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ABSTRACT 

A large optical Stark effect has been observed in the two-photon 

2 2 + spectrum X IT + A Z in NO. It is explained as a near-resonant 

process in which the upper state of the two-photon transition is per-

turbed by interactions with higher-lying electronic states coupled 

by the laser field. A theoretical analysis is presented along with 

coupling parameters determined from ab initio wave functions. The 

synthetic spectrum reproduces the major experimental features. 

PACS numbers: 33.55.+c, 33.80 kn, 33.70Jg, 33.l0-n 
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In this letter, we are reporting a quantitative determination of 

the optical Stark effect in a molecular, t'wo-photon, electronic transi­

tion. Optical Stark effects have previously been observed in resonant, 

two-photon, atomic transitions l and in resonant, multiphoton ionization 

of atoms. 2 Because of the high density of states, molecular Stark 

effects should be more easily observed. especially in multiphoton transi­

tions using high laser intensities. In fact, such observations have 

been reported by Otis and Johnson s in the multiphoton ionization of NO; 

by Srinivisan et al. 4 in two- and three-photon resonant sum frequency 

mixing in H2; and by Girard et al. s in the two-photon excitation of CO. 

However, to our knowledge, previous analyses of Stark effects in molecular 

multiphoton transitions have been limited to order-of-magnitude estimates. 

Two of US 6 ,7 have developed a laser-induced fluorescence technique 

for temperature diagnostics in low-temperature gas flows seeded with low 

concentrations of NO. The method relies on the two-photon excitation of 

two selected, ro-vibronic transitions in the NO y(X2 rr, v" = ° + A2 Z+, VI 0) 

band. Because of the inherently weak two-photon interaction, high laser 

intensities are required to provide adequate signal levels. However, even 

at moderate power levels, unexpectedly large Stark broadening was observed 

in the spectrum. Therefore, we have studied the Stark effect in some detail 

to understand the nature of the broadening mechanism. 

The experimental arrangement used was similar to that described in 

Ref. 7. Selected regions of the y(O,O), two-photon, fluorescence~ 

excitation spectrum were scanned with a dye laser, which was pumped by a 

Nd:YAG laser operated at 10 Hz. A linearly polarized beam was generated 
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at wavelengths near 450 nm, with a 5-nsec pulse duration, an average 

linewidth of ::!0.2 to 0.3 cm-1 , and with energies of a few mJ. The 

beam intensity distribution was spatially and temporally nonuniform, 

and varied from pulse to pulse. A large fraction of the beam energy 

was focused into a sample cell for the Stark measurements. Approximately 

10% was split off and loosely focused into a reference cell to provide 

a simultaneous spectrum with negligible Stark broadening. NO pressures 

were identical in both cells and ranged from 0.05 to 0.1 torr, where 

collisional broadening was negligible. The broadband fluorescence from 

each cell was collected at 90°, and then imaged onto a photomultiplier 

through an aperture that limited observation to a 1 mm path length at 

the focal point. Signals were integrated and averaged with a boxcar 

integrator. 

An example of the broadening for a spectral region in which the 

line separations are significantly greater than the laser bandwidth is 

shown in Fig. 1. The upper trace was taken using an average laser 

intensity of :3 GW/cm2 • The lower trace, recorded simultaneously with 

a reduced laser power level, shows a spectrum where the Stark effect 

is negligible. The upper spectrum displays an asymmetric shift to the 

blue for both the 511 + R21(20-1/2) and 521(16-1/2) transitions. The 

rotational sublevels, which are split by the laser field, are not 

resolved. The splitting appears in the spectrum as a broadening, 

3 to 4 cm-1 wide. Additionally, the relative heights of the two peaks 

are reversed. Figure 2 shows a plot of the full width at half maximum 

(FWHM), of the 511 + R21(20-1/2) and 511 + R21(7-1/2) lines, as a 
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function of the average laser energy. The width is linearly proportional 

to the pulse energy~ indicating a quadratic Stark effect. The intercept 

at zero energy corresponds to the convoluted two-photon laser width and' 

Doppler width. 

To account for the observed Stark effect quantitatively, both shifts 

and widths induced by the optical field need to be considered. A survey 

of spectroscopic data for NOS-IS shows that at the laser frequencies for 

the two-photon X + A transition, each rotational level of the A state 

is near-resonant with a one-photon transition from a J level of a high­

lying discrete electronic state. The observed splitting can be attributed 

to near-resonant, one-photon coupling via the Stark field (i.e., a quad­

ratic Stark effect). In addition to the splitting, a significant width 

is also introduced since the A state can be coupled with the ionization 

continuum by two-photon transitions, which are enhanced by the near­

resonant one-photon step. This additional width corresponds to a quartic 

Stark effect. 

