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PROJECT OVERVIEW

3 1176 01323 7962

.

Advanced prop-fan propulsion systems which are being considered for
passenger aircraft have noise characteristics quite different from turbo-jet
systems they may replace. Rather than being primarily broadband much of the
acoustic-energy of propellers is concentrated in tonals at the harmonics of
the blade passing frequency (BPF). Since the fundamental BPF is in the range
of several hundred hertz, the tonal spectrum of the propeller induced noise
is of concern from the viewpoint of passenger acceptance and comfort.

- The objective of this study is to examine analytically the structureborne
contribution to the interior noise that is induced by the propeller wake acting
on the wing. Analytical models have been developed to describe each aspect of
this path including the excitation loads, the wing and fuselage structures, and
the interior acoustic space. Because this is a feasibility study, the emphasis
has been placed on examining a variety of parameters, and as a result different
models have been developed to examine specific parameters. The excitation
loading on the wing by the propeller wake is modeled by a distribution of
rotating potential vortices whose strength is related to the thrust per blade.
The response of the wing to this loading is examined using beam models. A model
of a beam structurally connected to a cylindrical shell with an internal acoustic
fluid has been developed to examine the coupling of energy from the wing to the
interior space. The model of the acoustic space allows for arbitrary end
conditions (e.g., rigid or vibrating end caps). Calculations are presented using
these models to. compare with a laboratory test configuration as well as for
parameters'df a prop-fan aircraft.

Several of the major findings of this study are summarized as follows:

1. The unsteady-lift reaction of the wing to the propeller—wéke field
is a significant mechanism for transfer of vortex energy to structural
vibration.

2. In the absence of significant scattering from major structural
discontinuities, the propagation loss of structureborne noise along the
wing at the BPF is negligible and cabin noise levels are comparable to
the source pressure levels for a cylindrical fuselage.

3. Stringers that are small and in effect structurally integral with the
skin have minimal impact on propagation along the wing. However,
cut-off phenomena associated with a parallel array of discrete
stringers could be created and exploited to enhance propagation loss.

4. The interior acoustic levels on average are not appreciably altered
by the presence of structural damping in the fuselage skin.
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SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Advanced prop-fan propulsion systems which are being considered for 'f
passenger aircraft have noise characteristics quite different from turbo-jet
gystems they may replace. Rather than being primarily broadband much of the
acoustic energy of propellers is concentrated in tonals at the harmonics of
the blade passing frequency (BPF). Since the fundamental BPF is in the range
of several hundred hertz, the tonal spectrum of the propeller inducea noise is

of concern from the viewpoint of passenger acceptance and comfort.

Propeller noise can propagate to the interior of the fuselage by paths
that can be‘categorized as being primarily either airborne or structureborne.
The airborne path is expected to be the dominant path, and it is estimated that
the required insertion loss for this path provided by the fuselage must be
approximately 55 dB at a BPF of 200 Hz. Measurements using conventional
aircraft suggest that the contribution to the interior noise of the structure-
borne path is not far below that of the airborne path, Consequéntly control of
the structureborne path is likely to be important in achieving acceptable

interior noise levels.

The objective of this study is to examine analytically the structureborne
contribution to the interior noise thét is induced by the propeller wake acting ;
on the winé. Analytical models have been developed to describe each aspect of
this path including the excitation loads, the wing and fuselage structures, and
the interior acoustic space. Because this is a feasibility stuay, the emphasis i
has been placed on examining a variety of parameters, and as a result different
models have been developed to examine specific parameters. The excitation i
loading on the wing by the propeller wake is ﬁodeleﬁ by a distribution of
.rotating potential vortices whose strength is related to the thrust per blade.
The response of the wing to this loading is examined using beam models. A model
of a beaﬁ connected elastically to a cylindrical shell with an internal acoustic
fluid has been developed to examine the coupling of energy from the wing to the
interior space. The model of the acoustic space allows for'arbitrary end
conditions (e.g., rigid or vibrating end caps)L Calculations are presented
using these models to compare with a laborator&ltest configuration as well as

for parameters of a prop-fan aircraft.
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The principal conclusions resulting from the analytical modeling and

numerical calculations are the following:

1. The uhsteadyflift reaction of the wing to the propeller-wake field is
a significant mechanism for transfer of vortex energy to structural vibration.
Fof a fixed value of design thrust, and for points on the wing where wake loading
is maximum, harmonics of the wake-induced pressure vary inveisely with both the
squére of the propeller radius and the reduced frequency of the tonal. Predicted

and experimentally obtained source levels are in reasonable agreement.

2. In the absence of significant scattering from discrete stiffeners,
‘e.g., ribs, or from other major structural discontinuities, the propagation loss
of structureborne noise along the wing at the BPF is negligible and cabin noise

levels are comparable to the source pressure levels for a cylindrical fuselage.

3. For a rib to enhance significantly the propagation loss along a wing.
it must constrain both the translational and rotational motion of the skin. The
criteria for achieving this objective appear to be realizable with minimum weight
penalty. In practice rib effectiveness will be limited by rib elasticity which
reduces its scattering strength and allows more efficient propagation across and
coupling into it, both effects leading to an increase in cabin noise, the latter

via the rib-spar-fuselage path.

4. Sound radiation (airborne) associated with structureborne noise
scattering from structural discontinuities along the wing is negligible compared

with the direct acoustic path.

5. Stringers that are small and in effect structurally integral with the
skin have minimal impact on propagation along the wing. However, cut-off
phenomena associated with a parallel array of discrete stringers could be
created and exploited to enhance propagation loés. The criterion for effective-
neés is given as ka < m, where kf is the wavenumber of flexural waves in the
skin and L the interstringer spacing. Also, the (spanwise) length of the
stringer array need only measure a flexural wavelength in the skin and therefore

entails minimum weight penalty.

6. Spar vibration levels directly excited by the unsteady lift are less
than those inthe skin near the midchord. Also, in the absence of stiffeners,
either ribs or-stringers, coupling of structureborne noise from the skin into

the spars is minor. The extent of coupling from the skin to spars in the
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presence of ribs has not been determined, and in view of the previous
conclusions this skin-rib-spar-fuselage path may be the dominant one for

typical wing configurations.

7. The interior acoustic levels on average are not appreciably altered

by the presence of structural damping in the shell.

8. It is feasible to develop an analytical model of the structureborne
path of the shaker driven laboratory model. However the noise predictions of
a model that includes finite shell dynamics with frames, beam-shell inter-
aciions and structural damping, but ignores fluid loading, acoustic absorption

and shell stringers do not compare favorably with laboratory measurements.

9. The feasibility of developing an equivalent model of the strucﬁure-
borne path along an actual wing-fuselage structure is questionable in view of
the implied computer costs and/or running times. (For example the surface
aréa of an aluminum fuselage of 3.05 m (10 ft.) diameter, 12.2 m (40 ft.) length
~and 2.5):10-3 m (0.1 in.) skin thickness measures roughly 103 flexural wavelengths
at a frequency of 200 Hz. Using only a one-quarter wavelength mesh size and
3 degrees of freedom per node a finite element analysis of the fuselage skin
alone would entail 104'unkndwns exclusive of the modelling of the wing or the

interior acoustic space.)

10. Asymptotic or "canonical" analytical models of specific structural
elements and features characteristic of actual wing-fuselage structures, e.g.,
stiffened skins, can be used to identify propagation phenomena that are
potentially useful for diagnostic and noise control purposes. However, here
it is particularly important to use such models in conjunction with a measurement

program, either full scale or model, for confirmation.

Recommendations for further work fall into two categories, these béing
analytical modelling and experimental measurements. Further development of the

analytical models examined in this report is suggested in the following areas:

1. In modelling the propeller wake, include the'effécts of, (a) a viscous
vortex core, (b) three-dimensional unsteady aerodynamics, and (c) the dynamics

of vortex paths in the presence of solid surfaces.

2. In modelling the wing, develop and implement models that trace the
skin-rib-spar-fuselage path accounting for both rib elasticity and the spar-

fuselage frame interaction.
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3. In modelling the fuselége structure include the effects of, (a) internal
stiffeners, and (b) either acoustic absorption along the boundaries (see 4 below)

or the loading of the internal fluid on the structure.

4. In modelling the interior acoustic space implement the theory in terms
of the eigenfunctions appropriate to large boundary absorption (e.g., Bessel

functions of the appropriate complex eigenvalues).

~Recommendations for experimental studies directed toward characterizing the

structureborne noise path are as follows:

5. Using the existing laboratory model as a diagnostic tool for analytical
concepts and models, examine the dependence of the interior pressure levels on
a number of parameters including spatial location, structural damping, acoustic

absorption, and discrete structural stiffeners.

6. Develop new laboratory models of both wing and fuselage structures
based on the scaling laws implied by.- existing analytical models. These analytical

models may also-be used to assess scaling law conflicts, tradeoffs and compromises.

7. The extent to which cut-off phenomena predicted for a stringef-skin
geometry enhances the propagation loss along existing wings should be determin?d
experimentaily. Also the feasibility of further exploiting this mechanism for
noise control purposes should be studied by means of a combined analytical-

laboratory measurement prbgram.

8. Using a full scale aircraft and with excitation by shaker or by
propulsion system when possible, (a) measure the structural transfer functions
along the wing skin and spars; and (b) measure the transfer functions of
structural response to interior pressure. Structural intensity measurements

may be useful to examining the power flow along specific components of the wing.
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I. INTRODUCTION

Advanced prop-fan propulsion systems promise to provide fuel efficient
flight at high'subsonic speeds. The propellers in these systems having
multiple skewed blades represent a noise source with characteristics quite
different from the dominant noise sources of current turbo-fan engines. In
particular, rather than being primarily broadband, much of the acoustic enerqgy
of prop-fan propulsion systems is concentrated in tonals at harmonics of the
'blade-passing frequency. Since the fundamental blade passing frequency (i.e.,
propeller rpm times number of blades) is in the fange of several hundred Hertz,
the tonal spectrum of the propeller is of concern from the viewpoint of passenger

acceptance and comfort.

The paths by which propeller noise pPropagates to the interior of the
fuselage can be categorized as being primarily ei£her airborne or structure-
borne. We define the airborne path as the path of propeller induced excitation
that acts directly through the air 6n the fuselage. This includes propeller
radiated noise and the aerodynamic near field of a rotating propeller located in
close proximity to the fuselage. The airborne path is expected to be the
dominant path by which acoustic energy exc?tes the aircraft interior. The
airborne insertion loss required by a fuselage to reduce the propeller tonal
at the blade passing frequency to an 80 dB(A) (re: 20 pPa) interior level is
approximately 55 dB (i.e.; assuming 135 dB(A) free field level at 200 Hz). A
variety of means to achieve a large sidewall transmission loss have been
examined in the literature, Additionally, analytical models have been developed
-to predict the interior noise level in response to acoustic excitation of the

fuselage. A recent review of many of these models is presented in Ref. 1.

In general the parameters governing the transmission of airborne acoustic
energy to the aircraft 1nter10r are more clearly defined than those that control
the transmission of structureborne energy which is the subject of this report.

We define the structureborne path as that path by which propeller induced energy
propagates to the fuselage via other structures, notabiy the wing; Although
useful for the purpose of discussion, the distinction between airborne and
structureborne paths is not rigorous since structureborne energy can radiate and

become airborne energy and vice versa. The sources of structural excitation at

propeller related tonals include the interaction of the lifting surfaces with the.

propeller wake and engine vibration. The unsteady wake of the propeller acts on
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the skin of the wing and of any rear control surfaces in its path. This
vibration excitation can propagate along the skin and the primary wing structure
to excite the fuselage. Engihe vibration is transmitted through the engine )
mounts directly to the primary wing étructure. Both of these excitations can
transmit energy to the fuselage which in turn radiates noise to the aircraft

interior.

Structureborne noise has been cited by several investigators as a
potentially important consideration for achieving acceptable interior noise
levels in propeller driven aircraft.2-4 While the structureborne path, which
in fact may be multiple paths, is not expected to be the dominant means by which
acoustic energy reaches the aircraft interior, its contribution may not be far
below that of the airborne path, eSpecially in view of the large noise reduction ‘
required for the advanced tuboprop aircraft. For example, measurements of
interior noise made on a conventional twin engine turboprop aircraft (deHaviland
Twin Otter) with both wing and fuselage wrapped to reduce excitation by the
propeller wake suggest that the_struc?ureborne noise is no more than 10 dB ‘
below that of the aircraft path.s, For a singie engine aircraft with a |
reciprocating engine, measurements reported in Ref. 6 indicate that both airborne
and structureborne contributions to the interior noise are comparable in level.

In a more recent study, the importance of structureborne noise in a single engine
aircraft has been further documented.’ Analytical modeling of the structureborne i
noise path is currently needed to supporf and further evaluate the results 6f

these empirical studies. Although the fuselage and interior acoustic space have

been modeled to examine parameters important to the airborne path,1 the
excitations used in these models have typically been a single acoustié,wavenumber

|

|

pressure field. ‘ . !
’ |

1

The objective of the present study is to develop an analytical model
(albeit simplified) of the structureborne path iﬁcluding excitation loads, wing
and fuselage structures, and-interior acoustic space. The excitation loading : -
on the wing by the propeller.wake is modeled by a distribution of rotating
potential vortices whose strength is related to the thrust per blade. Beam
and plate models are used to represent the response of the wing to this loading.
A model of a beam elastically built into a cylindrical shell with an internal _
acogstic fluid has been developed to examine the coupling of energy from the wing

to the interior space. The model of the acoustic space allows for arbitrary




end conditions (e.g., rigid end caps). Calculations are presented using these
models to compare with a laboratory test configuration as well as for parameters

of a turboprop aircraft.







