NASA-CR-1T12 H 14 °
NASA Contractor Report 172414

ACCOUNTING UTILITY FOR DETERMINING INDIVIDUAL

USAGE OF PRODUCTION LEVEL SOFTWARE SYSTEMS

NASA-CR-172414
19840023889

Stacey C. Garber \

Kentron International, Inc.
Hampton, Virginia 23666

NASA Co AS1- LIBRARY £BPY

June 1984 Lo 1084

J i

LANGLEY RESEARCH CENTER
LIBRARY, NASA
HALIRTON, VIRGINIA

NASN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

Summary

An accounting package has been developed which determines the computer
resources utilized by a user during the execution of a particular program and
updates a file containing accumulated resource totals. The accounting package is
divided into two separate programs. The first program determines the total amount
of computer resources utilized by a user during the execution of a particular
program. The second program uses these totals to update a file containing
accumulated totals of computer resources utilized by a user for a particular
program. This package is useful to those persons who have several other users
continually accessing and running programs from their accounts. The package
provides the ability to determine which users are accessing and running specified
programs along with their total level of usage.

NRL-31959 7

Introduction

Much consideration has been given by software developers to the problem of
obtaining accumulated totals for the computer resources utilized by different
users during the execution of particular programs. A set of accounting programs
has been developed to aid in solving this problem. The first program in the
accounting package determines the computer resources utilized during the execution
of a program. The second program in the accounting package updates a file
containing the user table of accumulated usage. So, by the use of this package, a
software manager can determine which of his programs are most frequently accessed
by other users and the level of usage of the programs for each user.

The accounting package of the present study is set up to enable a software
manager to determine the total amount of system resource units (SRU) and central
processing unit (CPU) time that other users utiﬁize while running a program that
isAmaintained on the software manager's account. A system resource unit is a unit
of accounting used at the NASA Langley Research Center's computer center, which is
calculated by a charging algorithm (ref. 1) and is a composite value of
Input/Output activity, memory usage, and central processing time. Central
processing unit time, in seconds, is concerned only with the actual amount of CPU
time required to execute the program. Input/Output activity is not a factor in
determining CPU time (ref. 2). A few minor modifications would be needed to use
the. accounting package for other types of computer resources such as mass storage
and magnetic tapes.

The logic of the two accounting programs and their use are described in
detail in this report. The examples presented in this report demonstrate the
use of the accounting package on a particular applications program system
containing four independent modules (i.e., pre- and post-processors, analysis
modules). The second program in the accounting package has been written
specifically for one application software system, but with a few modifications,
the accounting programs can be adapted to another software manager's needs.
Appendix A contains the flowcharts for both programs in the accounting package,
appendix B contains the source listings of these programs, and appendix C contains
some examples.

PROGRAM ACCTPRG

The first program in the accounting package is a program called ACCTPRG.
This program determines the total amount of SRU and CPU time used during the
execution of a particular module of the application software system. Program
ACCTPRG is called twice during a job stream. The first call occurs before the
execution of the module for which the accounting is being performed, and once
again after the execution of the module has been completed. The first call of
ACCTPRG retrieves the starting values of the SRU and CPU time. The second
call of ACCTPRG retrieves the ending SRU and CPU time, and determines the
total amount of SRU and CPU time used during the execution of the module by
taking the difference of these values.

Input/Output

Program ACCTPRG needs only one variable from the user as input. The
variable, called TITLE, is an identification title that designates the module for
which the accounting information is being accumulated. The variable TITLE must
be right-justified in the first ten columns of the input deck. This input for
ACCTPRG is set up through the use of the CYBER control language command statement

.DATA (ref. 1). A1l other data used by ACCTPRG 1is gathered from the operating
system.

The output for program ACCTPRG 1is written on a local file, TAPE99 and
includes the following information:

Title User number
SRU CPU

This sequence may be repeated as many times as needed during a particular job
stream, depending on how many modules are executed. Example 1 of appendix C is
an example of the output from the program ACCTPRG.

General Procedure for Program ACCTPRG

Program ACCTPRG performs two tasks: initialization and termination. The
initialization task retrieves the SRU and CPU time from the system before any
program execution takes place. The termination task retrieves the SRU and CPU
time from the system after the program execution is completed. The use of the
Tocal input file, TAPE3, helps the program determine if the call is the first or
second call for the program. IF ACCTPRG is able to read a title from TAPE3,
then the initialization is performed. If ACCTPRG is not able to read a title
from TAPE3, then the termination is performed.

