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SECTION 1

INTRODUCTION

The Large Deployable Reflector (LDR) is planned as an orbiting

astronomical telescope to explore the observable universe in the wave-

length region of 30 } gym to 1 mm, a range that up to now is little known

due to the opacity of the atmosphere at these wavelengths. With both

spectroscopic and imaging capabilities, it is expected to provide major

contributions towards better understanding of topics of current interest

in cosmology, stellar evolution, galactic and extragalactic structures,
i

on the nature of interstellar media, and on evolutionary processes in

solar and planetary systems.

Preliminary studies by NASA/AMES, Jet Propulsion Laboratory(1),*

and by the scientific and technical community that gathered at Asilomar,

California for the LDR Science and Technology Workshop (2) have indica-

ted that a diffraction-limited system with an aperture ranging from 10 to

30 meters would provide the necessary resolution and sensitivity. Add-

itionally it was concluded that "light-bucket" type of operation would be

desirable for wavelengths lower than 30 PM.

From a technologies, space operational capability, and budgetary

planning points of view, the initial operational capability was aimed

for the late 1980's to early 1990's time frame. The individual technolo-

gies would, therefore, have to be maturing by the mid-eighties. It was

considered desirable to limit the system to single Space Shuttle load,

* References at back of report.
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and to use a relatively low operational orbit to permit future refurbish-

ments and repairs. Some consideration has al roo been placed on the

attachment of the LDR to the proposed Space Station, but observational

constraints imposed by that orbit may not be in the best astronomical

interest.
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SECTION 2

SPACECRAFT SYSTEMS AND TECHNOLOGIES

It is not the intent here to describe in great detail all of the

possible systems, subsystems and component technologies that will con-

verge on the LDR, but in consideration of the type of simulations and
analytical tools necessary, some reference needs to be made to some of

the key options under consideration.

Figure 2-1 shows a representative LDR systems concept. it is

clear that the reflector is indeed large, and therefore must also be

lightweight and deployable to permit the use of the Space Shuttle. The

consequence of all this is that the system will indeed be quite flexible,

result in low dynamic resonant frequencies, and possibly experience con-

siderable structure-control interaction phenomena affecting the optical

behavior.

Since the operational wavelengths fell in the range between opti-

cal and radar, but tended towards the long-wave infrared at their shorter

limits, it will be necessary to tolerance the system at these wave-

lengths. The net result will be that a figure of X/20 will be required

at 30 µ for diffraction-limited imaging operations, with some of the

requirements more severe if the light-bucket mode at even shorter wave-

lengths is invoked.

The "optical" segments which comprise the main reflector must be

of low weight and able to fit into the Shuttle bay in one piece, thus

3
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Figure 2-1. Concept for a 20-m large deployable reflector (LDR).(3)
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limiting their dimensions to about 4 meters. A considerable challenge

exists in the manufacture of these segments, since the use of classical

glass optics leads to excessive weight, cost and fabrication time. High-

frequency radio-telescope segments of this size and low weight are avail-

able but have been manufactured only to about 300 1iM operating wave-

length. It is probable that a new concept incorporr,,ing active optics

may be required to correct for manufacturing errors, thermal and dynamic

disturbances.

The supporting mechanical substrate for these reflectors and for

the optical train itself will be flexible and may respond to the various 	 f

dynamic disturbances of the system. It is probable that active vibration

control will need to be considered to maintain the pointing and optical

train wavefront quality. A major source of disturbance comes from 	
x

"chopping", the need t- *ova ,najor parts of the optical train for pur-

poses of background cancellation by as much as an arc-minute at 2 to 10 	 i

Hz. Slewing at the rate of 20 degrees/minute is required to move from
	 r

one observed source to the next. Due to the large amount of electrical

power required, large panels with low natural frequencies will be encoun-

tered. Attitude control must deal then with these flexibilities while

trying to maintain panting accuracy of 0.5 arc-seconds and pointing 	 j

stability of 0.05 arc-seconds.

It appears, therefore, that near optical tolerances must be main-

tained through the various control systems for figure, alignment, wave-

front and pointing. These control systems must deal with structural

flexibility and it is expected that overlaps in bandwidth will occur.