II. THEORETICAL PREDICTIONS OF WING LOADING INDUCED BY A PROPELLER WAKE

A. Introduction

The near wake of a propeller in uniform flow consists of a complex
system of trailing vortex sheets, each originating at a blade trailing edge.
Due to self-induced velocities, these sheets quickly become unstable and roll
up into a system of mainly concentrated tip vortices in a helical arrangement.8
Neglecting for the moment the effect of self- and mutually-induced velocities
after the roll up process is complete, the trajectory of each vortex filament
or vortex segment may be assumed as determined solely by freestream convection
(in the propeller far wake, downstream of the wing and therefore not of concern
here, this assumption is not valid and vortex structure and positions become

chaotic).

In the near wake, therefore, as a propeller tip approaches the horizontal
plane say from above, its rolled-up tip vortex is convected over the wing, and
an instant later, under the wing. Thus the vortex appears to “cut through"
and, as a result, causes locally time- and spanwise-varying angles of attack
and accompanying 1lift. The unsteady lift so genefated becomes the source for

noise borne by the wing structure into the cabin.

Here we develop a model for the wing loads induced by the propeller wake,
and compare predicted levels to those measured by Miller et al.3 for a 0.61 m
(2 ft) diameter propeller in subsonic flow. vFinally, estimates are made of
vortex-induced wing pressures for an actual aircraft presently considered by
NASA a possible candidate for the new prop—fén technolog&. When éompared to
‘typical estimates of incident airborne noise, the results of this last calcu-
lation bear out the need for sfudy of the stfuctural path as a potentially

significant competing mechanism.

B. 'Propeller Wake Model and Wing Aerodynamics

Figure II-1 shows the near-wake model. A system of N straight,
infinite potential vortices in rotary motion causes a downwash w on the wing

plane given by

N y-cos[t + gﬂl%:ll] :
wlt,y) = - 5= I - — ) (II-1)
21R k=1 1+y2-2ycos[ﬂt+ Eﬂiﬁ_llq

N
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where t is tiﬁe and y, the spanwise distance measured from the propeller

hub point, has been normalized by the blade radius R; ? and N denote propeller
rotational speed and blade number, respectively. I' stands for the strength
of each vortex and may be determined from the propeller design thrust value

via a lifting-line analysis performed later ih the chapter.
We define the normalized downwash #(t,y) by

. _ W s
r'/2mR , (I1-2)

and show typical signatures in Fig. II-2, where values of 2, and N have been
chosén to match those in Miller's experiment. The y = 1.01 position corresponds
to the measurement position in.Ref. 3. The figure confirms that»as y =1 is
approached the prediéted downwash becomes more and more impulsiye and that

the period of the relatively complicated W sum is 21 AN, with an associated
fundamental (in Hertz) equal to the blade-passage frequency N2/2m. - Based on
this we write the vor;ex—induced wingAlift coefficient CL(t,y) in terms of

harmdnics CLm(y);

p imn £ | '
C, (t,y) = Re {m£O CLm(y)el } | _ (II-3)

The aerodynamic model for the wing assumes the latter to be infinite in
span (no three-dimensional root or tip effects) and as a flat plate in cross
section. The flow is assumed aerodynamically two dimensional with each wing .
reactiné locally to the input downwash field (clqssical strip theory). Also,
for applications of interest it will be found later that the airfoil reduced
frequency based on the fundamental QNb/U, where b is wing semichord, is not
small relative to unity, and so the ﬁqdel to calcdulate CLm in terms of downwash
harmonics v should contain high-frequency unsteady effects and should not be

given merely by

2ﬂwm/U
Y 1-M?

i.e., the quasi-steady assumption where U and M stand for flight speed and

flight Mach number, respectively. Moreover, since flight speeds will be in
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the high subsonic range, compressibility effects other than that given by
thev(l-Mz)-% Prandtl-Glauert factor should also be included.

For an airfoil in subsonic flow passing through a nonuniform field
givén in terms of gusts, Amiét9 has derived such an unsteadiness-compressibility
correction to the quasi-steady lift coefficient (kept in curly brackets in
Eq. II-4 below). Applying it in its relatively simple high-frequency limit
(his Eq. 20), one then has

27 w (y):} 1/1~M

1..

C. Harmonic Analysis of the Propeller Wake

The analysis to obtain the wake harmonics Qﬁ from w as defined by

Egs. II-1 thru II-2, begins with an identity involving two arbitrary complex
numbers T = elB, z = rela (e.g., Ref. 10).
* 2
T + Z " = 2 l X . (II-S)
%~z l1+r”“-2rcos (a-B) ‘

where * denotes conjugate.

For r < 1 we may now express the left hand side of Eq. 1I-5 as.

2 m
1+ 2 X. r cosm(a-8)
m=1

~Since r, the magnitude of z, is by definition positive, this relationship

is immediately applicable to the range 0 < y < 1. . Thus letting'y=r, Qt = a,

-1
-8B = 21%%—2-, and performing some algebra one finds that
. 2m(k-1) _
y-cos [Qt + —-—————] _ _
1+y~-2ycos [Q t + —T—q '
By a similar calculation for r > 1 the left hand side of Eq. II-5 takes '
the form

3142 ; cosm(a-B) |-
m=1 rm



and for 1 < y< « we find that

y-cos [Qt + 2£i5:ll] © cosnl[Qt + Eﬂiﬁlll]
N — = I — N (11-7)
l+Y2‘2YCOS [Qt + EELEZlL] m=0 Ym+l

If the cosines on the right sides of Egs. II-5 and II-7 are now expanded out,

and the sum ﬁ is interchanged with %, the following two factors appear

N 2mm (k-1) L PR
kgl cos [ N ' k£1 sin N i

the first of which is zero unless m is a multiple of N, and then it equals N.
The second sum is identically zero. These conclusions may be used to find, for

‘example, that the right side of Eq. II-6 becomes

-N I me—lcosmNQt

The simple manipulations used to obtain the series expression of w for

0 < y < =» may be adapted to the negative ranges -1 < y < 0, -» < y < ~1. One

writes _
l—r2 - l-r2
2 2
1+r“-2rcos (a-B) 1+r -2(-r)cos{(a-B+m)"
and then replaces v by -y > 0 and 2“(2_1) by Zﬂ(:_l) + 7 in_the previous results.

The final series representations are now given for w = w(t,-* < y < =):

r
1
N+l lc<y<e
~ o Yy
w = NI cosmNQt $ . (1I-8a)
(_liNm+l :
- Nm+1 o< y<-l
(-y)
- _me—l O<y<_1
w = N L. cosnmNQt J v (II-8b)
m=1 Nm Nm-1 '
(-1) " (-y) -l1<y< O
\ .
~ , Nm+1 - . .
so that wm = N/y for 1 < y< «» , etc. Several points of interest should

be noted. First, a steady field exists for Iyl > 1(m=0) which is algebraically
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invariant with respect to the number of blades N. Since the m=0 harmonic is
odd in y (proportional to tl/lyl), this steady component represents a net
moment about the propeller axis. The authors wonder if it has ever been a

factor in wing design for steady flight.

Secondly, increasing N causes a more rapid spatial decay of each m 2> 1
harmonic from the N value at y=1l. For very large N the vortex spacing becomes
infinitesimal and ph&sically a steady limit should be approached. Mathem?
atically, in fact, only the m=0 steady term for Iy] > 1 remains. In this
limit the solution is consistent with the fundamental theorem of electrostatics
which states that the internal field of a surrounding conductor is zero and
that the field outside may be intérpreted as due to a single equivalent

centrally located charge.ll

Third and lastly, the initial expression in Eq. II-1 yiélds an infinite
value of downwash w at y = %1 at times when vortices pass through the wing
plane (the denominator becomes (y-1)(y+l)). As y -+ *1 therefore, the time
history of induced downwash becomes highly impulsive (recall Fié._II—2) and is

given by a series with tonals of constant level N (transform of a delta function).

D. Calculation of Vortex Strength

Figure II-3a (from Ref. 8) shows a blade airfoil section in rotary

motion. As always, lift is defined as the force normal to the relative free-

stream v ﬁ2+(Qr)2. . We model the radial blade load distribution as indicated
in Fig. II-3b, i.e., triangular in shape. At the tip, where the radial load

drops abruptly from its maximum value Ltip to zero, a vortex of strength Pv

equal to the blade tip bound vorticity Fb must be "trailed away" according to

Kelvin's circulation theorem. To obtain the strength of the bound vortex in
terms of tip 1lift Ltip' we apply the two-dimensional lifting-line relation

o/ ()% T, = 1 ) . : (II-9)

b tip
As previously discussed, upon passage through the wing the free vortex

* induces on the wing surface a time- and spanwise-varying angle of attack

a(t,y) * w/U from which the vortex induced unsteady airload LV may be caleulated.

With CLm defined in Eq. II-4 the high-frequency compressible model yields the

following relationship for the mth harmonic of vortex-induced wing pressure
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0y -
L_(y) = 5 UC () | | (11-10)

Substituting for Pb from Eq. II-9 into Eq. II-1, and then using Eq. II-1
with Eq. II-4 into Eq. II-10, we obtain

-~

v Y = 2R o QONmb o .
. 2 WM —
/1 QR) ' U
U .

Lastly, the tip lift Ltip must be related to the blade thrustl'rb.

Neglecting drag forces, the differential thrust dT and lift dL are related
through8

. Qv
Y/ U2+(Qr)2

so that the total blade thrust T

R
; dL
Tb = f dr ar cosB
(o}

Substituting dL/dr = Ltip-(r/R) for the assumed triangular loading, and

adT = dLcosB = dL

b is given by

evaluating the resulting integral, one finally obtains that

o 2
L, . _ : T, /R o
tip _ b : (II-12)
2R > 5 -
Y1 -U—) - (X sinh-l SR
R QrR ) - u

Putting the above into Eq. II-11 and defining the total propeller thrust T as

TbN, the desired harmonic Lvm(y) of the vortex-induced, lifting pressure

distribution is found:

: w (y) - '
L) = T2 o : L (I1-13)
o 1+ (28 i /14| (L ’ sinh-i 9—3—)
U QR OR : U
i
QmNb
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For a fixed value of design thrust T, Lvm(y=1)(the maximum for each
harmonic) varies as the inverse of the square of the radius R, and as the
inverse of ONmb/U, the "tonal reduced frequency". No other N dependence
exists since the N factor in Gm (Eq. II-8) cancels that other appearing in
the T/(NR2) group of Eq. II-13.

As indicated in the final result, Lvm depends also on Mach number M
~and on advance ratio QR/U. However, the possibility of propeller-wake airload
control through these parameters appears limited due to restrictions of actual
practice on high subsonic cruise speeds U (and so M), and on blade tip speed
flR. For well-known aeroacoustic reasons the latter is preferably kept also

in the high subsonic range.

E. Application of Wake Model to Two Cases of Interest

We may now apply Eg. II-13 to predict levels of the lifting pressure
distribution on the wing due to the propeller wake and compare them to those
measured by Miller,3 whose laboratory model is shown in Figure II-4a. Also,

. a prediction is made using actual aircraft parameters.

In Ref. 3 the vane stands vertically and is aligned with a propeller
radius, i.e., it intersects the propeller axis if continued upwards in the

sketch. Thus, the radial position given by r/R 1.01 in the experiment

~ corresponds to the spanwise position given by y = 1.0l in our theoretical model.

The parameters for the laboratory propeller are the following:

Power Coefficient: Cp = 1.84 :

I
Advance Radio: J = 3.06 (WR/U = .97) |
Number of Blades: "N =8 :
Blade Radius R=0.30m (1 £t.)

Freestream Mach Number: M = .6

Propeller Efficiency: Negg = .8 (private communication)
Vane Semichord: b=10.15m (.5 ft.) (assumed)

From these, values are calculated for thrust coefficient and total
propeller thrust of 2.1 N (.48 1b) and 963 N (215 1lb), respectively. For the’

first (m=1) harmonic at the spanwise position y = 1.0l (so that Qm = N) ' f

I1-7




Eq. II-13 yields 20 log10 (Lv /Pr = 154 dB (Pref = 20 uyPa) vs. the experi-

m ef)
mental value of about 143 dB.. The rate of decay for the tonals may also be
computed from Eq, II-13 and compared to measurement. Taking m=8, the level
of the eighth harmonic will be down by 23 4B (20 loglO(J.OlTGS/B)) from that

of the first harmonic.

Both of these results are shown in Fig. II-4b superimposed on measured
values for comparison. Fairly good agreement is indicated, though predictions
appear somewhat higher than measurement at the lower part of the spectrum.

We put off momentarily discussion of possible reasons for discrepancy and

briefly present a similar calculation for an actual aircraft.

Revell, et al.12 have listed operating parameters for a typical business-

size propeller drive aircraft. These are:

Tip speed = 243m/s (800 ft/sec)
Cruise speed = .8M

Propeller diameter = 2.2.m (7.2 ft)
Number of blades = 8 '

9210 m (30,000 ft)

Cruising altitude

Using a value of 302 m/s (995 ft/sec) for the sound speed at 9210 m
(30,006 ft), one calculates a flight speed of 242 m/s (796 ft/sec). and so
QR/U ¥ 1. A value of b = 0.91 m (3 ft) is assumed foi the semichord ét the
enginé spanwise position. From Eq. II-13 then, at‘the spanwise wing points

of maximum vortex loading one finds that for the first harmonic (f = 283 Hz),

20 loglo[Lv (y=il)/Pr =20uPal] = 137 dB '

m=1 ef

a number comparable in magnitude to those measured and predicted for the

airborne path (Ref. 1, Fig. 5).

