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Abstract

It is well known that for low speed flows the use of the compressible

fluid dynamic equations is inefficient. The use of an explicit scheme

requires At to be bounded by I/c. However, the physical parameters change

over time scales of order I/u which is much larger. Hence, it is not

appropriate to use explicit schemes for very subsonic flows. Implicit schemes

are hard to vectorlze and frequently do not converge quickly for very subsonic

flows. We shall demonstrate that if one is only interested in the steady

state then a minor change to an existing code can greatly increase the

efficiency of an explicit method. Even when using an implicit method the

proposed changes increase the efficiency of the scheme. We shall first

consider the Euler equations for low speed flows and then incompressible

flows. We then indicate how to generalize the method to include viscous

effects. We also show how to accelerate supersonic flow by essentially

decoupllng the equations.
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Euler _uatlons for Subsonic Flow

We first consider low speed flows for rotational inviscld flow. Since

the flow may be rotational we consider the Euler equations rather than the

potential equation. We only consider schemes in conservation form. The use

of conservation form allows the same code to be used for highly subsonic,

transonic and supersonic flows.

The Euler equations, in two space dimensions, can be expressed as

wt + fx + gy 0 (I)

where (x,y) represent general curvillnear coordinates. Since we are only

interested in the steady state we replace (i) by the system

M-I wt + fx + gy = 0. (2)

The requirements on M are that the matrix be nonslngular and that the

resultant equations be well-posed. It is straightforward to solve (2) with an

explicit scheme. With an implicit method only the diagonal portion of the

matrix to be inverted is changed. Though the code solves (2) we shall only

analyze the constant coefficient problem

M-I w + Aw + Bw = 0 (3)
t x y

where the matrices M, A, B are constant. Let w(0) = Tw, A0 = T A T-I,

B0 T B T-I MO 1 T M-I T-I= , = , where T is chosen appropriately [6], then

(3) can be converted to



--2--

M_1w[°) +% w(°>+ Bo w(°) =O, (4>x y

with

q Y c -X c 0 1 r -Y c X c 0

y y x x

Yc q 0 0 -_ c r 0 0
y x

A0 = -X c 0 q 0 B0 = X c 0 r 0
(5)

y x

0 0 0 q 0 0 0 r

q = Y u - X v, r = X v - Y u (6)
y y x x

q and r are the contravariant components of the velocity and (X,Y) are

the Cartesian coordinates.

• We now consider the case of low speed flows. We wish to choose MO 1
SO

that the eigenvalues of M0 A0 and M0 B0 are independent of c. We also

wish to choose M0 to be positive definite. This will imply that (4) is a

symmetric hyperbolic system and so well-posed. One choice is

m

c2
-- 0 0 0
z2

0 1 0 0

= (7)
0 0 1 0

0 0 0 1

2 u2 v2).where z = max(€, + € is introduced so that the matrix M is not

singular at stagnation points. Transforming back to curvilinear coordinates

we find that M = I + dQ, d = (y-l)(z2/c2-1)/c 2
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s2 -u -v 1

us2 -u 2 -uv u

q = vs 2 -uv -v 2 v (8)

hs2 -uh -vh h

where

2 v2 2s = (u2 + )/2, h = c2/(y-l) + s • (9)

We note that given the first row of Q the following rows are derived by

multiplying the first row by u, v, h respectively. Hence the product of

Q times a vector requires only six multiplications.

Let _2 = z2/c2 then the largest elgenvalue of D = A sin 8 + B sin

is given by

ffilwl(I + _2) + /w2(l __2) + 4(a2 + b2)z 2
2 (10)

4

where

w = q sin 8 + r sin $, a = Yy sin 8 - Yx sin $, b = Xx sin _ - Xy sin 8.

We see that near a stagnation point M = 0(£), Z = 0(€). While at M = I,

= lwl + !a 2 + b2 c. Hence, at small Mach numbers the largest elgenvalue,

and hence the time step, is independent of the sound speed c. At transonic

sound speeds the largest elgenvalue is comparable to the noncondltloned

case. Hence, the preconditioned problem allows a larger time step for all

subsonic flows (see also [5] for the isoenergetlc case).
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We next consider incompressible flow. In conservation form the system is

given by

u +v =0
X y

ut + (u2 + P)X + (UV)y = 0 (II)

vt + (uv)x + (v2 + p)y = 0

where p is the pressure normalized by the density. We wish to integrate

this system using the artificial compressibility method [I]. If Pt/C 2 is

inserted in the first equation the system is hyperbolic but not well

conditioned [2]. Instead we replace (ii) by

1
m +v =0
2 Pt +Ux yc

u

-_ Pt + ut + (u2 + P)x + (uv) = 0 (12)
c Y

V

--2 Pt + vt + (UV)x + (v2 + P)y = 0,c

c is a given nonzero function. It is evident that at the steady state both

systems coincide. The new system can readily be shown to be unitarily

equivalent to a symmetric hyperbolic system and so is well-posed and well-

conditioned. The extra time derivatives can be considered as a precondition-

ing matrix similar to that previously considered. It remains to decide how to

choose the function c. For c larger the coefficient of many time deriva-

tives is small, however the time step of an explicit scheme will be large.
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Hence, in this case c is merely a scaling of the time scale. Instead, we

wish to choose c as large as possible without the need for decreasing in any

substantial way the stability criterion. In one space dimension the stability

criterion for (12) is given by

At< u + /u 2 + 4c 2 (13)
Ax 2

Hence, a reasonable choice for c is

2 2
2 u + v E2

c = max( 4 , ). (14)

Viscous Flow

We next consider the incompressible steady state Navier-Stokes equation

u +v = 0
x y

1

(u2 + P)x + (UV)y =_ (Uxx + Uyy) (15)

I

(UV)x + (v2 + p)y = _ (Vxx + Vyy).

As before we shall consider a pseudo time dependent approach to the steady

state• We consider two ways of extending the previous results to include

viscous effects.

The first possibility is to use a leapfrog method for the inviscid part

and a Dufort-Frankel scheme for the viscous portion [I]. The inviscid part
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_u 2bounds the time step by Ax/ 2+ v while the viscous part is

unconditionally stable. The second possibility is to use a seml-implicit

method based on the preconditioned system. The advection terms are treated

explicitly while the viscous terms are treated implicitly. As before, the

explicit part restricts the time steps inversely proportional to the

velocity. The implicit part only contains linear terms. Hence, the implicit

part can be inverted without any need for an iterative method.

Supersonic Flew

We next consider supersonicinvlscid flow. In this case the matrices A

and B can be simultaneouslydlagonallzedby a congruence transform [4].

Hence we can find a matrix M so that (2) is similar to a diagonal system

(for the llnearizedconstant coefficientproblem). Thus, in the supersonic

regime we can choose a different time step for each equation. The resultant

system is still hyperbolicand well-posed.
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