5
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SECTION 3

TECHNOLOGY AND SYSTEMS VALIDATION

Since there exists very little precedent for a sensor of this

size, complexity and precision, most of the key components, subsystems
.I

and the system itself must be validated prior to launch. Ground testing i
of such an integrated system will doubtless lead to complications. To

avoid atmospheric testing errors in the optics, and spurious damping due

to the air, the tests must be conducted in a vacuum tank. The flexibil-

ity of the reflector and optical train will be such that the effects of 1

g will be non-negligible. Finally it will be very difficult to assess

the interaction of the rigid body dynamics and the structural flexibility

except in a zero-9 environment. It would be very risky, however, to
i

assume that validation would be performed on the system once assembled in

orbit. Individual components can be tested on "zero- O g" mounts but it is

highly unlikely that the entire integrated and highly interactive system

can be tested that way.

A partial answer to this dilemma lies in the development of highly

sophisticated end to end simulations that account for all significant

interactions and provide for a systems-level measure of performance.

PRECEDING PACT: PLANK 'NOT rIT.^?Fn
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SECTXON 4

ANALYSIS AND SIMULATION TOOLS

Since there will be a large amount of new technologies, since

there will be many major subsystems that can interact with each other

nonlinearly, and since it 1 3 unlikely that the LDR system can be ade-

quately tested in 1 g prior to launch, it is crucial that reliable anal-

ysis and simulation tools be developed in parallel with the technolo-

gies.

Such tools must be aks1E to characterize reliably the essential

bo'-^.^rior of the LDR system, while taking into account the significant

ti-w^es of uncertainty. Ideally it should begin with an expected radiom-

stric model of the intended astronomical source, and a suitable expected

model of the stellar background as inputs. An LDR model cul;.tnating with

the point-spread-function and pointing time-histories is next. finally

if it is expected that significant post-detection image or signal pro-

cessing will be needed, this should be modeled as well. Such an

analysis-simulation tool will provide an end-to-end prediction of the

performance of the LDR. The major emphasis of this tool should be, of

course, on the actual LDR itself.

The "LDR Simulator" needs to include some of the following main

features:

?RI?CE,D1NG, PAGE Ri,ANK NOT Fn;^rn
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4.1	 Satellite Thermal State

The Satellite Thermal State is the temperature distribution within
	

r}

the satellite itself. This is important to maintain the alignment of the

optics to the instrument packages and the inertial reference sources, to

da termine thermal misalignments within the optical train and warpage of

the mirror segments, and to establish the levels of the thermal self-

emission of the optics.

	

4.2	 Satellite Geometrical State

The Satellite Geometrical State represents displacements, both

quasistatic and dynamic, beyond the expected tolerances. This will in-

clude geometrical misalignments from fabrication, assembly and deploy-

mentf thdrmal warpage must be determined through appropriate structural

analysis codes= And the elastic response to dynamic on-board sources must

be calculated and added to the previous two. Finally the spacecraft

rigid-body deviation from its intended pointing direction must be

determined.

	

4.3	 Satellite Optical State

Given the static and dynamic misalignments with the optical train,

the distorted point-spread function mist be computed.

	

4.4	 Scene-Sensor Interaction

The distorted point-spread function is convolved next with the

"scene" consisting of the to be observed source superimposed on the

expected background, and from that a photon stream to the focal plane

instruments can be obtained.

	

4.5	 Focal Plane Model

Photons impinging on the fecal plane will be recorded directly by

the means of "film"--for which a sensitivity model is needed, or turned

by detectors into electron streams containing noise. Spectro<<eter op-

tics models need to be included here a:; well, for those instruments.

Scatter and thermal models may be needed iii this segment as well.

10
k.



4.6	 On-Hoard Image/Signal Processing

If any on-board image/signal processing is done prior to

transmission to the astronomers, models of this process and the

additional noise sources that can be encountered here must be included.
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SECTION 5

APPROACHES TO ANALYSIS AND SIMULATION TOOLS

At the beginning of any systems development venture, various ana-

lytical models will exist for the major features of the system behavior.