F. Summary of Results

When comparing the theoretical results predicted here to experimental
results, the fundamental question should be asked whether a significant portion
of the measured pressure can be attributed to the unsteady-aerodynamic lift

mechanism of the present model. The propeller wake effects measured in Ref. 3
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were apparently interpreted there as locally high values of stagnation
pressures induced by free vorticity. The original purpose of the vane was
probably to provide a physical mount for sensing instruments, not to act as
an aerodynamic mechanism through which additional vortex energy could be

channeled into the structure.

The mechanism in our theoretical model is an aerodynamic "reaction"
mechanism. Pressures prediétéd on the wing plane are due to the aerodynamic
presence of the wing; theylﬁould vanish if the actual lifting surface were
removed because they are the impermeable wing's lifting reaction to an incident
unsteady flow. This resulting force driving the vane or wing is balanced by
an equal and opposite net fluid force (Newton's first law) which.}n the
immediate vicinity of the wing appears smeared over in the form of an acoustic
near field. Since the theoretical model uses a flat~plate airfoil, those
predicted pressures are antisymmetric with respect to the fligﬁt plane, so
that on the two sides of the vane they are equal in magnitude but opposite in

sign.

The fairly good agreement between theory and experiment suggests that
the 1ift effect is significant, and that it can therefore seive as an
efficient coupler of propeller wake energy to structureborne vibration. It
should be pointed out, however, that as estimated here these levels probably
represent conservative estimates for the mechanism. The model does not |
account for finite vortex core size, nor does it account for mutual three-
dimensional effects of wing sections in the vortex-induced spanwise-varying
downwash fieid. Both of these may be expected to lower levels somewhat due

to their smoothing action.

Another possibly important neglected effect is that on vortex position
and motion by an "image" system inside the wing. The model here allowed the
propeller wake to cut freely through the wing plane, when in fact potential
theory wouldlcall for a more complicated trajectory due to interaction with

the sglid surface.
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Fig. II.1 - Wake model for a four-bladed propeller, indicating horizontal

plane of wing and vortex-induced downwash.
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Fig. II.2 - Time history of ;r, the normalized downwash function of Egs. II-1 and 1I-2; N = 8, 2 = 640 rad/sec.
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Fig. II.3 - (a) Blade forces acting at a typical blade motion a distance
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(b) Linear distribution of‘lift and blade~tip vortex model. , i
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FLUSH MICROPHONES ON
EACH SIDE OF RADIALLY
TRAVIRSING VANE
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Fig. I1I1.4 - (a) Laboratory model in Ref. 3.

(b) Comparison of theoretibally_predicted pressure harmonics (o)
for y = 1.01 to experimental measurements (solid line); for
N =28, Q = 640 rad/sec, r/R = 1.01.
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III. STRUCTUREBORNE NOISE MODELS

A. Structureborne Noise Propagation Along a Wing Structure

1. Introduction

In the following sections the characteristics of structureborne
noise propagation along a wing-like structure are analyzed. Basic concepts

and functional analyses rather than extensive numerical modelling are emphasized.

First the relevant characteristics of the vibration source, as modelled in
Chapter II, are summarized. Propagation along the (bare) skin is then analyzed
followed by a discussion of the air/fuel space between skins. Scattering and
radiation from ribs is examined as is the‘potentially beneficial impact of
discrete stringers. Finally spar dynamics are considered followed by a summary

of results.

2. Source Characteristics

As described previously the assumed source of structureborne noise
on the wing is the unsteady lift associated with blade tip vortices. This

driving force, as modelled, has the following general characteristics:

a. At a given spanwise position (y) measured from the propeller
hub (y=0) the unsteady pressures on the top and bottom skins of the wing are

equal in magnitude and opposite in phase.
b. The unsteady pressure (lift) is antisymmetric about y=0.

c. For y > 0, the unsteédy 1ift at the mth harmonic of the
blade passage frequency N varies as (y/R)a where R is the propeller blade

radius. The quantity a is given by

o (mN-1) 0<y/R<1

(III—l)

-(mN+1) y/R > 1

To account for the above three factors, we assume a normal pressure

acting on the wing in the form
P(y;w) =P_(w)f(y/R) ' (I111-2)

where P (w) = NL (1) as defined in Eq. II-13,
o vm

.—sgn(y/R)ly/R|(mN-1) ly/r|
£ (y/R) i , (I1I-3)

sgn(y/R)Iy/le(mN+1) ly/R|

A
[

v
= -
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and
1 ly/Rl > 1
sgn(y/R) = _ (I11-4)
-1 |yl <1
The maximum lift'Po(w) is given in Chapter II where it was shown that for

parameters typical of small aifcraft Po(w) = 137 dB re 20 yPa.

3. The Wing as a Flexural Waveguide

Wing structures consist of top and bottom skins with spanwise
stringers, structurally connected to each other by means of a chordwise array
of ribs and two (front and rear) spanwise spars (Fig. III-1). - The unsteédy .
lift acts mainly over the surface area of the skins and the resulting vibrations
are traﬁsmiﬁted to the fuselage along the parallel skin-stringer and spar

structures.

We first consider the flexural response of éhe skins to the unsteady 1lift
ignoring chordwise variations in both source and structure, that is we treat
the wing as a one-dimensional (infinite) wavéguide; The acceleration of the
wing, a(y;w), in response to a distributed harmonic pressure field, p(ys;w), is.

given by (Ref. 13, Chapt. 6)

-

alyiw) = (-iw”/4ETK)) f plygiw) {explike|y-y |I+iexpl-ke|y-y |1}y,  (111-5)

=00

where w is circular frequency and the relevant material and geometric properties
of the wing are expreséed in the parameters E (Young's modulus), I (croés—

sectional moment of inertia) and kf (flexural wavenumber), with
2 4 ] o ' -
kf = (uw” /EI) " (14in/4) _ (I11-6)

where y is the wing mass density per unit length and n a structural loss factor
to account for energy dissipation. (In Eq. III-5 stringers may be modelled

only to the extent that they modify, on average, the paramefers I, m and n.)

Non-dimensionalizing Eq. III-5 to the inertial response of the wing under

the peak pressure, " .
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Ayiw) = palyiw) /P (w) = (-1/4)’/~ £(y_/8) {expli|y-y |1 +iexpl-|y-y_|1}ay_  (111-7)

=00

where y = kfy and B = kfR. Thus, as modelled, at a given harmonic of the blade
passage frequency the normalized acceleration is a function of the distances
from the propeller hub to the locations of the wing tip and the observer

measured in terms of flexural wavelengths.

To 'this point we have noét related the parameters of the mathematical model
to specific wing properties. However, it is useful to keep in mind the range
of parameters of interest. Material properties are assumed to be those of rolled

0 Pa (1Ox106 psi) and p = 2.7x103 kg/m3

aluminum and we take E = 6.9x101
(2.53x10—4 lb.secz/in4). Of concern is the fundamental propeller ylade passage
frequency, which as before, and corresponding to N=8, is taken to be 283 Hz,
and its harmonics, fm = w/271 = 283 m for integer m, R = 1.1 m (3.6 ft.) is a
typical propeller blade radius. For a skin of (effective) thickness h(in)

Eqg. III-6 yields a flexural wavelength

Aglin) = 2n/k_(in 1) = 27102 [h(in) /£ (Hz) 1} = 37(h(in) M1} (III-8)

(Note: Af(in) = .025 lf(m))

' -3
For example taking 48 Pa (1 psf) for the weight density of the skin, h = 1.7x10 m
(0.07 in.) and Af = .25 ﬁ (10 in.) at the assumed fundamental blade rate frequency
Of 283 Hz. . i

For illustrative purposes Eq. III-7 has been evaluated for the above sample !
parameters. The results are plotted in Fig. III-2 as a function of the non- ) !
dimensionalized spanwise distance y. In these calculations n was taken to be ?
5x10'-2 which is moderate. Also shown in Fig. III-2 is a plot of Eg. III-3
showing the spatial decay of the source pressure magnitude from its peak at

y - kfR ~ 27.

Although not evident in Fig. III-2, as §=$ o, A(§;w) goes to zero in
accord with the assumed asymmetry of the source about y=0. For values of
.§ < kfR, wave propagation associated with the nonuniformity of the pressure i
field produces an interference pattern in the response curve. The on-average
level is roughly 10 dB down from that which would obtain from a locally reacting

inertial response to the maximum lift pressure (0 dB). For kfR < § < 102 the
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acceleration levels begin to decay exponentially due to structural damping.
Finally if the graph was extended well beyond § = 102, the curves for A(§;w)
and f(y/B) would eventually converge indicating that the local acceleration is
dominated by the inertial response of the waveguide to the magnitude of the

local pressure.

In the following sections some of the cross-sectional details of the
wing are considered, namely the entrapped air or fuel between skins, rib

scattering and radiation, stringers, and spars.

4. Entrapped Air/Fuel Between Skins

Air inertia relative to that of the wing structure can be
dismissed a priori. 1In addition its compreésibility may be dismissed primarily
under the assumption of identical top and bottom skins since as discussed
earlier the unsteady lifts on the skins are out of phase, that is there is no
net compressive force on the wing cross-section as a whole. For example,
modelling the skin-air layer-skin cross-section as an acoustic waveguide
terminated by the inertia of the skins and assuming equal and out of phase
pressures on the skins, (Fig. 3a) either skin acceleration is given by

——Y—“:((;‘)") = [2-itany]/[2-itany(1+i0) ] (I11-9)
(o]

with vy = wd/c, 0 = pc/wy and where d represents the depth of the air cavity and

pc the density and sound speed of the entrapped fluid. For parameters of interest

0 << 1 and the compressibility of the air layer may be dismissed for all

frequencies.

On the other hand consider the situation that exists for those wing
sections containing fuel. 1In this .instance ¢ > 1 and Y < 1 for the frequencies
of interest* and thus the fﬁel is effectively inéompressible. The inertia of
the fuel is large relative to that of the plating** causing a reduced (locally

reacting) response of the skin covering these fuel tanks but also scattering of

* Assuming (pc)fuel = .75 (pc) water and d = 0.15 m (6 in.), o ~ 3x104/f(Hz)

and vy '~ 8x10-4f(Hz).

** For the assumed parameters (pd) /(ph) . ~ 4d(in) >> 1.
. fuel skin
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incoming vibrations propagating along the skin from the fuel tank boundaries.

This latter phenomenon is discussed in detail in the following section in

connection with ribs.

5. Rib Scattering and Radiation

Ribs present structural discontinuities to the skin-stringer

structure, modifying its impedance and wave propagation properties but also

causing sound radiation. To examine the effect of ribs on wave propagation

we first model a single rib as a locally reacting structure with drive-point

impedance Zr (Fig. III-3b). We locate the rib at a nondimensionalized distance

§r from the propeller hub. The wing acceleration becomes

[}

wa(yiw) _ = (S T as 4F i
Po(“) ./. f(ys)g(y.ys)dys+Fr(w)g(y,yr)

-0

where

g(Y:YS)

(-i/4)exp[i|§-§s|]+iexp[-l§-§s|]‘

and §£ is the nondimensionalized rib reaction
= \
= F P . .
Fr(w) r(w)kf/ o(w)

By imposing the constraint condition that

aly_iw) = (iw/Z)F _(w) ,

. oxr

ua(§r;w) _
= Fr(w) /zr ’

P (w
°( )
we may solve for the rib reaction

_ - E(y)gly_,y_)dy
Fr(w) = f S X S S

-1 - -
+

Zr g(yr.yr)

where

-—-1 .
Zr = —1wu/kur .

The wing acceleration in the presence of the rib may now be computed by

substitution of Eq. III-15 into Eq. III-10. The result is shown in
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Fig. I11.4 for an infinite translational impedance rib (Zr = @) located one
propeller radius from the wing tip (§r = 2B ~ 54). It is observed (compare
Figs. III-2 and III-4) that although a null is indeed created at the rib
location, beyond a quarter flexural wavelength away the effect is minor. It
follows that the presence of an array of such ribs would be ineffective in
reducing the vibrations reaching the fuselage unless the rib array spacing
was less than a quarter flexural wavelength (Af/4 ~ 0.062 m (2.5 in.), for

the illustrative example being considered).

Now let us increase the complexity of our rib model by allowing it to
constrain the rotation as well as the translation of the wing. In this case
the rib, by virtue of its rotational impedance Z:, creates a concentrated
couple (Mr) in addition to a transverse force (Fr). The acceleration field is

now expressed by

E?;i%“l =[£G )9G5 ) a7 F (a7 +ifi_()29(F.5 ) /0y (111-17)

where
R =Mkl .
r r f"7o
By imposing the additional constraint that
- - *
Ba(yr:w)/ay = (1w/Zr)Mr(w) ’
or

wdaly ;w) /3y _ x _ :
5 (@) = R /2, . | (II1-18)

we obtain

JEG )093 /¥ ) /9T Isan(¥, -y ) 147 _

M (w) (III~19)
r s*~1 .2 - - -2
z2, "-id7gly sy ) /3y
with
=* -1 . 3 * . ) ’
() = = -iww/kez . : . | (11;—20)

- -
By setting both Zr and Zr equal to infinity we create an effectively
clamped boundary at y = §r thus blocking completely wave propagation across the

rib. Accordingly the computed acceleration levels for y > §f (~27.) are caused
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solely by thét portion of the pressure field extending beyond the rib. And
it follows that for this case the excess.bropagation loss across the rib is
primarily a function of (y/R), the distance of the fib from the hub measured
in terms of the propeller blade radius, and should be approximated by .

