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ABSTRACT

This report describes the activities during the fourth six month period

of the investigation of acoustic propagation in the atmosphere with a real-

istic lapse temperature profile. A significant error was detected since the

previous semi-annual report and has been corrected in both the plane wave and

point source solutions. This report then -describes both of these problems in

some detail along with presenting some numerical results from the model.

Work will begin this summer on the model of propagation in an inversion. 	
4
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1. INTRODUCTION

A significant error was discovered in the formulation of the mathe-

matical solution to both the plane wave problem and the point source

problems following the previous semi-annual report [1]. The discovery of

-this error required the reformulation of both problems and invalidated much

of the previous work. The reformulation has been carried out and is

described in detail in this report. Of particular interest are the values

to be used of multi-valued functions. The incorrect use of multi-valued

functions, in part, resulted in the error described above. Great care must

be taken in both the formulation and the evaluation of the solution to the

problems described below.

The point source problem is, of course, the problem of most interest

but the plane wave solution is most easily physically understood of the two

and thus allows the clearest reasoning concerning the multi-valued functions

which occur in the problems. For this reason the plane wave problem is

discussed first and extensively.

Parts of the work described here were carried out by graduate students.

Mr. Greg Landheim dealt mainly with numerical evaluation of the plane wave

problem. Numerical evaluation of the saddle point approximation to the

point source problem was carried out by Mr. Alex Cheng. Mr. Ma Yiping is

currently improving the basic saddle point approach with particular concern

to the pole that occurs near the path of integration. 	 This pole contrib-

utes a surface wave-like behavior to the solution. In addition, Mr. James

Brown is currently working on a method of predicting the location of the

caustic, or shadow boundary, for the point source problem which can be

used in conjunction with an experiment that is anticipated to be conducted

this summer.
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2. PLANE WAVE SOLUTION

The problem of progagation of plane waves in a lapse temperature

gradient is of interest for three reasons: 1) the point source solution is

made up of the superposition (inveirse Hankel transformation) of plane waves

.over all angles, 2) because the plane wave solution only makes physical

sense at real angles 'it is much easier to interpret and consider various

possible values of the multi-valued functions involved, 3) the plane wave

solution is of interest for its own right in that it models acoustic

propagation far from the source.

The problem to be considered is governed by the equation

1	 a2P
-y2p =0	 (1)

aM2 (z) ate

where the sound speed aM(z) is given by

AT	 1
amt = a„2

 (1 + T^, ( 1 + az))	 (2)

Equation (2) implies that temperature as a function of height above the

ground is given by

TM = T. + AT	 _	 (3)
1 + az

In addition the surface boundary condition

- Zw = P	 (4)

must be applied on z = 0 where the vertical component of the acoustic

fluid velocity, w, is obtained from

aw	 1 ap

at	 P az	
(5)

The solution must behave as

r
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e=

W	 w

i(wt --a- x cos a +-W- z sin e)
P x e	 ^1°	 0

i(wt - W- x cos e - a- z sin e)
+ R(e)e	 °°	 °°	 (6)

as z +	 This condition requires the solution behave like plane waves

incident at an angle 9 in an homogeneous atmosphere when outside the region

of strong gradients (i.e., z + -).

Taking	 w
i (wt - -a- x cos 0)

	P = F(z)e	 °°	 (7)

and substituting into Equation ( 1) yields (where the subscript m has been

dropped)
d 2F	 w 2	 1 + az
+ —-- cos t e) F = 0	 (8)

dz 2 a2 1 + az + eT/T

a second order differential equation with a turning point at

ZTP	 a (TT ctn
2 e - 1).	 (9)

Nayfeh [2] gives a method of obtaining an approximate solution of this

equation valid when X	 w/a a >> 1. (Note that a when used in this report

is not the wavelength but is approximately the reciprocal of wavelength

nondimensionalized by a.) This requirement is the same as found for the

governing equation, Equation (1), to be valid (Reference [31) so no new

approximations are required. The approximate solution can be expressed as

F =	 A	 hl (n(z)) +	 B	 h2 (n( z ))	 (10)
g ' z	 3 g' z

where

n(z)T 2 X)
2/3 

g(z),
	

(11)

i
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h1 (C) 	 (3)1/3 C1/2 H (1) (3 E 3/2 )	 (12)

and	 a

h2M	 (3)1/3 4 1/2 H(2) (3 X 3/2)	 (13)

.Values of the modified one-third order Hankel functions, h l and h2, are tab-

ulated and their properties discussed 	 in Reference	 [4].	 The functions	 hl

and h2 can also be represented in terms of Airy functions as

h l (E)	 =	 k	 [Ai(-	 E)	 -	 i	 Bi(-	 E)] (14)
and

h2M = k* [Ai(- E) + i Bi (- E)] (15)

where k = (12) 1 / 6 e- i ( +f/ 6 ) and k* is the complex conjugant of k.	 The func-

tion

sing e (1 + az + A
T
	 - (eT/T)

g "( z ) = 3 a (16)
9(a)	 (1 + az 

+ AT

giving
AT	 AT	 AT

3.	 •2

9 3/ 2 (z) =	 sin2 a 0 + az +sin2-	 (1 + az +
T	 T	 T

1 AT	 1	 1+
-	 X 	 (	 ) (17)

r

2 T	 sin e	 1 -
where ^a	 .

sin 2 a (1 + az +	 AT/T) - eT/T

_ (18)
sin 2 a	 (1 + az + AT/T)

This solution is	 rather complex and 	 serveral	 important	 features	 need to be

discussed to understand it. a

The functions	 hl(n) and h2(n) have	 a	 complicated	 behavior	 (Reference

[41).	 For	 real	 values	 of n both hl	 and h2 yield	 a	 complex result	 which
i

is oscillatory	 with	 an	 algebraic	 decay	 of	 the	 amplitude	 for	 increasing

magnitude of	 the	 argument.	 The	 function	 hl	 can	 be	 found to	 represent

downward propagation 	 waves,-incident	 waves,	 and	 h2	 upward propagating
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waves, reflected or refracted waves. The oscillatory behavior also occurs

for hl when the phase of n equal to 2n/3 and for h2 when the phase of n is

-2n/3. When the phase of n is 70, hl decays exponentially and h2 grows

exponentially. When the phase is -n/3, h2 decays exponentially and h1

grows.

The function	 g 3/ 2 (z,e) has two branch points. The first	 occurs when

cos e =
I + 13Z

(19)
1 + az + oT/T

and corresponds to the turning point height for a given incident angle e.

At this branch point the magnitude of g 3/ 2 is zero. A second branch point

occurs at cos a equal to 1. Real values of cos a greater than one, of

course, do not correspond to real angles. The magnitude of g 3/ 2 is infinite

at this branch point. The discussion of the branch points in terms of

cos a rather than a alone will be useful in the point source problem and is

thus used here. When cos a is real and between zero and the first branch

point the observer, located at a height z, is the region "illuminated" by

the incident waves. For values of cos 9 real and between the first and

second branch points the observer is located below the turning point

(and caustic) and is in the "nonilluminated" or shadow region. 	 From

physical considerations then, when the values of cos a under consideration

fall between zero and the first branch point an oscillatory solution

would be expected. When the values fall between the first and second

branch point the receiver is in the shadow and an exponentially decaying

solution is to be expected.

