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PROBABILITY OF UNDETECTED ERROR AFTER DECODING
FOR A CONCATENATED CODING SCHEME

Tadao Kasami : Shu Lin
Osaka University University of Hawaii at Manoa
Toyonaka, Osaka, Japan ' Honolulu, Hawaii 96822
ABSTRACT

In this paper, a concatenated coding scheme for error control in data com-
munications is analyzed. In this scheme, the inner code is used for both error
correction and detaection, however the outer code is used only for error detection.
A retransmission is requested if the outer code detects the presence of errors
after the inner code decoding. Probability of uncetected error is derived and

bounded. A particular example, proposed for NASA telecommand system is analyzed.

*This project is supported by NASA Grant No. NAG 5-234.



1. Introduction
Consider a concatenated coding scheme for error control for a binary sym-
metric channel with bit-error-rate ¢<1/2 as shown in Figure 1. Two linear block

codes, C. and Cb’ are used. The inner code Cf, called frame code, is an (n,k)

f

code with minimum distance df. The frame code is designed to correct t or fewer
errors and simultaneously detect A(A>t) or fewer errors where t+A+1§df. The

outer cnde Cb is an (nb’kb) code with minimum distance db and
o, = mk ,

where m is a positive integer. The outer code is designed for error detection
only.

The encoding is done in two stages. A message of kb bits is first encoded
into a codeword of Ny bits in the outer code Cb. Then the nb-bit word is divided
into m k-bit segments. Each k-bit segment is encoded into an n-bit word in the
frame code C.. This n-bit word is called a frame. Thus, corresponding to each
kb-bit message at the input of the outer code encoder, the output of the frame
code encoder is a sequence of m frames. This sequence of m frames is called a
block. A two dimensional block format is depicted in Figure 2.

The decoding consists of error correction in frames and error detection in
m decoded k-bit segments. When a frame in a block is received, it is decoded
based on the frame code Cf. The n-k parity bits are then removed from the
decoded frame, the k-bit decoded segment is stored in a buffer. If there are
t ur fewer transmission errors in a received frame, the errors will be corrected
and the decoded segment is error free. If there are more than A errors in a
received frame, the decoded segment may contain undetected errcrs. After m
frames of a block have been decoded, the buffer contains m k-bit decoded segments.
Then error detéction is performed on these m decoded segments based on the

outer code Cb. If no error is detected, the m decoded segments are assumed to
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be error free and are accepted (with the "b'kb parity bits removed) by the J
receiver. If the presence of errors is detected, the m decoded segments are
discarded and the receiver requests a retransmission of the rejected block.
Retransmission and decoding process continues until a transmitted block is suc-
cessfully received. Note that a successfully received block may be either error
free or contains undetectable errors.
The error control scheme described above is actually a combination of
forward-error-correction (FEC) and automatic-repeat-request (ARQ), called a
hybrid ARQ scheme [1]. The retransmission strategy determines the system

throughput, it may be one of the three basic modes namely, stop-and-wait, go-back-

. N or selective-repeat. In this paper, we are only concerned with the reliability

of the proposed error control scheme. The reliability is measured in terms of
the probability of undetected error after decoding. The probability of undetected
error is derived and bounded.

An example scheme, proposed for NASA telecommand operation, is analyzed.

2. Probability of Undetected Error for the Frame Code

(1) (2)

For a codeword v in the frame code C¢, let w(v), w "(Vv) and w' (V) denote
the weight of v, the weight of the information-part of v and the weight of parity-
part of v respectively. Clearly w(9)=w(1)(9)+w(2)(9). If a decoded frame con-
tains an undetectable error pattern, this error pattern must be a nonzero code-
word in Cf [1-3]. Let 50 be a nonzero error pattern after decoding. Since EO
is a word in Ces we have

W) + &) > a, (1)
and

W (eg) > 1. (2)

The probability Pf(éo,e) that a decoded frame contains a norzero error vector

éo after decoding is given by [2,4,5],

Py
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min(t-i,n-w)

