
Nlq_lq-C_-I-/_,q Iq "

NASA Contractor Report 172414

_' ACCOUNTINGUTILITY FOR DETERMININGINDIVIDUAL

. USAGE OF PRODUCTIONLEVEL SOFTWARESYSTEMS

NASA-CR-172414
19840023889

Stacey C. Garber

Kentron International,Inc.
Hampton, Virginia 23666

k_BRARV_OPV
NASA Contract NAS1-16000

June 1984 _";'-_'"1984,UL.I i

LAI_GLE'/RESEARCHCENTER
LIBRARY,NASA

kL'k_;:P_TO_,VIRGINIA

" N/ A
NationalAeronauticsand
SpaceAdministration

LangleyResearchCenter
Hampton.Virginia23665

Summary

An accounting package has been developed which determines the computer

resources utilized by a user during the execution of a particular program and

updates a file containing accumulated resource totals. The accounting package is

divided into two separate programs, The first program determines the total amount

of computer resources utilized by a user during the execution of a particular

program. The second program uses these totals to update a file containing

accumulated totals of computer resources utilized by a user for a particular

program. This package is useful to those persons who have several other users

continually accessing and running programs from their accounts, The package

provides the ability to determine which users are accessing and running specified

programs along with their total level of usage.

I

Introduction

Much considerationhas been given by softwaredevelopersto the problemof

obtainingaccumulatedtotals for the computer resourcesutilizedby different

users during the executionof particularprograms. A set of accountingprograms

has been developedto aid in solvingthis problem. The first programin the

accountingpackagedeterminesthe computer resourcesutilizedduring the execution

of a program. The second programin the accountingpackageupdatesa file

containingthe user table of accumulatedusage. So, by the use of this package,a

softwaremanager can determinewhich of his programsare most frequentlyaccessed

by other users and the level of usage of the programsfor each user.

The accountingpackageof the present study is set up to enable a software

manager to determinethe total amount of system resourceunits (SRU) and central

processingunit (CPU) time that other users utilizewhile runninga programthat

is maintained on the softwaremanager'saccount. A system resourceunit is a unit

of accountingused at the NASA LangleyResearch Center'scomputercenter,which is

calculatedby a chargingalgorithm (ref. 1) and is a compositevalue of

Input/Outputactivity,memory usage, and central processingtime. Central

processingunit time, in seconds,is concernedonly with the actual amount of CPU

time requiredto executethe program. Input/Outputactivity is not a factor in

determiningCPU time (ref. 2). A few minor modificationswould be needed to use

theaccounting packagefor other types of computer resourcessuch as mass storage

and magnetic tapes.

The logic of the two accountingprograms and their use are describedin

detail in this report. The examples presentedin this reportdemonstratethe

use of the accountingpackageon a particularapplicationsprogram system

containing four independentmodules (i.e.,pre- and post-processors,analysis

modules). The second programin the accountingpackage has been written

specificallyfor one applicationsoftwaresystem,but with a few modifications,

the accountingprogramscan be adaptedto anothersoftwaremanager'sneeds.

Appendix A containsthe flowchartsfor both programsin the accountingpackage,

appendixB containsthe source listingsof these programs,and appendixC contains

some examples.

2

PROGRAMACCTPRG

The first programin the accountingpackageis a programcalled ACCTPRG.

This programdeterminesthe total amount of SRU and CPU time used during the

executionof a particularmodule of the applicationsoftwaresystem. Program

ACCTPRG is called twice during a job stream. The first call occurs before the

executionof the module for which the accountingis being performed,and once

again after the executionof the module has been completed. The first call of

ACCTPRG retrievesthe startingvalues of the SRU and CPU time. The second

call of ACCTPRG retrievesthe ending SRU and CPU time, and determinesthe

total amount of SRU and CPU time used during the executionof the module by

taking the differenceof these values.