This physical reasoning is supported by the mathematics in that for

the values of cos a between zero and the first branch point g 3/ 2 is real

-5-
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F
and positive and a possible value of g (and therefore n) is also real and

positive yielding the oscillating (propagating wave) solution. When cos e

is real and between the first and second branch points g3/2 is imaginary.

If the /--I is chosen to be -i as is generally the case when using eiwt as

•'opposed to e- iwt then g3/2 is real and positive for cos a between zero and

the first branch point and imaginary and positive between the first and

second branch points. The function g (and therefore n) is then real and

positive between zero and the first branch point and is chosen to be complex

with a phase of n/3 between the branch points for real cos e. Thus hl and

'r
h2 are complex oscillating functions between zero and the first branch point

and h2 is exponentially decaying while h2 is exponentially growing between

the branch points.
E

Thus from a mathematical point of view as the observer descends from

infinite height toward the turning point the value of g (and n) approaches

zero monotonically through positive real values.	 At the turning point

height the value of g is zero corresponding to the first branch point.

Descending below the turning point the magnitude of g is a monotonically

increasing function with a constant phase of n/3. Since both hl and h?

are entire functions no discontinuities occur in this process. The solution

we are dealing with, Equation (10), however includes ^g—', where g' is the

derivative of g with respect to z, and since g and g' are real for values

of cos a between zero and the first branch point (turning point) and complex

between the first and second branch points g' (and I—V) are discontinuous

at the first branch point. Thus the two terms in Equation (10) are also
a,

discontinuous, but the total solution must be continuous (no abrupt changes

in either the magnitude or phase of the acoustic pressure are allowed).

Thus different forms of solution must occur above and below the turning

-6-
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point. It is possible, however, for the turning point to occur at a nega-

tive value of z. This means that the turning point theoretically occurs

below the ground surface, and in reality reflection from the ground occurs

before refraction can turn the waves upward. Thus three forme ')f the

solution occur: the reflected case where the observer is above the turning

point, the refracted case where the observer is below the turning point,

and the refracted case where the observer is below the turning point but

above the ground. The first form is obtained by requiring the solution to

satisfy the surface boundary condition, (4), and that the solution take

the form of (6) as z + -. The second two forms of the solution are obtained

by requiring the form of the solution valid below the turning point to

satisfy the surface boundary condition, (4) and the form valid above the

turning point to satisfy (6) and the two forms to be continuous at the

turning point. The process gives the values of A and B in Equation (10) as

AT -1/2
K for 0<cos 6<(1+T)

K for cos e	
1 + AT -1/2

>	 and z > zTP
A =	 (	 T ) 	 (20)

,rt	 u

Ke i6 	AT
7Tfor cos e > (1 + T j-1/2 and 0 < z < zTp

e' 6 - iR

K - R for 0 < cos 6 < (1 + ^T) -1/2

n
T

Ke -iT	 AT _1/2

n	
for cos 6 > (1 + T )	 and z > zTp

B =	 e'6 - iR	 (21)

n

KRe	 AT

n	
for cos 6 > (1 +T) -1/2 and 0 < z < zTp

e i6 - iR

-7-
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K	 sinl/2(e) X1/6 31/2 ei(5n/ 12)	
(22)

h l (n( 0 )) + i* h l^ (n(0))

	

R - ---	 (23)
T h2 (n(0)) + i^ h2' (n(0))

i	 z	 g"(0)
T -3a -2 

P co9"(0)
(c4)

0 0

^' =	
Z	

X2/3 g'(0) (2)2/3	 (25)
CoPO 

r

This solution differs from the forms presented earlier [1, 10] in that the

matching at the turning point was not required in the earlier solution.
K

This error produced a continuous solution but with a cusp at the turning

point. Figures 1 to 3 present the results of evaluation of the solution

presented above. Further discussion of this solution and the results are

	

given in Appendix. I, which is a paper scheduled for publication by the 	 a

Journal of the Acoustical Society of America in September, 1984. r
r

^t

3. POINT SOURCE

The point source problem also contained the same error as the plane

	

wave problem and required reformulation. As described in [3] the problem 	 a

under consideration is governed by the wave equation,

	

1	 92p

	

2 	 7t2
2PQ	 (26)

	

a M 2(z)	 ^i

but including a source term

6(r)

	

Q = q	 6(z - s) eiwt	 (27)
nr

and the speed of sound profile is given by



I

aM2(z) * a »2 (1 + AT
	

+ • z)	 (28)
T„ 1	 a .

The same profile as considered in the plane wave problem, Equation (2),

The boundary condition on z - 0 is also unchanged from the plane wave

problem and is given by

- Zw = P

As z + •, a radiation condition, requiring all waves to propagate upward

must be applied.

The solution is obtained by first separating out the time dependence

by defining a function 'G(r,z) such that

P(z,r,t) = eiwt ''(z,r).

Taking the Hankel transformation (two-dimensional Fourier transform) of the

resulting governing equation and the boundary condition yields

d 2G	 w 2	 1 + az	 4
+ I=	 -021G=---- d(z -s)	 (29)

dz 2	 a2 1 + az + eT/T	 211

and

G = iZ aG	
(30)

wpo az

on z = 0. The function G(S,z) is the Hankel transform of G(r,z) and is de-

finded by

G(a,z)	 f G(r,z) r Jo (or) dr	 (31)

0

The inverse Hankel transform is defined by

m

fG(s,z) 0 Jo (sr) do	 (32)

0

Equation (29) in the regions 0 < z < s and z > s and the boundary

condition, Equation (30), are the same as for the plane wave case provided

that cos a in the plane wave case is replaced by (a/w)S. Thus the same

-9-
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solution, Equation (10), applies here.

The plane wave problem required three different forms depending on

the location of the receiver in physical space and the angle of incidence

of the wave at infinite height. This problem also requires several forms

but further complications occur. 	 In the plane wave problem all real

incidence angles were possible, and cos a could vary between zero and one.

In the point source problem the range is more limited. Noting that s is

the equivalent of (w/a) cos a where a is the incidence angle of the plane

wave at infinity, a physical interpretation of the mathematical solution is

possible. Consider first waves propagating downward from the source located

at height s. Waves that are directed downward at a sufficient angle will

reach the ground as in the plane wave ca ge. Plane wave rays directed

downward at an infinite height with incidence angles between 90 0 and come

value 9 0 , or 0 t 8 < 5 0 = (w/a) cos eo = (w/a) V[17 1 + eT/T^f] can pass

through the source location and reach the ground where they are reflected

(see Figure 4). The turning point of these waves are below the ground

surface. The initial angle eo characterizes the waves whose turning point

is at the ground level,  z = 0. Waves in this range of initial  angl a and

their reflections from the ground constitute two groups of possible waves

and one of the forms of the solution.