During the first access of ACCTPRG, several initialization steps are
followed. First, a call to the system utility JPARAMS (ref. 3) is made. This
utility retrieves the accounting information from the system, and returns it to
the main program in an array. The needed initial information is then written to
the local file TAPE9O. The user number under which the job is running is
retrieved from the system using the system utility USERNUM, and stored in the
variable USER1. The titie, read from TAPE3, and the user number, retrieved from
the system, are then written to the local file TAPE99,

During the second call to ACCTPRG, the termination steps are followed.
First, a call to the system routine JPARAMS 1is made. The ending accounting
information is retrieved from the system, used as the ending information, and
returned to the main program in another array. The initial information retrieved
in the first call to ACCTPRG is read from TAPE90. Next, the total number of
SRUs and the total amount of CPU time used during execution of the module for
which the accounting information is being accumulated is determined. This is done
by subtracting the initial SRU and CPU time from the ending SRU and CPU
time. These results are then written to TAPE99,

A flowchart of the program ACCTPRG 1is given in appendix A.

Program ACCTUPD

The second program in the accounting package is a program called ACCTUPD.
This program updates the accounting file that contains the accumulated accounting
information and can be set up to handle the accumulated SRU and CPU time
totals for many unique applications programs. To add a new program, modifications
must be made to this program and to the accounting file.

Input/Output

Input for program ACCTUPD comes from two sources. One source is the local
file TAPE99 which was created by program ACCTPRG. This tape contains the SRU
and CPU times for the execution of a particu]ar module. Below is a table
containing the input format for TAPE99, and an example can be found in appendix

C, example 1. The format statements used for the input to program ACCTUPD from
TAPE99 are:

FORMAT (1X,A10,5X,A7)
and
FORMAT (1X,F10.3,F10.3).

Record No. Variable Format Description

1 TITLE Al0 Identification title

1 USER A7 User number under which
job was run

2 SR F10.3 SRU units used during
execution

2 CP F10.3 CPU time used during
execution

These cards may be repeated, depending on how many modules were run during one job
stream,

The other source of input for ACCTUPD comes from the accounting file
TAPE98 which already exists as a permanent file in the software manager's
directory. Below is a table containing the input format for TAPE98, and an
example can be found in appendix C, example 2. The format statements used for the
input to program ACCTUPD from TAPE98 are:

FORMAT (132A1)
and
FORMAT (1X,A7,2X,F10.2,2X,F10.2)

Record No. Variable Format Description
1 HEAD1 132A1 first set of headings
2 HEAD2 132A1 second set of headings
3 USERNUM A7 user number _
3 CPUNIT F10.2 accumulated CPU time
3 SRUNIT F10.2 accumulated SRU units

Records 1 and 2 contain any headings that are used in the accounting file. The
variable USERNUM found on record 3, contains the user numbers that already exist
in the accounting file. The variables CPUNIT and SRUNIT are used to store the
accumulated totals representing the level of usage by the given user. The CPUNIT
and SRUNIT variables may be repeated several times on one record, depending on
how many module totals are being accumulated. Also, record 3 may be repeated
depending on how many users have accessed the modules. -

The output of program ACCTUPD is written on the local file TAPE97, which
is used to replace the old accounting file, TAPE98. TAPE97 contains all the
latest updates made on the accounting file. EXamp]e 2 in appendix C is an example
of a generated accounting file.

General Procedure for Program ACCTUPD

Upon entering program ACCTUPD, the program first prepares the new
accounting file (TAPE97) by writing the headings. The program is then ready to
begin the search to locate the user number for which the accumulated SRU and
CPU totals will be updated. Three situations have been considered for this
study and each situation will be studied individually.

If the accounting file has never been accessed, program ACCTUPD enters
this first entry and updates the appropriate columns, depending on which column
title found in STITLE compares with the TITLE read from TAPE99. The new
entry is written to the accounting file and then the program terminates. - Control
is then returned to the job stream.

If the accounting file exists ahd contains one or more entries, but the user
for which the updates should be made is a new user, the program first searches
through all entries in the accounting file for a user number corresponding to the
one obtained by program ACCTPRG. Once the end of the accounting file has been
reached, without finding the corresponding user number, the program assumes it is
a new entry. The procedure for adding a new entry is used.