_ t ~ i i
Pf(eo,e) f iZo A (?)(njw)ew i J(l-s)" wHi-j , (3)

where w = w(éo).
In the following we will derive an upper bound on Pf(éo,e). Let Qt(w,e)
denote the right-hand side of (3). For w < n-1-j,

(W'l‘i‘l)(n'v'l)€w+1‘i+j(1_€)n'W'l+i'fj
J

= _(wtl) (n-w-j)e 2 (wtl)e (4)
(W)(n-W) W'i+j(1_€)n-w+i‘j (W"'l-i)(n‘W)(l'Ey —_ (w+1-t)ﬁ-§ '
§es § %€
Since w > 2t+l, we have that
w+l 2t+2
WH-t = Tte2 (5)
t+2
It follows from (4) and (5) that, for ¢ < 3%35
Qy (wtl,e) < Qu(w,e) . (6)

For a positive integer i, define B(i) as follows:
(1) If the frame code Cf is an even-weight code, then
df, for 1 < dg
B(i) = { i, for even i and i > de

i+l, otherwise.
{2) It Cf is not an even-weight code, then
B(i) = max(df,i) :
For a nonzero error pattern éO which is a codeword in Cf, we see that
w(ey) > B(W(l)(éo)) . (7)
It foi]ows from (3), (6) and (7) that, for O<e<(t+2)/(3t+4),

0, (W(Zg)oe) < A (8w (3g)).e) (8)

For e<<l/n, we can see frem (3) and (8) thati

aaat . ol o Eol C
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Pe(egse) < (B(w t K ))EB(W (eg))-t (1 )n-8(w™" (et (9)

3. Probability of Undetected Error for the Quter Code

Recall that a codeword iﬁ the outer code Cb consists of m k-bit segments.
At the receiver, error detection is performed on every m decoded segments based
on C,. Let Pb(é,e) denote the probability that the decoded word contains an
undetectable error pattern e(a nonzero codeword in Cb). For a codeword v in

Cp» let V(J) denote the j-th segment of v, and let wj(V) be the weight of the

codeword in frame code C¢ into which V(J) is encoded. Then it follows from (3)

that for an undetectable error pattern e in a block

m
Pyllac) = 10,0 (E).e) (10)

Let Pég)(e) be the probability of undetected error for the outer code Cb. Then

(b - =
piP)(e) = éacz_{a P, (2.) - (1)

rer 15j1<j2<...<jh§m, consider the set of codewords in Cy where nonzero bits

are confined in the jl-th segment, the jz-th segment,..., and the jh-th segment.
This set of codewords forms a subcode of CS, call a (jl,jz,...,jh)-subcode of
Cb and denoted by Cb(jl,jz,...,jh). If Cb is a cyclic or shortened cyclic code,
then

(1) for h=1, all (jl)-subcodes of C, are equivalent;

(2) for h>2, all (jl,jé,...,jh)-subcodes of Cy with the same j,-j;,i3-J,»

vesdpmdpy are equivalent codes and are called h-segment (jz'jl’

j3-j2,...,jh-jh_1) subcodes of C,.

Consider a (jl,jz,...,jh)-subcode of Cb.' Let il,iz,...,ih,rl,rz,...,rh

be a set of integers for which Qﬁiqik and Qirqgn-k with 1l<q<h. Let
J1,325++,dn

(ilnrl)’(izvrz)’---;(ih’"h) denote the number of codewords v in Cb(Jl,Jz,...Jh)

Y/ |
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such that, for 1<q<h, the jq-th segment V(jq) of Vv has weight iq and

qu(V) = iq+rq. Then it follows from (10), (11) and the definition of

b [ [ (R, [

(1o Yokl dysensiliy ) H28

b -
P( )(E) = z Q (0 )m ‘lﬁj%<j2<"‘<jhfm I%
Jl)Jz’ ..’.h . h
(11,r )s(isr),.. .(1h,rh)qnlo AR )], (12)
where
IR, = l((il,rl),(iz,rz),...,(ih,rh)): 1<iq5k

O<ro<n-k, dfﬁiq+rq(159ih) and d < Z i s nb} :