A second group of waves which are initially directed downward at the

source are rays with angles at infinity in the range between 9 0 and ez

or 9 0 < a < oz = (w/a) cos ez = (w/a) 	 1 + az /(1 + az + AT/T)3. The

angle ez characterizes the wave whose turning point is located at the ob-

server height z 4 This range of angles or of beta then characterizes waves

that pass through the source location but whose turning point is above the

ground level but below the observer (see Figure 5). These waves, before

-10-	 F	 ,
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passing through the turning point, -and after passing through the turning

contribute a second form to the solution.

A third group of waves propagating downward at the source have angles

at infinity in the range between ez and es or Oz < s < as o (w/a) cos es =

(w/a)	 1 + as + a / ]. The value es characterizes the wave with its

turning point at the height s. It is the wave that leaves the source hori-

zontally and is the limiting case of waves leaving the source and propa-

gating downward. Waves in this group have their turning point above the

observer, see Figure 6, and thus cannot contribute an oscillating term to

the total solution but rather have an exponential behavior. This behavior

is further discussed in connection to the saddle point method of evaluation.

This group of waves and their continuation after being refracted upward

constitutes a third form of the solution. i

The fourth form of the solution is due to waves which leave the source

and prep	 ':, upward. These waves have es < e < 90° or 0 < h < as but are

not of t4ie same form as described earlier as their amplitude must be correct
u

k

for waves leaving the source rather than waves reflected or refracted upward.
t

These waves constitute a fourth form of the solution.

All of the waves of the four types described above can be seen in the

ray diagram of the point source Figure 7, but a number of additional types

of waves need to be included in the total solution which do no't appear in 	 n	 j

the ray diagram. The fifth form of the solution has es > e > 0 0 or as < g

< w/a, these are waves with their turning point above the source and do not

appear in the ray diagram but contribute to the full solution. In this case

g(s,$) is a complex number with phase of n/3 and the solution has an exponen-

tial behavior.

The actual forms of the solution are obtained by requiring (10), to

-11-
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satisfy the surface boundary condition, (30), at z - 0, at z = s, the source

height, the solution must satisfy the condition that

lim	 [G(a,z)] = lim [9(0,z)]	 (33)
z+s_	 z+s+

which requires continuity of pressure and the condition that

BG
lim [ az ] - lim 

[ az] 	 2n	
(34)

z+s_	 z+s+

which is obtained by integrating Equation (29) from z = s - c to z = s + e

and taking the limit of e + 0. At the turning point height the condition

lim	 [G(a,z)] = lim	 [G(a,z)]	 (35)

z+zrt'P-	 z+zTP+

is required if the turning point is above ground surface, z = 0. The

resulting solution for z > s is given by

G = K h2 (n( a, z )) [hl(n(a,$)) + Ro h2 (n( s ,$))]	 (36)

for w/a > Oz > as > ao > a > 0

G = K h2 (n(a,z)) [hl(n(a,$)) + R1 h2 (n(a,$))]	 (37)

for w/a > az> as> a> 00>0

G = K

n

h2	(n(a, z ))	 e 13 R 1	 [hl(n(a,$))	 +	 Ro h2	 (n(a, $ ))] (38)

for w/a > az> a> as> ao>0and

G

IT

= K[eq hl(n(a, z ))	 + Ro h 2	 (n( a, z))]

V
ei"Y R1

[h l 	 (n(a,$))

+ Ro h2 (n(a, $ ))] (39)

for w/a > a > az > as > so > 0.	 When s > z the forms are

G = K h2 N$,$)) [hl	 (n(a, z ) + Ro h2 N$,z))] (40)

for w/a > Bs > sz > so > a > 0

G = K	 h2	 (n(B, $ )) [hl(n(O,z)) + R 1 hi (n(a, z ))] (41)

for w /a• > as > Oz > a > Bo > 0

-12-
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ff

G = K h2 W s+ s )) e i ' R 1 Ch l (n( 6,z) + RV h2 (n(s,z))]

for w /a> ss > s > sz >0o >0and

71 n_

G = K [e i3 h i (n(s , $ ) ) + h2 (n(B, $ ))] e'T R i Chi (n(s,z))

+ Ro h2 (n(s,z))]

for w/a > s > Os > Oz > so > 0, where

q	 1	 1
K=

12i X 2/3	 gz s,s 3 9z a,z

(45)

T h2 (n( s,o) ) +i, h2' (n(s, 0 ) )

and T and ^ are defined in (24) and (25). These eight forms account for

the five physical situations described above since some forms are repeated.

The solutions include both direct waves, waves which have not been reflected

or refracted and the reflected or refracted waves. For a < Oz the inter-

pretation of the many forms are aided by recalling that hl (n(s,z)) repre-

sents downward traveling waves and h2(n(a,z)) represents upward traveling

waves. For s > Oz the interpretation is more complicated as the terms

have an exponential behavior (hl growing and h2 decaying with increasing

z). The entire discussion above is based on real values of beta, but beta

must be interpretable as a complex number and at this point the boundaries

between the various forms of the solution off the real axis must be clar-

ified.	 ,

A square root occurs in the function g 3/ 2 (a,z) and the branch line for

this square root must be chosen so that i_-1 = - i as mentioned in the

-13-
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(43)

(44)

i'^R1 =
	

e-

el-6  - iRo

T hi (n(a, 0 ) + i* hl' (n(a,0))
R = .o	 (46)

r
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plane wave section (see also Clemmow [5]). If the branch line for the

square root is chosen to be along the line where the phase of the argument

of the square root is n/2 then the desired result is obtained. This results

in branch lines for the function 93/2 (R,z) extending downward from two

branch points (o = oz or B = w/a) in the real a > 0 half plane and upward

in the real (6) < 0 half plane. These branch lines for 93/2 (6,0), g3/2(a,z)

and g 3/ 2 (a,$) then connect directly to the Boundaries on the real axis and

form natural boundaries when real (a) > 0 and imaginary (S) < 0 where the

solution is discontinuous. The argument in the modified Hankel function

involves g(o,z) etc., rather than g 3/ 2 (a,z) and a branch line is necessary

for the two-thirds power also. Here, as was pointed out in the plane wave

solution (i) 2/3 must be ein/3.	 If the branch line for the two-thirds

power is chosen to lie along the line where the phase of g 3/ 2 (o,z) is n

then . the desired result is obtained. This branch line in the 6 space is a

curve from the first branch point of g 3/ 2 (a,z), a = ( w/a)	 1 + az)/(1 +

az + AT/T)], to the second branch point w/a and located in the imaginary

(a) > 0 region on the real (a) > 0 half plane (see Figure 8). These lines,

one for each g(0,0) g(o,z) and g(o,$) constitute the remaining parts of the

boundaries of the various forms of the solution. Thus it appears that their

are eight different forms of the solution each discontinuous from the

others. This can be shown to not be the case.