If the accounting file exists and the user for whom the updates should be
made is an existing entry on the accounting file, ACCTUPD searches the
accounting file until the corresponding user number is found, and the appropriate
SRU and CPU wupdates are made.

A flowchart of program ACCTUPD is given in appendix A.

Execution of the Accounting Package

To build and execute a procedure file which utilizes the accounting package,

ACCTPKG, the software manager must perform the following steps:

Create absolutes (or executables) for ACCTPRG and ACCTUPD
Form an initial accounting file

Build a procedure file to drive the accounting programs
Create the job stream to execute the procedure file

S W N -
[]

*

Each step is described in detail below and an example is presented in appendix C.
Step 1: Create Absolutes

To execute the accounting package, it is necessary to form the absolutes of
the program ACCTPRG and ACCTUPD and to use these absolutes in the procedure
file. This prevents the compilation and loading of each program during each
separate run. When retrieving a copy of the accounting package, three separate
records are found on this file. The first record contains some brief
documentation, the second record contains program ACCTPRG, and the third record
contains program ACCTUPD. Example 3 in appendix C is an example job stream which
creates the absolutes of program ACCTPRG and ACCTUPD.

Step 2: Form Initial Accounting File

To run the accounting package, the permanent accounting file, maintained by
the software manager, must already exist. On the initialization run of program

ACCTUPD, the accounting file need only contain two lines of headings. These
headings may be set up by another user-written program, or the user may manually
define the file using the system's editor. It is important that this permanent
accounting file be set up to allow other usérs to replace it on the accbunt from
which it was retrieved so that any updates that are made will be saved. The
software manager needs to specify that the accounting file be given write
permission. Example 4 in appendix C is an example of an initial accounting file.

Step 3: Procedure File

A procedure file should be written to insure that all appropriate calls have
been made for the execution of the accounting package. See example 5 in appendix
C for a procedure file used in the execution of a STAGSC-1 module that
incorporates the accounting programs.

There are several things to note when building the procedure file. First,
the absolutes for program ACCTPRG need to be called both before and after the
module being executed (in the example case the module is STAGS1). This insures
that all the accounting information has been retrieved from the system, and the
SRU and CPU totals determined. Secondly, TAPE9D must be rewound before the
second call to ACCTPRG to ensure that the initial accounting information can be
read by the program. Third, TAPE99 must be rewound after the second call of the
absolutes for ACCTPRG so that the data may be read by the absolutes for program
ACCTUPD. Finally, TAPE3 must not be rewound before the second call to the
absolutes of ACCTPRG. If this happens, the ending information is never retrieved
because ACCTPRG sees the second call as the first, since a title can be read.

Step 4: Job Stream

Once the procedure file has been completed, the actual use of it is very
easy. Other users are only responsible for retrieving the written procedure file,
and executing the appropriate procedure thereby insuring that all steps are being
followed and completed in the appropriate order by all users. Example 6 in

appendix C is an example of a job stream used to execute the procedure in example
5.

Concluding Remarks

An accounting package has been written to determine and accumulate the
computer system resources used during the execution of particular applications
programs. This package consists of two programs. The first program determines
the amount of SRU and CPU time that has been used during the execution of a
program, and the second program uses these values and updates the accumulated
totals. This accounting package allows a software manager to determine what users

are accessing various programs from his account, and the level of usage of each
user.

The accounting package was developed and tested on the NASA Langley-Research
Center computer system using the available system software utilities. Usage of
this package at another computer installation may require significant
modifications depending on the computer system (i.e., different system software
routines or different version of FORTRAN).

Appendix A: Flowcharts

This appendix contains the flowcharts for the two programs in the accounting
package.

10

Flowchart for Program ACCTPRG

Initialization

L
Call JPARAMS
(get initial
information)

Write initial
values to
TAPES0Q

11

12

Flowchart for Program ACCTPRG (concluded)

Call s Call JPARAMS®
USERNUM : (get ending
information)

Write TITLE
and USER1
to TAPES9

Read 1inftial
values from
TAPE90

End Determine

total amount
of SRU and CP
time used

=

Write totals
to TAPE99

End

*No flowchart provided for this routine. The routine already
exists and can be found on NMACFTN/UN=LIBRARY.