These might be simple physics-level tools to trade off parameters such as

resolution, collecting area, detection sensitivity, pointing stability,

etc., to eventually converge on a systems-level sensitivity of the

planned observatory. These tools which could be simple equations pro-

grammed on a hand calculator may or may not indicate some of the
A. 	 probl•eras still to be faced. These tools are useful in a

further sense, however, to help provide a zeroth order reference model

from which more sophisticated models and simulations can be developed.

A first order analysis tool will begin to incorporate so:n,7 111 of the

technology features and provide some of the constraints. Such tools are

often of the "transfer-functions" variety and will go a long way towards

beginning to flesh out the system. Where the subsystems are simple and

non-interactive and very few if any nonlinear phenomena are encountered

then these may very well be quite adequate to characterize the behavior.

Such an analysis tool must be traceable to the physics-level tool in its

systems orientation and can incorporate some measured subsystem and com-

ponent characteristics. They tend however to only provide an instantan-

eous snapshot of the behavior, and usually a highly simplified one.

Where multiple control systems are encountered that have overlap-

ping bandwidths, and where these control systems are characterized by

0
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multi-input multi-output features, a transfer-functio, or frequency do-

main approach becomes inadequate to represent time-varying systems. A

similar condition applies also in the optical regime where high spatial,

variation and optics segmentation will tend to drive to enormous opatial

frequency domain complications. System-level wavefront sensing and con-

trol approaches moreover are most conveniently handled in the time and

space domain, so that any evaluation of that kind of system is best han-

dled through formal simulation approaches. The frequency domain

approaches are most useful as engineering design tools, but for predic-

ting the behavi..or of a system as complicated as the LDR a full-up simula-

tion mut eventually be developed.

4
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SECTION 6

SIMULATION OF LDR

Once it is decided to develop a full-scale simulation further

decisions are necessary: should it be real-time or not? The advantages

of real-tame simulations are obvious. Component models can be replaced

at any ti:^de by the hardware itself and the simulation can evolve from a

software tiyased one into a breadboard representation. The real-time simu-

lation, moreover, can be used as a reasonably precise analog which be-

comes the focus for any flight software development. Since the flight

software development, its validation and verification, occupies an

increasingly large part of the system development time, it is typical

that access to any part of the flight hardware does not occur until rela-

tively late stages in the system development. The real-time simulation

and its evolution to a breadboard considerably relieve these pressures.

The disadvantages of a real-time simulation are considerable too.

A dedicated or near-dedicated computer is nearly always called for and

considerable computing throughput is necessary if high frequency multi-

degree-of-freedom components (such as large reflectors) are encountered.

The additional complexity of programming for real-time may raise the cost

to twice that of non-real-time software.

Tremendous insight into the details of the technical problem, and

a large amount of systems incompatabilities can be established with a

non-real-time simulation. The discussion that follows for the LDR is

applicable to both kinds of simulation, although the emphasis will be

placed here on the non-real-time variety.

15
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Figure 6-1 indicates a typical architecture for the simulation of

a system such as LDR. The major technologies of interest in the develop-	 M

ment of thn models are heat transfer, structural mechanics and dynamics,

spacecraft dynamics, control of figure, alignment and attitude, and

optics.

The architecture demands that large numerical analysis software

programs such as CINDA (thermal), NASTRAN (structural) and ACOSS V

(optical) be kept out of the direct loop of the simulation. They are

used but only to receive inputs from previous analyses and )rovide output

to the next block. The blocks interface through data bases and this

interface block may include interpolation routines to bring the various

discretization approaches--finite difference, finite element and ray-

trace to common nodal quantities.

Each block should be exercised by a specialist in that particular

discipline =it is unwise to use "generalists" to run codes of this com-

plexity. The specialist is responsible for the quality of the model that

he has generated and for the correctness of his outputs into the common

data base. Such simulations will contain few enduring models since the

systems concept will evolve with time. Eventually the numerically-

obtained data base may be replaced by experimentally derived data, but

this need not be known by the next level of user.