On crossing each of these branch lines the phase of the function g

jumps from - 2n/3 to 2n/3 and the phase of gz discontinuously increases

by 2n/3. Reference [4] gives some useful results for this type of behavior:

2n	 n	 n

h,(n ei3 ) = e i3 (e 13 h l (n) + h2 (n))	 (47)

2n
h 1 (n e'y) _ - h 2 (n)	 (48)

-14-

and

J

1

t



40
a

using these results it is easy to show that

271

R1(n) - Ro (n e13 )	 (49)

which in turn demonstrates that equations (36) and (37), and (40) and (41)

are continuous at the branch line for g(0,0) _ (g3/2(0,0))2/'O. Similarly,

,.using Equations (47) and (48) it is possible to show that (37) and (38),

and (41) and (42) are continuous across the g(s,z) branch line and (38)

and (39), and (42) and (43) are continuous across the g(s,$) branch line.

This exercise in showing continuity also points out another way of writing

the solution, equations (36) through (43). These modified forins of the

solution are particularly useful in that the first and second term in each

is continuous with the respective term in the forms of the solution

bounding it, and the first term always represents the direct wave and the

second the reflected or refracted wave. For z > s the solution can be
t

written

G = K h2	 (n(s, z ))	 [h1	 (n(s, $ )	 + Ro	 (n(s, 0 ))	 h 2	 (n(s, $ ))1 (50)

in region A of 9 space (see Figure 9) !

271

G = K	 h 2 (n(s, z )) [h1	 (n(s, $ )) + Ro (n(B4O) 
a 
") h2	 (n(s, $ ))^ (51)

in region B
2,r

G = K h 2	(n(s, z ))	 [h 1	 (n(S,$) e '3	 )

2n 2n

+ Ro (n(s,0)	
ei3	

)	 h 2 (n(s, $ )	 ei3	 )^ (52)

in region C
2n 2 n

G = K h 2	(n(s,z)	
ei3	

)] h 1	(n(s,$)	
e13	 )

r

In 2n

+ R 0
1

(n(6,0)	 e 3	) h 2
^

(n(s,$)	
e3	

)3 (53)

and in region D and for z < s

1



a
:.. .

G - K 1h2 W O ,$)) Chl (n(B, z )) + Ro (n(S, 0 )) h2 (n(s,z))1	 (54)

In region E	
2n

G = K h2 (n(B, $ )) [h 1 (n( s , z )) + Ro (n(0, 0 ) e'T ) h2 (n(S,z)) 7(55)

in region F 
,2n

G = K h2 (n(s, $ )) C h l(n(B, z ) e'7)

	2n 	 2n

+ Ro (n(s,0) e^3 ) h 2 (n(5,z) e T )]

r

	(56)

in region G 
2n	 2n

G = K h 2 (n(B,$) 
e" ) 

[h I (n(s,z) 
e1 3

	

271	 2 Tr -^

+ Ro (n(0,0) e13 ) h2 (n(s .z ) e i3 )]^	 (57)

and in region H.	 This then completes the formal solution to the problem

with the solution given in the form of an integral, the inverse Hankel

transform, Equation (32), where the function G(s,z) is given by Equations

(50) through (57). This is a very complex integral and approximations

are necessary to proceed toward its numerical evaluation.

4. APPROXIMATE INTEGRATION OF THE POINT SOURCE SOLUTION

The formal solution discussed in Section 3 is extremely complex and

there is very little hope of carrying out the required integration exactly.

Thus an approximate integration of the solution is required. Approximate

solutions of propagation problems of this type are discussed by Keller

[6]. Because of the physical insight obtained and the success of the

approach in the homogeneous atmosphere propagation problem, the saddle

point approach, or the ray approximation, as termed by Keller, has been

attempted.

The saddle point method is a method of approximately integrating

expressions of the form
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10

J.F(o)  etf(5 ) d6	 (58)

where t is a large parameter. If we interpret this integral as an integral

in complex 0 space, the path of integration can be modified according to

the rules of contour integration in the complex plane. What would appear

to be desired is then to find a point (or points) in the complex B plane

where the integrand of (58) is a maximum and to distort the path of inte-

gration to pass through this point in such a way that the exponential term

Y

in (58) decreases rapidly as one moves along the modified path of integra-

tion away from the point of maximum integrand. 	 In the complex plane,

however, a regular function does not have a maximum, but rather a point

where
of

= 0	 (59)

as $=asp J

is a saddle point of the function, a point where the function surface

looks like a mountain pass, col, or saddle. This point is found to give

the majc contribution to the integral when the path is modified to give

a rapidly decreasing integrand as one moves away from it. Approximately
a^

integrating (58) then can be shown to give

2n	
— f(s SP

 ) eaf(SSp)+iQ	
(60)

-of"(BSP) 

where a is the angle at which the path of integration crosses through the

saddle point.	 This method is described in more detail and with more

rigor in most texts on advanced mathematical methods, for example [7,8].9	 1

This method is not a fool-proof one however, as the modified path of

	

integration may intersect branch lines, pass around poles, or lead into

	

	 !

i
other difficulties. Keller [6], however, asserts that the major part of

-17-	
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the solution is obtained.	 Also, if no saddle point occurs then the inte-

gral can be approximated as zero. Using this rather crude approach the

integrals can be approximated relatively easily.

To use the saddle point approach the formal solution (32) and (50)

through (57) must be put in the form of (58). The change in the limits of

integration is easily achieved by using the identity

ao( r a)	 = 2 C Ho (1) (ra)	 + Ho(2)(ra)] (61)

and noting that
(2) (-Ho(1)(rs)	 _	 - Ho	 ra) (62)

and that

G(6,z)	 = G (-	 a,z) (63)

yielding.

G = P f G(a,z) Ho(2)	 (or) d$ (64)

The exponential	 forms	 are	 obtained	 by then assuming the arguments 	 of all

the Hankel	 functions	 involved	 are	 sufficiently	 large to allow replacement:'

by their asymptotic forms, 	 given in [4] and [9]. 	 The resulting
x^

expressions

are of the	 form (58)	 with the integrand	 of each integral	 consisting of two

terms, one will	 be seen to represent 	 the direct waves,	 and the second the

reflected and/or	 refracted	 waves.	 This	 becomes	 clear when	 the derivative

with respect to a is taken of the argument of the exponential	 terms to find	 A

the saddle points.	 It is found that

a(a g3/2(a,z))
= -	 F(a.z) (65)

^	 as

_	 II

I

and the	 resulting	 expressions	 are	 exactly	 the	 expressions	 obtained	 for

;a	 the rays	 of	 the	 point	 source	 problem,	 section	 2,	 with	 the	 substitution

of cos e = (a/w) a so that the rays are expressed in terms of 0. Thus, the

finding of the	 saddle points,	 which	 could	 be	 numerically quite difficult,

-18-
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has a clear physical interpretation in terms of rays rf the point source.

For an observer located at a point in physical, (r,z), space which is

"illuminated" by the point source, the saddle points of the approximate

integrals giving the solution correspond to the g values of the two trays

passing through that point, Figure 10.