If Cb is a cyclic or shortened cyclic code, then Eq. (12) can be simplified

as follows:

m
P (e) = D 0, (0,e)™" { 3 (n-3, +1)

h=1 1<j<dp<e v e<jp<m

) 5 YO, |
'ZA 2 Jh h

TR (o) (Tgarg)ee e (o gfaQslighrg e (13)

From (12) we see that, if we know the detail weight structure of

Cb(jl,jz,...,jh), the error probability P(b)(e) can be computed. However, for

1, Jz, «+sJh
(15r1)s(pary)sees (dpamy)
this difficulty, we will drive upper bounds on the terms on the right-hand side

a given Cb’ it is not easy to find A To overcome

of (13). We assume that e < (t+2)/(3t+4). It follows from (8) that

n-k n-k n-k j;,j i h

15J25+<+sJh

.Y : T Qu (i *rg.€)

r20 ryz0 r 0 (ipery)s(igerp)seeesbipory)ony "t a e’
177 27 Th

31532500 4]

g et : 0, (8(i ) ) (14)

j#lgremanly q=1
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where
jl!JZ’o--’Jh n-k n-k n‘k Jl’jZ’“"Jh
M ety <o 1AL, (12072) s (o)
1ot neen iy rlzo r2=0 rh=0 1s71/5\12s72)5cces\1qsTh

Since the check bits are uniquely determined by the information bits,
Ail,iz.....ih

12722 'h
in the jq-th segment is iq for 1<q<h.

is the number of codewords in Cb(jl,jz,...,jh) whose weight

For a nonzero codeword v in Cb, we define the weight configuration of

v as the sequence of nonzero weights of component segments of v, arranged in
ascending order. For an undetectable error pattern e with weight configura-
tion (11,12,...,ih), it follows from (8) and (10) that

h

Py (e, 1 Q,(8(i
p(ee) < q=IQt i

q),s) (15)

Consequently we have the following upper bound on Pég)(e),

Py < v m Q801 ).c) -
ud BeCy-{0) g=1 ©

4. Example

Consider the concatenated coding scheme proposed for NASA telecommand
system in which both inner (frame) code and outer code are shortened Hamming
codes. The frame code Cf is a distance-4 Hamming code with generator

polynomial,

6 TayBin®

g(X) = (X+1)(X2+X+1) = X"+X°+X°+1 ,

where X6+X+1 is a primitive polynomial of degree 6. The maximum length of
this code is 63. This code is used for single error correction. The code is
capable of detecting all the error patterns of double and odd number errors.
The outer code is also a distance-4 shortened Hamming code with generator

polynomial,



15,414,413,,12,,4.,3, 2

g(X) = (X+1)(X FXETHXTCHXTHXTHXC 4K+

lv,,12,,5

= XTTHXTTHXTHL

15+X14+X13 12,4

where X +X°°+X +X3+X:+X+1 is a primitive polynomial of degree 15. This

code is the X.25 standard for packet-switchéd data networks [6]. The natural

length of this code is 215

-1 = 32,767. But the maximum length of Ny being con-
sidered is 3,584 bits. We assume that the number of frames in a block is greater
than 3 and less than 65. The 16 parity bits of this code is used for error
detection only.

It follows from (9) and (15) that the smallest power of e in the right-

hand side of (15), denoted Oe(é) is
0_(e) = ; 8(iy) - th , 4 (16)

> q=1 q

which is called the order of e.
To evaluate Pﬁz)(e), we need to know those error patterns e for which

OE(E) is small. -The weight configurations of error patterns for which OE(E) is
less than 10 are listed in Table 1. The order of -an error pattern e, OE(E),
is at leest

w(e) - Lw(e)/4] . ' (17)
which occurs for the weight configuration

(4,4,...,4,w(e)-4lw(e)/4]+4) ,

where |x] denctes the largest integer no greater than x.