**No flowchart provided for this routine. The routine already
exists and can be found on UTLIB/UN=UTIL.

Flowchart for Program ACCTUPD

Initialization

Read HEAD1
and HEAD2
from

TAPE9S

Write
headings to-
TAPE97

Read
USERNUM
from

TAPE9S

EOF (98)7

Read TITLE
and USER
from TAPE9Y

13

14

Flowchart for Program ACCTUPD (conf.)

Read TITLE
and USER
from TAPE99

Zero out
statistics for
modules not
accessed

Write new
entry on
TAPEY7

Read SRU and
CPU values
from TAPE99

Update

statistics for : End
the accessed
module

Flowchart for Program ACCTUPD (cont.)

Read SRU and
CPU values
from TAPE99

Write record
to TAPE9?

Update
statistics for
the accessed
module

-

Read next
record from
TAPESS

No

15

16

Flowchart for Program ACCTUPD (concluded)

Write updated
record to
TAPE97

Read next
record from
TAPE9S

EOF (98)?

End

Write record
to TAPE97

Ny

Appendix B: Source Listing of the Accounting Package

This appendix contains the source listings of both programs in the accounting
package. These programs were written in FORTRAN IV for a CYBER 170 series
computer with NOS 1.4, Loading the accounting package requires 19,049 words of
memory.

17

18

10

15

20

25

30

35

40

OO0 OO0

OO OO0

OO0,

aNeNe)

Source Code for Program ACCTPRG

PROGRAM ACCTPRG(INPUTsJUTPUT,TAPE3,TAPEGOD,TAPFG9)

THIS PROGRAM USLS THZ SYSTEM ROUTINE JPARAMS TO PETRICVE
THE SRU AND CPU TIME FROM THE SYSTEM. THE VARIABLES
USED IN THIS PROGRAM ARE:

P = ARRAY PASSED TO JPARAMS

RVALUEL = CPU VALUE RETPIEVED FROM JPAPAMS

RVALUE2 = SRU VALUZ RETPIEVED FROM JPARAMS

TITLE = IDENTIFICATIJIN TITLE

USERL = USER NUMBER RETRIEVED FROM THE SYSTFM

BVALUzl = INITIAL CPU VALUI

BVALUE2 = INITIAL SRU VALUE

EVALUELl = TOTAL CPU TIME

EVALUZ2 = TOTAL SRU TIME

INTEGER P(30)

EQUIVALENCE (RVALUE1lsIVALUEL)

EQUIVALENCE(RVALUE2y IVALUE2)
TRY TO READ FROM TAPE3

READ(3,100) TITLE
IF (EQF(3)) 12,3

TITLt READs SO RETRIEVE 3EGINNING INFORMATION
3 CALL JPARAMS(P)
IVALUELl=P(12)
IVALUE2=P(13)
WRITE BEGINNING VALUES TO TAPE9O
WRITE(90,300) RVALUE2,RVALUF1
RETRIEVE USER NUMBER FROM SYSTgM
CALL USERNUM{USER1)

WRITE(995200) TITLE,USER]
GO T0 50

&5

50

55

60

65

70

Source Code for Program ACCTPRG (concluded)

[aXal

OO0

OO0 (e NaNal

[aNeXel

TITLE NOT READ» SO RETRIEVE ENDING INFORMATION

12

CALL JPARAMS(P)
IVALUEL=P(12)
IVALUE2=P(13)

READ BEGINNING VALUES FRIM TAPESO

READ(905300) BVALUE2,8VALUEL

DFTERMINE TOTAL AMOUNT OF SRU AND CPU TIME USéD

50

EVALUE2=RVALUE2=-BVALUZ?2
rVALUEZ1=RVALUE1=8VALUF]
WRITE(99,210) EVALUE2+EVALUFL
CONT INUL

FORMATS

100
200
21n
300

FORMAT (A10)
FORMAT{1X,A10s5Xs A7)
FORMAT(1X»2F1043)
FORMAT{1X,2F10.3)

EXIT

STOP
END

19

Source Code for Program ACCTUPD

PRCGGRAM ACCTUPD(INPUT-UUTPUTnTAPE6=UUTPUTDTAP€°7:TAP:?b:TAPCQO)