At any point in the "illuminated" region of physical space the solution

is then approximated, as described above, by two of the terms listed

below. For direct waves, with z > s, Region 1 and 2 of Figure 10

_	 V' —
2iT K2 e-i(sSpr+^1)

1	 SP

where

Ws) _ - a g312 (s,$) + a g 3/2 (s,z) - 
2	

(67)

and sSp is the root of

r + ^' (s Sp ) = 0	 (68)

For direct waves with 0 < z < s, Regions 3 and 4 of Figure 10

_ ^ K2 a
-i 

(opr+^2)
GO	 - 	

s	
(69)

2	 SP

where

^2(0) _	 9 3/2 (su s ) -	 9 3/2 (s,z) - 2	 (70)

and op is the root of

r + ^2 (aSP) = 0
	 (71)

For reflected waves, Regions 1,3 and 5 of Figure 10

n K2 R2(sSp) e-i(sSpr+^3)
GR =(72)

3--^p^

-19-
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0 ^A

where

^3	 A 93/2 (B, $ ) + X g3/2 (B,z) - 2 a g3/2 (aSP , 0)	 2	
(73)

and BSp is the root of

r + ^3 (OSP) ` 0	 (74)

For refracted waves which have not cnntacted the caustic, Region 4, 5 and 6

of Figure 10	 _i(BSpr+^4)
_ 3̂  K2 e

	

OR 	 ^ + ^	
B	

R1 (aSP)	 (75)

4	 SP

where

	

^4 (R) =	 9 3/2 (BSp, $ ) + X 9 3/2 (SSp, z ) + 61 ^► 	 (76)

and BSp is the root of

r + ^4 (BS p ) = 0	 (77)

For refracted waves that have contacted the caustic, Regions 2, 4, and 6 of

Figure 10	
2n K e-i(RSPr+^5)

GR =	
2	

(78)

^5^ aSP
where

05 = 04 - 2
	

(79)

and aSp is also a root (and smaller of the two roots for region 6) of

(77). The derivative of g 3/2 is defined by (65) and is given in Reference

[101.

	

42sS P 	 1	 1	 1	 1
K2 (R S P ) = -	 _____^

12i Xn	 nr	 gz B SP z	 gz aSP' s 91/4(aSP ,z) g1/4(aSP's)

(80)

and	
T + 	 i (t X ) 1/3 9 a.0)

4

Thus the problem has resolved itself into a relatively simple expres-
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sion, but two difficulties	 remain.	 First, the expressions	 given above are

not continuous	 as the	 receiver is moved from region to region in physical

space, and secondly, 	 no expression has been obtained that 	 is	 valid	 in the

shadow, region	 7,	 Figure	 10.	 The	 first difficulty	 is easily	 resolved	 by

an ad hoc approach.	 This discontinuity results	 from the fact that on the

boundary between regions the arguments of one of the modified Hankel 	 func-

tions is zero and it has been assumed that all 	 of the arguments are large

enough to	 allow	 use	 of	 the	 asymptotic	 forms.	 The	 actual	 integrals	 are

continuous at these boundaries 	 but the asymptotic	 forms are not.	 Thus by

replacing the	 asymptotic	 forms	 of the	 modified Hankel	 functions	 in	 (66),

(69),	 (72),	 (75)	 and	 (78)	 by the modified	 Hankel	 functions	 themselves	 one

obtains in place of (66)
r

K3	 -i (oSpr- ^')
^GD 	=	 ^-e	 h2	 (n(B	 ,z)	 h 1	(n(s,$))	 (82) SP2
r.

-  
as

Z  41)

in place of	 (69)

Kn;
3	 i(BSpr- ^)GD =	 e-h1	 (n(BSp, z )) h2	 N aSp, $ ))	 (83) 

2

2" 4 2 )
3 	 2 a a

in place of	 (72)

3 
2n K3 Ro(aSP)	 i(BSpr- '7)-G R= --	 a	 h2	 (n(SSp, z )) h2	 (n(BSp,$))	 (84)^, 2 	)

in place of	 (75)

K3 R1(SSP)	 -i(BSpr-n) i^
G	 _	 e	 h2	 (n(BSp, z ))	 hg	 (n(B	 ,$))	 (85)R	 SP ia

(044)+ as
-21-
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and in place of (78)

GR = +
	 K3 R1(BSp) 

e-i(BSpr- ) h2 (n(SSp,
z ) h2 NOSPOS))	 (86)

_ ao (05)

a continuous result is obtained. Here

K3 _	 q 2/3	 1	 _	 1	 2sSP	 (87)

24i a	 gz s SP I ) gz OSP ^ s )	 ,rr

The second problem, an expression valid in region 7, the shadow, can

also be circumvented. Examination of (85) and (86), the expressions valid
M

in region 6, shows that these expressions become infinite at the caustic,

where 
a2	 204	 805

0	 ($8)
a 6 2	 as2	 i

This result is easily understood by realizing that the refracted rays are
R	 ;

given by r = F(S,$) + F(B,z), Equation (77) expressed in F, and that the

caustic is defined by the largest radius that can be obtained for fixed i
A

observer height, z, and the source height, s, or where ar/ao = 0, yielding
r

the above expression. This singularity, in the mathematical sense, results
k

from expanding the argument of the exponential terms in the saddle point

method in a Taylor series but retaining only second order terms, which are

zero in this case. In the physical sense it arises from the ray tube going

to zero and conservation of energy. A result valid near the caustic has
k

been obtained by Sachs and Silbiger [11].	 Using their approach, which q

essentially involves expanding the exponential terms about the ray tangent ,

to the caustic rather than the saddle point, yields the expression

2	 1/3 -i(scr- 4j	 2	 1/3
GR = 2,r K3(Sc) R1(Bc) (	 )	 e	 Ai ((	 )	 or)^... 

(0c)	
v... 

(Bc)

• h2(n(sc,z)) h 2 (n(Bc, $ ))	 (89)
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where sc is the root of

¢4' (^c) = 0
	

(90)

which is valid near the caustic and on both the "illuminated" and the

shadow side of it. Here

40

where the caustic radius

er = r - rc	 (91)

rc = ` ^, (Bc)	 (92)

The solution has not been carried out into the shadow region beyond the

region where (89) is valid at present. The method to do so is clear how-

ever. For observer locations in the shadow, saddle points exist and near

the caustic have a real part approximately equal to the value of a at the

caustic. Since the saddle points are no longer to the real 0 axis as they

were in the "illuminated" region, they are no longer physically interpret-

able as in terms of angles, but give rise to the "complex rays" discussed

^I
in the underwater acoustics literature Ell, 121.

5. RESULTS

A limited number of cases have been calculated and plotted using the

procedure described above. This work has been mainly carried out by Alex

Cheng and Yiping Ma. The cases presented below are all for values of eT/T = 	 11 I

i
0.025, a = 2.5 m- 1 , s = 3 m, the same conditions as the ray diagram of

Figure 10, and mainly for a frequency of about 1600 Hz (w = 10,000 rad/se,).