Suppose that n>7 and
e<1/2n . (18)

Then (1-¢)">1/2 and (1-¢)/e>13. Note that

n+l 1/w 2
Ql(w,e)l/w = lfe[%(l'e) ] [1 + w(?-éj + DMy € ) ]l/w , (19)

€ w \l-¢
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which decreases monotonically as w increases for 4<w<n. Hence
Q') < g (we) 1,
for 4<w<w'<n. It is easy to check that
Q,(4,¢) < Q;(6,6)/2 .
1 1
and that
Q,(4,€)Q,(8,¢) < Q;(6,¢)°

It follows from (15), (20), (21) and (22) that
1) for an error pattern e in an h-segment subcode with h>3,
Pb(é,c) < 01(4’6)3;
2) for an error pattern e of weight 12 whose weight configuration
is not (4,4,4),
- 2.
Pb(eae) 5_01(6’8) ’

3) for any nonzero error pattern e,

01(4.5)"(6)/4, if w(e) is a multiple of 4,
01(4,5)Lw(e)/41'1 Q1(6,€), otherwise.

Now we will consider how to evaluate Psg)(s) of (13). For 4<i<n-4 and

Pb(a9€) <

(20)

(21)

(22)

(23)

(24)

(25)

O<r<ni-n, A%i r) can be computed as is shown in Appendix. We found that for n<63

1 = al -
Aa,0) = Ks,0) 7 0
and that for n<39

1
A(8,0) = 0.

1sjonsess
On the other hand, it is time-consuming to obtain A X 3h

(26)

(27)

(il!rl)’(iZ’rZ)’~--’(1hsrh)

for !>2. However it is not difficult to compute A#’Jﬁz for 2<j<m as is shown
1 -

in the Appendix. The weight Al"j2 can be computed from the weights of the dual

11,12
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code of the 2 segment (jz-]\ subcode of Cb Since it is time-consuming to

9j29- ijh

obtain A i for n>3, we will use some upper bounds on P (e €).

11,1

10120
Let {A(b)} be the weight distribution of the outer code Cy- {Asb)} can

be computed from the weigint distribution of the dual code of Cb (see Appendix).

Then it follows from (13}, (14) and (23) that we have the following bounds:

10 6
I pP(ee)<m I Al i+re) , 28
w(g)<10 P iia b (un)%! (28)
e is in a
one segment subcode
I p@ers I (mep1) ] abdf Qletiphe) o (29)
w(e)<10 2<j<m iq#ip<10 1072 p=] P
e is in a 1,121

2-segment subcode

m
DIEENCORE ( Lallomal) - T mjs) I abs f1%>01(4,e)3.
s B 2 =i =0 (30)
h-segment subcode
with h>3

It can be shown tkat the following inequalities hold:

Al < (9%, (31)
alP) < (P, (32)
P (e (a.0) /4 -26 ~(n, -26) 26/4
;S( < (26/n,)7(1-26/n,) " b7 /Q, (4,6)7 , (33)
i=i
(the third inequality is obtained by using Chernoff inequality [7]).
It follows from (24), (25) and (31) that
1 Pb(E.c) < A( )Q (6, e)2 + mln{(a)(k)2(3/.A(b)oQ (4, 6)3 (34)

w(e)=12

Using the inequalities of (25), (32) and (33), we have

-10-
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- b) i b -1
w(§§314 Ee) < L M e+ Z Aitle 93(8,2) T (6,¢)

-26

+ (26/ny) (1-26/nb)'("b'2b).01(4.:)‘ Q,(6,¢) (35)

It follows from (28), (29), (30), (34) and (35) that we obtain the following
bound on Psg)(e)°

Pl(‘g)(e)gm Z Z I\(1 r)Q 1+r,e)

+ 1 (mej+1) I abd IIQ(B(i o)re)

2<j<m i1#1,<10 11272 p=1
1<i,,1,
TSI mo 1,3 3
#10 (AgymA) - T (m+1) 1Al b (a,e)
i=2 =2 fjHigel0 102
i1,

ky2 k (b))
KISy,

+mm§®( 12ﬂ<md3+A“h(sa2

: (b) i 5 1-]
=25 np-26 S '
+ (25/nb) (1-25/nb) 01(4.5) 01(5.5) (36)
On the other hand, it follows firrom (13) that
10 6
P8 (e) > m o (0,e)™? ] L At (o) (37)
i=4 r=0 oty

For various €, k and m, the bound on Psg)(e) given by (36) is ~aluatec
and plotted in Figures 2 through 6. Numerical data is given in Tables 2, 3 and
4, where "upper bound" is the value of the righthand side of (36) and "lower
bound" is the value of the righthand side of '(37). We see that, for 5510'5.

the coding scheme provides very high reliability.