THIS PRGGRAM TAKES THE ACCOUNTING INFORMATION GFNERATED FROM

20

10

15

20

25

30

35

40

OO0 MO

s EesNeXe] (e NeXel

e XaNel

THE ACCTPRG KUN AND UPDATES THE PERMANENT ACCOUNTING FILE,
STAGACT. THE TAPES ARE DEFINEL AS FOLLOWS: '

TAPEG7 = NEw ACCOUNTING FILE CREATED

TAPE98 = 0OLD ACCOUNTING FILE

TAPEG9 = ACCOUNTIN3 INFORMATION GENERATED 8Y ACCTPRG
THF VARIABLES USED ARE A3 FCLLOWS:

HeADL1 = FIRST LINE JF HEADINGS

HEAD2 = SECOND LINE OJF HEADINGS

USERNUM = USER NUM3ER2 FROM ACCOQUNTING FILE

CPUNIT = ACCUMULATED CPU TIME FROM ACCOUNTING FILE

SRUNIT = ACCUMULATED SRU TIME FRGM ACCOUNTING FILE

TITLe = TITLE OF THE MQODULE RUN

USER = USER NUMBER FRIM THE TAPE99 RUN

SP = SRUS USED BY THE USEP ON THE TAPF99 PUN

CP = CPUS USED BY THz USEK ON THL TAPES9 RUN

DIMENSION AEADL1(132)»HEAD2(132)sCPUNIT(4)sSPUNTT(4),IDUM(4),

. STITLe(4)
DATA STITLe/10H STAGS51,10H STAGS2» 10H STAPL,
. 104 PI3TP/

IFRO OUT DUMMY ARRAY AND SET COUNTER TO 7EPD

DC 10 I=1s4
10 IDUM(I) =D
J=0

READ THE HEADINGS FROM THE CLD ACCOUNTING FILE AND ARITE
THeM TG THEZ NgW ACCOUNTING FILE

READ (98,200)
READ (98,200}
WRITE(97,300)
WRITE(97,300)

(HEAD1(1),1=1,132)
(HEAD2(I),1=1,132)
(HEADL(I)»1=1,132)
(HEAD2(I)»1I=1,132)

ATTEMPT TO READ FIRST ENTRY OMN OLD ACCOUMTING FILE

&5

50

55

A0

65

70

75

RO

OOOOOOOOO OOOO0OO0

OO0 OO0

OO0 O

Source Code for Program ACCTUPD (coht.)

READ(98»210) USERNUMs (CPUNIT(I)sSRUNIT(I)»I=1y4)

CHECK FOR EOJOF ON OLD ACCOUNTING FILE
T = FIRST ACCESS EVER OF THIS CQDf
F - REGULAR UPDATE

IF (EOF(98)) 130,20
CODE FOP REGULAR UPDATE

READ THFE INFORMATION OFF JF THE GENERATFD ACCOUNTING
INFORMATION FROM THE STAG3C1 RUN

(IF tOF TRUEs THcN THE UPDATE IS COMPLETE =~

IF EOF FALSEs MORE UPDATING IS NECESSARY)

20 READ(999220) TITLE,USER
IF(FOF(99)) B0,25
25 READ{99,230) SR,CP

TEST TO SEE IF THEF USeR NUMBER FRGCM THE ACCOUNTING FILE
IS THt ONEZ NecDED

30 IF(USER.NE.USERNUM) GO TC 110

CORRECT USER INFGRMATION FOUNC, NDOW UPDATF THE RFCQORD
(LOCATE THE APPROPRIATE MODULE COLUMN AND UPDATE THE
MODULE STATISTICS) '

35 J=J+1
IF(TITLE.NESSTITLE(J)) GC TO 35
CPUNIT(J)=CPUNIT(J)+CP
SPUNIT(J)=SRUNIT(J)+SR
J=0
G0 TO 20

80 COGNTINUE

WRITE UPDATED RECORD, READ AND WRITe REST OF RECORDS FROM
THE OLD ACCOUNTING FILE

WRITE(975310) USERNUMs (CPUNIT(I)»SRUNIT(I)sI=15%)
90 READ(985210) USERNUMy (CPUNIT(I)»SRUNIT(I)sI=154)

21

22

85

Qn

95

100

105

120

125

OO0 OO0

OOOOOM

OO0

OO0

Source Code for Program ACCTUPD (cont.)