20 loglyr/RI_(mN+1)

‘this expression yields -54 dB. Exact numerical results are shown in Fig. III-5.

. For the parameters being considered,'m=1, N=8 and yr/R = 2,

Figs. III-4 and III-5 were computed aséuming a rib with effectively
infinite translational and rotational impedances relative ;o those of the
skin. Nevertheless, given the large skin compliance, this is readily achieved.
The criteria for accomplishing this end may_be'deduced from the»denominator of

Egs. III-15 and III-19 and are given by

|z |/2/2 wu/k, =y > 1 ' ' (III-21a)

and-

]
-
v
b

lz:l/Z/E wu/kg

For example, assuming an inertial rib Egs. III-21 are satisfied (y = 3) for the

example being considered by a rib with a cross-sectional area of 6.2x10-4 m2

(1 in.2) and rotational inertia of 9.8x10-7 m4 (2.5 in.4).

Having considered the influence of single ribs the question arises as to the
effect of a ribbing array. For example it is well documented14 that a periodically
spaced array of ribs produées "pass" and "stop" frequency bands withiﬁ which -
flexu:al waves in the plating either propagate freely, that is unattenuated in
the absence of dissipation or, suffer an evane;cent‘decay. However, given the
thin and, in turn, low impedance wing skin, it has begn shown that the criterion
for achieving a very large impedance mismatch at each rib location for both
translation and rotatioh is easily realizable (Eq. III-21). Also, for the
problem at hand and as is the case for a single rib, the effectiveness of an
array will be bounded by the direct excitafion, it being distributed over the
surface of the plating. Thus for the assumed parameters of interest, array
effects (stop bands) are not considered to be a viable means for enhancing
propagation loss along a wing beyond that implied by the multiple application
of the above single rib analysis. Nor are array effects (pass bands) thought

to be of concern in terms of short circuiting single rib effectiveness.
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At this point it is informative to examine the dependence of the above
predictions on N, the number of propeller -blades. For this purpose the érevious
example was recalculated but for N=4 rather than 8. Tbe frequency was held
constant at 283 Hz. Results are shown in Fig. III-6 for the unribbed and fully
constrained (in both translation and rotation) cases. Also shown in Fig. III-6
as a dotted line is the spatial variation in the source pressure magnitpde which
is now observed to decay more slowly. However for the unribbed case, the
normalized acceleration levels themselves are relatively insensitive to the
change in N, especially the decay in level beyoﬁd y = B. This may be‘explained
as follows. For.iarge values of mN the effective source area is concentrated
around § = #1, the locétibns of the wing tips. However, for the assumed
parameters, the spatial decay in the‘sourcé_is still slow enough so that its
gffective‘correlation length exceeds the characteristic (flexural) wavelength
in the skin. To obtain a measure of the net source strength we integrate the
preséure over one quarter flexural wavelength from'the (closest) wing tip.

Using Eq. III-3 we obtain an effective moment acting on the waveguide of

(1+lf/4R)
2 - - . - - . 2
M(w) = P(w)R / (ys—l)f(yS/B)dys < P(w)(kf/4,) o
(1-.>\-f/4R) : (I11-22)
'Af/4R << 1

which is invariant to N. The (far field) waveguide response to this line

moment is given by

|AFsw) | = (1/4) %expl=(F-B)n/4] . |  (III-23)

Eq. 23 has been plotted in'Fig. III-6 where it is shown to compare favorably

with the far field portion of the response curve computed using Eq. III-7.

While N has only a minor effect on'the,compﬁted acceleiation levels for
the homogeneous structure, this is not the case in the presence of a strong
structural discontinuity. For example, for the effectively rigid rib considered
earlier, the transmissiohhloss across it is roughly 50 dB when N=8 (Fig. IIi—S)
but less than 30 dB for N=4 (Fig. III-6). This difference in rib effectiveness
is'directly attributable to the slower decay in the unsteady lift foi N=4 and

in turn a higher excitation level at and just beyond the rib location.
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Although the subject‘of this work is the propagation of structureborne
noise along the wing it is important to keep track of the acoustic radiation
associated with these vibrations as this radiation impinging on the fuselage
is also a potential source of cabin noise. This combined structureborne-
airborne noise path can short circuit potential structureborne noise control

measures.

To estimate this effect in connection with rib scattering we assume that
the structureborne path has been blocked at some distance §r from the propeller
hub. That is, at spanwise distances y > yr, the wing acceleration is zero.

The pressure radiated along the wing surface may be approximated by (Ref. 13,
p. 94),

¥y,

P _(yiw) = (pW/2m) / {exp{ik(y—y_‘:))]/(y-ys)}a(ys;m)dys (IIIf24)

-0

]

provided that q pc/um << 1 and (y—yr) >> W, where W is the average wing chord.

In Eq. III-24 k = w/c is the acoustic wavenumber. Rather than evaluate Eq. II1-24
exactly for the acceleration fields computed earlier let us consider a simpler

case.

The far field grazing radiation from a rigid piston centered about x=y=0,
of rectangular dimensions 2Lx' 2Ly, and vibrating in an infinite baffle with

acceleration amplitude a is (Ref. 13, p. 94)
, lpr(y-yr;m)l = [p/2n(y—yr)]4aoLx51n(kLy)/k . (III-25)

We let 2Lx = W the wing chérd. Also, since for the example under consideration
we are below the critical frequency, that is kf >> k, we allow ZLY = Af/4 or
one quarter of a flexural wavelength, it being assumed that radiation from the
remaining portion of the vibrating wing is minimized because of phase

cancellation. This yields
lpr(y;w)l ~ pWa°/4kfy : y>»>y, o~ _ (III-26) .
Normalizing this radiated pressure to the maximum source pressure

P, (v;0) /2_(w) | - pWa_/ak YP_(u)
(III-27)
= (/12 k/kf)-l(p/pw)(cw(c)(w/y)(uao/po(w)) )
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For example, using the physical parameters of our example and a frequeﬁcy of

283 Hz (m=1)
IPr(y;w)(Po/w)I - 4310-3(W/y)(uao/90(w)) | (III-28)

Taking uao/Po(m) to be roughly unity (see Fig. III—S with §~§r) we see that,
ignoring spherical spreading in the form of (W/y) the radiated pressure is down
a considerable 48 dB from the maximum source pressure. Given the Chapter I
estimate of Po(m) = 137 dB re 20 uPalfor a typical maximum source pressure,
it is concluded that this radiated field is negligible compared with the direct

airborne path.

6. Discrete Stringers

To this point stringeré have been modelled as being integral with
the wing skins and thus accounted for only to the extent that they modify skin
parameters yielding an effectiveAstiffness or density. However, depending upon
geometric details this approach may not be adéquate. For example if the-
stringer impedance is large relative to that of the skin and if the stringer
spacing is comparable to or exceeds the wavelength of freely propagating
flexural waves in the skin then the stringer mﬁst be modelled in a discrete
fashion. It is shown below that this situétion provides a mechanism for
potentially enhancing the propagation loss of structureborne noise along the

wing over the bare skin, or integral skin-stringer case.

Consider the structure shown in Fig. III-7. The skin which is still taken
to be of infinite spanwise extent is now taken to be not just a lifting line as
before, but rather a lifting surface of finite chord, simply supported along

its sides. These simple supports represent the stringers. Assuming an

excitation pressure of the form F(x,y) = R(x)8(y), the plating acceleration,
which is now a function of x and y, must satisfy the partial differential
equation
a__ +2a___+a___ -k%a = -w2[12(1-v2) /ER )£ (x) 8 (y) (1II-29)
YYYY  yyxx xxxx f )

The solution is in the form of a series

a(x,y;w) = L a (y)sin(nmx/L) . , _ (I11-30)

Taking the Fourier transform of Eq. III-29 with respect to y yields
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[(k +2k k +k ) k ] = fn (III-31)

with

L ,
£ = -w2[12(1-v%) /ER3] (2/1) ~[ £(x) sin(k_x) dx (I1I-32)
) |

and where kn = nn/L and ky is the wavenumber corresponding to the y-transform
variable. Inverting Eq. III-31 and assuming a uniform chordwise pressure of

unit amplitude, that is f(x) = 1,

wa(x,y;w) = (-ik /2) n=1§3’5 (2/nm) sin(k _x)G_(¥) (III-33a)
with
Sy - .23 . 2,340 . 0 2 -3 2, 3-
: Gn(y) = (l-Kn) exppl(l-Kn) y]+1(1+Kn) exp[-(1+Kn) vyl (II1I-33b)

where Ky = kn/kf and as before, y = kfy.

Eq. III-33 may now be used a§ an influence function governing the wihg
response to the distributed lift defined previously but now in the presence of

discrete stringers,

«©

7, - (- I i 5 5 a0 -
-ua(f<,y.w)/Po(w) (-i/2) n=1,3,5... (2/mr)sm(an)/ f(ys/B)Gn(ys)dys . (III-34)

-C0

Although detailed calculations using Eq. 34 could be performed it is
sufficient, for present purposes, to examine the nature of the solution. Of
principal interest is that Eq. III-33 impliesba cutoff frequency below which
Ki > 1 and therefore the acceleration decays exponentially with spanwise .
distance from the source.15 The lowest-cutoff frequéncy, corresponding to n=1,

is given by Kl =1 or ka = T.

For example, at one-half of this frequency ka = n//—, and the minimum
exponential decay (n=1) given by Eq. III-33 is exp[-(w//_)y/L] Thus, the
decay at a spanwise distance from the source equal to only one strlnger spacing

(y=L) yields ~20 dB of attenuation.

Unfortunately this rather impressive effectiveness can be short-circuited
by the flanking path created by the rigid body motlon of the stringers. This

places a restriction on the minimum size of the strlngers, but fortunately only
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on a spanwise length comparable to the stringer spacing. For example, a 20 dB
reduction in this rigid body motion requires a stringer to plating mass ratio

of the order of ten.

Typical values of L may be estimated as follows. The cutoff criterion
ka = 1 yields f(Hz) = ﬂ2104h(ig)/L2(in2) (= 2.5x103h(m)/L2(m2)) for an aluminum
skin. Thus, taking h = 1.7x10 m (.07 in.) as before, a 0.10 m (4 in.) stringer
spacing yields a cutoff frequenéy of 430 Hz, well beyond the assumed fundamental

blade rate frequency of 283 Hz.

7. Wing Sweep and Spar Dynamics

In previous sections, with the exception of the discrete stringer
analysis, wing dynamics were modelled one dimensionally, that dimension being
the spanwise coordinate. This can be justifiéd on the basis of the source model
which predicts an average lift invariant to the chordwise dimension and the
implied assumption of a wide wing with zero wing sweep. As a consequence, the
structureborne noise propagation characteristics of the wing are dominated by
those of the skins. In this section we consider the potential structureborne
noise path along the spars, this path being pérallel with and coupled to that

along the skins.

The spars themselves not being directly exposed to the unsteady 1lift are
excited via the ribbed skin structure. Since the overall surface area of the
skin greatly exceeds that which is in direct contact with the spars, it is
assumed here that spar motion is the result of propagating waves in thevskin
being coupled into the spars. This may be justified as follows.

. . s . ' . 16
Taking the chordwise variation in the unsteady lift to be of the form

-1 .
x{x) = [(b-x)/(b+x)]} with the front spar located at x = -b, and where
b = W/2, the wing semichord as defined in Chapter-II, the integrated pressure

acting on the skin over the chordwise distance X > X > -W/2 becomes

X
C

B_(x) = X (x)dx = (W/m) [n/2+sin " (2x_/W)+(1= (2% /W) 24

-W/2
If the effective force on the spar (per unit spanwise distance) is approximated
as that acting on the adjacent skin extending out a chordwise distance of Af/4

then the ratio of this force to the overall force acting on the wing (per unit

spanwise distance) is
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- - _ 3
B (-W/24A /4) /B (W/2) = (2/m) O /M)? << 1 A /M<<1 .