CD IR e : ; .
0or PGGR Q.. bt 'Y'

=il




5. Conclusion

In this paper a concatenated coding scheme for error control is presented.

The reliability performance of this scheme is analyzed for a binary symmetric
channel. Particularly, the scheme considered by NASA for possible adoption in
telecommand operations is analyzed. It is shown that, for g510'5, the scheme

provides very high reliability.

-12-
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APPENDIX

Let C, . denote the (n,k+k _-n ) linear subcode of frame code C

bf b™"b f
of those codewords of Cs whose information-part (the first k components) is a

consisting

codeword of the first single segment subcode of outer code Cb, and let C;f

denote the dual code of be. C;f has a codeword Gl (or Gz) whose first k bits

are all ones (or zercs) and whose last n-k bits are all zeros (or ones). Let

4 ' .
be be the (n,n k+nb b ]

p . y \
and U,. For O<i<k and O<r<n-k, let B(i,r) (or B(i,r)) be the number of codewords

-2) linear subcode of be which does not contain u

of C;f (or C;f') whose weights in the first k bits and in the last n-k bits are
i and r, respectively. Then we have that

Bli,r) = B(ir) * Blk-1,r) * Blisn-ker) * Blk-i,n-ker) ¢ (A1)

221

C;f', has codewords. We obtained Bii r) with l<i<k and l<r<n-k by generating
3

all codewords in an efficient way [8]. Then we computed B(i r) by (A1) and
found A(i,r) from B(i,r) s by the MacWilliams' identity [3]:

= -.( -k+ -k) k CH o ',
(o =20 L . ZOB i, re)Py(73kIPL(r ’"'k)] '

where Pk(x;j) is a Krawtchouk polynomial.

Let C* be the dual code of outer code Cb’ and C; j be the dual code of the

b
2-segment (j-1) subcode of Cb with l1<j<m. For 0<i<nb, let B denote the number
1,3

11’12 be
the number of codewords in Cb j whose weights in the first half and in the last
' 16

of codewords of weight i in Cb, and for l<j<m, 0<11<k and 0<12<k let B,

half are il and 12, respectively. Both C; and C; j have 2°° codewords. By

using the fact that the dual code of the Hamming code is a maximum-length-

sequence code, we obtained 8, with O<iz<ny and’ B1 i with 1<j<m, Oiilgk and
1’ 2 1,j

0<12<k by computer [8]. Then we computed Agb) from B s and A ; from

1.5 1'2

BI’J. 's, respectively, by the MacWilliams' identity.

10
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Table 2 Upper bounds and Tower bounds on the probability of