Input/Output

Program ACCTPRG needs only one variable from the user as input. The

variable, called TITLE, is an identificationtitle that designatesthe module for

which the accountinginformationis being accumulated. The variable TITLE must

be right-justifiedin the first ten columns of the input deck. This input for

ACCTPRG is set up throughthe use of the CYBER control languagecommandstatement

.DATA (ref. 1). All other data used by ACCTPRG is gatheredfrom the operating

system.

The output for program ACCTPRG is written on a local file, TAPE99 and

includes the followinginformation:

Title User number

SRU CPU

This sequencemay be repeatedas many times as neededduring a particularjob

stream,dependingon how many modules are executed. Example 1 of appendixC is

an exampleof the output from the program ACCTPRG.

3

General Procedurefor ProgramACCTPRG

Program ACCTPRG performstwo tasks: initializationand termination. The

initializationtask retrievesthe SRU and CPU time from the system before any

programexecutiontakes place. The terminationtask retrievesthe SRU and CPU

time from the system after the programexecutionis completed. The use of the

local input file, TAPE3, helps the programdetermine if the call is the first or

second call for the program. IF ACCTPRG is able to read a title from TAPE3,

then the initializationis performed. If ACCTPRG is not able to read a title

from TAPE3, then the terminationis performed.

During the first access of ACCTPRG, several initializationsteps are

followed. First, a call to the system utility JPARAMS (ref. 3) is made. This

utility retrievesthe accountinginformationfrom the system, and returnsit to

the main programin an array. The needed initialinformationis then written to

the local file TAPE90. The user number under which the job is runningis

retrievedfrom the system using the system utility USERNUM, and stored in the

variable USER1. The title, read from TAPE3, and the user number,retrievedfrom

the system,are then written to the local file TAPE99.

During the second call to ACCTPRG,the terminationstepsare followed.

First, a call to the system routine JPARAMS is made. The ending accounting

informationis retrievedfrom the system,used as the ending information,and

returnedto the main program in another array. The initialinformationretrieved

in the first call to ACCTPRG is read from TAPE90. Next, the total number of

SRUs and the total amount of CPU time used during executionof the module for

which the accountinginformationis being accumulatedis determined. This is done

by subtractingthe initial SRU and CPU time from the ending SRU and CPU

time. These resultsare then written to TAPE99.

A flowchartof the program ACCTPRG is given in appendixA.

ProgramACCTUPD

The second program in the accountingpackage is a program called ACCTUPD.

This programupdatesthe accountingfile that containsthe accumulatedaccounting

informationand can be set up to handle the accumulated SRU and CPU time

totals for many unique applicationsprograms. To add a new program,modifications

must be made to this programand to the accountingfile.

Input/Output

Input for program ACCTUPD comes from two sources. One source is the local

file TAPE99 which was created by program ACCTPRG. This tape containsthe SRU

and CPU times for the executionof a particularmodule. Below is a table

containingthe input format for TAPE99, and an example can be found in appendix

C, example 1. The format statementsused for the input to program ACCTUPD from

TAPE99 are:

FORMAT ilX,AIO,5X,A7)

and

FORMAT (1X,F10.3,F10.3).

Record No. Variable Format Description

1 TITLE AIO Identificationtitle

1 USER A7 User number under which
job was run

. 2 SR F10.3 SRU units used during
execution

2 CP F10.3 CPU time used during
execution

These cards may be repeated,dependingon how many moduleswere run during one job
stream.

The other source of input for ACCTUPD comes from the accountingfile

TAPE98 which alreadyexists as a permanentfile in the softwaremanager's

directory. Below is a table containingthe input format for TAPE98, and an

example can be found in appendixC, example 2. The format statementsused for the

input to program ACCTUPD from TAPE98 are:

FORMAT (132AI)

and

FORMAT (1X,A7,2X,F10.2,2X,F10.2)

Record No. Variable Format Description

1 HEAD1 132A1 first set of headings

2 HEAD2 132A1 second set of headings

3 USERNUM A7 user number

3 CPUNIT F10.2 accumulatedCPU time

3 SRUNIT F10.2 accumulatedSRU units

Records 1 and 2 contain any headingsthat are used in the accountingfile. The

variable USERNUM found on record 3, contains the user numbersthat alreadyexist

in the accountingfile. The variables CPUNIT and SRUNIT are used to store the

accumulatedtotals representingthe level of usage by the given user. The CPUNIT

and SRUNIT variablesmay be repeatedseveraltimes on one record,dependingon

how many module totals are being accumulated. Also, record 3 may be repeated

dependingon how many users have accessedthe modules.