Variation of AT/T, a, and s appear to have little effect on the general

nature of the solution other than to move the interference pattern and	 j

shadow boundary in pry sical space. Figures 11 to 15 are plots of sound

pressure level (with an arbitrary reference) versus elevation at radii 	
r
Y
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of 20, 40 and 80 m. Figure 11, r = 20 m, is sufficiently close to the

source that most waves directed toward the surface reach it and are re-

flected, only waves leaving the source at very shallow angles are refracted
	

3

upward before reaching the ground, see Figure 10. The regions of Figure 10

are indicated on Figure 11 for reference. For most of the vertical range

presented an interference pattern with a mean sound level of about 32 iB

occurs. The oscillations in this interference pattern slowly increase in

amplitude with height except for heights near the source height, s 4 3 m,

where low sound levels occur.	 This peculiar behavior near the source

height and at small radii is characteristic of the solution. 	 Careful

examination of a ray diagram with rays emitted by the source at equal

angular kitervals show that the rays are spread very far apart in vertical

distance in this region of space: If the equal acoustic energy is assumed

to be present between rays, a location with a large distance between

rays should be a region of low acoustic pressure and sound level. This

appears to be occurring in the region near the source height and to account

for the low sound levels seen there. The slowly increasing amplitude of the

oscillations is due to the increasing strength of the reflected waves present

as the height incre4ses.

Figure 12 is a similar plot 1.4A at r = 40 m. Above the source two

maxima occur in the interference pattern above the dip occurring near the

source height. The mean sound level in this interference is about 26 dB,

6 dB less than the mean on the previous plot, as might be expected. Near

the source height occurs the dip due to the ray spreading and below this is

the maximum that occurs just inside the shadow boundary. At a height of

about 1.6 m a discontinuity occurs in the sound level. This results from

the approximation near the caustic which is not required to be continuous

-24-
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with the other forms of the solution, the program, however, attempts to

make the solution continuous if possible.

Figure 13 is again a plot of height versus sound level. Note that the

height scale does not continue to the ground at z = 0. Again the regions

of Figure 10 are shown on the plot. Here discontinuities in slope occur

at about 4.2 and 22 m. The first is at the boundary between the direct

and the refracted waves and the second is between the approximation near the

caustic and the other forms of the solution as discussed above. Again the

mean sound level has decreased about 6 dB to near 20 dB with the doubling

of the distance from the source as compared to the previous figure.

Figures 14 and 15 are at a radius of 40 m but at higher frequencies,

Figure 14 at w = 12000 rad/sec (f = 1910 Hz) and Figure 15 at w = 15000

rad/sec (f = 2390 Hz). Although plotted at different scales the figures

show very similar behavior to Figure 12.

Figure 16 is a plot of sound level versus horizontal distance from the

sourcF. Again the regions of Figure 10 are shown along with the empirical

model of Wiener and Keast [13]. The Wiener and Keast model suggests that

a simple source model (corrected for atmospheric absorption which is not

present here) yields the sound level between the source and the shadow

boundary. Beyond the shadow boundary an empirically obtained excess atten-

uation is applied to the simple source model. This empirical model, based

on the experimental data they collected shows good agreement with the local

mean sound level in the interference region and good agreement with the slope

of the decay of the sound level in the shadow. Note that a simple source

cannot be expected to produce the interference pattern but only the local

mean sound level. The Wiener and Keast model would be in better agreement

with the present model in the shadow if the excess attenuation was applied

0



0
4	 ;

after the radial location where the sound level falls below the simple

source value rather than at the actual shadow boundary which always has a

sound level greater than the simple source does at the boundary. Figure

17 is a comparison of the excess attenuation seen in this case as compared

with the model of Wiener and Keast. Note that if Wiener and Keast did not

correctly determine the shadow location the "constant" difference between

their model and the present model would be accounted for. Thus the best
.I

experimental data currently available which is summari°ed in the Wiener

and Keast model appears to be in good agreement with the present model.

6. STATUS

	

A model of acoustic propagation in a 'lapse temperature gradient above	 a
X	 y

a finite impedance ground surface has been developed and yields reasonable

results when compared to the empirical model of Wiener and Keast. This

model was numerically implemented by Alex Cheng, The model contains numer-

ous approximations, however, and the experiments planned to be conducted in

the Fall of 1984 by NASA Langley will be helpful in assessing its validity.

Work is still underway on some improvements to the model which will allow

evaluation further into the shadow region. Also the pole which gives rise

to a surface wave-like term is being investigated. Methods for locating the

pole and determining the value of resulting residue have been developed but

t	 question o when the resulting a 	 is to be included	 b	 Nh q	 ^	 f h n 	 t rm	 1	 d is yet to e

resolved. It is hoped that this question can be answered by the end of the
i

summer. The question of the pole and the surface wave-like term is being

investigated by Ma Yiping.

The dvelopment of a set of programs to be run on a hand-held, HP-41,

or a VAX computer to locate the shadow boundary has been completed and
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supplied to NASA Langley. These programs were written to support the

experiment mentioned above which in turn will assist the modeling effort.

It is anticipated that this work and some additional work can the acoustic

rays in the model temperature field will form the basis of an additional

paper to be prepared. This work has been mainly carried out by James

Brown.

Following the completion of this report the author will begin the

formulation of the inversion condition problem. Although this problem is	 A

somewhat more complex than the lapse condition problem experience with

the simpler problem is anticipated to be extremely useful in developing
s

that model.
r

Finally, a	 considerable	 amount	 of	 thought	 has	 been	 given	 to	 the

r

i
r

physical	 interpretation	 of a	 surface	 wave and a model	 that may	 give	 some

insight into that	 question	 has	 been	 developed.	 The mathematical	 solution
j

to this	 physical	 model	 is	 hoped	 to	 be	 investigated	 during	 the	 upcoming

year. V

t
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Figure 5. Ray diagram for a plane wave passing through the point source

location and being refracted before reaching the ground but
below the receiver.
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The propagation of plane waves in a thermally stratified
^^ :	 atmosphere	

aF21GINAl, PAC,-

	

;°	 ^6W. K. Van Moorhem and Gregory K. Landheim 	 14
Mechanical and Jndurtrla/Enjlnsrrins Deparrmenrr Uniuerslry ojUtah, Salt Lake City, Utah 8^11QF PO O R QUALITY

(Received 28 July 1983; accepted for publication 2 June 1984)

The behavior of a plane wave reflecting from a finite impedance surface with a realistic
atmospheric temperature profile is investigated. An approximate solution has been implemented
on a digital computer and this solution is presented graphically for a number of cases at low i
incidence angles,

PACS numbers: 43.28.Kt

INTRODUCTION	 I AT/T. were obtained for inversion conditions. In other
The atmosphere is not isothermal under normal condi . 	 mss, particularly where a lapse condition is being replaced

tion, yet most acoustic propagation models make that as- 	 by an inversion or vice versa, the fit can be very poor.
sumptioa Temperature inhomogeneity can occur as raw-
dom fluctuations resulting from convection cells and 	 11. ANALYSIS
turbulence or as slow diurnal variations in the atmosphere 	 Consideration of the problem of propagation of plane
immediately adjacent to the ground surface. It is the latter I waves in a thermally inhomogeneous atmosphere yields con- 	 `.
case that this paper addresses, 	 siderable insight into the more complex problem of propaga.