6.1	 Thermal Model

This block, which is contained outside the major f1Aw of the simu-

lation, is nothing more than a classical heat transfer program such as

CINDA or the ADL Thermal Analysis Program. To be useful for space appli-

cations, it needs to have full radiative transfer capabilities along with

view factors and other shading features. Inputs to this will consist of

mechanical and thermal design parameters, orbital parameters and a numer-

ical description of the internal heat sources. It will be clearly a non-

steady state program but the dynamics are not sufficient to excite in the

16	
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Figure 6-1. LDR spacecraft and optics simulation.
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general case spacecraft or elastic response. The output will be a

description (slowly time-varying) of temperature distributions in the

satellite. This data set then becomes one of the forcing functions for

the structural model as well as providing disturbances to the cryogenic

features of the LDR.

6.2	 Structural Model

The structural analysis and modelling block also is contained out-
}

side the major flow of the simulation. This can include generally avail-

able programs such as NASTRAN, STARDYNE, ADINA, ANSYS, etc., or other 	 u
E

programs that are technically suitable for modeling the problem at hand.

For space applications, free-free modes must be available, however. In-

puts to the program will come from mechanical and structural design

parameters and the appropriate elastic properties. Outputs from this
1

block are inany^ The simplest is the net set of deformations of the

structure due to thermal and mechanical loads. For ether parts of the

simulation, mode shapes and frequencies are extracted and placed in the

appropriate data bases.

6.3	 Quasistatic

Since the LDR may be considered to have rigid body control of the

reflector segments, as well as possible figure control within the seg-

ments, the quasistatic block deals with these problems. A control law

input is required along with influence functions frorn the structural

model and gross initial d ,.splacements from the thermo-elastic response
I

augmented by initial fabrication and deployment errors. Further control-

related parameters can be input here as well such as actuator and sensor

quantization. The output is the net set of reflecting surface displace-

ments not subject to further controllability.

6.4	 Steady State

The Steady State block is a useful design tool that allows a quick

response calculates-nn to be made. The structural mode shape and frequency

k
18
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data is assembled into individual equations of motion and peak responses

`	 are calculated for each mode and for each disturbance. These can then be

summed in a non-phase -coherent manner or root-mean-squared to obtain

probable superposition. A frequency-domain representation in terms of a

structural dynamics transfer function may be obtained by further off-line

manipulation of the data.

6.5	 Dynamics

The Dynamics block will contain probably the most computationally

complex part of such a simulation. Equations of motion for the coupled

rigid body and flexible representation for the simulation must be gener-

aced off- line, although it might be possible to connect an offline dynam-

ics program such as DISCOS to the block. Two control systems--attitude

and structural control will be encountered here and inputs from the

structural modeling block are necessary in terms of modeshape and fre-

quency data. A system-level equation of motion is assembled and inte-

grated with various clocks accounting for the bandwidths of the several

subsystems under consideration. Forcing functions--both environmental as

well as on-board will enter here, as well as detailed descriptions of the

^a
control laws and any actuator and sensor characterizations. The output

of the dynamics module will be an instantaneous rigid body and elastical-

ly deformed state of the spacecraft.

6.6	 Raytrace

The raytrace module is most appropriately off line since it is

usually part of a much larger optical design and analysis package such as

ACOSS V. The optical prescription for the LDR will be the input to the

module and two related calculations will be done. First a raytrace will

be performed to obtain the wave observations of the undeformed (refer-

ence) system. Then a "differential raytrace" will be obtained to estab-

lish an instantaneous change in the wave aberrations due to a motion of a

reflecting surface away from the reference positions. This data will

pass onto the following Interface module.

19
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I	 6.7	 Interface

The purpose of the Interlace module will be to merge the different

spatial and temporal discretizations into a format suitable for the opti-

cal performance evaluations. With raytrace discretization as the stand-

ard, the outputs of the Quasistatic and Dynamics (or Steady State) are

f	 interpolated by means of bicubic splines to obtain total displacements at

the incidence points of the raytrace on the various reflectors. This

interpolation will be done as often as necessary as determined by the

highest frequencies of interest in the Dynamics module. The displace-

ments are then converted (via the differential raytrace) to net system

wave aberrations and the information is placed in the output data set.