An important factor in determining the magnitude of the observed 

Stark 'effect is the resonance-energy gap, G (the difference between the 

energies of the perturbing state and the sum of the A state and photon 

energies). From the experimental data in the region near one-photon 

resonance (~450 nm) with the A state,8-13 the strongest perturbing 

level of the S11 + R21(20-l/2) branch has been identified as: B2~, v 25; 

and for the S21(16-l/2) branch, K2~, v = 1. The zero-field resonance­

energy gaps were calculated with expressions appropriate for intermediate 

coupling between Hund's case (a) and (b).14 The results are given in 

Table I. The spectroscopic parameters used were derived from experimental 

In particular, the rotational constants, B
J

• used for 
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the 2n states were consistent with the recent work of Ebata et al. 11 

Since the smallest gap is less than 5 cm-1 for all three A-state 

rotational levels considered, large Stark shifts are observed. 

We have calculated the Stark shifts in NO by solving the time-

dependent Schrodinger equation directly. The commonly used perturba-

tion approach s was found to be inadequate, owing to the small resonance-

energy gaps. Calculations were performed for the combined molecule 

and field system with the A state coupled to six rotational levels of 

the B2n or K2 n state, via dipole interactions; i.e., 

.J = .JA + I, .lA' .JA - 1 for each of the spin components, Fl and F2, 

of the perturbing state. Contributions from the x2 n state have been 

neglected because they are small. In the restricted part of the Hilbert 

space, consisting of bound molecular eigenstates, resonantly or near-

resonantly coupled, and with their natural lifetimes neglected (dressed 

molecule representation16
), we can cast the Schrodinger equation into 

the form of a secular equation. 17 For a state A, coupled to a set of 

bound states I and J, through the potential V, we have 18 

-+ -+ -+ 
G + V - a == ° (1) 

where GAA == 0, GIJ 
0, and 

(2) 

Also, we set V
IJ

:= 0, because in the present case these terms are 

nonresonant. In Eq. (2), ~AI is the transition dipole moment, R is a 

rotational line shift factor, and € is the field strength. Associated 
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-+ 
with each eigenvalue, aN' there is a dressed state wave function, ~N(r,t), 

given by 

(3) 

Where ~A and ~I are the time-independent molecular eigenfunctions; 

BNA and BNI are time-independent coefficients; and n, n - 1 are photon 

number states. -+ The wave function, ~(r, t), which satisfies the boundary 

condition that 

according to 

-+ 
~(r, 0) = (~A' n), is a linear combination of the 

IJ!(-;:, t) =:E 
N 

~ 's 
N 

The wavefunction is nonstationary and oscillates among the IJ!N's, 

depending on time. For the case of two-state coupling (Autler-Townes 

effect 19), our result agrees with that obtained previously in closed 

form. 20 

While ~(i, t) is oscillatory, the laser probes only one of its 

(4) 

components. Since a single laser field was used in this experiment, the 

probe and Stark fields are identical, and are always tuned to the component 

of ~(i, t) with a closest to zero. We designate it as ~o. The eigen-

value, ao, then corresponds to the Stark shift observed. To determine 

ao, Eq. (1) is solved separately for each M level. The parameters used 

in the calculation are the resonance-energy gap, G, and the coupling 

potential, V. Since the experiment requires the Stark and probe frequen-

cies to be equal, Eq. (1) is solved iteratively until the two 

frequencies agree. 
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The determination of the rotational line shift factor, R, depends on 

the Hund's coupling case for which the pair of molecular eigenstates, A 

and I, belong. Assuming the use of a single, linearly polarized laser, 

for the general case of intermediate coupling between Hund's case (a) 

and (b), we find that 

2 + < A I; , J
A 

± 

1 
2 

Here Rose's definition of Clebsch-Gordan coefficients are used. 21 

(5) 

The two-photon rotational line strength, S(JX' JA, SX' SA' M), between 

individual M levels of the x2rr and A2I;+ states, determines the shape 

of the Stark spectrum. The M-dependent line strength can be deduced from the 

unresolved two-photon rotational line strength of Halpern et al.,22 (valid 

for intermediate coupling) and is given by 

(6) 

The Stark width is introduced by the interaction of the wavefunction, 

10, with the ionization continuum via the radiation field and is expressed 

by 
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(7) 

The continuum states are evaluated at energy. EC = EA + 2w, and the 

subscript, A, sums over all degenerate quantum numbers. The Stark width,' 

!1I', is also M-dependent through rotational factors similar to R. The 

energy shift, due to co~pling to the continuum, is found to be numerically 

small for NO and will not be considered. 

The vibronic transition moments, ~AI' necessary to evaluate the 

Stark effects have been calculated using ab initio wave functions. The 

electronic wave functions were calculated using a large (320, 22~, 60, 4~), 

Slater-type basis set containing Rydberg functions. 17 Complete-Active­

Space SCF calculations25 (CASSCF) were carried out for the A2 r+ state, 

followed by multireference, first-order, configuration-interaction eel) 

calculations2~ for both 2r and 2n syrnmetries. 25 Transition moments 

between the B,K states and the ionization continuum were calculated 

from discretized CI wavefunctions. using the Stieltjes imaging methods. Z6 

The Stark shifts and widths of the three rotational levels of the 

AZr+ state have been calculated for the experimental field density, IAV' 

of 3 GW/cmz , using a chaotic field model for the photon statistical 

behavior. 27 Their values are shown in Table II for representative M 

levels. Both the shifts and widths are strongly M-dependent owing to a 

dominant MZ-dependent term in the rotational line shift factor. Uncer-

tainties in energy gaps, transition moments, and IAV contribute to the 

error in the theoretical Stark parameters. Since the rotational con-

stants used in the calculation of G are not well known experimentally, 
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they constitute a major source of uncertainty. Because of the small 

energy gaps and the high J levels considered, a 1% variation in B
J 

introduces 20 to 40% changes in the Stark parameters. The errors 

associated with ab initio transition moments are difficult to determine. 