To examine the skin-spar phenomenon we analyze the situation shown in
Fig. III-7. A straight crested flexural wave propagating in a semi-infinite
plate (skin) is incident on a beam (spar) of infinite extent at an angle given
by ¢. This angle may represent the sweep angle of the wing or another source
of skew. The beam serves as the termination of the plating and is capable of
sustaining both flexural and torsional waves. However we will simplify our
analysis by ignoring coupling between torsional motion in the spar and in-plane
or membrane motion in the skin. The analysis of this problem is straight-
forwardand follows closely that given in Ref. 17. (In Ref. 17 an infinite
rather than semi-infinite plate is analyzed.) A unit amplitude harmonically

varying flexural wave is defined by

wi(x,y) = exp(ikfysin¢)exp(ikfxcos¢) (II1-35)

where ¢ is the incident angle on the beam measured from the x coordinate axis.
Grazingincidence on the beam (spar) is given by ¢ =7 /2 and normal incidence

by ¢ = 0. The reflected wave takes the form
wr(x,y) = exp(ikfysin¢)+Rexp(-ikfxcos¢)+RNexp(-kfx(1+sin2¢)i) (I11-36)

" The resulting translational motion of the spar (x=0) is given by
v, )| = [wo,) ] = |w, (0, ) +w_(0,3) | = 1+R4R (I1I-37)
and the (torsional) rotation of the spar is

|ow  (y) /ox| = kx|1—R+iRN| . (II1-38)

After expressing the interaction shears and moments in terms of the boundary
motion the reflection coefficients R and RN may be determined from continuity

of displacement and slope. The{result is the following set of simultaneous

equations. f
1
[AIR = B i (I1I-39)
with f
i
R %S+1+sin2¢—vsin2¢
; .
R = ’ B = g
KA 2 , 2
RN : iU cos¢-(cos p+vsin“¢)
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and

S+icosé (1+sin’é-vsin-é) S-v(1+sin2e) 1sin¢
fal =
iUcos¢+(cosz¢+vsin2¢) ’ U(1+sin2¢)é—(1+sin2¢—vsin2¢)
with
s = (A K,/ (e /c)lsine-17 | (111-40)
= Ab £ y cp sin ¢
3 2 .2
U = (ka/h)tl-(ct/cp) sin”¢] (ITI-41)
and where ct = ci(K/J)i and cb = (c(rg)bm)* are the velocity of torsional and

flexural waves in the beam and cP = (c(rg)pw) is the velocity of flexural
waves in the plating. In the above equations (rg)b and (rg)p are the radii of
gyration of the beam and plating respectively, and it has been assumed that
the sound speed in both the beam and plating is c¢. The term g represents the
shear velocity in the beam and K and J its cross sectional torsional constant
and polar moment of inertia respectively. Also h = /i?(rg)p is the plating
thickness and Ab the cross sectional area,pf the beam. It is noted from

Egs. III-39 that with the exception of Poisson's ratio vy, the dependence of
the reflection coefficients on the physical parameters of the system is solely
through the flexural parameter S and the torsional measure U. Ornce again our
interest will be limited to an analysis of the nature of the solution dictated

by the mathematical model.

First we observe that for grazing incidence (¢ = n/2), Egs. III-39

reduce to

s s- vV2v R S
= = (III-42)
v Y20~ (2-v) Ry v
yielding R = -1 and RN = 0. Thus for this (zero wing sweep) case we confirm

that there is no coupling into the peam (spar). Although it is not particularly
relevant to the problem posed, it is of general interest to explore the other

extreme, namely normal incidence for which ¢ = 0. Here Egs. 39 reduce to.

II1I-14




S+i S R S-i
= - (III-43)
iU+1 U-1 Ry ' 1-iU

And it can be shown that under this circumstance

& Ust(y)l = 0 s> 1
’
4 S,U << 1
2 S<<1, U>»>1

Physically, large values of S and U imply large translational and rotational

beam impedances respectively, relative to the inertial impedance of the plating.

More relevant to the issue at hand, we now consider the solution to
Egs. III-39 for arbitrary values of ¢ but a variety of limiting cases for S

and U. For S >> 1,.Eqs. III-39 yield the following solution for the reflection

coefficients
o .2, .3 . 2 :
R U(l+sin"¢) “~[1+(1-v)sin"¢] -1 -1
=p 1 (I11-44)
. 2 .2 . 2 .2
RN -[iUcos¢+cos ¢+vsin™ ¢] 1 iUcos¢-(cos ¢+vsin ¢)
with

D = U[(1+sin2¢)§—icos¢]—2 .

If in addition we assume U >> 1 then Egs. III-44 give R+RN ~ =1 and therefore
from Eq. III-37,

S, D> Ws(y)_ =0 (III-45)

On the other hand if we assume U << 1 then Egs. III-44 yield

2
S0 Ws(y) = vsin“¢ . (I1I-46)

Similarly it can be shown from Egs. III-39 that

!
!
Ws(y) =§(2+sin2¢)/(1+sin2¢) . (I11-47)

(

Thus, in the asymptotic limit of large translational and rotational spar

U=, S=0

'
impedances, there is nq translational coupling into the beam. However, if

j I1I-15
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either the translational or rotational coupling factors is negligibly small

then the coupling is of the order unity.

The quantity S is small if either Abkf/h << 1 or sin¢g ~ (cp/cb).
However, since for typical wing structures Abkf/h >> 1 only the latter
condition is of interest. Taking the spar and skin to be of the same material
(cp/cb) = [(rg)p/(rg)bli, and therefore there is s?rong coupling into the spar

for incident angles

-1 3 ‘
= sin r r).] . (II1I-48)
¢f [( g)p/( g'b
Similarly, since typically Jk:/h >> 1 there is strong coupling into the beam

for incident angles that satisfy sing ~ (cp/ct)i or

s . -1 -1
¢ T sin L) (e/e )k TR /A ] (11I-49)

where the geometrical factor kK = K/J and Ac = 2Tc/w is the wavelength of
compressional waves in the plating. Egs. III-48 and III-49 are expressions for
the angles at which there is wavenumber matching between flexural and torsional

waves in the beam and flexural waves in the plating.

In order to evaluate the degree of coupling between wing skins and spars
based on the above model, one first estimates the quantities S and U. To do
so we hypothesize an aluminum spar, iectangular in shape, of thickness Fs = 2h
and height H = 100 h_ where the skin thickness hy = 1.7x107 m (.07 in.).

Further we use c/cS = 1.7 for aluminum K = 4(t/H)2 for a rectangular cross
section,18 and consider a frequency of 283 Hz. This yields ¢f ~ 6° and ¢t ~ 11°

and thus strong cocupling due to wavenumber matching occurs only near normal

incidence. Also Abkf/h = 8.8 and Jkg/h = 14.2. Therefore, if we somewhat
arbitrarily assume a wing sweep of 30° and take this as our angle of incidence
then for the above parameters S,U > 10. From these large values little coupling i

is expected between the (bare) skin motions and the front and rear spars.

Although beyond the present scope, it should be noted that the above
conclusion may not hold in the event that the effective skin thickness is
significantly larger than assumed or if there are large rib motions coupling
well into the spars. Also, in this discussion the translational motion of the
spar was taken as a measure of coupling while in practice spar rotations are

also relevant.
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8. Summary of Results

The more salient results from Sections III.A.1l through III.A.7

are summarized below.

a. For a rib to enhance significantly the propagation loss along
a wing it must constrain both the translational and rotational motion of the
skin. The criteria for achieving this objective appear to be realizable with
minimum weight penalty. 1In practice rib effectiveness will be limited by rib
elasticity which reduces its scattering strength and allows more.gfficient
propagation across and coupling into it, both effects leading to an increase in

cabin noise, the latter via the rib-spar-fuselage path.

b. Sound radiation (airborne) associated with structureborne
noise scattering from structural discontinuities along the wing is negligible

compared with the direct acoustic path.

c. Stringers that are small and in effect structurally integral
with the skin have minimal impact on propagation along the wing. However, cut-
off phenomena associated with a parallel array of discrete stringers could be
created and exploited to enhance propagation loss. For an illustrative example
the criterion for effectiveness is given as ka < 7, where kf is the (frequency
dependent) wavenumber of flexural waves in the skin and L the interstringer
spacing. Also, the (spanwise) length of the stringer array need only measure a

flexural wavelength in the skin and therefore entails minimum weight penalty.

d. Spar vibration levels directly excited by the unsteady 1lift
are less than those in the skin near the midchord. Also, in the absence of
stiffeners, either ribs or stringers, or extreme wing sweep, coupling of
structureborne noise from the skin into the spars is minor. The extent of
coupling from the skin to spars in the presence of ribs has not been determined,
and in view of the previous conclusions this skin-rib-spar-fuselage path may be

the dominant one for typical wing configurations.

B. Wing-Fuselage Interaction

1. Introduction

In this section a simplified analytical model of a fuselage that
is structurally connected to a wing is presented. In an aircraft the frame of

the wing, namely the front and rear spars, is structurally connected to that of
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the fuselage via a gecmetrically complex structure, shielded somewhat from the
passenger compartment of the cabin. Thus structureborne noise levels in the
spars will be attenuated to some extent as they propagate through the fuselage
and eventually radiate as cabin noise. For an aircraft the detailed modelling
of the wing-fuselage structure is beyond the scope of this report. Nevertheless,
to examine some of the characteristics of wing-fuselage interactions and to -
simulate a laboratory experiment recently performed at NASA/Langley a simplifed
analyticalmodel is studied. 1In th%s model the fuselage is represented by a
uniform cylindrical shell while the wing is modelled as a freely supported beam.
Coupling between the beam and shell occurs along the width of the beam (i.e.,
chord of the wing) where the shell and beam intersect. Along these lines of
contact the wing imparts both shear and moment reaction loads to the fuselage.
If the beam is assumed to pass through the center of the shell, the reactions of
the beam on the shell are an in-plane load and a moment. In this fully coupled |
étructural model the effects of stiffeners in the form of circumferential

frames or longitudinal stringers as well as the effects of loading on the shell

imposed by the internal fluid are negleéted. The latter effects are discussed

further in Chapter IV. These effects are considered separately using a model

of a frame stiffened shell that is described at the end of this section.

2. Unstiffened Fuselage

Figure III.8a, b, and c shows the geometric idealization for the
analysis of the wing-fuselage system. The wing, modelled as a beam of length
Lw' passes through the diameter of simply supported cylindrical shell of

length L_ (w and f subscripts respectively denote wing and fuselage).

£
Stiffening frames and stringers are not included in the analytical model that
follows; however, the effects of frames are examined in Section III.C. As

indicated in the wing free body, the structural effect of the shell is modelled

as a set of unknown normal-to-beam forces and moment reactions at the two
points of contact. For the shell analysis these same forces and moments are
assumed smeared over, or distributed along, the width of the beam (root chord

in an actual aircraft).

Displacements and rotations at the two contact locations may be
indébendently expressed for beam and shell in terms of respective structural

admittance matrices and the unknown load vector (for the beam the known
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exciting force Fo also takes part). Finally equating displacements and

_ rotations for the two systems at their two points of intersection one obtains

a set of 4 simultaﬁeous equations (2 degrees of freedom x 2 points'of contact)

from which the unknown forces may be calculated.
the center chord point z

the beam motion.

-
11

where the
* *

€117 C12°
parameter

the shell

Here L.,

in what follows, appears normalized by the shell radius a.
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These are all given below.
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(III-50)

' 012' etc., form the admittance matrix of the wing, and

The nondimensional

K gives some indication of the relative importance of the beam and of

as all wavenumbers and other spatial qguantities except a, h, and Iw

respectively for the moment of inertia of the beam about its cross-sectional

horizontal axis, and Ew for the beam's Young's modulus.

shell values of Young's modulus, Poisson's ratio, thickness and radius.

The beam constants are expressed in terms of free-free beam eigen-

functions19

wm(X)

where
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2k _ L -2k_ L
N = k1 {% [(1+C) Ze fmw - (1-C) 2e fm w]

sink_. L k_L -k_L
fmw [(1+C)2e fmw + (1—C)2e fm w]

sin2k_ L ]
fmw

2 .
+ (C™-1) [s;mhkmewcoskmew + 2

1 . 2
+ C [- 5 + sin kmew + Ckfm;'w] }

sinhk,_ L -sink_. L
_ fm w fmw

cosk mew-coshk mew

m
kmew =3 (3.0112, 5, 7, 9, ...)

where rg is the beam's radius of gyration (normalized by a)

sectional horizontal axis.

The beam system's constants are

2
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shell constants may be obtained from énalysis for thin cylindrical

Ref. 13, p. 237.

The shell system's constants are
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and where nf stands for the shell loss factor.

C. Model of Frame-Stiffened Cylinder

The external fuselage is a shell that is stiffened by both
circumferential frames and axial stringers. In the laboratory test cylinder
discussed in Section V the shell is coupled to a beam through either of these
stiffeners by bolt attachments. The analytical mecdel of the coupled beam and
shell discussed in the previous section does-not include internal stiffeners.

In order to examine the effects of these structural elements, the structural
response field of a frame stiffened cylindrical shell with internal fluid in
response to localized circumferential force and moment excitations is examined.
These excitations can be viewed as providing influence functions (i.e., pressure

per shell load) for the coupled problem of a shell and wing.

The analytical model of the framed stiffened cylinder assumes the shell
to be simply supported. The model allows the interior fluid loading to be

included in calculating the shell response. The frames are modeled as rings,
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having three translational degrees of freedom as well as rotation aligned with
the circumferential direction. The impedance matrix for the frame dynamics is
given in Ref., 20. Coupling between the shell and frames is assumed to occur
through line reaction loads at each frame location. Excitation loads are
applied at the centroid of the cross section of the driven frame. Under these
assumptions each circumferential mode of the shell couples to the frames and
the reaction loads for a given circumferential mode are obtained by solving a
system of equations equal to 4 (frame degrees of freedom) times the number of
frames. The terms in each equation involve a sum over the axial modes of the
shell. Once the frame reactions are known, they are applied one-by-one to the
shell to calculate the response. The contribution of any particular frame to

the response can therefore be examined by omitting it and noting the change in

the response. As discussed in Chapter V, this procedure is useful for examining

the importance of specific structural elements to the response and interior

sound field.
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Fig. III.7 - Mathematical model of skin-spar interaction.
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(b): cylinder free body _ : (c) wing free body

Fig. III.8a,b,c - Wing-fuselage structural interaction model.
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Iv. ACOUSTIC MODELS FOR CABIN INTERIOR

A. The Sound Field in a Fuselage Modelled as a Cylindrical Shell

Terminated by Bulkheads

1. Introduction

The sound field in an aircraft fuselage, modelled as a cylindrical
shell vibrating in response to structureborne noise incident along its wings,
is formulated for two types of acoustical treatment. 1In both cases the
cylindrical shell is assumed to be simply supported and terminated by bulk-
heads, the wings being located in the horizontal plane of symmetry. Both
analyses assume that the internal source impedance of the shell modes is so
large compared to the impedance of the corresponding room modes, that they
(the shell modes) act effectively as constant-velocity sound sources. Unde:
these circumstances, pressure peaks are associated with antiresonance of the

air volume, as well of course as with shell resonances.