undetected error for bit error rate ¢

= 1074

IB

14

24

34

44

54

64

upper

lower

upper

lower

upper

lower

upper

lower

upper

lower

upper

lower

upper

lower

bound

bound

bound

bound

bound

bound

bound

bound

bound

bound

bound

bound

bound

bound

1.07E-18

7.18E-19

7.97E-18
2.51E-18

2.35E-17

4.30E-18

1.55E-16
6.10E-18

2.81E-15
7.89E-18

4.49E-14

9.69E-18

5.32E-13

1.14E-17

6.05E-18

2.15E-18

6.85E-117
7.53E-18

2.57E-16

1.29E-117

4.45E-15
1.82E-17

1.48E-13
2.36E-117

3J.12E-12
2.90E-17

4.24E-11

3.44E-1T7

2.86E-17

3.34E-18

4.11E-16
1.17E~17

2.08E-15

2.00E-17

9.14E-14
2.84E-17

4.12E-12
3.67E-17

9.67E-11
4051E-17

5.34E-1T7

1.18E-16

4.05E-18

1.90E-15
1.42E-17

1.48E-14

2.43E-17

1.32E-12
3.45E-17

6.80E-11

4.46E-17

1.68E-9

5.47E-117

2.46E-8

6.48E-17

4.14E-16

5.01E-18

7.23E-15

1.75E-17

9.90E-14

3.00E-17

1.37E-11
4.25E-17

7.54E-10
5.50E-17

1-91E-8

6.75E-17

2.83E-T
8.00E-17

m: The number of frames in a block

IB: The number of information bytes

in a frame

i G e e sl S50 G



Table 3 Upper bounds and lower bounds on the probability of

undetected error for bit error rate ¢ = 10'5
IB 3 y 5 6 7

m

upper bound|7.55E-24 2,56E-23 5.88E-23 1.54E-22 4,51E-22
n

lower bound|7.19E-24 2,.,15E-23 3.35E-23 4.07E-23 5.03E=~23

upper bound|3.07TE-23 1.36E-22 5.01E-22 1.86E=21 6.25E-21
14

lower bound(2.51E-23 7.55E-23 1.17TE-22 1.42E-22 1.76E=-22

upper bound|5.98E-23 3.12E-22 1.37TE=-21 5,46E-21 1.88E-20
24

lower bound|4.31E-23 1.29E-22 2.01E~-22 2,44E~22 3,02E-22

upper bound|(9.51E-23 5.56E-22 2.66L=-21 1.11E~20 3.83E-20
34

lower bound|6.11E-23 1.83E-22 2.85E-22 3.46E~22 4,28E-22

upper bound|1.38E-22 8.81E-22 4.52E-21 1.96E-20 7.09E-20
yy . ’

lower bound|7.91E-23 2.37E-22 3.69E-22 U4.48E-22 5.54E-22

upper bound|1.92E-22 1.39E~21 8.09E-21 4.02£-20 1.79E-19
54

lower bound |(9.T7T1E-23 2.91E-22 4.53E-~22 5.50E-22 6.79E-22

upper bound (2.81E-22 2.59E-21 2.01E-20 1.39E-19 8.78E=-19
64

lower bound|1.15E-22 3.45E-22 5.37E-22 6.52E-22 8.05E=-22

m: The number of frames in a block

IB: - The number of information bytés in a frame

N

oK 0 =



Table 4 Upper bounds and lower bounds on the probability of
undetected error for bit error rate e = 10-6

1B 3 4 5 6 7

m

upper bound|7.24E-29 2.208-28 3.62E-28 5.22E-28 9.05E-28
y

lower bound|7.19E-29 2.15E-28 3.35E-28 4.07E-28 5.03E-28

upper bound|2.58E-28 8.17E-28 1.56E-27 3.15E-27 7.85E-~27
14

lower bound|[2.51E-28 7.55E-28 1.17TE-27 1.42E-27 1.T76E-27

upper bound|4.49E-28 1.48E-2T7 3.18E-27 T.66E=27 2.15E-26
24

lower bound|4.31E-28 1.29E-27 2.01E-27 2.44E-27 3.02E-27

upper bound|6.46E-28 2.21E-27 5.22E-27 1.41E-26 4.18E-26
34

lower bound|6.11E~28 1.83E-27 2.85E-27 3.46E~-27 4.28E-27

upper bound|8.50E-28 3.01E-27 T.6TE-27 2.24E-26 5.88E-~26
by

lower bound|7.91E-28 2.3TE-27 3.69E-2T7 U4.48E-27 5.54E-27

upper bound|1.06E-27 3.8TE-27 1.06E-26 3.26E-26 1.03E-25
54

lower bound|9.71E-28 2.91E-27 4.53E-27 5.50E-27 6.80E-2T

upper bound|1.28E-27 4.80E-27 1.39E-26 U4.46E=-26 1.43E-25
64

lower bound|1.15E-27 3.45E-2T7 S.37E-2T7 6.52E-27 8.06E-27

m: The number of frames in a block
IB: The number of information bytes in a frame
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