The calculated f number of the X + A (0,0) band, though, agrees with 

experiment to 5%,17 indicating that the bound-bound transition moments 

should be reliable. The bound-free transition moments are subject to 

much larger errors, resulting in calculated widths that are less reliable 

than the shifts. The estimated uncertainty in lAV is approximately 

50%. Also, the nonuniformity in the beam intensity may change the 

calculated parameters to some extent. 

A synthetic, Stark-broadened, two-photon spectrum of NO has been 

generated using the calculated parameters and is presented in Fig. 3. 

At a given probe frequency in the synthetic spectrum, all transitions 

that contributed to the intensity were convoluted with the laser and 

Doppler widths, using a Voigt function. The laser width was assumed to 

be composed of both probe and Stark fields, with an effective, single, 

Gaussian width of 0.5 em-I. The vertical lines in Fig. 3 represent the 

calculated positions of the Stark-shifted M level transitions at 

lAVe The experimental spectrum taken at the same field strength is 

also reproduced in the figure. Comparing the two spectra, we find overall 

agreement. Both spectra show asymmetric shifts to the blue and a peak­

height reversal from the weak-field case. The asymmetry is the result 

of M-dependent blue shifts and the intensity distributions of the shifted 

lines. The individual Stark widths smooth the line shape. Nevertheless, 

9 



there are some discrepancies. On the high-frequency side of the 

S11 + R21(20-lj2) transition, the synthetic spectrum is more intense. 

Also, the calculated S12(16-l/2) transition is narrower than observed. 

These differences are probably due to uncertainties in the data used to 

determine the Stark parameters. We have varied B
J 

and I
AV 

over a 

reasonable range of uncertainty and found that the major features of 

the spectrum were insensitive. Only the shape of the spectrum for 

large M transitions showed minor changes. 

In conclusion, a theoretical method has been developed that should 

be uniquely applicable to near-resonant Stark effects. Several aspects 

of the model were found to be essential for reproducing the experimental 

features in NO. In particular, the time-dependent Schrodinger equation 

had to be solved directly since perturbation methods were unsuccessful. 

Additionally, an iterative solution of the secular equation was necessary 

to account for the single beam experiment properly. 
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TABLE I. Energy gap GAl in cm- l used in the calculation of Stark parameters j
· 

Perturbing A2I;+, v = 0 

27r state (a) Fl, J A 22-1/2 (b) F2. J A = 21-1/2 (c) F2. J A = 18-1/2 

Fl , J = J + A 1 54.3 -4.2 -28.5 

Fl. J = J A -4.2 -60.2 -85.5 

Fl' J = J -
A 

1 -60.2 -113.6 -139.5 

F2 , J J A + 1 71.3 17.6 57.7 

F2• J J A 17.6 -33.9 -2.9 

F2• J == J -A 1 -33.9 -83.2 -60.5 

i 
For columns a and b, the perturbing 27f state is B27r, v 25. For col-
umn c. it is K27r, v = 1. 

TABLE II. Stark shifts (em-I) and widths .(cm- I ) 

calculated for three rotational levels of the 
A2I;+, v = 0 state at I = 3 GW/cm 2 

AV 

Fl. J 22-1/2 F2, J = 21-1/2 F2. J 18-1/2 

M Shift Width Shift Width Shift Width 

1/2 -0.03 0.06 -0.41 0.39 -0.02 0.04 

5-1/2 0.99 0.42 -0.25 0.35 1.02 0.70 

10-1/2 2.44 0.52 0.22 0.27 2.41 0.91 

15-1/2 3.83 0.49 1.11 0.21 3.87 0.93 

20-1/2 5.03 0.46 2.53 0.20 
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22+ F:lgure 1.- Experimental two-photon spectrum of NO, X IT, v" = 0 -+- A 2: , VI = 0, 
SH + R21 (20-1/2), and S21 (16-1/2) transitions. The upper trace (high field) 
was taken using 2-mJ pulse energy and a focused beam diameter :::100 to 150 l.l. 
The corresponding parameters for the lower trace are 0.2-mJ energy and 
:::300-1.1 diameter. NO pressure was 0.1 torr in both cases. 
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Figure 2.- Linewidth (FWHM) of the Sll + R21(20-1/2) and Sll + R21(7-1/2) 
lines as a function of laser energy. Focused beam diameter was ~300 ~. 

NO pressure was 0.05 torr. 
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Figure 3.- Comparison of the synthetic (---) and experimental (--) high­
field spectra of the transitions shown in Fig. 1. The vertical lines 
represent the calculated positions of the shifted M levels. 
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