IF(EGF(98)) 500,100
100 WRITE(97»310) USFRNJUMy (CPUNIT(I),SPRUNIT(I),I=1,4)
6L TO 90

CNORRECT USER NUM3ER NOT FIUND - WRITE CUPRFNT RECNRDs READ
NFw RECORD AND REPFAT THE ABOVE PROCEDURF - IF FOF,
THEN NEW ENTRY

110 WRITE(975310) USZRNUMs (CPUNIT(I)sSKUNIT(I),I=1,4)
READ(985213) USFRNUM) (TPUNIT(I)s SRUNIT(I)sI=1y4)
IF(EDF(3E)) 140530

CODE FOR FIRST ACCESS ©VcR OF THE CODE 0% NEW ENTRY FOR
ACCCUNTING FILE

130 READ(99,220) TITLE,USER
IF(EOF(99)) 190,135
135 READ(999230) SR»CP

FORM THE New RECORD
(LOCATE THz APPROPRIATE MUDULE AND ASSIGN STATISTICS -
IDUM=2 IF A MODULE IS ACTESSEL AND UPDATFD)

140 J=Jy+1
IF(TITLESNELSTITLE(J)) GC TC 140
IDUM(J) =2
CPUNIT(J)=CP
SRUNIT(J)=SR
J=0
GO TO 130

7ERO THE VARIABLES THAT WZRE NOT UPDATED WITH THIS NEW ACCESS
190 DD 195 I=1,4
IF(IDUM(I).EGC,2) 6T TO 19%
CPUNIT(I)=0.0
SRUNIT(I)=0,.0
185 CONTINUZ
WRITE THE NEW ENTRY ON THE ENDING OF THE ACCOUNTING FILE

WRITE(975310) USERs(CPUNIT(I)sSRUNITI(I)sI=1,4)

130

135

140

Source Code for Program ACCTUPD (concluded)

[NeNa

[z N Xe]

500 CONTINUE
FORMAT STATEMENTS

200 FORMAT(132A1)

21n FDRMAT(1X,A7,2X,FlO.ZoZX:FlO.Z:3X;F10.2;2X:FIO.2:3X,
. FlO.Z:ZXaFlO.ZnBX,FlC-ZlZX;FIO.Z)

220 FOPMAT(1X»A1055XsA7)

230 FORMAT(1X»F1043,F10,3)

300 FORMAT(132A1)

31n FDRMAT(IX:A?:2X1F10.202X1F1C0293X;F10.292X1F10.2)3X3
. FIOQZSZXOFIOlZl3X9F1002,2XDF10.2)

FXIT

STCP
END

23

Appendix C: Examples
This appendix contains all the output examples for both programs ACCTPRG

and ACCTUPD. Also, any examples that are needed for the proper execution of the
accounting package are also found in this appendix.

24

§¢

USERNUM

163703C
483200N

STAGS1
205.038
STAFL
58.479

163709C
24,735

163709C

5.850

Example 1 - Outpuf of Program ACCTPRG

STAGS1 STAGS2
CPU SRU CFU SRU
24.73 204.02 0.00 0.00
15.58 185.76 0.00 0.00

Example 2 - Output

STAFL
CFU SRU
5.77 57.51
0.00 0.00

of Program ACCTUPD

CFU
0.00
5.88

FOSTF

SRU
0.00
25.33

9¢

USERNUM STAGS1
CFU SRU

STREM.

USER » XXXXXXX » XXXXXX o
CHARGE » XXXXXX y LRC ,

DELIVER, XXXXXXX

FETCHs ACCTFKG/UN=1463709C,
COFYRR» ACCTFKG» DIOC .

COFYER» ACCTFRGACCTFRG ,

COPYEBRy ACCTFRGy ACCTURD,
REWINDyACCTUFD,ACCTIRG,
GETyLIB1=NMACF TH/UIN=L IERARY,
GETsLIB2=UTLIK/UN=UTIL.

FTNy I=ACCTFRG s B=Z, L=QUTFUT » R=ACCT .
FTNs I=ACCTUFD s R=3Z v L=0OUTFUT» R=UFACCT ,
REWIND,ACCT s UFACCT,
LOSET(FRESET=ZERO)

LOAD, UPACCT,

NOGO,STACT,

REFPLACE,sSTACT.,
LOSET(FRESET=ZERO» LIR=LIFL/LLIRD)
LLOADACCT.,

NOGOyRACCT,

REPLACEsRACLT .