During daylight hours when sufficient insolation is 	 tion of waves from a point source. The problem is also inter-
present, the atmosphere is typically warmer near the ground 	 eating in its own right as a model of the propagation of waves
surface than far above it, a lapse condition. Although these 	 from a point source when the source is very far from the
regions of strong temperature gradients extend, at most, I refracting region.
only a few meters above the ground, most acoustic receivers	 The problem considered is governed by the equation 	 f
are also in this range of altitude. Ground mounted micro-
phones, which are sometimes used to avoid ground reflec . I	

C2(z) a PP + V 2P = 0,	 (3)

tions, are unfortunately located so as to receive the maxi-
'	 mum effects of refraction due to temperature gradients. 	 I with the sound speed c(z) given by

I. TEMPERATURE PROFILE	 T^ l +
Any study of the effects of thermal gradients on near- I At the surface (z = the boundary condition 	

E	
Aliearth sound propagation requires the selection of a tempera- 	 ( )

cure profile which is both realistic and mathematically trac- 	 - Zw = p=	 S

table. Geiger' gives some experimental results which I where w is the vertical component of the acoustic fluid veloc-
indicate that the variation of temperature with altitude be- 	 ity and Z the acoustical impedance of the surface, is applied.

'	 haves as the logarithm of the height above the ground. Ten-	 The solution is assumed to behave as
ekes and Lumley' give an argument based on turbulence
theory that leads to the same conclusion. 	 P = exp

l
i(wt -	 x cos B -^	 z sin B 

Logarithmic profilas are difficult to deal with math- I	 l	 I
erratically. Most previous work (e.g., Pekeris') on the prob- 	

I+ R (9 )expRwt - 2 - x cos 0 - — z sin 0	 (6)
lem of acoustic propagation in a stratified atmosphere have 	 C.	 C.	 ),
considered the profile	

'as z-. w. This condition implies the solution behaves as
T= To/(all++az),	 (l) plane waves in a homogeneous atmosphere outside the re-'

which yields exact solution A & the resulting differen-	 gion of strong gradients. The subscript co, indicating evalua-
tial equation. The vertical temperature profile used here 	 tion as z -+ ac, is omitted below,to simplify notation. The

	

subscript zero will be used to dicate evaluation at the	 tT = l+ d T( 1	
(2) ground surface.

T.	 T. \ 1 + cul Taking	 ^	 /h r,,,
is similar to Eq. ( 1) in its behavior near the ground (z = 0) in	 P = F (z)exp ( i [wow1c1f)X cos 0 ] j	 (7)M	 that. it allows a steep gradient, but, more realistically, asymp-

bg	
pp

totically approaches a constant value high above the ground. I and substituting into Eq. (3) yields	 5 wX^^ a,
Using data obtained by Willshire'' and by Butterworth' and 	 ' d 2F	 mj' I

	
1 +=	 2

fitting Eq. (2) to this data, typical values for a ranged from	 + — (	 - cos B )F= 0, (8)
1.2 to 5 .9 m- I  and for d TIT. from 0.0032 to 0.0342 for	 , &2	 c2 , 1 + az + d T /T
lapse conditions. Similar values of a and magnitude of a second-order differential equation with a turning point at
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where
174) _ (Jy) ing(z),

A.	 0 < cos 9<(I + dTIT)— ^^2►
A,	 cos 0>0 +AT /T) -1/2

and z>zrp,
K ) ° VW16)

e4"/6) — iR, 
cos 0>0 +ATIT)''/2

and 0<z<z7-p,

0 <cos 04(1 +ATIT)—'^2,

cos 9>(1 +ATIT)-1/2

and z>zrp,

cos 0>(1 +AT /T) -1/2

and 0<z<zrp,

e"161— iR

K:
ARe 'l"/6)

e,)./e) _ iR'

A =i 3 sin e2 (o )y' 16 a '12 e4sr/12),

R _ _ Th 1( 71(0)) 4' iOh 1(71(0))

	

COL 	 'rk(71(0)) + iOh 2(77(0))
i Z g"(0)

	

r	 2 po co g'(0)
0 = (Z /Po Co)e" g , (0) M2/2,

rf^ 2

g)12(1) = Sin2 B 1 1+ az + d I

/lAT1n
T 1 +az+ITT

) J

_ 1 dT 1 In r 1+^

2 T sin B ` 1 — ^),

o=l 
sin200+az+dT/T)—AT/T 1'/2

sin' 0 (1 +az+ATIT) f
h ,V = (3)inft 112X

11] (3 3r2),
and	 b

1{

,.i	
...._ ,.	

a

` °zrp = (1 /a)((d T/T)cot ;= 6_11.	 (9)
Nayfeh` gives a method of obtaining an approximate solu-
tion of this equation which is valid when y = m/(ae)> 1, This
requirement is the same as that found for Eq. (3) to be valid,
so no new approximations are required, The approximate
solution can be expressed as

hi(t) - , k [Ai(— t) — I Bi(— t)]	 (22) —a *Y;
and

h2(t) -k' IAi(—t)+iBi(—t)],'	 (23)
where k = (12)" e	 and k • is the complex conjugate of
k.

The asymptotic expressions for the modified Hankel
F	 ,K' ^_ h l (i7(z)) +	 ,K= ^^= h2(i7(z))) 	 (10)	 functions are available ,7 and if the parameter y is sufficiently= 

IS (z) ]	 (g (_)I	 large the usual result for the resection of plane waves from a
plane surface in a homogeneous atmosphere is obtained.

(11) The form and behavior of the solut"in depends upon
whether the waves which are uutauy trrveling downward,
toward the ground, are reflected upward from the ground or
if refraction turns the waves upward before the ground is
reached. If cos B < (( I + d T IT)]  —" the turning point is be-
low the ground surface and resection from the ground sur-
face occurs. In the oppdsite case the turning point is above .
the ground surface and the wave is refracted upward before
the ground is reached.

Based on meteorological data whered T /T ranged up to
0.0342, rays with incidence angles less than about 10' could
be refracted upwards before resection from the ground
could occur. Although these angles are quite small, they are
within the 'range of common "look angles" for aircrgft noise
testing and refractive effects can be expected to play a signifi-

(13) I cant role in this case,
If the waves are refracted into upward propagation at

the turning point, the solution depends upon whether the
receiver is above or below the turning point. Above the turn-
ing point the solution describes an interference pattern simi-
lar to that in a uniform atmosphere. Below the turning point

(14)
( exponential growth or decay occurs for large values of 77.