The output of program ACCTUPD is written on the local file TAPE97, which

is used to replacethe old accountingfile, TAPE98. TAPE97 containsall the

latest updatesmade on the accountingfile. Example2 in appendixC is an example

of a generatedaccountingfile.

GeneralProcedurefor ProgramACCTUPD

Upon enteringprogram ACCTUPD,the programfirst prepares the new

accountingfile (TAPE97)by writingthe headings. The program is then ready to

begin the search to locate the user number for which the accumulated SRU and

CPU totals will be updated. Three situationshave been consideredfor this

study and each situationwill be studiedindividually.

If the accountingfile has never been accessed,program ACCTUPD enters

this first entry and updatesthe appropriatecolumns,dependingon which column

title found in STITLE compareswith the TITLE read from TAPE99. The new

entry is writtento the accountingfile and then the programterminates. Control

is then returnedto the job stream.

If the accountingfile exists and containsone or more entries, but the user

for which the updatesshould be made is a new user, the program first searches

through all entries in the accountingfile for a user number correspondingto the

one obtained by program ACCTPRG. Once the end of the accountingfile has been

reached,without findingthe correspondinguser number,the program assumes it is

a new entry. The procedurefor adding a new entry is used.

If the accountingfile exists and the user for whom the Updates should be

made is an existingentry on the accountingfile, ACCTUPD searchesthe

accountingfile until the correspondinguser number is found, and the appropriate

SRU and CPU updatesare made.

A flowchartof program ACCTUPD is given in appendixA.

Executionof the AccountingPackage

To build and executea procedurefile which utilizesthe accountingpackage,

ACCTPKG, the softwaremanagermust performthe followingsteps:

1. Create absolutes (or executables)for ACCTPRG and ACCTUPD

2. Form an initial accountingfile

3. Build a procedurefile to drive the accountingprograms

4. Create the job streamto executethe procedurefile

7

Each step is describedin detail below and an example is presentedin appendixC.

Step 1: Create Absolutes

To executethe accountingpackage,it is necessaryto form the absolutesof

the program ACCTPRG and ACCTUPD and to use these absolutesin the procedure

file. This preventsthe compilationand loadingof each programduring each

separate run. When retrievinga copy of the accountingpackage,three separate

records are found on this file. The first record contains some brief

documentation,the second record containsprogram ACCTPRG, and the third record

contains program ACCTUPD. Example 3 in appendixC is an examplejob stream which

createsthe absolutesof program ACCTPRG and ACCTUPD.

Step 2: Form InitialAccountingFile

To run the accountingpackage,the permanentaccountingfile, maintainedby

the softwaremanager,must alreadyexist. On the initializationrun of program

ACCTUPD, the accountingfile need only containtwo lines of headings. These

headingsmay be set up by anotheruser-writtenprogram,or the user may manually

define the file using the system'seditor. It is importantthat this permanent

accountingfile be set up to allow other users to replaceit on the account from

which it was retrievedso that any updatesthat are made will be saved. The

softwaremanager needs to specifythat the accountingfile be given write

permission. Example4 in appendixC is an exampleof an initialaccountingfile.