Example 3 - Job Stream for Generating_the
Absolutes for the Accounting Package

STAGS2 " STAFL
CFU SRU CRU SRU . cPrU

Example 4 - Initial Accounting File

FOSTF

SRU

+PROC,LSTAGS1sFL.,

: FROCEDURE TO RUM STAGSC1I AND GENERATE ACCOUNTING INFO
:ETCH;STﬁGSl/UN=XXXXXXX.

: GET ARSOLUTES FOR FROGRAM ACCTFRG

* .
FETCHyRACCT/UN=XXXXXXX
REWINL,TAFE3.

X

¥ FIRST CALL OF ACCTFRG
b

RACCT» TAFES.,

RFL(FL)

REDNUCE ()

X

¥ EXECUTE MODULE

*

STAGS1.
REWIND»RACCT . TAPESO.

X

* SECOND CALL OF ACCTFRG
%

RACCT» TAFEZ.
REWINDTAFE?9 .,

*

% GET ARSOLUTES FOR FROGRAM ACCTUFD

b 4
FETCHySTACT/UN=XXXXXXX.

X

¥ GET OLD ACCOUNTING FILE

X

FETCHy TAFE98=STAGACT /UN=XXXXXXX ,
X

* FERFORM UFDATES

X

STACT.

X

¥ REFLACE NEW ACCOUNTING FILE
X

REFLACEs TAFE?7=STAGACT /UN=XXXXXXX,
RETURN» TAFE?0s TAFES?.
X

¥ SET UF DATA FOR TAFE 3
X
+DATA» TAFES
STAGS1
+EOQF
REVERT.

Example 5 - Procedure File to Run the Accounting Package

28

STAGSC1.,

USER y XXXXXXX s XXXXXX o
CHARGE » XXXXXXsLRC,

DELIVER, XXXXXXX

GET s STGFROC/UN=XXXXXXX .
EEGIN,LSTAGS1STGFROC 160000,

Example 6 - Job Stream to Run the Procedure

File

REFERENCES

1. Control Data Corporation: NOS Version 1 Reference Manual, Volume 1 of 2.
September, 1982, CDC Publication No. 60435400,

2. Control Data Corporation: NOS Version 1 Reference Manual, Volume 2 of 2.
September, 1982, CDC Publication No. 60445300.

3. Computer Programing Manual, Volume 2 of 4, Section K5.3, NASA Langley
Research Center, Report No. ACD-CAB N-948, October 1980.

29

n

. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA CR-172414

. Title and Subtitle 5. Report Date

Accounting Utility for Determining Individual June 1984

Usage of Production Level Software Systems 6. Performing Organization Code

. Author(s) v 8. Performing Orgsnization Report No,

Stacey C. Garber

10. Work Unit No.

. Performing Organization Name and Address

Kentron International, Inc.
Aerospace Technologies Division
3221 N. Armistead Avenue NAS1-16000

11. Contract or Grant No.

- Hampton, VA 23666 13. Type of Report and Period Covéred

12.

Sponsoring Agency Name and Address
National Aeronautics and Space Administration Contractor Report

‘Washington, DC 20546 - 14. Sponsoring Agency Code
f : 505-33-53-10

15.

Supplementary Notes

Technical Monitor: Norman F. Knight, Jr., NASA Langley Research Center,
Mail Stop 190, Hampton, VA 23665 '

Final Report - Task P17-P333

16.

Abstract

An accounting package has heen developed which determines the computer
resources. utilized by a user during the execution of a particular program and
updates a file containing accumulated resource totals. The accounting package is
divided intb”two separate programs. The first program determines the total amount -
of computer resources utilized by a user during the execution of a particular
program. The second program uses these totals to update a file containing
accumulated totals of computer resources utilized by a user for a particular
program. This package is useful to those persons who have several other users
contfhual]y accessing and running programs from their accounts. The package
provides the ability to defermine which users are accessing and running specified
programs along with their total level of usage.

17.

Key Words (Suggested by Author(s)) 18. Distribution Statement

computer programming
accounting Unclassified - Unlimited

Subject Category 61

19. Security Classit. (of this report) 20. Security Classif. (of this page) 21, No. of Pages 22, Price’
Unclassified Unclassified 30 A03

* For sale by the National Technical Information Service, Springfield, Virginia 22161

