bit for a new packet is alternated.

Following

INITIALIZER=INIT,

DESTINATION_QUTPUT=NULL and DESTINATION _SEND=NULL
as_long_as

DESTINATION_RECEIVEuNULL'

No messages are received and no acknowledgments
are sent before the first packet following
initialization is received.

INITIALIZER=INIT
and_next

(and next# DESTINATION RECEIVE=NULL)
and_next

DESTINATION RECEIVE. MESSAGE=HSG and DESTINATION _RECEIVE.BIT=0
implies_next

DESTINATION_OUTPUT=MSG and DESTINATION_SEND=0;

If the first packet following initialization
has a 0 bit, then the message is received
and 0 is acknowledged.

Following
DESTINATION_SEND=BIT,
DESTINATION_SEND=BIT

untit
DESTINATION_RECEIVE.BIT= (not BIT);

The same acknowledgment is sent repeatedly until a packet
with an alternated bit is received.
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DESTINATION_RECEIVE.BIT=BIT
and_next .
(and_next® DESTINATION_RECEIVE=NULL)
and_next ‘
DESTINATION_RECEIVE.MESSAGE=MSG and DESTINATIOM_RECEIVE.BIT=(not BIT)
implies_next '
DESTINATION_OQUTPUT=MSG and DESTINATION_SEND=(not BIT);

-~ When a change occurs in the bit of a received packet,
-~ the message is supplied to the output and the new
-- bit is acknowledged.

Following
DESTINATION_RECEIVE .MESSAGE=MSG and DESTINATION_RECEIVE.BIT=BIT
and_next .
DESTINATION_OUTPUT=MSG,
DESTINATION_OUTPUT=NULL
as_long_as
DESTINATION_RECEIVE.BIT/=(not BIT);

-- A message is supplied to the destination outnut only
-- when there is a bit change on the received packet.

end;

8.0 CONCLUSIONS

We have described a rigorous framework for specifying the behavior
of concurrent systems. Among its features are:

. Generality
. Expressiveness
. Naturalness

The generality stems from a model of system behavior that introduces a
minimal set of primitive concepts ~ just values and processes - and
makes a minimal assumption ~ the behavior of a process is represented by
a linear sequence of values. The expressiveness reflectsz the approach
adopted to specify the permitted traces of a system. Through the
synchronic structure and logical specification, it is possible to
express an extremely broad range of logical and timing dependencies.
Many of these dependencies are simply not expressible with any other
existing technique. The naturalness (or readability) results from the
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absence. of arcane notation and obscure terminology. There is very
little new notation and the only new terminology consists of the
connectives 'and_next', 'and_next*', 'or_next', ‘or_next¥',
‘implies_next' and ‘reverse'. The technical meanings of these
connectives closely parallels their informal, intuitive meanings. The
readability of a specification is enhanced when MPL is extended to
include such higher-level constructs as "following', "until" and “as
long as".

8.1 Future Work

Further development of the specification framework needs to proceed
along several lines:

. improvements and Extensions
® Verificagion Capabitities

e Hierarchical Specification
[ Laraer Methodologies

The need to improve and extend the framework will inevitably arise as
applications experience is gained. OQOne area in need of improvement that
has already been identified is the synchronic structure, which is
presently limited in the sorts of synchronic relationships it can.
express.

The desire to rigorously verify system behavior has provided much of
the impetus for the present effort, and without-a deductive capability
the present framework remains incomplete. Such a capability has already
been provided for a precursor to the present theory [11] [12] [13], and
it is possible that some of principles underlying this earlier effort
may generalize to the present case.

Composing (or decomposing) a specification in a hierarchical fashion
is the most effective way of dealing with complexity. Appropriate
mechanisms for 'connecting' different levels of ‘a hierarchical
specification need to be developed.

Although formal specifications of intended behavior and actual
behavior are important elements in the design af a system, to be used
effectively, they must be integrated with other e¢lements in the system
development process. The ultimate goal is a unified methodology
encompassing: ' ,

' Specification of Mission Requirements

. Specification of Functional Requirements

51



Spécification of Behavioral Requirements
Design ‘
Verification

Testing

Configuration Control

Maintenance
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