The first term in Eq. ( 10) decays asthe receiver moves

(15) downward, away from the turning point, if ^ — I is taken to
equal — i and, similarly, the acoustic field below the turning
point is reduced as B goes to zero and the turning point

(16) moves upward, if In( — 1) = hr is chosen. The second	 )
term in Eq. ( 10) also decays with decreasing B, but grows as z

(17) decreases from the turning point value. This behavior occurs
f since the second term represents the reflection from the

ground surface of the exponentially decreasing first term.

Ill. RESULTS
Numerical evaluation of the solution for the propaga-

tion of plane waves in a temperature gradient has been per-
formed on a digital computer. Figure 1 is a typical example
and is intended as the referent as parameters are varied in
other drawings. Surface impedance values given by Ches- .
sells' relationship for grass have been used, with specific
sow resistance chosen as 300 cgs units. A value of y = 10 )
corresponds to a frequency of approximately 1000 Hz with

I
a — 2 m — '. Although this value of y and the additional value
discussed below are not extremely large they are given as
examples and experiments will be required to demonstrate
the applicability of the theory of these values. Figures I to 3
show plots of height above the ground versus sound pressure
level in decibels. The reference level is assumed equal to the
amplitude of the incoming wave at an infinite height. Thus
the plots show the difference between the sound pressure

0002	 TELLTALEW. K. Van Moorhem and G. K. t andheim: Propagation of waves 	 002
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(18)

(19)

(20)

(12)

h2V	 (;)'/'^ 1/2Hii^,( 	 2l 2 ).	 (21)
Values of the modified one -third order Hankel func-

tions, h, and h 2 , have been tabulated and their properties
discussed.' For the numerical analysis the functions h, and
h2 have been expressed in terms of Airy functions, Ai and Bi,
where

t.
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level of the incident wave in an isothermal atmosphere Mhicoh
is neither reflected nor refracted and the levels resulting
from the refraction/reflection process in a nonisothermal
atmosphere.	 ' '

For the conditions used to calculate Fig. 1(a), y= 10,
A TIT = 0.2, B = S', and a = 2 m — i the turning point and
caustic is located at a height of about 0.8 m. Note that the
maximum sound pressure level occurs somewhat above this.
Above the turning point an interference pattern occurs with
a slowly decreasing sound level in successively higher maxi-
ma. Since the ratio of amplitudes of the incident and refract-
ed waves is near unity, values of the sound levels above ap- 	 E
proxir^a^e^ly^ must be due to increased amplitude of the
waves ^^eirt	 slues occurring far above the ground, The
similar amplitude of the two waves also leads to the strong I tY
cancellation observed in the interference pattern. Below the i
turning point a rapid decay occurs as the shadow region is
entered.

Figure 1 (b) is for the same conditions but with an isoth-
ermal atmosphere, ,d TIT = 0. In this case the reflected wave
is somewhat weaker than the incident wave and this is appar-
ent from the levels reached in the interference maxima and
minima. Comparison of Fig. 1(a) and (b) Ocarly points out
the increased sound levels and variable spacing of the inter-
ference pattern in the thermally inhomogeneous case.

	

Figure 2(a) shows a similar case but with the incidence 	
am

ruswu LEra-w

angle increased to 10'. In this case the turning point would be I I.G . 12. Height venue sound pressure level for; (a) ,r =10, dTIT. = 0.02,

	

below the ground surface and reflection at the ground oc- 	 0 =10', a = 2 m-'; (b) y = 10, dTIT. = 0.02, B = 2% a = 2 m—'.
curs. The reflected wave is weaker than theincident wave in

SODMD FIESSDME-LEVEL A	 f0{IO MLSSAME LEVEL-N

FIG. 1. Height versus sound pressure level for: (a) y = 10, dT/T, 0.02, I FIG. 3. Height versus sound pressure level for: (a) ,r = 10, d TIT. = 0.01,
6S5',a=2rn (b)y=10,ATIT. =0,8=3,a=2 m''.	 0=5',a=2 vi- ';(b) y =10,dT/T. =0.02,8=5',a=lm''.
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this case and this is indicated by the levels occurring in the
interference pattern. Figure 2(b) again shows a similar case
but with 0 s 2. In this case the turning point is at a height of
about 7,7 m above the ground and the rapid decay below the
turning point is more apparent than in Fig. 1(a).

In Fig. 3(a) d TIT has been decreased to 0.01 yielding a
turning point at about 0 , 1 S m. Comparison to FIX. I(&) shows
that this change has reduced the envelope of the sound level
maxima, and that the interference minima are tit a higher
sound level, both due to a slightly weaker reflected wave
than in Fig. 1(a), but stronger than the isothermal case shown
in Fig. 1(b). Figure 3 (b) has the parameter a decreased to 1
m" t spreading the region of significant temperature vari-
ation upward and decreasing the temperature gradient. The
parameter  is held constant at ten but since it was decreased
this corresponds to a decreased frequency as is apparent

from the interference pattern. The turning point for this case
is at a height of about 1.6 m.

IV. CONCLUSIONS
The situation investigated here, plane waves approach-

ing a finite impedance boundary at an arbitrary angle
through a lapse temperature gradient is seen to demonstrate
the .major phenomena occurring at large distance from a
point source. The interference pattern is seen to be signifi-
cantly distorted from the isothermal situation by an inhomo-

geneous layer about 0.5 m thick (a - 2 m'') and with a
temperature increase of about 6'C near the ground (AT/
T w 0.02)

ACKNOWLEDGMENTS
The authors would like to acknowledge the support of

the National Research Council which allowed one of the
authors (W V) to develop the model presented here while a
Senior Research Associate at NASA Lan, ;ley Research Cen-
ter and of NASA under grant NAG-1 .283 which allowed
numerical evaluation. The assistance of Alex Chen& in car-
tying out some of the calculations is also greatly appreciated.

I& Geiger, The Climate Near the Ground (Harvard U. P., Cambridge, MA,
1963).	 i

sH. Teoekes and J. L. Lumley, A Rrtt Courm in Turbultnee (M.I.T., Bos• !
too, MA,1972). i

sC. L. PekerL, " Thmry of Propagation of Sound in a Half-space of Vari-
"Sound Velocity under Conditions of Formation ofa Shadow Zone," J,
Acoust. Soo. Am, 18, 295-315 (1946).

4W L. Wlilahiro (private communication, 19{0).
$J. Butterworth, "An Investigation of Sound Pressure Levels in an Acoustic
Shadow, M.S. theais, University of Utah (1979).

eA. H. Nayfeh, Perra4ation Methods (Wiley, New York, 1973).
7Tab1et ojthe Mado d Xankel Functions of Order One-77iW and ojThefr
Derivatives (Harvard U. P., Cambridge, MA, 1943).

sC.1. CbewA "Propagation of Noise along a Finite Impedance Bound-
ary' J. Aooust. Soc, Am. 62,825-434 (1977).

ORIGINAL PAQZ, tg

OF 
POOR QUALI'iY

•	 F
{

t^

0002
	

TELLTALE	 W. K. Van Moorlmm and G. K. i "tWm: Propagation of waves
	

1002
t

i


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf

