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PROJECT OVERVIEW

3 1176 01323 7962

Advanced prop-fan propulsion systems which are being considered for

passenger aircraft have noise characteristics quite different from turbo-jet

systems they may replace. Rather than being primarily broadband much of the

acoustic energy of propellers is concentrated in tonals at the harmonics of

the blade passing frequency (BPF). Since the fundamental BPF is in the range

of several hundred hertz_ the tonal spectrum of the propeller induced noise

is of concern from the viewpoint of passenger acceptance and comfort.

The objective of this study is to examine analytically the structureborne

contribution to the interior noise that is induced by the propeller wake acting

on the wing. Analytical models have been developed to describe each aspect of

this path including the excitation loads, the wing and fuselage structures, and

the interior acoustic space. Because this is a feasibility study, the emphasis

has been placed on examining a variety of parameters, and as a result different

models have been developed to examine specific parameters. The excitation

loading on the wing by the propeller wake is modeled by a distribution of

rotating potential vortices whose strength is related to the thrust per blade.

The response of the wing to this loading is examined using beam models. A model

of a beam structurally connected to a cylindrical shell with an internal acoustic

fluid has been developed to examine the coupling of energy from the wing to the

interior space. The model of the acoustic space allows for arbitrary end

conditions (e.g., rigid or vibrating end caps). Calculations are presented using

these models to compare with a laboratory test configuration as well as for

parameters Of a prop-fan aircraft.

Several of the major findings of this study are summarizedas follows:

i. The unsteady-lift reaction of the wing to the propeller-wake field
is a significant mechanism for transfer of vortex energy to structural
vibration.

2. In the absence of Significant scattering from major structural
discontinuities, the propagation loss of structureborne noise along the
wing at the BPF is negligible and cabin noise levels are comparable to
the source pressure levels for a cylindricalfuselage.

3. Stringers that are small and in effect structurally integral with the
skin have minimal impact on propagation along the wing. However,
cut-off phenomena associated with a parallel array of discrete
stringerscould be created and exploited to enhancepropagation loss.

4. The interior acoustic levels on average are not appreciably altered

by the presence of structural damping in the fuselage skin.
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SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Advanced prop-fan propulsion systems which are being considered for

passenger aircraft have noise characteristics quite different from turbo-jet

systems they may replace. Rather than being primarily broadband much of the

acoustic energy of propellers is concentrated in tonals at the harmonics of

the blade passing frequency (BPF). Since the fundamental BPF is in the range

of several hundred hertz, the tonal spectrum of the propeller induced noise is

of concern from the viewpoint of passenger acceptance and comfort.

Propeller noise can propagate to the interior of the fuselage by paths

that can be categorized as being primarily either airborne or structureborne.

The airborne path is expected to be the dominant path, and it is estimated that

the required insertion loss "for this path provided by the fuselage must be

approximately 55 dB at a BPF of 200 Hz. Measurements using conventional

aircraft suggest that the contribution to the interior noise of the structure-

borne path is not far below that of the airborne path. Consequently control of

the structureborne path is likelyto be important in achieving acceptable

interior noise levels.

The objective of this study is to examine analytically the structureborne

contribution to the interior noise that is induced by the propeller wake acting

on the wing. Analytical models have been developed to describe each aspect of

this path including the excitation loads, the wing and fuselage structures, and

the interior acoustic space. Because this is a feasibility study, the emphasis

has been placed on examining a variety of parameters, and as a result different

models have been developed to examine specific parameters. The excitation

loading on the wing by the propeller wake is modeled by a distribution of

rotating potential vortices whose strength is related to the thrust per blade.

The response of the wing to this loading is examined using beam models. A model

of a beam connected elastically to a cylindrical shell with an internal acoustic

fluid has'been developed to examine the coupling of energy from the wing to the

interior space. The model of the acoustic space allows for'arbitrary end

conditions (e.g., rigid or vibrating end caps). Calculations are presented

using these models to compare with a laboratory test configuration as well as

for parameters of a prop-fan aircraft.
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The principal conclusions resulting from the analytical modeling and

numerical calculations are the following:

i. The unsteady_lift reaction of the wing to the propeller-wake field is

a significant mechanism for transfer of vortex energy to structural vibration.

For a fixed value of design thrust, and for points on the wing where wake loading

is maximum, harmonics of the wake-induced pressure vary inversely with both the

square of the propeller radius and the reduced frequency of the tonal. Predicted

and experimentally obtained source levels are in reasonable agreement.

2. In the absence of significant scattering from discrete stiffeners,

e.g., ribs, or from other major structural discontinuities, the propagation loss

of structureborne noise along the wing at the BPF is negligible and cabin noise

levels are comparable to the source pressure levels for a cylindrical fuselage.

3. For a rib to enhance significantly the propagation loss along a wing

it must constrain both the translational and rotational motion of the skin. The

criteria for achieving this objective appear to be realizable with minimum weight

penalty. In practice rib effectiveness will be limited by rib elasticity which

reduces its scattering strength and allows more efficient propagation across and

coupling into it, both effects leading to an increase in cabin noise, the latter

via the rib-spar-fuselage path.

4. Sound radiation (airborne) associated with structureborne noise

scattering from structural discontinuities along the wing is negligible compared

with the direct acoustic path.

5. Stringers that are small and in effect structurally integral with the

skin have minimal impact on propagation along the wing. However, cut-off

phenomena associated with a parallel array of discrete stringers could be

created and exploited to enhance propagation loss. The criterion for effective-

ness is given as kfL < _, where kf is the wavenumber of flexural waves in the

skin and L the interstringer spacing. Also, the (spanwise) length of the

stringer array need 0nly measure a flexural wavelength in the skin and therefore

entails minimum weight penalty.

6. Spar vibration levels directly excited by the unsteady lift are less

than those in hhe skin near the midchord. Also, in the absence of stiffeners,

either ribs or stringers, coupling of structureborne noise from the skin into

the spars is minor. The extent of coupling from the skin to spars in the

--V--



presence of ribs has not been determined,and in view of the previous

conclusionsthis skin-rib-spar-fuselagepath may be the dominant one for

typicalwing configurations.

7. The interior acoustic levels on average are not appreciablyaltered

by the presence of structuraldamping in the shell.

8. It is feasible to develop an analyticalmodel of the structureborne

path of the shaker driven laboratorymodel. However the noise predictions of

a model that includes finite shell dynamics with frames, beam-shell inter-

actions and structural damping, but ignores fluid loading, acoustic absorption

and shell stringersdo not compare favorablywith laboratorymeasurements.

9. The feasibilityof developingan equivalent model of the structure-

borne path along an actual wing-fuselagestructure is questionablein view of

the implied computer costs and/or running times. (For example the surface

area of an aluminum fuselage of 3.05 m (I0 ft.) diameter, 12.2 m (40 ft.) length

and 2.5xi0-3 m (0.I in.) skin thicknessmeasures roughly 103 flexural wavelengths

at a frequency of 200 Hz. Using only a one-quarterwavelength mesh size and

3 degrees of freedomper node a finite element analysis of the fuselage skin

alone would entail I04 unknowns exclusiveof the modelling of the wing or the

interior acoustic space.)

I0. Asymptotic or "canonical"analyticalmodels Of specific structural

elements and features characteristicof actual wing-fuselage structures, e.g.,

stiffened skins, can be used to identifypropagation phenomena that are

potentiallyuseful for diagnosticand noise control purposes. However, here

it is particularlyimportant to use such models in conjunctionwith a measurement

program, either full scale or model, for confirmation.

Recommendationsfor furtherwork fall into two categories, these being

analyticalmodelling and experimentalmeasurements. Further developmentof the

analyticalmodels examined in this report is suggested in the following areas:

I. In modelling the propellerwake, include the effects of, (a) a viscous

vortex core, (b) three-dimensionalunsteady aerodynamics,and (c) the dynamics

of vortex paths in the presence of solid surfaces.

2. In modelling the wing, develop and implement models that trace the

skin-rib-spar-fuselagepath accountingfor both rib elasticity and the spar-

fuselage frame interaction.

-vi-



3. In modelling the fuselage structureinclude the effects of, (a) internal

stiffeners,and (b) either acoustic absorption along the boundaries (see 4 below)

or the loading of the internal fluid on the structure.

4. In modelling the interior acoustic space implement the theory in terms

of the eigenfunctionsappropriate to large boundary absorption (e.g.,Bessel

functions of the appropriate complex eigenvalues).

Recommendationsfor experimentalstudies directed toward characterizingthe

structurebornenoise path are as follows:

5. Using the existing laboratorymodel as a diagnostic tool for analytical

concepts and models, examine the dependence of the interior pressure levels on

a number of parameters includingspatial location, structuraldamping, acoustic

absorption,and discrete structural stiffeners.

6. Develop new laboratorymodels of both wing and fuselage structures

based on the scaling laws implied byexisting analytical models. These analytical

models may also be used to assess scaling law conflicts, tradeoffs and Compromises.

7. The extent to which cut-offphenomena predicted for a stringer-skin

geometry enhances the propagation loss along existing wings should be determined

experimentally. Also the feasibilityof further exploiting this mechanism for

noise control purposes should be studiedby means of a combined analytical-

laboratorymeasurementprogram.

8. Using a full scale aircraft and with excitation by shaker or by

propulsion system when possible, (a) measure the structuraltransfer functions

along the wing skin and spars; and (b) measure the transfer functions of

structuralresponse to interior pressure. Structural intensitymeasurements

may be useful to examiningthe power flow along specific componentsof the wing.
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I. INTRODUCTION

Advanced prop-fan propulsion systems promise to provide fuel efficient

flight at highsubsonic speeds. The propellers in these systems having

multiple skewed blades represent a noise source with characteristics quite

different from the dominant noise sources of current turbo-fan engines. In

particular, rather than being primarily broadband, much of the acoustic energy

of prop-fan propulsion systems is concentrated in tonals at harmonics of the

blade-passing frequency. Since the fundamental blade passing frequency (i.e.,

propeller rpm times number of blades) is in the range of several hundred Hertz,

the tonal spectrum of the propeller is of concern from the viewpoint of passenger
acceptance and comfort.

The paths by which propeller noise propagates to theinterior of the

fuselage can be categorized as being primarily either airborne or structure-

borne. We define the airborne path as the path of propeller induced excitation

that acts directly through the air on the fuselage. This includes propeller

radiated noise and the aerodynamic near field of a rotating propeller located in

close proximity to the fuselage. The airborne path is expected to be the

dominant path by which acoustic energy excites the aircraft interior. The

airborne insertion loss required by a fuselage to reduce the propeller tonal

at the blade passing frequency to an 80 dB(A) (re: 20 _Pa) interior level is

approximately 55 dB (i.e., assuming 135 dB(A) free field level at 200 Hz). A

variety of means to achieve a large sidewall transmission loss have been

examined in the literature. Additionally, analytical models have been developed

to predict the interior noise level in response to acoustic excitation of the

fuselage. A recent review of many of these models is presented in Ref. I.

In general the parameters governing the transmission of airborne acoustic

energy to the aircraft interior are more clearly definedthan those that control

the transmission of structureborne energy which is the subject of this report.

We define the structureborne path as that path by which propeller induced energy

propagates to the fuselage via other structures, notably the wing. Although

useful for the purpose of discussion, the distinction between airborne and

structureborne paths is not rigorous since structureborne energy can radiate and

become airborne energy and vice versa. The sources of structural excitation at

propeller related tonals include the interaction of the lifting surfaces with the

propeller wake and engine vibration. The unsteady wake of the propeller acts on
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the skin of the wing and of any rear control surfaces in its path. This

vibration excitation can propagate along the skin and the primary wing structure

to excite the fuselage. Engine vibration is transmitted through the engine

mounts directly to the primary wing structure. Both of these excitations can

transmit energy to the fuselage which in turn radiates noise to the aircraft

interior.

Structureborne noise has been cited by several investigators as a

potentially important consideration for achieving acceptable interior noise
2-4

levels in propeller driven aircraft. While the structureborne path, which

in fact may be multiple paths, is not expected'to be the dominant means by which

acoustic energy reaches the aircraft interior, its contribution may not be far

below that of the airborne path, especially in view of the large noise reduction

required for the advanced tuboprop aircraft. For example, measurements of

interior noise m_de on a conventional twin engine turboprop aircraft (deHaviland

Twin Otter) with both wing and fuselage wrapped to reduce excitation by the

propeller wake suggest that the structureborne noise is no more than i0 dB

below that of the aircraft path. 5 For a singie engine aircraft with a

reciprocating engine, measurements reported in Ref. 6 indicate that both airborne

and structureborne contributions to the interior noise are comparable in level.

In a more recent study, the importance of structureborne noise in a single engine

aircraft has been further documented. 7 Analytical modeling of the structureborne

noise path is currently needed to support and further evaluate the results of

these empirical studies. Although the fuselage and interior acoustic space have

been modeled to examine parameters important to the airborne path, 1 the

excitations used in these models have typically been a single acoustic wavenumber

pressure field.

The objective of the present study is to develop an analytical model

(albeit simplified) of the structureborne path including excitation loads, wing

and fuselage structures, and interior acoustic space. The excitation loading
• i

on the wing by the propeller wake is modeled by a distribution of rotating

potential vortices whose strength is related to the thrust per blade. Beam

and plate models are used to represent the response of the wing to this loading.

A model of a beam elastically built into a cylindrical shell withan internal

acoustic fluid has been developed to examine the coupling of energy from the wing

to the interior space. The model of the acoustic space allows for arbitrary

I'2



end conditions (e.g., rigid end caps). Calculationsare presented using these

models to compare with a laboratory test configurationas well as for parameters

of a turboprop aircraft.

I-3





II. THEORETICALPREDICTIONSOF WING LOADING INDUCED BY A PROPELLER WAY_

A. Introduction

The near wake of a propeller in uniform flow consists of a complex

system of trailing vortex sheets, each originatingat a blade trailing edge.

Due to self-inducedvelocities,these sheets quickly become unstable and roll
8

up into a system of mainly concentratedtip vortices in a helical arrangement.

Neglecting for the moment the effect of Self- and mutually-inducedvelocities

after the roll up process is complete, the trajectory of each vortex filament

or vortex segmentmay be assumed as determined solely by freestreamconvection

(in the propeller far wake, downstreamof the wing and thereforenot of concern

here, this assumptionis not valid and vortex structureand positionsbecome

chaotic).

In the near wake, therefore, as a propeller tip approachesthe horizontal

plane say from above, its rolled-up tip vortex is convectedover the wing, and

an instant later, under the wing. Thus the vortex appears to "cut through"

and, as a result, causes locally time- and spanwise-varyingangles of attack

and accompanyinglift. The unsteady lift so generatedbecomes the source for

noise borne by the wing structureinto the cabin.

Here we develop a model for the wing loads induced by the propeller wake,

and compare predicted levels to those measured by Miller et al.3 for a 0.61 m

(2 ft) diameterpropeller in subsonic flow. Finally, estimatesare made of

vortex-inducedwing pressures for an actual aircraft presently considered by

NASA a possible candidate for the new prop-fan technology. When compared to

typical estimatesof incident airborne noise, the results of this last calcu-

lation bear out the need for study of the structuralpath as a potentially

significantcompetingmechanism.

B. Propeller Wake Model and Win@ Aerodynamics

Figure II-i shows the near-wakemodel. A system of N straight,

infinite potential vortices in rotary motion causes a downwash w on the wing

plane given by

2z(k-l)

w(t,y) = F NE y-cos_t + N ]
2wR k=l l+y2_2ycos[_t+2_(k-l) (II-l)N ]
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where t is time and y, the spanwise distance measured from the propeller

hub point, has been normalized by the blade radius R; _ and N denote Propeller

rotationalspeed and blade number, respectively. F stands for the strength

of each vortex and may be determined from the propeller design thrust value

via a lifting-lineanalysis performed later in the chapter.

We define the normalized downwash W(t,y) by

w_=
F/2_R (II-2)

and show typical signatures in Fig. II-2, where values of _, and N have been

chosen to match those in Miller's experiment. The y = 1.01 position corresponds

to the measurementposition in Ref. 3. The figure confirms that as y = 1 is

approached the predicteddownwash becomes more and more impulsiveand that

the period of the relatively complicated_ sum is 2_/_N, with an associated

fundamental (in Hertz) equal to the blade-passage frequencyN_/2_. Based on

this we write the vortex-inducedwing lift coefficientCL(t,y) in terms of
harm6nics CLm(Y);

CL(t,y) = Re 0 CLm(Y)e (II-3)

The aerodynamicmodel for the wing assumes the latter to be infinite in t

span (no three-dimensionalroot or tip effects) and as a flat plate in cross

section..The flow is assumed aerodynamicallytwo dimensionalwith each wing

reacting locallyto the input downwash field (classicalstrip theory). Also,

for applicationsof interest it will be found later that the airfoil reduced

frequencybased on the fundamental_Nb/U, where b is wing semichord, is not

small relative to unity, and so the model to cal_ulate CLm in terms of downwash
harmonicsWm should contain,high-frequencyunsteady effects and should not be

given merely by

2_wlu

i.e., the quasi-steady assumption where U and M stand for flight speed and

flight Mach number, respectively. Moreover, since flight speeds will be in

II-2



the high subsonic range, compressibilityeffectsother than that given by

the (I-M2)-½ Prandtl-Glauert factor should also be included.

For an airfoil in subsonic flow passing through a nonuniform field

given in terms of gusts, Amiet9 has derived such an unsteadiness-compressibility

correction to the quasi-steady lift coefficient (kept in curly brackets in

Eq. II-4 below). Applying it in its relatively simple high-frequency limit

(his Eq. 20), one then has

c (y)= w(y) . _iI_  M2
U z/_ nNmb (II-4)

U

C. Harmonic Analysis of the Propeller Wake

The analysis to obtain the wake harmonics w" from w as defined bym

Eqs. II-i thru II-2, begins with an identity involving two arbitrary complex
i8 ie

numbers T = e , z = re (e.g., Ref. i0).

*T z l-r2
--+ - (II-5)
T-z T*-Z* l+r2-2rcos (a-8)

where * denotes conjugate.

For r < 1 we may now express the left hand side of Eq. II-5 as

1 + 2 m_1 rmcosm (_-8)

Since r, the magnitude of z, is by definition positive, this relationship

is immediately applicable to the range 0 < y < i. Thus letting y=r, _t = a,

2_(k-l)
-B = N , and performing some algebra one finds that

 cos
l+y2-2ycos [at+ 2_(_-i)I = - Jl ym-lc°sm_ t + 2_(_-i)_ (II-6)

By a similar calculation for r > 1 the left hand side of Eq. II-5 takes !

the form

< _cosm(_-8)_=m
- 1+2 Z1• m

r

°.
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and for 1 < y < _ we find that

y-cos [_t + 2_(k-l)_N __ cosm [_t + 2_(k-l)IN

l+y2-2ycos [_t + 2_(k-l)]N. - mE0 ym+I (II-7) .

If the cosines on the right sides of Eqs. II-5 and II-7 are now expanded out,

,and the sum is interchanged with _ the following two factors appearm'

N [2nm(k-l) ] N [2nm(k-l) ]k_Z_lcos N , k__E1sin N ;

the first of which is zero unless m is a multiple of N, and then it equals N.

The second sum is identically zero. These conclusions may be used to find, for

example, that the right side of Eq. II-6 becomes

-N _I yNm-lc°smNQt

The simple manipulations used to obtain tl'_e series expression of w for

0 < y < _ may be adapted to the negative ranges -i < y < 0, -_ _ y < -I. One

writes

l_r 2 1-r 2

l+r2-2rcos(_-8) l+r2-2(-r) cos(_-8+_) •

and then replaces y by -y > 0 and 2_(k-l)by 2_(k-l) + n in the previous results.N N

The final series representationsare now given for w = w(t,-_ < y < _):

1
14 y<Nm+1

Y

w = NmZ0= cosmN_t . (II-8a)Nm+l(-i)
-_ < y < -i

(_y)Nm+l

{ -Nm-i
-y 0 < y <-I

= Nm_I_ cosnmN_t (II-8b)
(-l)Nm(-y)Nm-I -i < y < 0

so that w = N/yNm+l for 1 < y < _ , etc. Several points of interest shouldm

be noted. First, a steady field exists for IYl > l(m=0) which is algebraically
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invariant with respect to the number of blades N. Since the m=0 harmonic is

odd in y (proportional to ±i/lyl) , this steady component represents a net

moment about the propeller axis. The authors wonder if it has ever been a

factor in wing design for steady flight.

Secondly, increasing N causes a more rapid spatial decay of each m _ 1

harmonic from the N value at y=l. For very large N the vortex spacing becomes

infinitesimal and physically a steady limit should be approached. Mathem-

atically, in fact, only the m=0 steady term for IYl > 1 remains. In this

limit the solution is consistent with the fundamental theorem of electrostatics

which states that the internal field of a surrounding conductor is zero and

that the field outside may be interpreted as due to a single equivalent
ii

centrally located charge.

Third and lastly, the initial expression in Eq. II-i yields an infinite

value of d0wnwash w at y = ±i at times when vortices pass through the wing

plane (the denominator becomes (y-l)(y+l)). As y + ±i ther&fore, the time

history of induced downwash becomes highly impulsive (recall Fig. II-2) and is

given by a series with tonals of constant level N (transform of a delta function).

D. Calculation of Vortex S_rength

Figure II-3a (from Ref. 8) shows a blade airfoil section in rotary

motion. As always, lift is defined as the force normal to the relative free-

stream /U2+(_r)2 We model the radial blade load distribution as indicated

in Fig. II-3b, i.e., triangular in shape. At the tip, where the radial load l

drops abruptly from its maximum value Ltip to zero, a vortex of strength Fv

equal to the blade tip bound vorticity Fb must be "trailed away" according to

Kelvin's circulation theorem. To obtain the strength of the bound vortex in

terms of tip lift Ltip, we apply the two-dimensional lifting-line relation

p!U2+(_R) 2 Fb = Ltip . (II-9)

As previously discussed, upon passage through thewing the free vortex

induces on the wing surface a time- and spanwise-varying angle of attack

e(t,y) z w/U from which the vortex induced unsteady airload L may be calculated.v

With CLm defined in Eq. II-4 the high-frequency compressible model yields the

following relationship for the mth harmonic of vortex-induced wing pressure

II-5 !
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Lvm(Y) = 2 U2CLm(y) (II-10)

Substitutingfor Fb from Eq. II-9 into Eq. II-l, and then using Eq. II-i

with Eq. II-4 into Eq. II-10, we obtain

wm Ltip (-i) (II-ll)
Lvm(Y) = 2R _/_ _Nmb

Lastly, the tip lift Ltip must be related to the blade thrust Tb.
Neglectingdrag forces, the differentialthrust dT and lift dL are related

through8

_r
dT = dLcosB = dL

/U2+ (Qr)2

so that the total blade thrust Tb is given by

R

ofTb = dr _ cos8

SubstitutingdL/dr = LtiP"(r/R) for the assumed triangular loading, and
evaluating the resulting integral, one finallyobtains that

Ltip = Tb/R2 (II-12)

1 + - sinh

Putting the above into Eq. II-ll and defining the total propeller thrust T as

TbN, the desired harmonic Lvm(Y) of the vortex-induced,lifting pressure
distributionis found:

win(y)T 1 (II-13)

NR2 /I +(_12 + (_R} 2 - (_R} sinh-i(_1 .

i

_ QmNb
U

II-6
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For a fixed value of design thrust T, Lvm(Y=l)(themaximum for each
harmonic) varies as the inverse of the square of the radius R, and as the

inverse of QNmb/U, the "tonal reduced frequency". No other N dependence

exists since the N factor in Wm (Eq. II-8) cancels that other appearing in
the T/(NR2) group of Eq. If-13.

As indicated in the final result, L depends also on Mach number Mvm

and on advance ratio _R/U. However, the possibilityof propeller-wakeairload

control through these parameters appears limiteddue to restrictionsof actual

practice on high subsonic cruise speeds U (and so M), and on blade tip speed

_R. For well-known aeroacousticreasons the latter is preferably kept also

in the high subsonic range.

E. Application of Wake Model to Two Cases of Interest

We may now apply Eq. II-13 to predict levels of the lifting pressure

distributionon the wing due to the propellerwake and compare them to those

measured by Miller,3 whose laboratorymodel is shown in Figure II-4a. Also,

a prediction is made using actual aircraft parameters.

In Ref. 3 the vane stands vertically and is alignedwith a propeller

radius, i.e., it intersects the propeller axis if continued upwards in the

sketch. Thus, the radial position given by r/R = 1.01 in the experiment

correspondsto the spanwise position given by y = 1.01 in our theoreticalmodel.

The parameters for the laboratorypropeller are the following:

Power Coefficient: C = 1.84
P

Advance Radio: J = 3.06 (_R/U = .97)

Number of Blades: N = 8

Blade Radius R = 0.30 m (i ft.)

Freestream Mach Number: M = .6

Propeller Efficiency: nef f = .8 (privatecommunication)

Vane Semichord: b = 0.15 m (.5 ft.) (assumed)

From these, values are calculated for thrust coefficientand total

propeller thrust of 2.1 N (.48 ib) and 963 N (215 ib), respectively. For the

first (m=l) harmonic at the spanwiseposition y = 1.01 (so that w _ N)m
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Eq. II-13 yields 20 lOgl0 (Lv /Pref) = 154 dB (Pref = 20 _Pa) vs. the experi-
m

mental value of about 143 dB. The rate of decay for the tonals may also 5e

computed from Eq, II-13 and compared to measurement. Taking m=8, the level

of the eighth harmonic will be down by 23 dB (20 Iogi0(i.01_65/8))
from that

of the first harmonic.

Both of these results are shown in Fig. II-4b superimposedon measured

values for comparison. Fairly good agreement is indicated, though predictions

appear somewhat higher than measurementat the lower part of the spectrum.

We put off momentarilydiscussion of possible reasons for discrepancy and

briefly present a similar calculationfor an actual aircraft.

Revell, et al.12 have listed operatingparameters for a typical business-

size propeller drive aircraft. These are:

Tip speed = 243m/s (800 ft/sec)

Cruise speed = .8M

Propeller diameter = 2.2_m (7.2 ft)

Number of blades = 8

Cruising altitude = 9210 m (30,000 ft)

Using a value of 302 m/s (995 ft/sec) for the sound speed at 9210 m

(30,000ft), one calculates a flight speed of 242 m/s (796 ft/sec), and so

_R/U _ i. A value of b = 0.91 m (3 ft) is assumed for the semichord at the

engine spanwiseposition. From Eq. II-13 then, at the spanwisewing points

of maximum vortex loading one finds that for the first harmonic (f = 283 Hz),

20 lOgl0[Lv (y=±l)/Pref=20_Pa]= 137 dB ,
m=l

a number comparable in magnitude to those measured and predicted for the

airborne path (Ref. I, Fig. 5).

F. Summary of Results

When comparing the theoreticalresults predicted here to experimental

results, the fundamentalquestion should be asked whether a significantportion

of the measured pressure can be attributed to the unsteady-aerodynamiclift

mechanism of the present model. The propellerwake effects measured in Ref. 3
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were apparently interpreted there as locally high values of stagnation

pressures induced by free vorticity. The original purpose of the vane was

probably to provide a physical mount for sensing instruments, not to act as

an aerodynamic mechanism through which additional vortex energy could be

channeled into the structure.

The mechanism in our theoretical model is an aerodynamic "reaction"

mechanism. Pressures predicted on the wing plane are due to the aerodynamic

presence of the wing; they would vanish if the actual lifting surface were

removed because they are the impermeable wing's lifting reaction to an incident

unsteady flow. This resulting force driving the vane or wing is balanced by

an equal and opposite net fluid force (Newton's first law) which in the

immediate vicinity of the wing appears smeared over in the form of an acoustic

near field. Since the theoretical model uses a flat-plate airfoil, those

predicted pressures are antisymmetric with respect to the flight plane, so

that on the two sides of the vane they are equal in magnitude but opposite in

sign ....

The fairly good agreement between theory and experiment suggests that

the lift effect is significant, and that it can therefore serve as an

efficient coupler of propeller wake energy to structureborne vibration. It

should be pointed out, however, that as estimated here these levels probably

represent conservative estimates for the mechanism. The model does not

account for finite vortex core size, nor does it account for mutual three-

dimensional effects of wing sections in the vortex-induced spanwise-varying

downwash field. Both of these may be expected to lower levels somewhat due

to their smoothing action.

Another possibly important neglected effect is that on vortex position

and motion by an "image" system inside the wing. Themodel here allowed the

propeller wake to cut freely through the wing plane, when in fact potential

theory would call for a more complicated trajectory due to interaction with

the solid surface.

L
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Plane of wing
... y=O

Fig. II.l - Wake model for a four-bladed propeller, indicating horizontal

plane of wing and vortex-induced downwash.
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Fig. II.3 - (a) Blade forces acting at a typical blade motion a distance

r from the hub.

(b) Linear distribution of lift and blade-tip vortex model.
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Fig. II.4 - (a) Laboratorymodel in Ref. 3.

(b) Comparison of theoreticallypredicted pressure harmonics (o)

for y = 1.01 to experimentalmeasurements (solid line); for

N = 8, _ = 640 rad/sec, r/R = 1.01.
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III. STRUCTUREBORNE NOISE MODELS

A. Structureborne Noise Propagation AloNg a Wing Structure

I. Introduction

In the following sections the characteristics of structureborne

noise propagation along a wing-like structure are analyzed. Basic concepts

and functional analyses rather than extensive numerical modelling are emphasized.

First the relevant characteristics of the vibration source, as modelled in

Chapter II, are summarized. Propagation along the (bare) skin is then analyzed

followed by a discussion of the air/fue! space between skins. Scattering and

radiation from ribs is examined as is the potentially beneficial impact of

discrete stringers. Finally spar dynamics are considered followed by a summary

of results.

2. Source Characteristics

As described previously the assumed source of structureborne noise

on the wing is the unsteady lift associated with blade tip vortices. This

driving force, as modelled, has the following general characteristics:

a. At a given spanwise position (y) measured from the propeller

hub (y=0) the unsteady pressures on the top and bottom skins of the wing are

equal in magnitude and opposite in phase.

b. The unsteady pressure (lift) is antisymmetric about y=0.

th
c. For y > 0, the unsteady lift at the m harmonic of the

blade passage frequency N varies as (y/R)e where R is the propeller blade

radius. The quantity e is given by

= (mN-l) 0 _ y/R _ l
(iii-l)

=-(raN+l) y/R > 1

To account for the above three factors, we assume a normal pressure

acting on the wing in the form

P(y;_) = P (_)f(y/R) (III-2)o

where P (_) = NL (I) as defined in Eq. II-13,o vm

=. -sgn(y/R) l y/R I (nuN-l) l y/R[ _ 1

f (y/R) •(III-3)

= sgn(y/R)ly/RI -(mN+l) ly/R[ £ 1
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and

i ly/ l>1
• . sgn(y/R) = (III-4)

ly/ l <1
The maximum lift P (_) is given in Chapter II where it was shown that foro

parameters typical of small aircraft P (_) = 137 dB re 20 _Pa.o

3. The Win_ as a Flexural Waveguide

Wing structures consist of top and bottom skins with spanwise

stringers, structurally connected to each other by means of a chordwise array

of ribs and two (front and rear) spanwise spars (Fig. III-l). The unsteady

lift acts mainiy over the Surface area of the skins and the resulting vibrations

are transmitted to the fuselage along the parallel skin-stringer and spar

structures.

We first consider the flexural response of the skins to the unsteady lift

ignoring chordwise variations in both source and structure, that is we treat
s

the wing as a one-dimensional (infinite) waveguide_ The acceleration of the

wing, a(y;_), in response to a distributed harmonic pressure field, p(ys;_), is
given by (Ref. 13, Chapt. 6)

a(y;_) = (-i_2/4EIk_) f p!ys,_) {exp[ikfly-y.sl]+iexp[-kfly-Ysl]}dys (III-5)

where _ is circular frequency and the relevant material and geometric properties

of the wing are expressed in the parameters E (Young's modulus), I (cross-

sectional moment of inertia) and kf (flexural wavenumber), with

kf = (p_2/EI)}(l+in/4) (III-6)

where p is the wing mass density per unit length and n a structural loss factor

to account for energy dissipation. (In Eq. III-5 stringers may be modelled

only to the extent that they modify, on average, the parameters I, m and n-)

Non-dimensionalizing Eq. III-5 to the inertial response of the wing under

the peak pressure,
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A(y;_) = pa(y;_)/Po(_0) = (-i/4) f f(ys/8){exp[ily-ysl]+iexp[-ly-ysl]}dy s (III-7)
--O0

where y = kfy and 8 = k_. Thus, as modelled, at a given harmonic of the blade

passage frequency the normalized acceleration is a function of the distances

from the propeller hub to the locations of the wing tip and the observer

measured in terms of flexural wavelengths.

To'this point we have nbt related the parameters of the mathematical model

to specific wing properties. However, it is useful to keep in mind the range

of parameters of interest. Material properties are assumed to be those of rolled

aluminum and we take E = 6.9xi0I0 Pa (10xl06 psi) and p = 2.7xi03 kg/m 3

(2.53xi0-4 Ib.sec2/in4) . Of concern is the fundamental propeller blade passage

frequency, which as before, and corresponding to N=8, is taken to be 283 Hz,

and its harmonics, f = _/2_ = 283 m for integer m, R = i.i m (3.6 ft.) is am

typical propeller blade radius. For a skin of (effective) thickness h(in)

Eq. III-6 yields a flexural wavelength

If(in) = 2_/kf(in-1) _-2_I02[h(in)/f(Hz) ]½ = 37[h(in)/N] ½ (IIT-8)

(Note: If(in) = .025 lf(m))

-3
For example taking 48 Pa (I psf) for the weight density of the skin, h = 1.7x10 m

(0.07 in.) and If = .25 m (i0 in.) at the assumed fundamental blade rate frequency
of 283 Hz.

For illustrative purposes Eq. III-7 has been evaluated for the above sample

parameters. The results are plotted in Fig. III-2 as a function of the non-

dimensionalized spanwise distance y. In these calculations _ was taken to be
-2

5x10 which is moderate. Also shown in Fig. III-2 is a plot of Eq. III-3

showing the spatial decay of the source pressure magnitude from its peak at

y - kfR ~ 27.

Although not evident in Fig. III-2, as y => 0, A(y;_) goes to zero in

accord with the assumed asymmetry of the source about y=0. For values of

< kfR, wave propagation associated with the nonuniformity of the pressure

field produces an interference pattern in the response curve. The on-average

level is roughly I0 dB down from that which would obtain from a locally reacting

inertial response to the maximum lift pressure (0 dB). For kfR < y < 102 the
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accelerationlevels begin to decay exponentiallydue to structural damping.

Finally if the graph was extendedwell beyond y = 102, the curves for A(y;_)

and f(y/8) would eventually converge indicating that the local accelerationis

dominatedby the inertial response of the waveguide to the magnitude of the

local pressure.

In the following sectionssome of the cross-sectionaldetails of the

wing are considered,namely the entrappedair or fuel between skins, rib

scattering and radiation, stringers,and spars.

4. Entrapped Air/Fuel Between Skins

Air inertia relative to that of the wing structurecan be

dismissed a priori. In addition its compressibilitymay be dismissedprimarily

under the assumption of identicaltop and bottom skins since as discussed i

earlier the unsteady lifts on the skins are out of phase, that is there is no

net compressiveforce on the wing cross-sectionas a whole. For example,

modelling the skin-air layer-skincross-sectionas an acoustic waveguide

terminatedby the inertia of the skins and assuming equal and out of phase

pressures on the skins, (Fig. 3a) either skin accelerationis given by i
i

_a(y;_) !

po(_) = [2-itany]/[2-itany(l+io)] (III-9)

r

with y = _d/c, o = pc/_ and where d representsthe depth of the air cavity and

pc the density and sound speed of the entrappedfluid. For parameters of interest i

a << 1 and the compressibilityof the air layer may be dismissed for all

frequencies.

On the other hand consider the situation that exists for those wing

sections containing fuel. In this instance o > 1 and y < 1 for the frequencies

of interest* and thus the fuel is effectivelyincompressible. The inertia of

the fuel is large relative to that of the plating** causing a reduced (locally

reacting) response of the skin covering these fuel tanks but also scattering of

* Assuming (pC)fueI = .75 (pc)water and d = 0.15 m (6 in.), o ~ 3xl04/f(Hz)

and y ~ 8xl0-4f(Hz).

** For the assumed parameters (pd)fuel/(°Ph)skin~ 4d(in) >> I.
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incoming vibrations propagatingalong the skin from the fuel tank boundaries.

This latter phenomenon is discussed in detail in the followingsection in

connectionwith ribs.

5. Rib Scattering and Radiation

Ribs present structuraldiscontinuitiesto the skin-stringer

structure,modifying its impedanceand wave propagationproperties but also

causing sound radiation. To examine the effect of ribs on wave propagation

we first model a single rib as a locally reacting structurewith drive-point

impedance Z (Fig. III-3b). We locate the rib at a nondimensionalizeddistancer

Yr from the propeller hub. The wing accelerationbecomes

_a(y;_) = f(YsIg(y,YsldYs+Fr(_Ig(y,yr) (III-lO)P (_)
O --_

where

g(y,ys) = (Di/4)exp[ily-ysl]+iexp[-ly-ysl] (III-ll)

and F is the nondimensionalizedrib reaction
r

r(_)_=Fr(_)kf/P°(_) (III-12)

By imposing the constraint condition that

a(Yr;_) = (i_/Zr)Fr(_), (III-13)

or

_a(Yr;_)
_) = Fr (_) /Zr ' (III-14)

o

we may solve for the rib reaction

-f f (Ys)g(Yr,Ys)dYs
(m) = (III-15)

r _'rl+g(Yr'Yr)

where

--I
Zr = -i_/kfZr- (III-16)

The wing accelerationin the presence of the rib may now be computedby

substitutionof Eq. III-15 into Eq. III-10. The result is shown in
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Fig. III.4 for an infinite translationalimpedancerib (Z = _) located one
r

propeller radius from the wing tip (yr = 2B ~ 54). It is observed (compare

Figs. III-2 and III-4) that although a null is indeed created at the rib

location,beyond a quarter flexural wavelength away the effect is minor. It I
follows that the presence of an array of such ribs would be ineffectivein

reducing the vibrations reaching the fuselage unless the rib array spacing

was less than a quarter flexural wavelength (If/4 ~ 0.062 m (2.5 in.), for
the illustrativeexample being considered).

Now let us increase the complexityof our rib model by allowing it to

constrain the rotation as well as the translationof the wing. In this case

the rib, by virtue of its rotational impedanceZr, creates a concentrated t

couple (Mr) in addition to a transverse force (Fr). The'accelerationfield is
now expressed by

_ap(y;(_)_)= ff(_s) g(y,ys)dys+Fr(_)g(y,yr)+iMr(_)_g(Y,Yr)/_y (III-17)o

where

(_) = M (_)k_/Po(_)zr r "

By imposing the additional constraint that

_a(Yr;_)/_Y= (i_/Zr)Sr(_) •

or

p (_) = -Mr(?)/£_ , (Ill-18)
o

we obtain

ff(5 s) g(gr,5[sgn (5r-5 s) ]dY s
(_) = (III-19)

r _.r-l_iB2g(yr,_fr)/_52

with

3 *= "i_u/kfZr - (III-20)

--*

By settingboth Z and Z equal to infinity we create an effectivelyr r

clamped boundary at 5 = 5r thus blocking completely wave propagationacross the

rib. Accordingly the computed accelerationlevels for 5 > 5r (~27.) are caused
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solely by that portion of the pressure field extending beyond the rib. And

it follows that for this case the excess'propagation loss across the rib is

primarily a function of (y/R), the distance of the rib from the hub measured

in terms of the propeller blade radius, and should be approximated by

20 loglyr/Rl-(mN+l) For the parameters being considered, m=l, N=8 and Yr/R 2,
this expression yields -54 dB. Exact numerical results are shown in Fig. III-5.

Figs. III-4 and III-5 were computed assuming a rib with effectively

infinite translational and rotational impedances relative to those of the

skin. Nevertheless, given the large skin compliance, this is readily achieved.

The criteria for accomplishing this end may beldeduced from the denominator of

Eqs. III-15 and III-19 and are given by

IZrl/2_ _/kf = 7 > 1 (III-21a)

and

[Zrl12/2ulk = 7 >1

For example, assuming an inertial rib Eqs. III-21 are satisfied (y = 3) for the

example being considered by a rib with a cross'sectional area of 6.2xi0-4 m 2

(I in.2) and rotational inertia of 9.8xi0-7 m4 (2.5 in.4).

Having considered the influence of single ribs the question arises as to the

effect of a ribbing array. For example it is well documented14 that a periodically

spaced array of ribs produces "pass" and "stop" frequency bands within which

flexural waves in the plating either propagate freely, that is unattenuated in

the absence of dissipation or, suffer an evanescent decay. However, given the

thin and, in turn, low impedance wing skin, it has been shown that the criterion

for achieving a very large impedance mismatch at each rib location for both

translation and rotation is easily realizable (Eq. III-21). Also, for the

problem at hand and as is the case for a single rib, the effectiveness of an

array will be bounded by the direct excitation, it being distributed over the

surface of the plating. Thus for the assumed parameters of interest, array

effects (stop bands) are not considered to be a viable means for enhancing

propagation loss along a wing beyond that implied'by the multiple application

of the above single rib analysis. Nor are array effects (pass bands) thought

to be of concern in terms of short circuiting single rib effectiveness.
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At this point it is informative to examine the dependence of the above

predictiqns on N, the number of propeller blades. For this purpose the previous

example was recalculated but for N=4 rather than 8. The frequency was held

constant at 283 Hz. Results are shown in Fig. III-6 for the unribbed and fully z

constrained (in both translation and rotation) cases. Also shown in Fig. III-6

as a dotted line is the spatial variation in the source pressure magnitude which

is now observed to decay more slowly. However for the unribbed case, the

normalized acceleration levels themselves are relatively insensitive to the

change in N, especially the decay in level beyond y = 8. This may be explained

as follows. For large values of mN the effective source area is concentrated

around y = ±I, the locations of the wing tips. However, for the assumed

parameters, the spatial decay in the source is still slow enough so that its

effective correlation length exceeds the characteristic (flexural) wavelength iz

in the skin. To obtain a measure of the net source strength we integrate the i

pressure over one quarter flexural wavelength from the (closest) wing tip.

Using Eq. III-3 we obtain an effective moment acting on the waveguide of

(.I+_4R)= p(_)R2 __ - : P(_) (lf/4)2M(_) (_s_l)f (_s/8)dYs ,

(I-Xf/4R) (III-22)

Xf/4R << 1

which is invariant to N. The (far field) waveguide response to this line

moment is given by

I
IA(Y;_)I (_/4)2exp[i(y-S)n/4]. (III-23)

4

= 1

Eq. 23 has been plotted in Fig. III-6 where it is shown to compare favorably i
r

with the far field portion of the response curve computed using Eq. III-7.

While N has only a minor effect on the computed acceleration levels for i
.

the homogeneous structure, this is not the case in the presence of a strong

structural discontinuity. For example, for the effectively rigid rib considered

earlier, the transmission loss across it is roughly 50 dB when N=8 (Fig. III-5)

but less than 30 dB for N=4 (Fig. III-6). This difference in rib effectiveness

is directly attributable to the slower decay in the unsteady lift for N=4 and

in turn a higher excitation level at and just beyond the rib location.
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Although the subject of this work is the propagation of structureborne

noise along the wing it is important to keep track of the acoustic radiation

associated with these vibrations as this radiation impinging on the fuselage

is also a potential source of cabin noise. This combined structureborne-

airborne noise path can short circuit potential structureborne noise control

measures.

To estimate this effect in connectionwith rib scatteringwe assume that

the structurebornepath has been blocked at some distance Yr from the propeller

hub. That is, at spanwise distancesy > Yr' the wing accelerationis zero.

The pressure radiated along the wing surfacemay be approximatedby (Ref. 13,
p. 94),

Yb
I-

pr(y;_) = (pW/2_) J {exp[ik(y-Ys)]/(Y-Ys)}a(Ys;_)dys (III-24)
m_

provided that e = pc/_m << 1 and (y-yr) >> W, where W is the average wing chord.

In Eq. III-24 k = _/c is the acoustic wavenumber. Rather than evaluate Eq. III-24

exactly for the accelerationfields computed earlier let us consider a simpler
case.

The far field grazing radiation from a rigid piston centered about x=y=0,

of rectangulardimensions 2Lx, 2Ly, and vibrating in an infinitebaffle with
accelerationamplitudea is (Ref. 13, p. 94)o

IPr(Y-Yr;_)I = [p/2_(y-yr)]4aoLxsin(kLy)/k (i!i_25)

We let 2Lx = W the wing chord. Also, since for the example under consideration

we are below the critical frequency, that is kf >> k, we allow 2L = lf/4 orY
one quarter of a flexural wavelength, it being assumed that radiationfrom the

remainingportion of the vibratingwing is minimized because of phase
cancellation. This yields

IPr(Y;_)I pWao/4kfy Y >> Yr " (III-26).

Normalizing this radiated pressure to the maximum sourcepressure

IPr(Y;_)/Po(_)I ~ pWao/4kfyPo(_)

(III-27)

= (4I_ k/kf)-I(p/pw)(Cw/C)(W/y)(Uao/Po(_))
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For example, using the physical parameters of our example and a frequency of

283 Hz (re=l)

IPr(y;_) (Po/_)I ~ 4xI0-3(W/N) (_ao/Po(_)) (III-28) -

-- m

Taking Dao/Po(_) to be roughly unity (see Fig. III-5 with y~yr) we see that,

ignoring spherical spreading in the form of (W/y) the radiated pressure is down

a considerable 48 dB from the maximum source pressure. Given the Chapter I

estimate of Po(_) = 137 dB re 20 _Pa for a typica! maximum source pressure,
it is concluded that this radiated field is negligible compared with the direct

airborne path.

6. •Discrete Stringers

To this point stringers have been modelled as being integral with

the wing skins and thus accounted for only to the extent that they modify skin

parameters yielding an effective stiffness or density. However, depending upon

geometric details this approach may not be adequate. For example if the _

stringer impedance is large relative to that of the skin and if the stringer

spacing is comparable to or exceeds the wavelength of freely propagating

flexural waves in the skin then the stringer must be modelled in a discrete

fashion. It is shown below that this situation provides a mechanism for

potentially enhancing the propagation loss of structureborne noise along the

wing over the bare skin, or integral skin-stringer case.

Consider the structure shown in Fig. III-7. The skin which is still taken

to be of infinite spanwise extent is now taken to be not just a lifting line as

before, but rather a lifting surface of finite chord, simply supported along

its sides. These simple supports represent the stringers. Assuming an

excitation pressure of•the form F(x,y) = R(x)_(y), the plating acceleration,

which is now a function of x and y, must satisfy the partial differential

equation

a +2a 2 _2
YYYY yyxx+axxxx-kfa = [12(I-_2)/Eh3]f(x)_ (y) (III-29)

The solution is in the form of a series

a(x,y;_) = E a (y)sin(nnx/L) (III-30)n n

Taking the Fourier transform of Eq. III-29 with respect to y yields
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[(k4+2k2k2+k4)_kf]_4= f (IZI-31)y ny n n n

with

L

2 o/f = -'._[12(I-92)/Eh3](2/L) f(x)sin(k x)dx (III-32)n n

and where k = nn/L and k is the wavenumber correspondingto the y-transformn y
variable. InvertingEq. III-31 and assuming a uniform chordwisepressure of

unit amplitude,that is f(x) = I,

7. (2/n_)sin(knX)Gn(y) (iii-33a)_a(x,y;_)= (-ikf/2) n=i,3,5

with

Gn(Y) = (l-_2)-½exp[i(l-K2)½y]+i(l+_2)-_exp[-(l+K2)½y] (III-33b)

where Kn = kn/kf and as before, y = kfy.

Eq. III-33 may now be used as an influence function governing the wing

response to the distributedlift definedpreviously but now in the presence of

discrete stringers,

7. (2/nn)sin(knX)f f(Ys/8)Gn(Ys)dYs_a(x,y;_)/Po(_)= (-i/2)n=I,3,5... - (III-34)
-oo

Although detailed calculationsusing Eq. 34 could be performed it is

sufficient,for present purposes, to examine the nature of the solution. Of

principal interest is that Eq. III-33 implies a cutoff frequencybelow which
2

K > 1 and therefore the accelerationdecays exponentiallywith spanwisen
15

distance from the source. The lowest cutoff frequency, correspondingto n=l,

is given by K1 = 1 or kfL = _.

For example, at one-half of this frequencykfL = _//2, and the minimum
exponentialdecay (n=l)given by Eq. III-33 is exp[-(_//_)y/L]. Thus, the

decay at a spanwise distance from the source equal to only one stringer spacing
(y=L) yields ~20 dB of attenuation.

Unfortunatelythis rather impressiveeffectivenesscan be short-circuited

by the flankingpath createdby the rigid body motion of the stringers. This

places a restrictionon the minimum size of the stringers,but fortunatelyonly
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on a spanwise length comparable to the stringer spacing. For example, a 20 dB

reductionin this rigid body motion requires a stringer to plating mass ratio

of the order of ten.

Typical values of L may be estimatedas follows. The cutoff criterion

kfL = z yields f(Hz) = z2104h(in)/L2(in2) (= 2.5x103h(m)/L2(m2))for an aluminum-3
skin. Thus, taking h = 1.7x10 m (.07 in.) as before, a 0.I0 m (4 in.) stringer

spacingyields a cutoff frequencyof 430 Hz, well beyond the assumed fundamental

blade rate frequencyof 283 Hz.

7. Win9 Sweep and Spgr Dynamics
b

In previous sections, with the exception of the discrete stringer

analysis, wing dynamics were modelled one dimensionally, that dimension being

the spanwise coordinate. This can be justified on the basis of the source model

which predicts an average, lift invariant to the chordwise dimension and the

implied assumption of a wide wing with zero wing sweep. As a consequence, the

structureborne noise propagation characteristics of the wing are dominated by

those of the skins. In this section we consider the potential structureborne

noise path along the spars, this path being parallel with and coupled to that

along the skins.

The spars themselves not being directly exposedto the unsteady lift are

excited via the ribbed shin structure. Since the overall surface area of the

skin greatly exceeds that which is in direct contact with the spars, it is

assumed here that spar motion is the result of propagating waves in the skin

being coupled into the spars. This may be justified as follows.
16

Taking the chordwise variation in the unsteady lift to be of the form
-i

X(X) = n [(b-x)/(b+x)] ½ with the front spar located at x = -b, and where

b = W/2, the wing semichord as defined in chapter _II, the integrated pressure

acting on the skin over the chordwise distance x > x > -W/2 becomesc

x
c

= [ X(x)dx = (W/n)[w/2+sin-l(2x /W)+(l-(2x /W)2)½] . cCX)c ] c c
-w/2

If the effective force on the spar (per unit spanwise distance) is approximated

as that acting on the adjacent skin extending out a Chordwise distance of If/4

then the ratio of this force to the overall force acting on the wing (per unit

spanwise distance) is
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pc(-W/2+If/4)/Pc(W/2)= (2/n)(If/W)½ << 1 If/W << 1 .

To examine the skin-sparphenomenonwe analyze the situation shown in

Fig III-7. A straight crested flexuralwave propagatingin a semi-infinite

plate (skin)is incident on a beam (spar)of infinite extent at an angle given

by _. This angle may represent the sweep angle of the wing or another source

of skew. The beam serves as the terminationof the plating and is capable of

sustainingboth flexural and torsionalwaves. Howeverwe will simplify our

analysis by ignoring coupling between torsionalmotion in the spar and in-plane

or membranemotion in the skin. The analysis of this problem is straight-

forwardand follows closely that given in Ref. 17. (In Ref. 17 an infinite

rather than semi-infiniteplate is analyzed.) A unit amplitudeharmonically

varying flexuralwave is definedby

w.(x,y)l= exp(ikfysin_)exp(ikfxcos_) (III-35)

where # is the incident angle on the beam measured from the x coordinate axis.

Grazingincidence on the beam (spar) is given by _ = n/2 and normal incidence

by _ = 0. The reflected wave takes the form

w (x,y) = exp(ikfysin_)+Rexp(-ikfxcos_)+RNexp(_kfx(l+sin2#)½)r (III-36)

The resulting translationalmotion of the spar (x=0) is given by

Iws(y)l Iwco,y)l = IwiC0,y)+WrC0,y)l= l+ +R (==-37)
and the (torsional)rotation of the spar is

l Ws(y)/ xl = kxll-R+iRNI

After expressing the interaction shears and moments in terms of the boundary

motion the reflection coefficients R and l:lN may be determined from continuity
of displacementand slope. The result is the followingset of simultaneous

equations.

[A]R= B (III-39)

with

[IJ 1_S+l+sin2_-_sin20

RN _ cos_-(cos2_+vsin2#)-!
1 "
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and

[A] = IS+icOs_(l+sin2_-_sin2_)22 S-_(l+sin2_)½sin2_ IiUcos_+(cos _+gsin _) U(l+sin2_)½-(l+sin2_-_sin2_)

with

S = (_kf/h) [(Cb/Cp)4sin4_-l] (IXI-40)

U = (Jk_/h)[l-(ct/Cp)2Sin2_] (III-41)

and where ct = c (K/J)_ and cb = (C(rg)b_) are the velocity of torsional and½
flexural waves in the beam and Cp = (C(rg)p_) is the velocity of flexural

waves in the plating. In the above equations (rg)b and (rg)p are the radii of
gyration of the beam and plating respectively, and it has been assumed that

the sound speed in both the beam and plating is c. The term c represents thes

shear velocity in the beam and K and J its cross sectional torsional constant

and polar moment of inertia respectively. Also h = /_(rg) is the platingP

thickness and _ the cross sectional area of the beam. It is noted from

Eqs. III-39 that with the exception of Poisson's ratio v, the dependence of

the reflection coefficients on the physical parameters of the system is solely

through the flexural parameter S and the torsional measure U. Once again our

interest will be limited to an analysis of the nature of the solution dictated

by the mathematical model.

First we observe that for grazing incidence (_ = z/2), Eqs. III-39

reduce to

= - (III-42)

yielding R = -I and RN = 0. Thus for this (zero wing sweep) case we confirm

that there is no coupling into the beam (spar). Although it is not particularly

relevant to the problem posed, it is of general interest to explore the other

extreme, namely normal incidence for which _ = 0. Here Eqs. 39 reduce to
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I sl[ lIs-i= - (III-43)

tiU+l U-I l-iU

And it can be shown that under this circumstance

s_olws(y)l_ 0 s>>1
4 S,U << 1

2 S<<I, U>>I

Physically, large values of S and U imply large translational and rotational

beam impedances respectively, relative to the inertial impedance of the plating.

More relevant tothe issue at hand, we now consider the solution to

Eqs. III-39 for arbitrary values of € but a variety of limiting cases for S

and U. For S >> I, Eqs. III-39 yield the following solution for the reflection

coefficients

jR1Eu1sin2tlcisin2ill[ i ]= D-I (III-44)

RN - [iUcos_+cos2_+_sin2_ ] iUcos_- (cos2_+_sin2_)

with

D = U[ (l+sin2_)½-icos@]-2 .

If in addition we assume U >> 1 then Eqs. III-44 give R+_ ~ -I and therefore
from Eq. III-37,

[.
Ws(Y). = 0 ('rII-45)s,u_

On the other hand if we assume U << 1 then Eqs. III-44 yield

L
S_,_, U=0 Ws (y) = '°sin2O (III-46)

Similarly it can be shown from Eqs. III-39 that

L 'I
U*_, S=0 Ws(Y) =i (2+sin2O I/(l+sin2_) • (III-471

/
Thus, .in the asymptotiq limit of large translational and rotational spar

impedances, there is n¢I translational coupling into the beam. However, if

1
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either the translational or rotational coupling factors is negligibly small

then the coupling is of the order unity.

The quantity S is small if either _kf/h << 1 or sin_ ~ (Cp/Cb)-

However, since for typical wing structures Abkf/h >> 1 only the latter

condition is of interest. Taking the spar and skin to be of the same material
½

(Cp/Cb) = [(rg)p/(rg)b] , and therefore there is strong coupling into the spar
for incident angles

-i ½
#f = sin [(rg)p/(rg)b] (III-48)

[

Similarly, since
typically Jk_/h >> 1 there is strong coupling into the beam

for incident angles that satisfy sine ~ (Cp/Ct)½
or

_t = sin-l[ (_//_)(C/Cs)<-lhp/Ic] (III-49)

where the geometrical factor K = K/J and I = 2nc/_ is the wavelength ofc

compressional waves in the plating. Eqs. III-48 and III-49 are expressions for

the angles at which there is wavenumber matching between flexural and torsional

waves in the beam and flexural waves in the plating.

In order to evaluate the degree of coupling between wing skins and spars

based on the above model, one first estimates the quantities S and U. To do

so we hypothesize an aluminum spar, rectangular in shape, of thickness t = 2h

and height H = I00 h where the skin thickness 1.7x10-3 s p
s p hp = m (.07 in.). i

Further we use c/c = 1.7 for aluminum <•= 4(t/H)2 for a rectangular crosss18
section, and consider a frequency of 283 Hz. This yields _f ~ 6° and _t " II° i

and thus strong coupling due to wavenumber matching occurs only near normal

incidence. Also Abkf/h = 8.8 and Jk_/h = 14.2. Therefore, if we somewhat

arbitrarily assume a wing sweep of 30° and take this as our angle of incidence

then for the above parameters S,U > I0. From these large values little coupling

is expected between the (bare) skin motions and the front and rear spars.

Although beyond the present scope, it should be noted that the above

conclusion may not hold in the event that the effective skin thickness is

significantly larger than assumed or if there are large rib motions coupling

well into the spars. Also, in this discussion the translational motion of the

spar was taken as a measure of coupling while in practice spar rotations are

also relevant.
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8. Summary of Results

The more salient results from Sections III.A.I through III.A.7

are summarized below.

a. For a rib to enhance significantly the propagation loss along

a wing it must constrain both the translational and rotational motion of the

skin. The criteria for achieving this objective appear to be realizable with

minimum weight penalty. In practice rib effectiveness will be limited by rib

elasticity which reduces its scattering strength and allows more efficient

propagation across and coupling into it, both effects leading to an increase in

cabin noise, the latter via the rib-spar-fuselage path.

b. Sound radiation (airborne) associated with structureborne

noise scattering from structural discontinuities along the wing is negligible

compared with the direct acoustic path.

c. Stringers that are small and in effect structurally integral

with the skin have minimal impact on propagation along the wing. However, cut"

off phenomena associated with a parallel array of discrete stringers could be

created and exploited to enhance propagation loss. For an illustrative example

the criterion for effectiveness is given as kfL < _, where kf is the (frequency

dependent) wavenumber of flexural waves in the skin and L the interstringer

spacing. Also, the (spanwise) length of the stringer array need only measure a

flexural wavelength in the skin and therefore entails minimum weight penalty.

d. Spar vibration levels directly excited by the unsteady lift

are less than those in the skin near the midchord. Also, in the absence of

stiffeners, either ribs or stringers, or extreme wing sweep, coupling of

structureborne noise from the skin into the spars is minor. The extent of

coupling from the skin to spars in the presence of ribs has not been determined,

and in view of the previous conclusions this skin-rib-spar-fuselage path may be

the dominant one for typical wing configurations.

B. Wing-Fusela@e Interaction

I. Introduction

In this section a simplified analytical model of a fuselage that

is structurally connected to a wing is presented. In an aircraft the frame of

the wing, namely the front and rear spars, is structurally connected to that of
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the fuselage via a geometrically complex structure, shielded somewhat from the

passenger compartment of the cabin. Thus structureborne noise levels in the

spars will be attenuated to some extent as they propagate through the fuselage

and eventually radiate as cabin noise. For an aircraft the detailed modelling

of the wing-fuselage structure is beyond the scope of this report. Nevertheless,

to examine some of the characteristics of wing-fuselage interactions and to

simulate a laboratory experiment recently performed at NASA/Langley a simplife_

analytica!model is studied. In this model the fuselage is represented by a

uniform cylindrica! shell while the wing is modelled as a freely supported beam.

Coupling between the beam and shell occurs along the width of the beam (i.e.,

chord of the wing) where the shell and beam intersect. Along these lines of

contact the wing imparts both shear and moment reaction loads to the fuselage.

If the beam is assumed to pass through the center of the shell, the reactions of

the be_ on the shell are an in-plane load and a moment. In this fully coupled

structural model the effects of stiffeners in the form of circumferential

frames or longitudinal stringers as well as the effects of !oading on the shell

imposed by the internal fluid are neglected. The latter effects are discussed

further in Chapter IV. These effects are considered separately using a model

of a frame stiffened shell that is described at the end of this section.

2. Unstiffened Fuselaqe

Figure III.8a, b, and c shows the geometric idealization for the

analysis of the wing-fuselage system. The wing, modelled as a beam of length

L , passes through the diameter of simply supported cylindrical shell ofw

length Lf (w and f subscripts respectively denote wing and fuselage).

Stiffening frames and stringers are not included in the analytical model that

follows; however, the effects of frames are examined in Section III.C. As

indicated in the wing free body, the structural effect of the shell is modelled

as a set of unknown normal-to-beam forces and moment reactions at the two

points of contact. For the shell analysis these same forces and moments are

assumed smeared over, or distributed along, the width of the beam (root chord

in an actual aircraft).

Displacements and rotations at the two contact locations may be

independently expressed for beam and shell in terms of respective structural

admittance matrices and the unknown load vector (for the beam the known
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exciting force F also takes part). Finally equating displacements and
o

rotations for the two systems at their two points of intersection one obtains

a set of 4 simultaneous equations (2 degrees of freedom x 2 points of contact)

from which the unknown forces may be calculated. For the shell we have chosen

the center chord point z in the displacement calculation for continuity witho

the beam motion. Thus the symmetric coupled system becomes,

- . * * - ]ClI-KC_I c12-Kc12 c12-Kc13 c14-Kc14 F1 c01

|
c22-Kc22 c23+Kc14 c24+Kc13 F 2 c02l

= " I • F (111-50). . o

c33-Kc33 c34-Kc34, Ml/a c_i11

c24-Kc33 M2/a c02j

where the constants Cll , c12, etc., form the admittance matrix of the wing, and* *

Cll, c12, etc., that of the shell. These are all given below. The nondimensional

parameter K gives some indication of the relative importance of the beam and of

the shell in the combined admittance matrix. It is given by

K =
_Lf

Here Lf, as all wavenumbers and other spatial quantities except a, h, and Iw

in what follows, appears normalized by the shell radius a. Iw, Ew stand

respectively for the moment of inertia of the beam about its cross-sectional

horizontai axis, and E for the beam's Young's modulus. Ef, _f, h, and a arew

shell values of Young' s modulus, Poisson' s ratio, thickness and radius.

The beam constants are expressed in terms of free-freebeam eigen-
19

functions

sinhkfmx+sinkfmX+C (coshkfmX+CoSkfmX) •
_m(X) = (III-51)

4
m fm-kf

where
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+ 2 (I+C) e + (l-C)

+ (C2-i) sinhkfmLwC°SkfmLw + 4

[ nmwC m w]}+c -_+ +

sinhkfmLw-sinkfmLw

C = coskfmLw_COshkfmLw

kfmLw =-_(3.0112,S,7,9, ...)

2 _a 1
kf = c r

P g

where r is the beam's radius of gyration (normalizedby a) for its cross-
g

sectionalhorizontal axis.

The beam system's constants are

1 [I 12 (Xl-Lw/2)2]Cll = Zm*2(Xl) k_w + L2w (III-52)

c12 = mZ_m(Xl)$m(X2)- l--!---[l'k4L3fw - 12(Xl-Lw/2)2]L2w

' 12

c13 = mZ _m(Xl)_m(Xl ) k4L3 (Xl-Lw/2)
fw

c14 = mZ _m(X2)_m(Xl) 12 (Xl_Lw/2)
k4L 3
f w
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II 12(xI_Lw/2)2]W o

I

e23 = mE_m(Xl)_m(X2)+ 12k4_.3(Xl-Lw/2)
fw

I

C24 = mE_m(X2)_m(X2)+ I____2
k4L3 (Xl-Lw/2)
fw

'2 12
c33 = mE_m (Xl) k4L3

fw

' ' 12

c34 = mE _m(Xl)_m(X2) k4L3
fw

'2 12

c44 = mE_m (x2) k4L3
fw

Co1 =mE lil"m(Xo)+m(X 1) k4flLw + "L-'2" (x 0 Lw/2)W

-. }1 _ 12 (Xo_Lw/2) (xI_Lw/2)

C02 = mE*m(X°)*m(X2) kfLw 'L2w

I I

CO1 = mE_m(Xo)_m(Xl) 12 (Xo,Lw/2)k4L3
fw

c02 = mE_m(Xo)_m(X2) 12 (Xo_Lw/2)

The shell constantsmay be obtained from analysis for thin cylindrical

shells in Ref. 13, p. 237. The shell system's constantsare

m_z ALfsin o m_sin 2
. Lf 2 Lf alla33-a13 1

Cll = mE ALf _ det € (III-53)
m_ -- n

Lf
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m_z ALfo m_

= - E E (-l)n alla33-a13 I
c12 m ALf n \ det /_n

m_
Lf

i

mgz ALfo mg
sin-- sin

, = - E Lf 2 Lf E n (a13a12-alla23-_c13 m ALf n det /
m_ --

Lf

m_Zo mz ALf

sin L--_sin 2 Lf {el3a12-alla23_= _ E Z(-I)n
c14 m ALf n \ det /

Lf

m_z ALfo m_
sin i sin 2

* = E Lf 2 Lf E n2 (alla22-a12_c33 m ALf n det /
m_

Lf

m_z ALfo m_
-- 2

sin Lf sin 2 Lf n (alla22-a12)
= E (-i)

c34 _ ALf n \
mz--

Lf

where

2 for m = 0

gn

1 for n _>1

= _2 l-vf 2 m_
all 2 n -

a12 = - n
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m_

a13 = 9f L_f

= _2 _ (1+82) m_ 2a 22 - n (1+82)

a23 -n 1 + Lk_f/ + njJ

2. ]2a33 1 k_f / n2

all a12 a13

det H a22 a23

a33

I/DT-inc f
p

h/a

and where nf stands for the shell loss factor.

C. Model of Frame-Stiffened Cylinder

The external fuselage is a shell that is stiffened by both

circumferential frames and axial stringers. In the laboratory test cylinder

discussed in Section V the shell is coupled to a beam through either of these

stiffeners by bolt attachments. The analytical model of the coupled beam and

shell discussed in the previous section does not include internal stiffeners.

In order to examine the effects of these structural elements, the structural

response field of a frame stiffened cylindrical shell with internal fluid in

response to localized circumferential force and moment excitations is examined.

These excitations can be viewed as providing influence functions (i.e., pressure

per shell load) for the coupled problem of a shell and wing.

The analytical model of the framed stiffened cylinder assumes the shell

to be simply supported. The model allows the interior fluid loading to be

included in calculating the shell response. The frames are modeled as rings,
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having three translationaldegrees of freedom as well as rotation alignedwith

the circumferentialdirection. The impedancematrix for the frame dynamics is

given in Ref. 20. Coupling between the shell and frames is assumed to occur

through line reaction loads at each frame location. Excitation loads are

applied at the centroidof the cross sectionof the driven frame. Under these

assumptionseach circumferentialmode of the shell couples to the frames and

the reaction loads for a given circumferentialmode are obtained by solving a

system of equationsequal to 4 (framedegrees of freedom) times the number of

frames. The terms in each equation involve a sum over the axial modes of the

shell._ Once the frame reactions are known, they are appliedone-by-one to the

shell to calculatethe response. The contributionof any particular frame to

the response can thereforebe examined by omitting it and noting the change in

the response. As discussed in Chapter V, this procedure is useful for examining

the importanceof specific structuralelements to the response and interior

sound field.

III-24 iI
I

L



TOP SKIN_ STRINGER REAR SPAR
2

_
......... -- BOTTOM ,,// /

yy
H ,
M

I
t'J
t.n

FRONT SPAR

Fig. III.l - Schematic of Wing Structural Components



0 I I I I t I i I 1 I A I I I I t i t !

I
I

"10-
\
\
\
\ i

/ , j/ \
-20 -- / \ ,

/ \
SKIN ACCELERATION / \

m m (UNRIBBED) / \\
,-, "o -o / \

/ \

-30-.f , , -f,J

/ \
..._ / \
I>,I_, I \ I

,+.- / \ J-40 -- /%, \\
, \

Fig. llI.,:- Normalized skin nvc:elerntion ,uldunsteady / 1/ UNSTEADY LIFT \
lift VS spanwise di.,;tance from vroveller / \/ (N=8) \
hub (N = 8; f = 283 II:'). / \

-50 -- / \
/ \
/ \
I \
i ,, \

-03 _ I i I i Iitl/ i i i L _ I i t
2 5 10 20 50 100

_ =kfy

!

I_ - ---J- ............................................................................ I ..... l ...........



Po(Y;_O)

f

,hiI I I I 1
_ x...

AIR/FUEL LAYER (p,c) SKINS(Z=-i_)

J

11I 1 1
k J

Po(Y;€o)

Fig. III.3a - Mathematical model of skin-air/fuel layer interaction.
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Fig. III.7 - Mathematical model of skin-spar interaction.
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Fig. III.8a,b,c - Wing-fuselage structural interaction model.
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IV. ACOUSTIC MODELS FOR CABIN INTERIOR

A. The Sound Field in a Fuselage Modelled as a Cylindrical Shell

Terminated by Bulkheads

i. Introduction

The sound field in an aircraft fuselage, modelled as a cylindrical

shell vibrating in response to structureborne noise incident along its wings,

is formulated for two types of acoustical treatment. In both cases the

cylindrical shell is assumed to be simply supported and terminated by bulk-

heads, the wings being located in the horizontal plane of symmetry. Both

analyses assume that the internal source impedance of the shell modes is so

large compared to the impedance of the corresponding room modes, that they

(the shell modes) act effectively as constant-velocity sound sources. Under

these circumstances, pressure peaks are associated with antiresonance of the

air volume, as well of course as with shell resonances.

First, in Section B the sound field inside a cylindrical shell with zero

surface absorption is calculated as the sum of two pressure components, one

describing the contribution of the cylindrical part of the boundary, and the

other that due to the presence of the two end bulkheads. InSection C.I

this solution is generalized in approximate form to account for small surface

absorption. In the theory each of the pressure components contains parameters
i

through which bulkhead and radial absorption may be independently controlled.

The result derived here, however, takes into account only the latter effect.

Inclusion of the former axial effect would require a parallel though somewhat

simpler analysis which would complicate final expressions needlessly. In

Section C.2 absorption parameters used in B.I are related to fuselage rever-

beration time. Finally, Section D is a discussion of the theoretical modal

density for both shell structural response and internal acoustic field.

B. The Sound Field in a Vibrating Cylindrical Shell with no Sound

Absorption

I. Formulation of the Problem

The radial shell response is in the form of a double Fourier
t

series, ..
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w(_,z) = exp(-i_t) 7. W sinn_ sin m____z
m,n mn L (IV-!)

Here z is measured from the one shell extremity and the circumferential angl6

is from the plane containing the wings. In the more general case where the

wings are not restricted to lie in a plane of symmetry, Eq. IV-I would have to
be supplemented with a cosn_ series.

The sound pressure satisfies the steady-state wave equation in cylindrical
coordinates

(V2+k2)p = 0
(IV-2)

and the boundary conditions

• _P = - pw(_ z), r = aDr

(IV-3)
 P=0_z ' z = 0,L •

A solution satisfying the former boundary condition is readily constructed,

by inspection, but being matched to Eq. IV-l, it necessarily displays nodal

planes coinciding with the bulkheads. This solution taken by itself is

incompatible with the latter boundary condition in Eq. IV-3. We shall there-

fore construct the pressure field by combining two pressure components.

P = PI+P2 (IV-4)

satisfying respectively the boundary conditions

_Pl 1

Dr Pw(_,z)

r = a (IV-5)
_P2

= 0

and

_P2 8Pl

_z Bz , z = 0,L (IV-6)

This procedure can, if desired, be modified to account for a non-zero specified
bulkhead motion, viz., Z u (r)sinn_.n
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2. Pressure Field Radiated by the Vibrating Shell

Eq. III-i admits solutions in the form of Bessel functions of the

first and second kind. However, the latter display a singularity on the axis

r=0. Consequently, in the absence of significant absorption, only functions

of the first kind are required. Taking w positive outward, it can be verified

that the solution which satisfies Eq. IV-5 is of the form

J (k r)

Pl(r,_,z) = - p 7 Wmn n m sinn_ sin m_z . (IV-7)
m,n k J' (k a) Lm n m

where the radial wavenumber is

k = [k2-(m_/L)2]½ (IV-8)m

This pressure component describes the sound field in an infinitely

periodic shell. If the shell is provided with a sound absorptive core, the

Bessel functions in Eq. IV-7 are replaced by Hankel functions. Both solutions

predict vanishing pressures in the planes z=0 and L. Some analyses even though

intended for finite shells, erroneously omit the pressure component p_ required
212

to account for the bulkheads, whether the space is anechoic or not.

The axial pressure gradient in the plane of the bulkheads is

apI J (k r)
az P 7.m_ 7 W n m sinn_ , z=O

m L n mn k J' (k a)
m n m (IV-9)

J (k r)
= _ P 7.m____(_l)m 7 _ n m sinn_ , z=Lm L n mn

k J (k a)
m n m

_e pressure component in Eq. IV-7 displays resonances at frequencies

where the product k a equals a root Of the Bessel functions. As e_lained inm

the introduction,the pressure peaks generatedby a high-internal impedance

source are associated with antiresonancesat the zeros Ynsa of the Bessel
function derivatives22

fa c_2m2_2) ½= + _ , J (Ynsa) = 0 (IV-IO)
_s _ ns
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There is therefore a triple infinity of room resonances and antiresonances.
For k = 0,m

fa _-cm
om 2L (IV-II)

is an antiresonance for n=0. This wave harmonic is excited only if the wing
plane does not contain the cylindrical axis.

It is convenient to distinguish between odd and even axial modes by

selecting a new origin of coordinates in the midplane, at z = L/2. The new
axial coordinate is

i

Z = Z - ½L

The pressure in Eq. IV-7 now becomes

J (kmr) I (-i)(m-l)/2cos(m_z'/L), m = 1,3,...

') 7. mnn
Pl(r,_, z = - P , sinn_ (IV-12)

m,n k J (k a)
m n m (-l)m/2sin(m_z /L), m = 2,4,...

3. Pressure Field Generated by the"Bulkheads

We now construct the pressure component which satisfies Eq. IV-6,

where _pl/_Z is given by Eq. IV-9. Noting that odd values of m in Eq. IV-7

correspond to the even modes, i.e., modes symmetrical about the midplane,

while even values of m correspond to modes which are antisymmetric about this

midplane, the pressure component we are seeking is of the form

]• Jn (Yns ' 'P2(r,_,z ) = 7 r)sinn_ P cosk z + 7. p sink z
n,s m= ,3 mns ns m=2,4 mns ns

where (IV-13)

k = (k2-¥2 )½
ns ns (IV-14)

and where, as in Eq. IV-II, Yns a is a root of J'n"

Consequently, the introduction of P2 does not alter the boundary condi-

tion satisfied at r=a by pl. Differentiating Eq. IV-9 with respect to z',

one can Satisfy the boundary condition in Eq. IV-6 by expressing each m,n
term in Eq. IV-9 to a Fourier-Bessel series:
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k L

I ns
sin -- , m = 1,3,.

pW m_ J (k r) 2 ""

mn n m - Z k P Jn(Ynsr) (IV-15)k L , s ns runs
m J (k a) k L

ns
n m cos --_-- , m = 2,4,...

Multiplying both sides of this equation by Jn(Yns r) and integrating allows

one to solve for the coefficients of the Fourier-Bessel series: 23'24

[sin(knsL/2 ]-I m=l 3,.

I l • •2pm_y s mn mns
P = (IV-16)

rrms k k L(y 2 a2-n 2) J' (kma)Jn2(Ynsa)
ns m ns n [cos(knsL/W)]-i m=2,4,

t o •.

where the integral I is 25'26'27mns

a

Imns - !Jn (kmr)Jn (Ynsr)rdro
(IV-17)

k a

_ m Jn(Ynsa)J '(k a)
2 _k 2 n m

Yns m

Combining Eqs. IV-13, 16, and 17, this yields an explicit expression for the

bulkhead-reflected pressure:

Wmnmy2ssinn@ Jn (Ynsr)2p_a Z(r,#,z') =P2
2 2 2 n2)

L m,n,s kns(Yns-km )(y2sa - Jn(Yns a)

(IV-18)
!

cosk z

{ ns
sin(k L/2) , m = 1,3,...

ns

sink z'
ns

cos(knsL/2 ) , m = 2,4,...

This does not introduce any additional resonances or antiresonances.

The resultant pressure is finally obtained by adding Eqs. IV-12 and 18

as indicated in Eq. IV-4.
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C. Sound Field in a Vibrating Cylindrical Shell with Small Sound

Absorption

i. Generalization of Section B Theory

We define the cylinder internal pressure p* and associated

Green's function G as the absorptive counterparts of those in Section B

(there defined without asterisk though G is not Used explicitly) With non-

zero surface admittance K (Ref. i, Eq. 24) their boundary-value problems are,

respectively,

V2P*+(ka)2p * = 0 (IV-19a)

__2__+ iKp* = -pwa on n = r = 1 (IV-19b)_n o o
o

_
_n - 0 on no Zo = ±L/a (IV-19c)

o

V2G*+(ka) 2 * - -
G = 6(x-x ) (IV-20a)o

_G *
_n + iKG = 0 on n = r = 1 (IV-20b)o oo

so that

p* 1 *
= _ dSG _r + iKp* = P dsG*w (IV-21)

S o -- S

In terms of room modes appropriate to the cylindrical geometry the

solution for G may be constructed for small values.of K:

, Y J(7 sr)Jn(Ynsro)sinn_sinn_0sin(m_z/L)sin(m_Zo/L)G = 2a Z

sins j2( , ° *2 2. I (m a) 2 "2] (IV-22)
n Yns ) [Yns -n I (ka) 2 - + - 7n s

where r,ro are normalized by the radius a and ¥ns are the eigenvalues of the

radially absorptive boundary condition, a modal form of which (Eq. IV-25 below)

is given shortly, For small K Yns may be assumed equal to the real zero Yns
plus a small complex part; viz.,
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Yns = Yns+ie (IV-23)

For E=0 G as given by Eq. IV-22 collapses to the room mode form of G,

the Green's function for the nonabsorptive case which contains an infinite anti-

resonance whenever the denominator vanishes, i.e., whenever (ka)2 (m_a/L)2 2- -¥ns = 0,

or at frequencies given by,

f = 2nc/a

+Yns

With absorption, however, the corresponding value of this quantity is

always finite, since then

(ka)2 (m_a) 2 .2- -_- -Yns = -2iEYns (IV-24)

We now calculate E in terms of K. The r = 1 homogeneous boundary condi-
, o

tion on G (Eq. IV-20b) implies that

lim y sJ (y sro)+iKJ (Ynsro) = 0 (IV-25)n
r .I
o

J'f, * . ,,
Since n Yns) = XEJn(_ns)' and Jn(Yns ) = Jn(Yns )+0(E2) it follows that

-KJn(Yns)
E =

m!

YnsJn (Yns)

so that the right side of Eq. IV-24 becomes

2iKJn (Yns)
it

J (y )
n ns

The Pl component of pressure with nonzero absorption may now be obtained
• .

in terms of a triple sum of room modes by substitution of G with the above

result for _:

* *2
, J sinn_sin m_z/Ln (Ynsr)Yns

Pl = 2pa l mn (IV-27)

Jn(y s)LYns-n } (ka) - L--_ - Yns
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or

Pl = -pa Z sinm_z/L sinn@ _mn(r)W (IV-28a)mn mn

J (y* r)y*2ns ns ns

_mn(r) = 2 7. 2 _] (IV-28b)

s , *2 2[*2 (roLe)Jn(Yns) (Yns-n ) Yns + _ - (ka)_]

In Section B, Pl appears in a different form, however. There the more

economical double sum solution in Eq. III-7 was the end result of an implicit

construction of the Green's function to satisfy the radial boundary condition

with no absorption. Letting _=0 in Eq. IV-27, it follows therefore that the

following identity must hold for any m, n, ka combination

2
Jn (Ynsr)Yns

2 _

s .Jn (Yns)(y2s-n2) Yns + - (ka)

J (!(ka) 2 (m_a/L)2n - r)
= (IV-29)

!(ka) 2-(m_a/L)2 J' (!(ka) 2'"( / )_ _ 2)- mzaL ,n

One may now approximatethe right side of Eq. IV-28b for E << I. The

result is the term on the left side of Eq. IV-29 plus the following correction

term

_ns
+2icr (l-r) 7. (IV-30) ,

s y2s+n(m_a/L) 2_ (ka) 2

Away from the antiresonances then, where no single term in the s sum

dominates, the eigenfunction for the double-sum solution from Section B may

still be used as the right side of Eq. IV-29 after neglecting its 0(E) correction

given in Eq. IV-30.