First, in Section B the sound field inside a cylindrical shell with zero
surface absorption is calculated as the sum of two pressure components, one
describing the contribution of the cylindrical part of the boundary, and the
other that due to the presence of the two end bulkheads. 1In Section C.1l
this solution is generalized in approximate form to account for small surface
absorption. In the theory each of the pressure components contains parameters
through which bulkhead and radial absorﬁtion may be independently controlled.
The result derived here, however, takes into account only the latter effect.
Inclusion of the former axial effect would require a parallel though somewhat
simpler analysis which would complicate final expressions needlessly. 1In
Section C.2 absorption parameters used in B.1l are related to fuselage rever-
beration time. Finally, Section D is a discussion of the theoretical modal

density for both shell structural response and internal acoustic field.

B. The Sound Field in a Vibrating Cylindrical Shell with no Sound

Absorption

1. Formulation of the Problem

The radial shell response is in the form of a‘double,Fourier

series,
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wlb:z) = exp(-ivt) T W sinng sin == - (IV-1)
Here z is measured from the one shell extremlty and the circumferential angle
¢ is from the plane containing the w1ngs. In the more general case where the

wings are not restricted to lie in a plane of symmetry, Eq.. IV-1 would have to

be supplemented with a cosn¢$ series.

The sound pressure satisfies the steady- state wave equation in cylindrical

coordinates

(v2x3)p = 0 ' S (1V-2)

and the boundary conditions

3 -
‘5§=-ow(¢.z). r=a
(Iv-3),
§§~= 0 ’ z =0,L"

A solution satisfying the former boundary condition is readily constructed,
by inspection, but being matched to Egq. Iv-1, it necessarily dlsplays nodal
planes coinciding with the bulkheads. Tpis solution taken by itself is
incompatible with the latter boundary condition in Eq. IV-3. We shall there-

fore construct the Pressure field by combining two pressure components.
| p = P1+P2 o (IV-4)
satisfying respectively the boundary-condicions,

Py

or

- pw(d,z)
r =a .- - (IV-5)

2Py |

or

and

dp op
2 .
=m0 Eton (1v=6)

This procedure can, if desired, be modified to account for a non-zero specified

bulkhead motion, viz., ¥ u (r)sinng.
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2. Pressure Field Radiated by the Vibrating Shell

Eq. III-1 admits solutions in the form of Bessel functions of the
first and second kind. However, the latter display a singularity on the axis
r=0. Consequently, in the absence of significant absorption, only functions
of the first kind are required. Taking w positive outward, it can be verified

that the solution which satisfies Eq. IV-5 is of the form

. Jn(kmr) mrz '
pl(r,¢,z) = - pmzn Won  +—— sinné sin - ' (1IV-7)
! k J (k a)
mn m
where the radial wavenumber is
k= [k2 (mn/m)21¥ (IV-8)

m

‘This pressure component describes the sound field in an infinitely
periodic shell. If the shell is provided with a sound absorptive core, the
.Bessel functions in Eq. IV-~7 are replaced by Hankel functions. Both solutions
predict vanishing pressures in the planes z=0 and L. Some analyses even though
intended for finite shells, erroneously omit the pressure component P, required

to account for the bulkheads, whether the space is anechoic or not.21

The axial pressure gradient in the plane of the bulkheads is

Bpl Jn(k x)

mm
=-p L —1Iwy ——————— sinn¢ , z=0
9z mLonmoy gk a) |
mn m (1v-9)
mm m . = Jn(kmr)
=-0p g I (-1) g wmn Y sinnd ' z2=L
k J (k a)
mn m

The pressure component in Eq. IV-7 displays resonances at frequencies
where the product kma equals a root of the Bessel functions. As explained in
the introduction, the pressure peaks generated by a high-internal impedance
source are associated with antiresonances at the zeros Ynsa of the Bessel

function derivative522

n
o

(y _a) (IV-10)
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There is therefore a triple infinity of room resonances and antiresonances.

For k_ = 0,
m

fzm = %“‘- , (IV-11)

is an antiresonance for n=0. This wave harmonic is excited only if the wing

bPlane does not contain the cylindrical axis.

It is convenient to distinguish between odd and even axial modes by
selecting a new origin of coordinates in the midplane, at z = L/2. The new
axial coordinate is

zZ =z - %L

The pressure in Eq. IV-7 now becomes

_qy (m=1) /2 ' -
ann(kmr) ( }) cos(mnz»/L), m 1,3,...
(r,d, Z') =-0p mzn . sinné - (IvV-12)
kan(kma) (-l)m/zsin(mnz'/L), m=2,4,...

3.  Pressure Field Generated by the'Bﬁlkheads

We now construct the Pressure component whlch satisfies Eq. Iv-6,
where apl/az is given by Eq. IV-9. Noting that odd values of m in Eq._IV—?
correspond to the even modes, i.e., modes symmetrical about the midplane,
while even values of m correspond to modes which are antisymmetric about this

midplane, the pressure component we are seeking is of the form

' = 3 ' z . - [ ]
Pz(r,¢,z ) h?s Jn(Ynsr)51nn¢ [m=§,3 Pmns cosknsz + P sink .,]

m=2,4 “mns ns
where (;V-lB)
k= (k2-y2 )% S (IV-14)
ns ns

and where, as in Eq. IV-11, Ynsa is a root of J;.

Consequently, the introduction of p2 does not alter the boundary condi—
tion satisfied at r=a by'pl Differentiating Eq. IV-9 with respect to z' p
one can satlsfy the boundary condition in Eqg. IV—6 by expressing each m,n

term in Egq. IV-9 to a Fourier-Bessel series:
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k_ L

. sin ?; , m=1,3,...
PW mm™ JT (k x) .
kmg ? A= g knspmnan(Ynsr) (IVv-15)
m Jn(kma) anL
cos 5 , m=2,4,...

Multiplying both sides of this equation by Jn(ynsr) and integrating allows

one to solve for the coefficients of the Fourier-Bessel series:23’24
. -1
2 .. [sin(k L/2)] ~, m=1,3,...
2pmnynswmn I ns ‘
p = mns (1V-16)

e knskmL(Yisaz-nz) J;(kma)Ji(Ynsa) -1
- [cos(knsL/w)] , m=2,4,...

where the integral I i525:26,27
mns

a

I =

mns ./‘Jn(kmr)Jn(Ynsr)rdr
o

(IV-17)
kma '
== 5 J (v 2a)J (k a)

Y. -k
ns m

Combining Egs. IV-13, 16, and 17, this yields an explicit expression for the

bulkhead-reflected pressure:

. 2 .
wmnmyn551nn¢ Jn(ynsr)

2 2 2
ns® 0 )Jn(Ynsa)

2pTa T
L m,n,s

p(r,0,z') =
2" 2 .2
an (Yns-km) (Y

(IvV-18)

L}
cosk =z
ns

sintk_t7z) ¢ T tedee
ns

sink z'
ns

stk 1 M= 2k
ns

This does not introduce any additional resonances or antiresonances.

The resultant pressure is finally obtained by adding Eqs. IV-12 and 18
as indicated in Eq. IV-4.
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C. Sound Field in a Vibrating Cylindrical Shell with Small Sound
Absorption )

1. Generalization of Section B Theory

We define the cylinder internal pressure p* and associated
* . ’ . .
Green's function G as the absorptive counterparts of those in Section B
(there defined without asterisk though G is not used explicitly). With non-

zero surface admittance K (Ref. 1, Eq. 24) their boundary-value problems are,

respectively,
* ' J . ‘
V2p*+(ka)2p =0 ) . . o i (IV-19a)
EE—- + 1 * = —pw = = | : ' -
3no iKp = —pwa on n=r, 1 _ . (IV-19b)
ap”
L = = ‘ -
ano 0 onn_ =z = #L/a : . ‘ (IV-19c)
* . - -
v26"+(ka) %Y - 5 (3% ) ! (IV-20a)
’ * . ) .
G ok o
+ 1KG =0 onn =r =1 (IV-20b)
ano o o : .
so that ' ' . _ . . .
oL asg” 3p” + ikp® = - £ a G;‘x)} ‘ ' (Iv-21) .
P =4 ar P T T 4y s '
S ° S

In terms of room modes appropriate to the cyllndrlcal geometry the

solution for G may be constructed for small values ‘of K:

. Y J(Y r)Jn(Ynsr )Sinn¢§inn¢6sin(mnz/L)sin(mﬂzo/L) (TV-22)
- nms ( ) [y - ] (x )2 o )
n Yns Yns n a "L Yns :

where r,ro are normalized by the;radius a and Y;é are the eigenvalues of the

radially absorptive boundary condition, a modal form of which (Eg. IV-25 below)
*

is given shortly, For small K Yns may be assumed egqual to the real zero Yns

plus a small complex part; viz.,
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*
Yns Yns 1€ )

For €=0 G* as given by Eg. IV-22 collapses to the room mode form of G,

the Green's function for the nonabsorptive case which contains an infinite anti-

. . . 2 2
resonance whenever the denominator vanishes, i.e., whenever (ka)z-(mﬂa/L) —Yns =0,

or at frequencies given by,

2nc/a

CE

L ns

f =

With absorption, however, the corresponding value of this quantity is

always finite, since then

2
2 mna *2 . _
(ka) ( I ) -y = Zleyns (IV-24)

We now calculate € in terms of K. The r, = 1 homogeneous boundary condi-
* .
tion on G (Eg. IV-20b) implies that

) * v % . * _ »
1lim Ynan(Ynsro)+1KJn(Ynsro) =0 (IV-25)
ro-*l

. ] * - s " * _ 2 .
Since Jn(yns) = lEJn(Yns)’ and Jn(YnS) = Jn(Yns)+0(e ) it follows that

—KJn(YnS)

Ynan(Yns)

so that the right side of Eq. IV-24 becomes

2iKJ
n(Yns)
”"
J
n(Yns)
The pz component of pressure with nonzero absorption may now be obtained

. *
in terms of a triple sum of room modes by substitution of G with the above

result for e:

* *2D
Jn (Ynsr) YI‘!S

* *2 2 2 mm \ 2 *2
I V) e ) [Uuﬂ - (L/a) - Yns]

sinn¢sin mrz/L W
mn

(IV-27)
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or
* ~ LX) . 28 )
= - si 5 1 iv-28a
Pl pa gh inmnz/L sinng¢ wmn(r)wmn (

* *

(r)2
ns Yns YHS

4 = IV-28b
Yo x) =21 ( )

. 2
T3 ) (v 2end) [7:1: + (%) - (ka) 2]
In Section B, pl appears in a different form, however. There the more
economical double sum solution in Eq. III-7 was the end result of an implicit
construction of the Green's function to satisfy the radial boundary condition
with no absorption. Letting ¢=0 in Eq. IV-27, it follows therefore that the
following identitf must hold for any m, n, ka combination

2
Jn(Ynsr)Yns

- 2
2 2 2 mra 2
TnWng) (pg™) [Yns ¥ (T) - (ka) ]

2 5

3 (/(ka)z-(mna/m2 r)
= L (IV-29)

/Qka)2-(mna/L)2 J; (/Qka)z—(mna/L)z) .

-

One may now approxihate the right side of Eq. IV-28b for € << 1. The
result is the term on the left side of Egq. IV-29 plus the following correction

term

v
+2ier(1-r) & ns (IV-30)

s Yns+(m'rra/L)2-(ka)2

Away from the antiresonances then, where no single term in the s sum
dominates, the eigenfunction for the double-sum solution from Section B may
still be used as the right side of Eg. IV-29 after neglecting its O(e) correction
given in Eq. IV-30.

At the antiresonances, where the s=s term for which Eq. IV-24 is satisfied

" dominates the sum, we find that the latter may then be approximated to yield that

~ -1 Jn(Ynsr)Yns

wmn(r) 2 — 5 (IV-31)

2
Jn('Yns)(.Yns-n )
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which upon substitution of € in terms of K (Eq. IV-~26), and use of Bessel's

L N2 22
equation (Jn/(n -Yns) = Jn/yns), gives that

~ -i Jn(Ynsr)

n® T Ty (IV-32)
n ns

In summary then, the absorptive double-sum model for p; could be kept as
given in Section B away from the antiresonances; and near them, where the term
on the right side of Eq. IV-29 becomes infinite, the latter can be replaced by
the expression on the right side of Eq. IV-32, i.e., a finite quantity. A
practical payoff of the approximations is that the absorptive case continues
then to have Bessel functions of real arguments, thus allowing use of well-known

efficient numerical techniques for their evaluation.

So far we have dealt only with the pI component for pressure, which
appeared in Section B in terms of a constructed Green's function and which we
could not therefore immediately generalize to account for small radial
absorption. The analysis first had to invoke the room-mode formulation, for
which the generalization to include absorption is in principle always simple.

The P, solution given in EE. IV-18, however, appears already cast in room-mode
form. The corresponding P, solution is thus simply given by that same expression
with Yns replaced by Y;s' Furthermore, f:r convenience of computation and
consistency with the above analysis for P, the imaginary part of Yns may be

dropped from all Bessel function arguments and kept only in the algebraic

denominator terms for modes containing an antiresonance.

It is interesting to note that the P, solution in Eq. IV-18 exhibits a
larger number of antiresonances than does p.. It contains all the antiresonances
apparent in py. as indicated by the Yis_ki term.in the denominator in Eq. IV-18
(where wavenumbers do not appear normalized by a as they do here), but also it
contains others corresponding to zeros of kns in Eq. IV-14. However, these new
antiresonances may be interpreted as given by the same criterion which defines
those of pI, so long as the latter may be allowed to include the m=0 possibility.
The reason for omission of m=0 in earlier discussions is, of course, that m=0
represents a degenerate mode for Py which is constructed in terms of sin mnz/L

eigenfunctions.
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2. Estimate of Reverberation Time

It may be useful to relate the notation used above to the symbols
found in standard texts such as Morse28 and Pierce,29 and to express the
attenuatioh term in terms of the reverberation time. While Eq. IV-23 is
associated only with the fadial wavenumber, being effectively a large-L or
small-m approximation, room acoustics theory embodies the resultant wavenumber.
For ease of relating variables to those of Morse and Pierce, we revert to the

dimensional forms of Yns’ etc., as used in Section IV.B.
In cylindrical coordinates, the complex wavenumber is

*2 2 + m2ﬂ2

Y =\Y
N
ns L

(1+inN), (IV-33)

This related to the imaginary term in Eq. IV-23 as
>
n,oz-2-— n, << 1 (IV-34)

In Morse's notation,

YN=wN/€ ’ nN=2

In Pierce's notation,

Yy = k(n)
‘KB
n = nn
N kz(n)

The imaginary component of Eq. IV-33 is related to the characteristic decay time
T, of mode N as ‘

. *2

Im YN =

CTN

Since N equals the reverberation time TN divided by 6 &n 10 = 13.8, this can be

written as

4

*2  7.3x10 ‘f -2
Im vy =T . m
n

where £ is in Hz and Tn in sec.
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The attenuation constant in Eq. IV-3 can be computed from the attenuation
A over the bulkheads and the attenuation Ar over the cylindrical boundary
z

(Ref. 28, p. 409):

A
e = -2 lon 4 — T (IV-35)

16V z 2
1- (n/Y]n sa)

where V is the volume of the cylinder.

D. Modal Density and Resonance Bandwidth of the Structural Response and

Sound Field

.Peak pressures are observed at the natural frequencies of the shell
and at the eigenfrequencies of the room, Eq. IV-10, It is of interest to
detexrmine the respective contributions of these two families of resonances for

the parameters of the laboratory test model.

1. Structural Resonancé Spacing of Cylindrical Shell

The shell acts effectively as a membrane below its breathing mode
natural frequency fo = 2na/cp, where cp is the plate velocity in aluminum. For
membrane modes, stiffeners are not anticipated to raise the natural frequencies
significantly, i.e., to decrease the modal density. In the frequency range
above the breathing mode resonance, where the shell responds predominantly in
flexure, stiffeners are anticipated not only to raise the natural frequencies,
but to cause the modal density to decrease with increasing frequency, in contrast
to the modal density of the unstiffened shell which is frequency independent at

high frequencies. In the low frequency range, below the ring resonance fr =

fo(l-vz) (= 3.2 kHz for the 0.50 m (20 in.) shell), we shall therefore approximate
the modal densities of the stiffened shell by those of the unstiffened shell.

1/2 '
g% = 2—w§ f3/4 % , Hz Y, £ < o0.48 £, (IV-36)
fr
3.6 L f £ -
e22 2 5, 0.48 <F < 0.83
fr r

For the 0.5 m (20 in.) shell, this becomes

SN _ 5.3 x 10 %¢1/2

af ' f < 1.5 kHz
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= 3.4 x 10 ¢ , 1.5 kHz < £ < 1.7 kHz

The spacing (dN/df)_1 of the resonance peaks is shown in the first column of

Table IV-1.

2. Room Mode Antiresonance Spacing

The modal density of the characteristic frequencies of the modes

of a cylindrical room are given by (Ref. 28, p. 400)

[ 2 2
aN 1 lgznaf) L+ ﬂ(:f (asL) + ni:L] - Hz-l (1V-37)

af ¢ |\ ¢

For the dimensions of the 0.50 m (20 in.) shell, this yields

g% * 7.6 x 10 8¢2 + 3.1 x 10™

5 3 -1

£+ 0(10°) , Hz (1v-38)

The corresponding frequency spacing is tabulated in the second column of

Table IV-1.

3. Bandwidth of Pressure Peaks for Structural Response and for

Acoustic Field

The bandwidth between the -3 dB points of a peak is nf. Even
selecting a conservatively small structural loss factor of n = 0.01, the
bandwidth is seen to exceed the average resonance spacing of the shell mddes

(third column of Table IV-1).

The loss factor associated with a room mode is computed from Eq. IV-35

with Yy = k. We shall conservatively assume that (n/ynsa)2 << 1. Assuming that
all interior boundaries are covered with a blanket whose absorption coefficient

is as indicated in the fourth column of Table IV-1, one computes room bandwidths
which, once again, are wider than the average resonance, or antiresonance, spacing.
Since room modes tend to cluster, there may of course exist noticeable pressure
peaks in frequency ranges sparsely populated by characteristic frequencies, but

we do not expect marked peaks at the frequency spacings calculated above. It
should, of course, be recalled that these results are semi-quantitative in that

we apply an asymptotic small-boundary admittance theory.

Finally, since boundary absorption limits pressure buildup at these
antiresonance frequencies, the modelling of the shell as a lafge-internal

impedance sound source seems justified. For this same reason it is anticipated
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that as long as the model shell boundaries are provided with an acoustic blanket,
while the shell is devoid of a damping coating, marked pressure peaks will be
associated with structural resonances rather than with the characteristic

frequencies of the room modes.

TABLE IV-1
Resonance Characteristics of 0.50 m (20 in) Model Shell

(A1l Units in Hz)

Average Resonance Spacing -3 dB Resonance Bandwidth

f
Shell Modes Room Modes Shell (n=10-2) Room

500 3.4 : 29 .5 26 (a=0.4)

1000 2.4 9.1 10 46 (a=0.7)

12000 1.5 - 2.7 : 20 .. 46 (a=0.7)

Iv-13







V. CALCULATED RESULTS FOR INTERIOR NOISE

A. Introduction

In this chapter we present results for the interior acouétic field
calculated using the analytical models of the source, structure, and sound
field developed in the preceding sections. The calculations have been performed
for parameters representative of two physical structures. The first is a full
scale aircraf;‘excited by the propeller wake acting on the skin of the wing.
The second structure is a laboratory model consisting of a shell coupled to a
uniform beam. Excitation of this model is a shaker applied near the outer end

of the beam.

.Because our goal in this study has been to examine a variety of parameters
relevant to the structureborne noise problem, various models (i.e., assumptions)

have been used to obtain the results presented in this section.

B. Full Scale Aircraft

The dimensions used for the estimate of the interior noise field of a
small aircraft in response to a bPropeller wake excitation of the wing are given
in Table V-1. As indicated the chord of the wing is taken to be 1/4 the length
of the shell, the wing being centered along the shell. The principal assumptions

invoked to obtain the interior noise estimate are given as follows:

1. The propeller wake-induced pressures propagate to the fuselage

along the skin of the wing.

2. The structural impedance presented to the wing skin by the fuselage

is large.

3. The effects of coupling between the wing and fuselage on the side

away from the excitation are negligible.
4. The fuselage can be modelled as a uniform shell.

5. The interior pressure field is consistent with pressure-release

terminations (i.e., the p1 component discussed in Chapter 1V).

The first assumption defines the structureborne path being considered,
and relates to the fact that the skins of the wing and fuselage are contiguous.
The implication of. the second assumption is that the wing reaction loads can be
calculated assuming rigid constraints at the fuselage interface. The reaction

loads thus calculated can then be applied directly to the shell. The third




assumption follows from the second in that the fuselage blocks propagation along
the wing and any back reaction of the shell on the low impedance skin is

negligible. The last two assumptions are invoked for convenience in computation.
The presence of internal fluid is included in this model in evaluating the shell

response.

The pressure at the propeller blade passing frequency (283 Hz) and
normalized to the maximum pressure on the wing in the propeller wake is shown as
a function of axial distance from the midspan on Fig. V.1l. Circumferential
variations of the pressure have been averaged over angles of 30°, 60°, and 90°
from the location of the excitation. The parameter of the curves presented is
the radial distance from the center of the shell. It is noted that the predicted
level of the interior pressure is comparable to the maximum pressure applied to the
wing by the propeller wake (i.e., 0 dB). This result differs from the relatively
low radiation from discontinuities along the wing predicted earlier (Section III.A.5)
primarily because of the high radiation efficiency of the membrane-like modes in
the (cylindrical) shell. Fortunately as discussed in Section III.A, this
structural path can be easily interrupted by ribs or other structural discontinu-
ities. BAnother feature of the results in Fig. V.1l is the smooth variation of the

average pressure with both radial and axial locations near the excitation.

C. Laboratory Model

1. Introduction

The schematic in Fig. V.2 shows the test model at NASA Langley
Research Center, the dimensions being given in Table V-I. The physical model
consists of a thin cylindrical shell reinforced by five stiffeners in each
direction (i.e., frames and stringers). The box-beam representing the wing passes
through the shell just above the horizontal and is driven by a shaker near one
end. The beam and shell materials are, respectively, magnesium and aluminum, both
assumed in the theory to have a loss factor of .0l. The apparatus is suspended by
a pair of shock chords, each attached to the shell at the uppermost point of the

flat end cap.

As described in Section III the analytical model of the coupled beam
and shell is a somewhat simplified representation of the physical model. In

particular neither the effects of the stiffeners nor the loading of the internal




fluid are included in this model. Both these effects are examined using

another model and discussed further along in this section.

2. Detailed Results for the Coupled Beam and Shell Model

As previously implied, the calculation of the acoustic field by
the theories of Chapter III.B and IV.A is really a two-step process. First
the forces and moments at the two wing-fuselage intersection locations are
solved for from the combined admittance system (Eq. III-50). Then, the numerical
values for the reactions so computed (in terms of the drive amplitude Fo) become
drives for the acoustic model of IV.A. As discussed in Chapter IV, in the

acoustic model these four reactions appear distributed over the root chord.

In addition to the final acoustic predictions for the laboratory shell-
beam model, in fact, in order to best interpret them, some intermediate structural
results are also presented here. Regarding these, we should point out that for
the unframed shell model rotational admittances remained consistently high over
the frequency range investigated (600-2000 Hz), with the result that the two
moment reactions are always found to be insignificant relative to the two shear
forces (typically 20-30 dB down). Furthermore, since their influence
coefficients in the sound field are found to be of magnitude comparable to
those of the shear loads, their acoustic contribution is also negligible. We
therefore omit from discussion the two moment reactions and their part in the

coupled system of Eq. III-50 (bottom two rows and rightmost two columns).

*

117 Kc11 for the

beam and shell, respectively. Relative maxima occur for c11 at 800, 1200, and

1700 Hz, corresponding to natural frequencies of the free-free beam. The

Figure V.3 shows, vs. frequency, the self admittances c

fundamental resonance frequency of the beam is 89 Hz. The greater modal
density of the shell within this frequency range is evident from both the less
patterne@ nature of Kc;1 and the milder oscillations for the same loss factor.
Of particular interest is the fact that the beam and shell admittances are on
average of comparable magnitude making for efficient coupling of structureborne

noise between the two structures.

Figure V.4 similarly shows the two shear reactions Fl, F2

FO) as a function of frequency. Here the efficient coupling mentioned earlier

(normalized by

is manifested in the force ratios hovering about unity or 0 dB. Also, the fact
that Fl and F2 are of comparable magnitude results from both this close

coupling and the assumed low loss factor.

V-3



The "structural-acoustical influence function" of the shell, that is
the interior acoustic pressure level per unit'tangential force on the shell is
plotted in Fib. V.5 for two field locations. The predicted oscillations with
frequency are great, in excess of 40 dB over the band shown, and since the N
modal density of the acoustical spaCevand the shell exceeds the spacing
between computed points, they are not connected. Pressure peaks occur at
frequencies corresponding to resonances of the stfucture, and, with fluid
loading on the shell neglected in calcuiating the shell response, at anti-
resonance frequencies of the interior acoustic space. This latter source of

peakiness requires further discussion.

The interior acoustic space being closed exhibits an infinite set of
resonance frequencies associated with its "room" modes. Between these
frequencies exist antiresonance frequencies and ignoring acoustic absorption
a room mode driven at antiresonance yields an infinite impedance. Under this
circumstance the modal impedance of the acoustic space exceeds that of the shell.
If the interaction problem is solved rigorously, that is if the acoustic
impedahce is included in the calculation of the shell response then the anti-
resonant mode is not excited owing to its infinite impedance. However if :
neglected, the contribution of such a mode to the shell response is finite and

the infinite acoustic impedance yields the artifact of an infinite acoustic

pressure level at precisely these antiresonance frequencies. Nevertheless,

interestingly enough, these predicted peaks do reflect at least qualitatively

a real phenomenon, one that results from the rigorously solved interaction

problem in the absence of appreciable absorption and structural damping. -

As the excitation frequency sweeps through each of these modal acoustic
antiresonance frequencies the acoustic impedéhoe rises in above and then drops
below the corresponding modal shell impedance and in so doing changes from
inertial to stiffness-like or vice versa. Thus not precisely at, but in the
vicinity of, the antiresonance frequency, the reactive components of the ;
acoustic and shell impedances will cancel and a peék bressure will result due ‘
to what may accurately be called a coupled or system resonance. And in the -

‘absence of energy dissipation these peaks will be infinite.

Therefore the only way to reduce this second .set of peaks to realistic
values is to incorporate realistic absorption or damping into the model.

Although, in this report (Chapter IV) and elsewhere, asymptotic approaches




have been developed for this purpose, namely small absorption or black body
radiation31 models, more rigorous and computationally efficient solutions are

required, at a minimum for confirmation of these models.

An example of the effect of fluid loading on the internal pressure field
in the absence of absorption is given in Fig., V.6. These results are calculated
for the unframed laboratory shell excited by a point circumferential load at
midspan, the pressure being evaluated at the same axial location as the load
and 2 inches (.05 m) in from the surface. In the frequency range indicated
there are 21 antiresonance frequencies of the internal fluid. However, with
a structural loss factor of n = 0.01 the results for the fully coupled problem
(i.e., including fluid loading) are found to vary smoothly near the antiresonance
frequencies. The results of the calculation performed without including fluid
loading are however strongly influenced by the proximity of the frequency of
interest to an antiresonance frequency. Consequently these results are shown
as points. Differences of as much as 20 dB are found between the results of

the two calculations shown on Fig. V.6.

With the above background comments Fig. V.7 is presented comparing the
calculated acoustic pressure normalized to the input force on the beam with
measurements. Specifically Fig. V.7 is a plot of acoustic pressure Poe
normalized by Fo/ft2 as predicted by the nonabsorptive model of Section IV.A.
The measurement curves corresponds to the nominally "beam-horizontal" position
(as shown in Fig. IV.1lc; beam vertical refers to the latter rotated by 90°).
One curve is for the beam attached to the shell ring frames, and the other for
the beam attached to longitudinal stringers. The axial position z is the
halfway point between the cylinder ends, and the radial position is r = 8 in.
or 2 in. in from the shell inner surface. For this r,z combination two
circumferential angular positions are shown in the predicted results: 45° from
the horizontal plane measured from the drive-side of the beam, and 90°.
Measurements are for these same values of r,z, and for ¢ = 90°. As expected
the omission of acoustic absorption in these calculations produces levels that
are high at specific frequencies as well as on-average. Thus in spite of the
complexity of the mathematical model which for example includes finite length
shell and acoustic space effects, and the beam-shell interactions, the salient
features of the measured data are not predicted well. (The effects of the
omission of stiffening frames is discussed in Section V.C.5.) The lessons

to be learned from this exercise have been summarized in Section 6.




Although broad band analyses are of limited value given the tonal nature
of the problem at hand they are generally insightful and in this context a
simple power flow view of the measurements is Presented in the following section

section.

3. Asymptotic model and results

Detailed (deterministic) mathematical models are necessitated by
the fact that the major problem associated with prop-fan induced cabin noise
is tonal in nature. Nevertheless, even for tonal problems broadband or
statistical analyses are often useful in providing additional guidance and
insight. For example let us consider the implications of balance of power for

the set of shell experiments being investigated.

Power is introduced into the systém via the shaker at the termination of
the beam (wing). The amount of power is given by

T, = FzRe(Y) (V-i)

in

where F is the rms force level and Re(Y) the real component of the drive point
admittance of the beam. If we ignore finite length effects on Y, in other
words if we ignore the effects of reflections from the shell-beam interface
as well as the far end of the beam, then it can be shown that Re(Y) = kf/wu
where kf is the wavenumber of freely propagating flexural waves in the beam and wy

its locally reacting inertial impedance.

Let us suppose that the dominant dissipation mechanism is the absorption
of acoustic energy in the "blanket" that is located along the inner surface of
the shell. That is, it is assumed that under steady state conditions the power .
flow is from mechanical power in the beam to acoustic power within the
cylindrical space (without appreciable losses) and that this power is then
dissipated along the interior of the shell surface by the blanket. This may

be expressed as follows

I, =1 = IaS (Vv-2)

where Ia is the space averaged acoustic intensity at the shell surface and

S ~ 2rmalL the surface area of the shell. Eq. V-2 may now be used to obtain an
upper bound (in view of the above assumptions) estimate of the interior pressure
levels. Taking the plane wave admittance for the acoﬁstic space, Ia = pz/pc,

where p is the space averaged rms pressure. Therefore,
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|e/F|% = (p/py) (k/k) (A, S) (V-3)

or

3

pa®/e|? = 2y 0/ (£ /0 (asman_sm O (v-4)

where p and p,, are the mass densities of the acoustic @edium (air) and the
beam (magnesium) respectively, k = y/c is the wavenumber of acoustic waves,

Ab and As are the cross-sectional areas of the beam and shell, and fC is the
critical frequency for flexural vibrations in the beam (the frequency at which
the wavelength of freely propagating flexural waves in the beam matches the
acoustic wavelength). For the shell experiments performed in the laboratory,

and with the beam "horizontal", fc = 238 Hz and we get

20 log|P/R| (re: 1 ft™%) = - 14 - 5 log [£(Hz)] (V-5)

(Since fc is proportional to the radius of gyration of the beam, differences
between horizontal and vertical positioning of the tested beam are expected

to be less than 3 dB.) Eq. 5 is compared in Fig. V.8 to an envelope of
experimental data constructed from the six curves corresponding to measurement
at ¢ = 0°, 90°, and 180°, for both ring and stringer shell-beam attachment.
Also shown is the three point average (¢ = 45°, 90°, and 135°) of the acoustic
field as predicted using the methods of Chapters III.B and IV.A. The favorable
comparison between the power balance calculation and the data is gratifying
and it is noted that the parametric dependence of the prediction (Eg. V-4)
implies that for this particular model the acoustic field, frequency averaged
is relatively insensitive to minor structural changes such as beam-shell

attachment details or beam orientation.

4. Effect of Structural Damping of the Shell

As present in the wing model discussed in Chapter III, the
effect of adding structural damping to the wing is to increase the propagation
loss and thereby to decrease the excitation of the fuselage. The effects on
interior noise achieved by structurally damping-the fuselage however are
somewhat less obvious. Shown in Fig. V.9 is the Pressure at a point inside
the unframed test shell for both small (n = 0.01) and large (N = 1.0) damping.
The excitation is a point circumferential load (shear), applied at a half way
point between the shell ends. 1In the case of large damping, the acoustic

source can be viewed as being the structural near field of the excitation,
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and the shell away from the drive point acts as a locally-reacting high-
impedance boundary. For low damping, the shell away from the drive point
responds as a wavebearing boundary. The results on Fig. V.9 show that
comparable peak levels are obtained for both values of damping, indicating
that radiation from the structural nearfield of the excitation is important
for the unframed shell. This being the case the interior noise level averaged
over frequency is not expected to be sensitive to the structural damping'in
the fuselage. However as indicated on Fig. V.9 a general statement regarding

the effect of damping at a specific frequency and location can not be made.

5. Effect of Shell Ring-Frame Stiffeners

Results have been calculated for the test cylinder stiffened by
five frames located along the shell at intervals of eight inches (see Fig. V.10).
A structural loss factor of 0.01 is assumed. The dimensions of the frames. are
indicated in Fig. V.10c. Results are calculated every 50 Hz in the middle
frequency range from 800 to 1200 Hz. For the purpose of examining the effect
of frames on thé interior acoustic field, the shell is assumed to be excited
by a single localized load on the frame located midway between the simple
supports. The resulting symmetry permits the response to be calculated using
only the odd numbered axial modes (i.e., sin mwx/L, m.= 1,3,5,...). Additionally,
the symmetry implies that the reactions are identical for the frames symmetrically
located about the center frame. Loading on the shell by the interior fluid is

included in these calculations.

As a basis for comparison, the pressure at a ‘radial distance of 0.05 m
(2 in) in from the skin is shown on Fig. V.llvfor the unframed shell excited
by a circumferential in-plane load applied at the center. Figure V.1lla shows
the pressure 90 degrees away from the drive at axial locations from one end of
0.2, 0.4, and 0.6 m (8, 16, and 24 in). Substantial variations (e.g., 20 dB)
are found within 0.2 m (8 in) axially within this frequency range. The peak
pressure in this frequency range is approximately -20 dB (re: 0.09 m—2
(1 ft-z)). The circumferential variation between points located 0.2 m (8 in)
axially from the drive is showh in Fig. V.11b. Here large differences (e.qg.,

20 dB) are found at frequencies in the range between points located 45 degrees

apart.

Results for the pressure in the framed shell excited by a circumferential

load are shown on Fig. V.12. Although substantial differences at specific
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frequencies are found between these results and those of the unframed shell
shown on the previous figure, the general frequency dependence of both results
has an approximate correspondence. Furthermore the peak pressure level '
calculated ‘with frames (i.e., -20 dB) is within 5 dB of that evaluated in the
absence of frames. Finally, it is observed that the pressure field in the
stiffened shell varies somewhat more smoothly with circumferential distance
than the field in the unframed shell. The most likely explanation for the
smoothness is that the response of the framed shell is dominated by the lower
order circumferential modes with their corresponding longer structural

wavelength.

Figure V.13 shows the pressure field in response to a moment excitation
of 1.4 N-m (1 ft-1b). Although the respective levels are shifted the results

are similar to those obtained with the in-plane loading shown in Fig. V.12.

As previously described the shell is excited in the analytical model by
applying the reaction loads of the passive frames as well as of the dri;en'
frame. In a highly damped structure the interior pressure field would be -
expected to be dominated by the loads applied by the driven frame. In an
undamped structure however the driven frame reactions would not be expected
to dominate the response. The importance of the driven frame for the lightly
damped test cylinder is indicated in Fig. V.14. Here the pressure at 0.4 m
16 in) in response to an in-plane load is shown both with and without the
reactions of the driven frame included. There is no clear trend evident in
these results. At some frequencies (e.g., 1000 Hz), the pressure is much
different without the driven frame. The conclusion at these frequencies is
that the result is dominated by the pressure induced by the drive frame loads.
At other frequencies however, the fwo results are not much different suggesting

that the contributions of the driven and passive frames are comparable.
6. Conclusions

Based on the results presented in this Chapter the following

conclusions are drawn:

a. In the absence of significant scattering from wing ribs. or
other major structural discontinuities, the propagation loss of structureborne
noise along the wing at the propeller BPF is negligible and cabin noise levels

are comparable to the source pressure levels for a cylindrical fuselage..




b. Consistent modelling of the interior fluid requires either
the inclusion of fluid loading in evaluating the shell response or the inclusion

of boundary absorption in the interior space.

c. The interior acoustic levels on average are not appreciably

altered by the presence of structural damping in the sheli.

d. Compared with the pressure field in a uniform shell, the
effect of frame stiffeners alter the details of the response in frequency and

space. The average response and peak levels however are minimally changed.

e. The asymptotic model discussed in Section V.B.3 gives a
conservative prediction (i.e., somewhat high) for the average pressure level

measured in the laboratory model.

v-10




TABLE V-1

Dimensions and Properties of Aircraft and Laboratory Model

Fuselage (Shell)

Dimensions
Radius (a)
Length (Lf)
Skin Thickness (h)
Material
Mass Density (pf)
Modulus of
Elasticity (Ef)
Poisson's Ratio (vf)
Loss Factor
Wing (Beam)

Dimensions

Effective Cross-Sectional
Radius of Gyration (rg)

Skin
Spar

Length (L )
(Span)

width (ALf)
(Chord)

Material

Mass Density (pw)

Modulus of
Elasticity (Ew)

Loss Factor

Small
Aircraft

1.11 m (43.8 in.)
17.3 m (692 in.)

1.7%x10 m (.07 in.)

2.7x103 kg/m3
(2.5x10 2 lb-sz/in4)

10

6.9x10 Pa (107 psi)

.33

0.01

5x10 % m (.02 in.) :}

5%10°% m (2 in.)

2.2 m (86.4 in.)*

4.3 m (173 in.)

2.7x103 kg/m3
(2.5x10" % 1b-s/in?)

10

6.9x10 Pa (107 psi)

0.05

Laboratory
Model

0.25 m (10 in.)
1.2 m (48 in.)

4.0x10°% m (.016 in.)

2.7x103 kg/m3

(2.5x10" 4 1b-52/in?)
6.9x1010 Pa (107 psi)
.33
0.01
2

2.9x10 “m (1.13 in.)

1.7 m (69 in.)

7.6x10"3 m (3.1 in.)

1.7x103 kg/m3

(1.6x10" % 1b-s/in?)
4.5x1010 Pa (6.5x106 psi)
0.01

*Assumed length from propeller hub to wing-fuselage interface.
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Fig. V.1 - Average fuselage interior pressure in response to wing excitation loads as a function of axial

distance from midspan at 3 radial locations (1 ft = 12 in = .305 m).
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Fig. V.4 - Beam-shell reaction forces vs. frequency for the laboratory model.
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Fig. V.9 - Pressure level in response to a point circumferential load on the

unframed laboratory shell for loss factors of 0.01 (

) and
1.0 (x---x). Pressure location is x = 16 in, r = 8 in, and

¢ = 90° (from drive) (1 in = .025 m).
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.025 m).
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laboratory cylinder in response to a circumferential load located
midway along the shell. (a) Dependence on axial distance from one

end at ¢ = 90°. (b) Dependence on angle from load at x = 16 in

(1 in = .025 m).
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Fig. V.13 - Pressure at a radial distance of 8 in. in the framed laboratory

cylinder in response to a moment excitation located midway along the
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shell (1 in = .025 m).
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Fig. V.14 - Pressure at r = 8 in, x = -6 in, and ¢ = 90° for the framed

laboratory cylinder excited by a circumferential load calculated

with all frame reactions included and by omitting the reactions

of the driven frame (1 in = .025 m).
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