6.8	 Optical Performance Evaluation

This final module takes the net wave aberrations and turns it
1

first into a pupil function, then performs a two-dimensional (fast)

Fourier transform on it, and finally performs a modulus squared opera- 	 I

tion. Thus the point-spread-function (PSF) and the power on the detector
F

can be obtained. The deformed line of sight (LOS) is computed from the

centroid of the PSF and is added to the rigid body LOS to obtain the 	
I

system-level LOS.

20	 k.
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SECTION 7

SIMULATION OF SCENE, FOCAL PLANE, AND PROCESSING

k

^^	 t

Once the optical point spread function and system LOS have been

obtained, then some further steps will be necessary to establish the

astronomical performance of the LDR. Figure 7-1 indicates how some of

the next steps might be achieved.

7.1	 Scene

The scene which the LDR will attempt to observe will consist of an

astronomical source of interest superimposed on a suitable background.
r

(	 The nature of the source cannot readily be defined except as the radiant

{	 intensity of the limiting target of interest for the observatory at that

particular waveband. The background will also provide some difficulties

E
since there is little data to base it on, yet it may be a distinct limi-

tation to the observations planned. Statistically based extrapolations

from IRAS shifted to the proper wavelengths may provide some initial

guidance. The scene has to be constructed in at least comparable spatial

detail as the optical PSF, and should have several distinct regions so 	 g

that chopping strategies can be tested. 	 j

7.2	 Convolution

Since both the optical PSF and the scene are numerically obtained,

it is necessary to perform the convolution numerically as well. This

method has been found to be quite successful and can be made computation-

ally efficient.

21
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Figure 7-1. LDR Systems-Level Simulation.
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7.3	 Focal Plane

The photon intensity impinging on the focal plane is obtained in

the convolution and the focal plane module converts this into electron

streams for the detectors or into permanent records on film. The various

conversion sensitivities and accompanying noise sources must be mode.ed

here.

	

7.4	 On-Board Processing

The electron stream from the focal plane may be passed through

some on-board processing (e.g., background substraction in chopping)
t,

prior to transmission to ground. Each of such processes may ",ange to

signal to noise relationships of the data so that these must be quanti-

fied here.

^qqa
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SECTION 8

SUMMARY AND CONCLUSIONS

It has been the irgument of this short report to try to make the

case for the development of a detailed systems-level simulation in

parallel with the development of the LDR systems concepts and the indi-

vidual technologies needed. Doubtlessly such a simulation will not be

inexpensive, particularly since a larger part of the investment must come

at the beginning of the program when funds are scarce rather than later

on when larger resources become available.

As has been discussed, physics-level and transfer-function types

of representations may not provide a sufficiently detailed identification

of the key technology issues in time to take steps to resolve them. Many

of the models that are used as inputs to the simulation--in heat trans-

fer, structures, dynamics, control and optics will be developed under any

7,ircumstances by -the various subsystem groups. The purpose of the simu-

lation is to merge the various existi.,j data bases and allow a merging at

the systems level. With car-r ful prior planning a simulation as discussed

above can be made to happen by the establishment early-on of a logical

coherent architecture and then stringently enforcing various technology

modeling activities to use the common data base approach for communica-

ting their outputs. In this manner much duplicative effort is avoided,

and the individual technology groups become more sensitive to their

impact on other parts of t$e system. Clearly, configuration control on

models must be enforced, and no one should be asked to simulate "glossy
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cartoons" ---i.e., spending more time on modeling and analysis of a concept

than the systems designers spent on its genesis.

With any luck, a proper end-to-end simulation should be available

prior to the commitment to a particular final configuration. It can thus

be a tool !or assessing competitive concepts, gor identification of sub-

system and technology cliffs, and in the avoidance of m ,̂ jor systems per-

formance "regrets." LDR will not be a simple satellite where each sub-

system can operate independently of its neighbors, it r•^quires a simula-

tion tool commensurate with its hardware complexity.
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