At the antiresonances, where the s=s term for which Eq. IV-24 is satisfied

dominates the sum, we find that the latter may then be approximated to yield that

J (Ynsr)
_mn(r) =~__-i n Yns (IV-31)

£ Jn (Yns)(Y_s-n2)
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which upon substitutionof E in terms of K (Eq. IV-26), and use of Bessel's

equation (Jn/(n2-y2ns)=Jn/y2s), gives that

-i Jn (Ynsr)
_mn (r) =

K Jn (Yns) (IV-32)

In summary then, the absorptive double-sum model for Pl could be kept as
given in Section B away from the antiresonances; and near them, where the term

on the right side of Eq. IV-29 becomes infinite, the latter can be replaced by

the expression on the right side of Eq. IV-32, i.e., a finite quantity. A

practical payoff of the approximations is that the absorptive case continues

then to have Bessel functions of real arguments, thus allowing use of well-known

efficient numerical techniques for their evaluation.

So far we have dealt only with the Pl component for pressure, which

appeared in Section B in terms of a constructed Green's function and which we

could not therefore immediately generalize to account for small radial

absorption. The analysis first had to invoke the room-mode formulation, for

which the generalization to include absorption is in principle always simple.

The P2 solution given in Eq. IV-18, however, appears already cast in room-mode.

form. The corresponding P2 solution is thus simply given by that same expressionw

with Yns replaced by Yns" Furthermore, for convenience of computation and

consistency with the above analysis for pl,: the imaginary part of Yns may be
dropped from all Bessel function arguments and kept only in the algebraic

denominator terms for modes containing an antiresonance.

It is interesting to note that the P2 solution in Eq. IV-18 exhibits a

larger number of antiresonances than does PI" It contains all the antiresonances

apparent in Pl as indicated by the 2 2, Yns-km term in the denominator in Eq. IV-18

(where wavenumbers do not appear normalized by a as they do here), but also it

contains others corresponding to zeros of k in Eq. IV-14. However, these new
ns

antiresonances may be interpreted as given by the same criterion which defines

those of PI' so long as the latter may be allowed to include the m=0 possibility.

The reason for omission of m=0 in earlier discussions is, of course, that m=0

represents a degenerate mode for Pl' which is constructed in terms of sin mnz/L
eigenfunctions.
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2. Estimate of Reverberation Time

It may be useful to relate the notation used above to the s_bols

fo_d in standard texts such as Morse 28 and Pierce, 29 and to express the

attenuation te_ in te_s of the reverberation t_e. Mile Eq. IV-23 is

associated only with the radial wavenumber, being effectively a large-L or

small-m approximation, room acoustics theory e_odies the resultant wavenumber.

For ease of relating varifies to those of Morse and Pierce, we revert to the

dimensional fo_s of Yns' etc., as used in Section IV.B.

In cylindrical coordinates, the complex wavenumber is

*2 2 + m_____ (l+inN). (IV-33)
YN = ns L2

This related to the imagina_ te_ in Eq. IV-23 as

€

nN _ - 2-- , n N << 1 (IV-34)
YN

28
In Morse's notation,

YN = _N/_ ' nN = 2
_N

29
In Piercees notation,

YN = k(n)

kB

nN = n____n
k2(n)

The imaginary component of Eq. IV-33 is related to the characteristic decay time

T of mode N asn

*2 k

Im yN =c--_N

Since TN equals the reverberation time TN divided by 6 £n I0 = 13.8, this can be
writtenas

*2 7.3x10-4f -2
Im 7 = T m

n

where f is in Hz and T in sec.
n
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The attenuationconstant in Eq. IV-3 can be computed from the attenuation

A over the bulkheadsand the attenuationA over the cylindricalboundaryz r
(Ref. 28, p. 409):

Ar ] (IV-35)
1 2A + 2

E = - 16---V z I-(n/Ynsa)

where V is the volume of the cylinder.

D. Modal Density and Resonance Bandwidth of the Structural Response and

Sound Field

Peak pressures are observed at the natural frequenciesof the shell

and at the eigenfrequenciesof the room, Eq. IV-10, It is of interest to

determinethe respective contributionsof these two families of resonances for

the parameters of the laboratorytest model.

I. Structural Resonance Spacing of Cylindrical Shell

The shell acts effectively as a membrane below its breathing mode

natural frequency fo = 2_a/Cp, where Cp is the plate velocity in aluminum. For
membrane modes, stiffeners are not anticipated to raise the natural frequencies

significantly, i.e., to decrease the modal density. In the frequency range

above the breathing mode resonance, where the shell responds predominantly in

flexure, stiffeners are anticipated not only to raise the natural frequencies,

but to cause the modal density to decrease with increasing frequency, in contrast

to the modal density of the unstiffened shell which is frequency independent at

high frequencies. In the low frequency range, below the ring resonance f =r

f (l-v2) (= 3.2 kHz for the 0.50 m (20 in.) shell), we shall therefore approximateo

the modal densities of the stiffened shell by those of the unstiffened shell.

dN 2.5 fl/2 L -I

df _ _ f3/4 h ' Hz , f _<0.48 fr (IV-36)
r

3.6 L f f
-_ 0.48 < _--_ 0.83

h f2 ' r
r

For the 0.5 m (20 in.) shell, this becomes

dN
df = 1.3 x 10-2fI/2-- , f _<1.5 kHz
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= 3.4 x 10-4f , 1.5 kHz < f < 1.7 kHz

The spacing (dN/df)-I of the resonancepeaks is shown in the first column of

Table IV-I.

2. Room Mode AntiresonanceSpacing

The modal density of the characteristic frequencies of the modes

of a cylindrical room are given by (Ref. 28, p. 400)

_ = -- L + __2af (a+L) + _ L " Hz-Idf c c ' (IV-37)

For the dimensions of the 0.50 m (20 in.) shell, this yields

dN _ 7.6 x 10-8f 2 + 3.1 x 10-5f + 0(10-3) Hz-Idf , (IV-38)

The corresponding frequency spacing is tabulated in the second column of

Table IV-I.

3. Bandwidth of Pressure Peaks for Structural Response and for

Acoustic Field

The bandwidth between the -3 dB points of a peak is _f. Even

selecting a conservatively small structural loss factor of n = 0.01, the

bandwidth is seen to exceed the average resonance spacing of the shell modes i

(third column of Table IV-l). !

The loss factor associated with a room mode is computed from Eq. IV-35
2

with YN = k. We shall conservatively assume that (n/Ynsa) << i. Assuming that

all interior boundaries are covered with a blanket whose absorption coefficient

is as indicated in the fourth column of Table IV-I, one computes room bandwidths

which, once again, are wider than the average resonance, or antiresonance, spacing.

Since room modes tend to cluster, there may of course exist noticeable pressure

peaks in frequency ranges sparsely populated by characteristic frequencies, but

we do not expect marked peaks at the frequency spacings calculated above. It

should, of course, be recalled that these results are semi-quantitative in that

we apply an asymptotic small-boundary admittance theory.

Finally, since boundary absorption limits pressure buildup at these

antiresonance frequencies, the modelling of the shell as a large-internal

impedance sound source seems justified. For this same reason it is anticipated
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that as long as the model shell boundaries are provided with an acoustic blanket,

while the shell is devoid of a damping coating,marked pressure peaks will be

associatedwith structuralresonances rather than with the characteristic

frequenciesof the room modes.

TABLE IV-I

ResonanceCharacteristicsof 0.50 m •(20in) Model Shell

(All Units in Hz)

Average Resonance Spacing -3 dB ResonanceBandwidth
f

Shell Modes Room Modes Shell (n=10-2) Room

500 3.4 29 5 26 (a=0.4)

I000 2.4 9.1 I0 46 (_=0.7)

2000 1.5 2.7 20 46 (e=0.7)
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V. CALCULATED RESULTS FOR INTERIOR NOISE

A. Introduction

In this chapter we present results for the interior acoustic field

calculated using the analytical models of the source, structure, and sound

field developed in the preceding sections. The calculations have been performed

for parameters representative of two physical structures. The first is a full

scale aircraftexcited by the propeller wake acting on the skin of the wing.

The second structure is a laboratory model consisting of a shell coupled to a

uniform beam. Excitation of this model is a shaker applied near the outer end
of the beam.

Because our goal in this study has been to examine a variety of parameters

relevant to the structureborne noise problem, various models (i.e., assumptions)

have been used to obtain the results presented in this section.

B. Full Scale Aircraft

The dimensions used for the estimate of the interior noise field of a

small aircraft in response to a propeller wake excitation of the wing are given

in Table V-I. As indicated the chord of the wing is taken to be 1/4 the length

of the shell, the wing being centered along the shell. The principal assumptions

invoked to obtain the interior noise estimate are given as follows:

i. The propeller wake-induced pressures propagate to the fuselage
along the skin of the wing.

2. The structural impedance presented to the wing skin by the fuselage
is large.

3. The effects of coupling between the wing and fuselage on the side

away from the excitation are negligible.

4. The fuselage can be modelled as a uniform shell.

5. The interior pressure field is consistent with pressure-release

terminations (i.e., the Pl component discussed in Chapter IV).

The first assumption defines the structureborne path being considered,

and relates to the fact that the skins of the wing and fuselage are contiguous.

The implication of the second assumption is that the wing reaction loads can be

calculated assuming rigid constraints at the fuselage interface. The reaction

loads thus calculated can then be applied directly to the shell. The third
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assumption follows from the second in that the fuselage blocks propagation along

the wing and any back reaction of the shell on the low impedance skin is

negligible. The last two assumptions are invoked for convenience in computation.

The presence of internal fluid is included in this model in evaluating the shell

response.

The pressure at the propeller blade passing frequency (283 Hz) and

normalized to the maximum pressure on the wing in the propeller wake is shown as

a function of axial distance from the midspan on Fig. V.I. Circumferential

variations of the pressure have been averaged over angles of 30°, 60° , and 90 b

from the location of the excitation. The parameter of the curves presented is

the radial distance from the center of the shell. It is noted that the predicted

level of the interior pressure is comparable to the maximum pressure applied to the

wing by the propeller wake (i.e., 0 dB). This result differs from _%e relatively

low radiation from discontinuities along the wing predicted earlier (Section III.A.5)

primarily because of the high radiation efficiency of the membrane-like modes in

the (cylindrical) shell. Fortunately as discussed in Section III.A, this

structural path can be easily interrupted by ribs or other structural discontinu-

ities. Another feature of the results in Fig. V.I is the smooth variation of the

average pressure with both radial and axial locations near the excitation.

C. Laboratory Model

i. Introduction

The schematic in Fig. V.2 shows the test model at NASA Langley

Research Center, the dimensions being given in Table V-I. The physical model

consists of a thin cylindrical shell reinforced by five stiffeners in each

direction (i.e., frames and stringers). The box-beam representing the wing passes

through the shell just above the horizontal and is driven by a shaker near one

end. The beam and shell materials are, respectively, magnesium and aluminum, both

assumed in the theory to have a loss factor of .01. The apparatus is suspended by

a pair of shock chords, each attached to the shell at the uppermost point of the

flat end cap.

As described in Section III the analytical model of the coupled beam

and shell is a somewhat simplified representation of the physical model. In

particular neither the effects of the stiffeners nor the loading of the internal



fluid are included in this model. Both these effects are examined using

another model and discussed further along in this section.

2. Detailed Results for the Coupled Beam and Shell Model

As previously implied, the calculation of the acoustic field by

the theories of Chapter III.B and IV.A is really a two-step process. First

the forces and moments at the two wing-fuselage intersection locations are

solved for from the combined admittance system (Eq. III-50). Then, the numerical

values for the reactions so computed (in terms of the drive amplitude Fo) become
drives for the acoustic model of IV.A. As discussed in Chapter IV, in the

acoustic model these four reactions appear distributed over the root chord.

In addition to the final acoustic predictions for the laboratory shell-

beam model, in fact, in order to best interpret them, some intermediate structural

results are also presented here. Regarding these, we should point out that for

the unframed shell model rotational admittances remained consistently high over

the frequency range investigated (600-2000 Hz), with the result that the two

moment reactions are always found to be insignificant relative to the two shear

forces (typically 20-30 dB down). Furthermore, since their influence

coefficients in the sound field are found to be of magnitude comparable to

those of the shear loads, their acoustic contribution is also negligible. We

therefore omit from discussion the two moment reactions and their part in the

coupled system of Eq. III-50 (bottom two rows and rightmost two columns).

Figure V. 3 shows, vs. frequency, the self admittances Cll , KCll for the

beam and shell, respectively. Relative maxima occur for Cll at 800, 1200, and
1700 Hz, corresponding to natural frequencies of the free-free beam. The

fundamental resonance frequency of the beam is 89 Hz. The greater modal

density of the shell within this frequency range is evident from both the less

patterned nature of KCll and the milder oscillations for the same loss factor.

Of particular interest is the fact that the beam and shell admittances are on

average of comparable magnitude making for efficient coupling of structureborne

noise between the two structures.

Figure V.4 similarly shows the two shear reactions F
i' F2 (normalized by

F ) as a function of frequency. Here the efficient coupling mentioned earlierO

is manifested in the force ratios hovering about unity or 0 dB. Also, the fact

that F1 and F2 are of comparable magnitude results from both this close

coupling and the assumed low loss factor.
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The "structural-acoustical influence function" of the shell, that is

the interior acoustic pressure level per unit tangential force on the shell is

plotted in Fib. V.5 for two field locations. The predicted oscillations with

frequency are great, in excess of 40 dB over the band shown, and since the

modal density of the acoustical spare and the shell exceeds the spacing

between computed points, they are not connected. Pressure peaks occur at -"

frequencies corresponding to resonances of the structure, and, with fluid

loading on the shell neglected in calculating the shell response, at anti- !

resonance frequencies of the interior @coustic space. This latter source of

peakiness requires further discussion.