Step 3: ProcedureFile

A procedurefile should be writtento insure that all appropriatecalls have

been made for the executionof the accountingpackage. See example 5 in appendix

C for a procedurefile used in the executionof a STAGSC-1 module that

incorporatesthe accountingprograms. °

There are severalthings to note when buildingthe procedurefile. First,

the absolutesfor program ACCTPRG need to be called both before and after the

module being executed (in the examplecase the module is STAGS1). This insures

that all the accountinginformationhas been retrievedfrom the system,and the

SRU and CPU totals determined. Secondly,TAPE90 must be rewoundbefore the

second call to ACCTPRG to ensure that the initialaccountinginformationcan be

read by the program. Third, TAPE99 must be rewoundafter the second call of the

absolutes for ACCTPRG so that the data may be read by the absolutesfor program

ACCTUPD. Finally,TAPE3 must not be rewoundbefore the second call to the

absolutesof ACCTPRG. If this happens,the ending informationis never retrieved

because ACCTPRG sees the second call as the first, since a title can be read.

Step 4: Job Stream

Once the procedurefile has been completed,the actual use of it is very

easy. Other users are only responsiblefor retrievingthe written procedurefile,

and executingthe appropriateprocedurethereby insuringthat all steps are being

followed and completedin the appropriateorder by all users. Example6 in

appendix C is an example of a job stream used to executethe procedurein example
5.

ConcludingRemarks

An accountingpackagehas been written to determineand accumulatethe

computer system resourcesused during the executionof particularapplications

programs. This packageconsistsof two programs. The first programdetermines

the amount of SRU and CPU time that has been used during the executionof a

program,and the second programuses these values and updatesthe accumulated

totals. This accountingpackage allows a softwaremanagerto determinewhat users

are accessingvariousprogramsfrom his account, and the level of usage of each
user.

The accountingpackagewas developedand tested on the NASA LangleyResearch

Center computer system using the availablesystem softwareutilities. Usage of

this packageat anothercomputer installationmay requiresignificant

modificationsdependingon the computer system (i.e.,differentsystem software

routines or differentversionof FORTRAN).

9

Appendix A: Flowcharts

This appendixcontainsthe flowchartsfor the two programs in the accounting

package.

10

Flowchartfor ProgramACCTPRG

Start

Initialization

Read

TITLE

Call JPARAMS
(get initial
information)

rite initial
alues to

APE90

11

Flowchartfor ProgramACCTPRG (concluded)

Call _ Call""-"-"-*

USERNUM (getending
Infomatlon)

and USERI [

to TAPEgg /

End Determine
totalamount
of SRU and CPU
timeused

/_rlte totals/

o TAPEgg/

End

*No flowchartprovidedfor thisroutine. The routinealready
existsand can be foundon NMACFTN/UN=LIBRARY.

**No flowchartprovidedfor this routine. The routinealready
exists and can be found on UTLIB/UN-UTIL.

12

Flowchartfor ProgramACCTUPD

Start

Initialization

ReaO._A01/
and HEAD2 /
from. /

TAPE98 /

:o/
Read /

USERNUM
from
TAPE98

o I .o

and USER I

fromTAPE99/

13

Flowchartfor ProgramACCTUPD (cont.)

Zero out
statisticsfor
modulesnot
accessed

Writenew

entry on
from TAPE99 TAPE91

Update End "
statisticsfor
the accessed
module

14

Flowchartfor ProgramACCTUPD (cont.)

No

Yes

<_UM/? Write record

to TAPEg7

__o
Update Readnext
statisticsfor recordfrom
the accessed TAPE98
module

+
EOF (98)?

No

15

Flowchartfor ProgramACCTUPD (concluded)

_rIte updated
recordto
TAPE97

@
Readnext

End

16

AppendixB: Source Listing of the AccountingPackage

This appendixcontainsthe source listingsof both programs in the accounting

package. These programswere written in FORTRAN IV for a CYBER 170 series

computerwith NOS 1.4. Loadingthe accountingpackage requires 19,049words of

memory.

17

•. Source Code for ProgramACCTPRG

i PROGRAM ACCTPRG(INPUTt3UTPUTtTAPE3, TAPEqOpTAp[Q9)
C
C

C THIS PROGRAM USES THE SYSTEM ROUTINE JPARAMS TO P_TRI_VE
5 C THE SRU AND CPU TIME FROM THE SYSTEM. THE VARIABLES

C USED IN THI_ PROGRAM ARE_
C P - ARRAY PASSED TO JPARA_S
C RVALUEI = CPU VALUE R_TPIEVED FROH JPAPA_S
C RVALUE2 = SRU VALU_ RETRIEVED FROM JPAPA_S

10 C TITLE = IDENTIFICATI3N TITLE
C USERI = USER NUMBER RETRIEVED FROM THE SYSTF4
C BVALUEI - INITIAL CPU VALU|
C BVALUE2 = INITIAL SRU V_LUE
C EVALUEI = TOTAL CPU TIME

15 C _VALUE2 = TOTAL SRU TIM_
C
C

INTEGER P(30)
EQUIVALENCE (RVALJEI,IVALUEI)

20 _QUIVALENCE(RVALUE2pIVALUE2}
C

C TRY TD READ FROM TAPE3
C

READ(BtlO0) TITLE
25 IF |EOF(3)| 12s3

C

C TITL_ READP SO RETRIEVE BEGINNING INFORMATION
C

CALL JPARAMS(P)
30 IVALUEI.P(12)

IVALUE2-P(13}
C

C WRITE BEGINNING VALUES TO TAPE90
C

35 WRITE(qO_300} RVALUE2,RVALUF1
C

C RETRIEVE USER NUMBER FROM SYSTEM
C

CALL USERNUM(USER1)
40 WRITE(_9_200) TITLEPUSER1

GO TO 50
C

18

Source Code for Program ACCTPRG(concluded)

C TITLE NOT READw SO R_TRIEVE ENDING INFORMATION
C

45 I? CALL JPARAMS(P)
IVALUtI=P{12)
IVALUE2:P(13)

C
C READ BEGINNING VALUES FR]_ TAPE90

50 C
R{AD(gOP300) BVALUE2pBCALUEI

C
C DFTERMINE TOTAL AMOUNT DF SRU AND CPU TIME USE'D
C

55 EVALUE2=RVALUE2-BVALUE2
rVALUEI-RVALUEI-BVALU_I
WRITE(gg_2LO) EVALUE2,EVALUE1

50 CDNTINUL
C

60 C FORMATS
C

I0_ FDRMAT(AIO)
200 FORMAT{IX_AIO,5XtAT)
210 FORMAT(IX,2FIO. 3)

65 300 FDRMAT{IXp2FIO.3)
C
C FXIT
C

STOP
70 END

19

Source Code for Program ACCTUPD

i PRGGRAM ACCTUPD(INPUTpDUTPUTpTAPEB:DUTPUTeTAPEOT#TAP:gbpTAPCgQ)C
C

C THIS PROGRAM TAKES THE ACCOUNTING INFDRMATIDN GFNERATED FROM
5 C THE ACCTPRG RUN AND dPDATES THE PERMANENT ACCOUNTING FILEs

C STAGACT. THE TAPES ARE DEFINEL AS FOLLOWS:
C TAPE97 - NEw ACCDUNTING FILE CREATED
C TAPEg8 - OLD ACCOUNTIIG FILE
C TAPEgg = ACCDUNTIN3 INFDRMATION GENERATED BY ACCTPRG

10 C THF VARIABLES USED ARE A3 FELLOWS:
C H_ADI = FIRST LINE OF HEADINGS
C _EAD2 - SECOND LINE 3F HEADINGS
C USERNU_ = USER NUMBER FROM ACCOUNTING FILE

C CPUNIT = ACCUMULATED CPU TIME FROM ACCOUNTING FILE
15 C SRUNIT - ACCUMULATED SRU TIME FROM ACCOUNTING FILE

C TITLE = TITLE OF T_E MODULE RUN
C USER = USER NUMBER FROM THE TAPEqq RUN
C SP • SRUS USED BY THE USER ON THE TApFqQ RUN
C CP • CPUS USED BY TH: USEk ON THE TAPEgq RUN

20 C
C

DIMtNSI3N HEADI(132)_HEAD2(132),CPUNIT(4)oSPUNTT(4)tIDUM(4)#
• STITLt(4)

DATA STITLEIEOH STAGSI_IOH STAGS2_IOH STAPL_
25 • IOH PDSTP/

C

C ZFRO OUT DUMMY ARRAY AND SET CGUNTER TO ZFP3
C

DC 10 I-_m4
30 I0 IDUM(1)=O

J=O
C

C READ THE HEADINGS FR3M T_E CLD ACCOUNTING FILE AND _RITE
C THLM TG THE N:W ACCOQNTING fIL_

35 C

READ (gB_2OO) (HEADI{I)_I=I_132)
READ (g8,ZOO) (HEAD2{I),I'l_I32)
WRITE(gTt300) (HEADI(1),I'I,13Z)
WRITE(g?_30O) (HEAD2{I)#I-lsI32)

40 C

C ATIEMPT TD READ FIRST ENTRY OK OLD ACCOUNTING FILE
C

20

Source Code for ProgramACCTUPD (cont.)

READ(gBp21O) USFRNUMp{CPUNIT{I)JSRUNIT(1)pI-1P4)
C

45 C CHECK FOR EOF ON OLD ACCOUNTING FILE
C T - FIRST ACCESS EVER OF THIS CODE
C F - REGULAR UPDATE
C

IF (EOFig8)) 130pZO
50 C

C CODE FOR REGULAR UPDATE
C
C
C READ THE INFORMATION OFF IF THE GFNERATFD ACCOUNTING

55 C INFORRATION FRO_ THE STAGSC1 RbN
C (IF FOF TRUE_ THEN THE UPDATE IS COMPLETE -
C IF EOF FALSE_ MORE UPDATING IS NECESSARY)
C

20 R_AD(gg,220) TITLEpUSER
_0 IF(FOF(g9)) BOs25

25 READ{ggP230) SRpCP
C
C TEST TO SEE IF THE USER NUMeER FRGM THE ACCOUNTING FILE
C IS THL ONE NLEDED

65 C
10 IF(USER.NE.USERNU_) GD TO 110

C
C CORRECT USER INFORMATION FO_N_, NOW UPDATF THE R_CORD
C (LOCATE THE APPROPRIATE MODULE COLUMN AHD UPDATE THE

70 C MODULE STATISTICS)
C

35 J=J+l
IF(TITLE.NE.STITLE(J)) GC TO 35
CPUhII(J)-CPUNIT(J).CP

75 SPUNIT{J)ISRUNIT(J)+SR
J=O
GO TO 20

nO C_NTINUE
C

BO C WRITE UPDATED RECORDp READ AND WRIT_ REST DF RECORDS FROM
C THE OLD ACCOUNTING FILE
C

WRITE(q7,3IO) USERNUMJ{CPUNIT{I)_SRUNIT(1)sI=1941
Qn READ(gBPZlO} USERNUM,(CPUNIT(1)_SRUNIT{I)tI=Ip_}

21

Source Code for ProgramACCTUPD (cont.)