The interior acoustic space being closed exhibits an infinite set of

resonance frequencies associated with its "rOom" modes. Between these

frequencies exist antiresonance frequencies and ignoring acoustic absorption

a room mode driven at antiresonance yields an infinite impedance. Under this
Z

circumstance the modal impedance of the acoustic space exceeds that of the shell.

If the interaction problem is solved rigorously, that is if the acoustic

impedance is included in the calculation of the shell response then the anti- ii
_E

resonant mode is not excited owing to its infinite impedance. However if i

neglected, the contribution of such a mode to the shell response is finite and i

the infinite acoustic impedance yields the artifact of an infinite acoustic iI
pressure level at precisely these antiresonance frequencies. Nevertheless,

interestingly enough, these predicted peaks do reflect at least qualitatively

a real phenomenon, one that results from the rigorously solved interaction

problem in the absence of appreciable absorption and structural damping.

As the excitation frequency sweeps through each of these modal acoustic

antiresonance frequencies the acoustic impedance rises in above and then drops

below the corresponding modal shell impedance and in so doing changes from

inertial to stiffness-like or vice versa. Thus not precisely at, but in the

vicinity of, the antiresonance frequency, the reactive components of the

acoustic and shell impedances will cancel and a peak pressure will result due

to what may accurately be called a coupled or system resonance And in the

absence of energy dissipation these peaks will be infinite.

Therefore the only way to reduce this secondset of peaks to realistic

values is to incorporate realistic absorption or damping into the model.

Although, in this report (Chapter IV) and elsewhere, asymptotic approaches
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have been developed for this purpose, namely small absorption or black body

radiation 31 models, more rigorous and computationally efficient solutions are

required, at a minimum for confirmation of these models.

An example of the effect of fluid loading on the internal pressure field

in the absence of absorption is given in Fig. V.6. These results are calculated

for the unframed laboratory shell excited by a point circumferential load at

midspan, the pressure being evaluated at the same axial location as the load

and 2 inches (.05 m) in from the surface. In the frequency range indicated

there are 21 antiresonance frequencies of the internal fluid. However, with

a structural loss factor of n = 0.01 the results for the fully coupled problem

(i.e., including fluid loading) are found to vary smoothly near the antiresonance

frequencies. The results of the calculation performed without including fluid

loading are however strongly influenced by the proximity of the frequency of

interest to an antiresonance frequency. Consequently these results are shown

as points. Differences of as much as 20 dB are found between the results of

the two calculations shown on Fig. V.6.

With the above background comments Fig. V.7 is presented comparing the

calculated acoustic pressure normalized to the input force on the beam with

measurements. Specifically Fig. V.7 is a plot of acoustic pressure Poe

normalized by F /ft2 as predicted by the nonabsorptive model of Section IV.A.o

The measurement curves corresponds to the nominally "beam-horizontal" position

(as shown in Fig. IV.Ic; beam vertical refers to the latter rotated by 90°).

One curve is for the beam attached to the shell ring frames, and the other for

the beam attached to longitudinal stringers. The axial position z is the

halfway point between the cylinder ends, and the radial position is r = 8 in.

or 2 in. in from the shell inner surface. For this r,z combination two

circumferential angular positions are shown in the predicted results: 45° from

the horizontal plane measured from the drive-side of the beam, and 90°.

Measurements are for these same values of r,z, and for _ = 90°. As expected

the omission of acoustic absorption in these calculations produces levels that

are high at specific frequencies as well as on-average. Thus in spite of the

complexity of the mathematical model which for example includes finite length

shell and acoustic space effects, and the beam-shell interactions, the salient

features of the measured data are not predicted well. (The effects of the

omission of stiffening frames is discussed in Section V.C.5.) The lessons

to be learned from this exercise have been summarized in Section 6.
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Although broad band analyses are of limited value given the tonal nature

of the problem at hand they are generally insightful and in this context a

simple power flow view of the measurements is presented in the following section
section.

3. Asymptotic model and results

Detailed (deterministic) mathematical models are necessitated by

the fact that the major problem associated with prop-fan induced cabin noise

is tonal in nature. Nevertheless, even for tonal problems broadband or

statistical analyses are often useful in providing additional guidance and

insight. For example let us consider the implications of balance of power for

the set of shell experiments being investigated.

Power is introduced into the system via the shaker at the termination of

the beam (wing). The amount of power is given by

= F2Re (Y)in (V-l)

where F is the rms force level and Re(Y) the real component of the drive point

admittance of the beam. If we ignore finite length effects on Y, in other

words if we ignore the effects of reflections from the shell-beam interface

as well as the far end of the beam, then it can be shown that Re(Y) = kf/_

where kf is the wavenumber of freely propagating flexural waves in the beam and _H

its locally reacting inertial impedance.

Let us suppose that the dominant dissipation mechanism is the absorption

of acoustic energy in the "blanket" that is located along the inner surface of

the shell. That is, it is assumed that under steady state conditions the power

flow is from mechanical power in the beam to acoustic power within the

cylindrical space (without appreciable losses) and that this power is then

dissipated along the interior of the shell surface by the blanket. This may
be expressed as follows

n. = n = I S
xn out a (V-2)

where Ia is the space averaged acoustic intensity at the shell surface and

S ~ 2_aL the surface area of the shell. Eq. V-2 may now be used to obtain an

upper bound (in view of the above assumptions) estimate of the interior pressure

levels. Taking the plane wave admittance for the acoustic space, I = p2/pc,a
where p is the space averaged rms pressure. Therefore,
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[PiF12 = (plPb)(kflk)(AbS)-I (V-3)

or

ipa21Fl2 = ¢2 2)-IcPlPb) (fc/f)_(alL)AslAb (V-4)

where p and Pb are the mass densities of the acoustic medium (air) and the

beam (magnesium) respectively, k = _/c is the wavenumber of acoustic waves,

and A are the cross-sectional areas of the beam and shell, and f is thes c

critical frequency for flexural vibrations in the beam (the frequency at which

the wavelength of freely propagating flexural waves in the beam matches the

acoustic wavelength). For the shell experiments performed in the laboratory, I

and with the beam "horizontal", f = 238 Hz and we getc

20 loglP/R I (re: 1 ft-2) = - 14 - 5 log [f(Hz)] (V-5)

(Since f is proportional to the radius of gyration of the beam, differencesc

between horizontal and vertical positioning of the tested beam are expected

to be less than 3 dB.) Eq. 5 is compared in Fig. V.8 to an envelope of

experimental data constructed from the six curves corresponding to measurement

at _ = 0°, 90°, and 180°, for both ring and stringer shell-beam attachment.

Also shown is the three point average (_ = 45°, 90°, and 135°) of the acoustic

field as predicted using the methods of Chapters III.B and IV.A. The favorable

comparison between the power balance calculation and the data is gratifying

and it is noted that the parametric dependence of the prediction (Eq. V-4)

implies that for this particular model the acoustic field, frequency averaged

is relatively insensitive to minor structural changes such as beam-shell

attachment details or beam orientation.

4. Effect of Structural Damping of the Shell

As present in the wing model discussed in Chapter III, the

effect of adding structural damping to the wing is to increase the propagation

loss and thereby to decrease the excitation of the fuselage. The effects on

interior noise achieved by structurally damping the fuselage however are

somewhat less obvious. Shown in Fig. V.9 is the pressure at a point inside

the unframed test shell for both small (_ = 0.01) and large (n = 1.0) damping.

The excitation is a point circumferential load (shear), applied at a half way

point between the shell ends. In the case of large damping, the acoustic

source can be viewed as being the structural near field of the excitation,

V-7



and the shell away from the drive point acts as a locally-reacting high-

impedance boundary. For low damping, the shell away from the drive point

responds as a wavebearing boundary. The results on Fig. V.9 show that

comparable peak levels are obtained for both values of damping, indicating

that radiation from the structural nearfield of the excitation is important

for the unframed shell. This being the case the interior noise level averaged

over frequency is not expected to be sensitive to the structural damping in

the fuselage. However as indicated on Fig. V.9 a general statement regarding

the effect of damping at a specific frequency and location can not be made.

5. Effect of Shell Rin_-Frame Stiffeners

Results have been calculated for the test cylinder stiffened by

five frames located along the shell at intervals of eight inches (see Fig. V.10).

A structural loss factor of 0.01 is assumed. The dimensions of the frames are

indicated in Fig. V.10c. Results are calculated every 50 Hz in the middle

frequency range from 800 to 1200 Hz. For the purpose of examining the effect

of frames on the interior acoustic field, the shell is assumed to be excited

by a single localized load on the frame located midway between the simple

supports. The resulting symmetry permits the response to be calculated using

only the odd numbered axial modes (i.e., sin m_x/L, m = 1,3,5,...). Additionally,

the symmetry implies that the reactions are identical for the frames symmetrically

located about the center frame. Loading on the shell by the interior fluid is

included in these calculations.

As a basis for comparison, the pressure at a°radial distance of 0.05 m

(2 in) in from the skin is shown on Fig. V.II for the unframed shell excited

by a circumferential in-plane load applied at the center. •Figure V.lla shows

the pressure 90 degrees away from the drive at axial •locations from one end of

0.2, 0.4, and 0.6 m (8, 16, and 24 in). Substantial variations (e.g_, 20 dB)

are found within 0.2 m (8 in) axially within this frequency range. The peak
-2

pressure in this frequency range is approximately -20 dB (re: 0.09 m

(I ft-2)). The circumferential variation between points located 0.2 m (8 in)

axially from the drive is shown in Fig. V.llb. Here large differences (e.g.,

20 dB) are found at frequencies in the range between points located 45 degrees

apart.

Results for the pressure in the framed shell excited by a circumferential

load are shown on Fig. V.12. Although substantial differences at specific
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frequencies are found between these results and those of the unframed shell

shown on the previous figure, the general frequency dependence of both results

has an approximate correspondence. Furthermore the peak pressure level

calculated with frames (i.e., -20 dB) is within 5 dB of that evaluated in the

absence of frames. Finally, it is observed that the pressure field in the

stiffened shell varies somewhat more smoothly with circumferential distance

than the field in the unframed shell. The most likely explanation for the

smoothness is that the response of the framed shell is dominated by the lower

order circumferential modes with their corresponding longer structural

wavelength.

Figure V.13 shows the pressure field in response to a moment excitation

of 1.4 N-m (i ft-lb). Although the respective levels are shifted the results

are similar to those obtained with the in-plane loading shown in Fig. V.12.

As previously described the shell is excited in the analytical model by

applying the reaction loads of the passive frames as well as of the driven

frame. In a highly damped structure the interior pressure field would be

expected to be dominated by the loads applied by the driven frame. In an

undamped structure however the driven frame reactions would not be expected

to dominate the response. The importance of the driven frame for the lightly

damped test cylinder is indicated in Fig. V.14. Here the pressure at 0.4 m

16 in) in response to an in-plane load is shown both with and without the

reactions of the driven frame included. There is no clear trend evident in

these results. At some frequencies (e.g., I000 Hz), the pressure is much

different without the driven frame. The conclusion at these frequencies is

that the result is dominated by the pressure induced by the drive frame loads.

At other frequencies however, the two results are not much different suggesting

that the contributions of the driven and passive frames are comparable.

6. Conclusions

Based on the results presented in this Chapter the following

conclusions are drawn:

a. In the absence of significant scattering from wing ribs or

other major structural discontinuities, the propagation loss of structureborne

noise along the wing at the propeller BPF is negligible and cabin noise levels

are comparable to the source pressure levels for a cylindrical fuselage.
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b. Consistent modelling of the interior fluid requires either

the inclusion of fluid loading in evaluating the shell response or the inclusion

of boundary absorption in the interior space.

c. The interior acoustic levels on average are not appreciably

altered by the presence of structural damping in the shell.

d. Compared with the pressure field in a uniform shell, the

effect of frame stiffeners alter the details of the response in frequency and

space. The average response and peak levels however are minimally changed.

e. The asymptotic model discussed in Section V.B.3 gives a

conservative prediction (i.e., somewhat high) for the average pressure level

measured in the laboratory model.
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TABLE V-I

Dimensions and Propertiesof Aircraft and Laboratory Model

Fuselage (Shell)

Small Laboratory
Dimensions Aircraft 2 Model

Radius (a) i.II m (43.8 in.) 0.25 m (I0 in.)

Length (Lf) 17.3 m (692 in.) 1.2 m (48 in.)

Skin Thickness (h) 1.7xlO-3m (.07 in.) 4.0xlO-4 m (.016 in.)

Material

Mass Density (pf) 2.7xi03 kg/m3 2.7xi03 kg/m3

(2.5x10 -4 lb-s2/in 4) (2.5x10 -4 lb-s2/in 4)

Modulus of
6.9xi0I0 Pa (107 psi) 6.9xi0 I0 Pa (107Elasticity psi)

(Ef)

Poisson's Ratio (gf) .33 .33

Loss Factor 0.01 0.01

Wing (Beam)

Dimensions

Effective Cross-Sectional

Radius of Gyration (rg)

Skin 5x10-4 m (.02 in.)
2.9xi0-2 m (1.13 in.)

Spar 5x10-2 m (2 in.)

Length (Lw)
(Span) 2.2 m (86.4 in.)* 1.7 m (69 in.)

Width (ALf)
(Chord) 4.3 m (173 in.) 7.6xi0-3 m (3.1 in.)

Material

Mass Density (pw) 2.7xi03kg/m3 1.7x103 kg/m3

(2.5xi0-4 ib-s/in4) (l.6x10-4 ib-s/in4)
Modulus of

Elasticity (Ew) 6.9xi0I0 Pa (107psi) 4.5xi0I0 Pa (6.5xi06psi)

Loss Factor 0.05 0.01

*Assumed length from propeller hub to wing-fuselage interface.
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Fig. V.13 - Pressure at a radial distance of 8 in. in the framed laboratory

cylinder in response to a moment excitation located midway along the

shell (I in = .025 m).
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