85 IF(EOF(q8|| 900,100
I00 WRITt(qT,310) USFRNJM,(CPUNIT{I),SRUNIT(1),I.I,4 }

GO TO gO
C

C CqRRECT USER NUMBER NOT F3UND - WRITE CUPRFNT R_CnRD9 READ
QO C NFW RECORD AND REPEAT THE ABOVE PROCEDUPF - IF FOF,

C THEN NEW ENTRY
C

110 WRITE(g?,310) US_RNUM,{CPUNIT(1),SRUNIT(1),I-I,4}
READ(QBp210) USFRNU_, {SP_NIT (I), SRUNIT(I).I=1,4)

g5 IF(EOF(9_)) 140,30
C

C CODE FOR FIRST ACCESS _V=R OF THE CODE 09 NEW ENTQY FGR
C ACCGUNTING FILE
C

I00 13n READ{gQ,220} TITLE,USeR
IF(EOF(gQ)) igOt135

135 RbAD(99p230) SR,CP
C
C FORM THE N=W RECORD

105 C (LOCATL THE APPROPRIATE _UDULE AND ASSIGN STATISTICS -
C IDUH=2 IF A MODULE IS AC:ESSE_ AND UPDATED)
C

140 J=J+l
IF(TITLE.NE.STITLE(J|) GC TC 140

110 IDUM(J)=2
CPUNIT(J)'CP
SRUNIT(J}'SR
J'O
GO TO 130

115 C

C 7ERO THE VARIABLES THAT WERE NOT UPDATED WITH THIS NEW ACCESS
C

IO0 DO lq5 I=1,4
IF(IDUM(I).EG.2) GO TO lg5

120 CPUNIT(I|-O.O
SRUNIT{I)-O.O

IQ5 CGNTINUE
C
C WRITE THE NEW ENTRY ON THE ENDING OF THE ACCOUNTING FILE

12s C
WRITE(Q?_310) USER,(CPUNIT{I)sSRUNIT(1),I-IP4)

22

Source Code for Program ACCTUPD(concluded)

500 CONTINUE
C

C FORMAT STATEMENTS
130 C

200 FOR_AT(I32AI)

71_ FeRMAT(IXpA7p2XpFIO.2p2X,FlO.2_3XpFIO.2p2XpFlOo_p3X_
FIO.2s2X_FIO.2e3X_FEC.2t2XjFIO._)

_20 FOP_AT{EXtAIO,SXpA7)
135 230 FGRHAT(IXeFIO•3tFIO. 3)

300 FDRMAT(132AI)

31n FORMAT(IX'ATJ2XjFIO.2p2XsFIC•2_3XJFIOo2P2X_FIO°2_3Xp
• FIO.2J2X,FIO.2,3X_FIO°2_2X#FIO.2)C

IAQ C FXIT
C

STGP
Fr4D

23

Appendix C: Examples

This appendix contains all the output examples for both programs ACCTPRG

and ACCTUPD. Also, any examples that are needed for the proper execution of the

accounting package are also found in this appendix.

24

STAGS1 163709C
205.038 24.735

STAPL 163709C
5[;.479 5.850

Example 1 - Output of Program ACCTPRG

USERNUM STAGS1 STAGS2 STAF'L POSTF'
-- CPU SRU CF'U SRU CF'U SRU CF'U SRU

163709C 24.73 204.02 0.00 0.00 5.77 57.51 0.00 0.00
483200N 15.58 185.76 0.00 0.00 0.00 0.00 5.88 25.33

Example 2 - Output of Program ACCTUPD

r_ STREMo
cn USER, XXXXXXX, XXXXXX,

CHhRGEPXXXXXX,LRC.
DELIVER. XXXXXXX
FETCH,ACCTPKO/UN=163709C.
COPYBR, ACCTF'KG, DOC.
COPYBR, ACCTPKG, ACCTF'RG.
COPYDR, ACCTF'KG, ACCT!JPD.
REWIND, ACCTUPD, AccrPRG,
GET, L I B1=tJHACF T_/UtJ=L I BRARY.
GET,LID2=UTLI_/UN=UI'IL.
FTN, I =ACCTF'RG, R=3, L=OU FF'UT, [{=ACCT.
FTN, I =hCCTUF'D, R:=3, L=OUTPUr, [_:=UF'hCCT.
REWIND,ACCT,UPACCI'.
LDSET<PRESET=ZERO)
LOAD,UPACCT.
NOGO,STACTo
REPLACE, STt3CTo

LDSET(PRESET=ZERO,LII_=LID1/LIB2)
I-OAD.,_CC F.
NOGO,RACCT,
REPL._CE, R/_CCT.

Example 3 - Job Stream for Generating the
Absolutes for the Accounting Package

USERNUH STAGS1 STAGS2 STAPL POSTP
CPU SRU CF'U SRU CF'U SRU CF'U SRU

Example4- InitialAccountingFile

.PROC,LSTAGS1,FL°

PROCEDURE TO RUN STAGSC1 AND GENERATE ACCOUNTING INFO

FETCH,STAGS1/UN=XXXXXXX.

GET ABSOLUTES FOR PROGRAM ACCTPRG

FETCH,RACCT/UN=XXXXXXX°
REWIND,TAF'E3.

FIRST CALL OF ACCTF'RG

RACCT,TAF'E3°
RFL(FL)
REDUCE (-)

EXECUTE MO£1ULE

STAGS1.
REWIND,RACCI°TAF'EgO.

SECOND CALL OF ACCTFRG

RACCT,TAFE3.
REWIND, TAF'E?9°

GET ABSOLUTES FOR PROGRAM ACCTUFD

FETCH,STACT/UN=XXXXXXX.

* GET OLD ACCOUNTING FILE

FETCH,TAPE98=STAGACT/UN=XXXXXXX.

PERFORM UPDATES

STACT.

REPLACE NEW ACCOUNTING FILE

REPLACE,TAPE97=STAGACT/UN=XXXXXXX.
RETURN,TAPEgO,TAF'E??.

SET UF' DATA FOR TAPE 3

°DATA,TAPE3
STAGS1

.EOF
REVERT.

Example 5 - Procedure File to Run the Accounting Package

27

STAGSClo
USER,XXXXXXX,XXXXXX.
CHARGE,XXXXXX,LRC.
DELIVER° XXXXXXX
GET,STGF'ROC!UN=XXXXXXX.
BEGIN,LST_GSI,STGPROC,160000.

Example 6 - Job Stream to Run the Procedure File

28

REFERENCES

1. Control Data Corporation: NOSVersion 1 Reference Manual, Volume 1 of 2.

September, 1982, CDCPublication No. 60435400.

2. Control Data Corporation: NOSVersion 1 Reference Manual, Volume 2 of 2.

September, 1982, CDCPublication No. 60445300.

3. Computer Programin 9 Manual, Volume 2 of 4, Section K5.3, NASALangley

Research Center, Report No. ACD-CABN-948, October 1980.

29

I. Report No. 2. GovernmentAccessionNo. 3. Recipient's CatalogNo.
NASA CR-172414

i

4. Title and Subtitle 5. Report Date

AccountingUtility for DeterminingIndividual 1,,n_Iq_4
Usage Of ProductionLevel Software Systems s PerformingOrpnizationcode

7. Author(s) 8. PerformingOrgln,zation Report No.

Stacey C. Garber +
10. Work Unit No.

9. PerformingOrganizationName and Address

Kentron International,Inc.
AerospaceTechnologiesDivision 1+ ¢mntractorGrantNo.

3221 N. ArmisteadAvenue NAS1-16000
+Hamptona VA 23666 13.Typeof ReportandPeriod Covered

12. Sponsoring Agency Name and Address

National Aeronauticsand Space Administration ContractorReport
•Washington,DC 20546 14SponsoringAgencyCode

505-33-53-10
15. Supplementary Notes

TechnicalMonitor: Norman F. Knight,Jr., NASA Langley ResearchCenter,
Mail Stop 190, Hampton,VA 23665
Final Report Task P17-P333

16. Abstract

An accountingpackage has been developedwhich determinesthe computer

resourcesutilized by a user during the executionof a particularprogramand

updates a file containingaccumulatedresourcetotals. The accountingpackage is

divided intotwo separate programs. The first programdeterminesthe total amount

of computer resourcesutilizedby a user during the executionof a particular

program. The second programuses these totals to update a file containing

accumulatedtotals of computer resourcesutilizedby a user for a particular

program. This package is useful to those personswho have severalother users

continuallyaccessingand runningprogramsfrom their accounts. The package

providesthe abilityto determinewhich users are accessingand runningspecified

programs along with their total level of usage.

+

17. Key Words (Suggestedby Author(s)) 18. DistributionStatement

computer programming
accounting Unclassified- Unlimited "

Subject Category61

19. Security Clauif. (of thisreport) 20. SecurityClauif. (of this page) 21. No. of Pages 22. Price"

Unclassified Unclassifled 30 A03

* ForsalebytheNationalTechnicalInformationService.Springfield,Virginia22161

