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SUMMARY

Comparisons of calculated and experimental transonic unsteady pressures and
airloads for four of the AGARD Two-Dimensional Aeroelastic Configurations and for a
rectangular supercritical wing are presented. The two-dimensional computer code,
XTRANZL, implementing the transonic small perturbation equation was used to obtain

. results for: (1) pitching oscillations of the NACA 64A010A, NLR 7301 and NACA 0012
airfoils, (2) flap oscillations for the NACA 64A006 and NLR 7301 airfoils, and
(3) transient ramping motions for the NACA 0012 airfoil. Results from the
three-dimensional code XTRAN3S are compared with data from a rectangular super=-
critical wing oscillating in pitch. These cases llustrate the conditions under
which the transonic inviscid small perturbation equation provides reasonable
predictions.

LIST OF SYMBOLS

cT Computational Test Case

CB pressure coefficient

Cp critical pressure coefficient

Cp normalized unsteady pressure coefficient; first harmonic of Cp divided by oscillation
amplitude in radians

aCp normalized unsteady lifting pressure coefficient, CPL - Cpu

c airfoil chord, m

cg lift coefficient

Crqy first harmonic lift coefficient due to pitch, per radian

Cg first harmonic 1ift coefficient due to flap rotation, per radian

Cig first harmonic pitching moment coefficient due to pitch, per radian

Cmg first harmonic pitching moment coefficient due to flap rotation, per radian

Chg first harmonic hinge moment coefficient due to flap rotation, per radian

Cr wing reference chord, m

f oscillation frequency, Hz

LE leading edge value

k reduced frequency, wc/2V

L lower surface value

M free stream Mach number

Re Reynolds number, Vc/v

r airfoil function, z = r(x,t) on the airfoil surface, m

TE trailing edge value

t time, s

u upper surface value

v free stream velocity, m/s

X streamwise coordinate relative to leading edge, m

Xy pitch axis location relative to leading edge, m

X§ flap axis location relative to leading edge, m

y coordinate normal to x and z, positive to right, m

z coordinate normal to free stream, positive up, m

a angle of attack, deg

™ mean angle of attack, deg

ag dynamic pitch angle, deg

Y ratio of specific heats

s flap angle, deg

&m mean flap angle, deg

&g dynamic flap angle, deg

3 airfoil thickness ratio

n fraction of semi-span

v kinematic viscosity, m/s

T nondimensional time in semichords traveled, 2Vt/c

$ perturbation velocity potential

w angular frequency, 2af, rad/s

Leee] indicates jump in se.

A1l angles are positive for trailing edge down. Moments are positive nose up. Pitching moments are
taken about the quarter chord except for the NLR 7301 airfoil for which they are taken about x/c = 0.4,
Hinge moments are referred to the flap hinge axis located at x/c = 0.75.
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1. INTRODUCTION

The field of aeroelastic response and flutter prediction has traditionally relied upon Yinear
subsonic and supersonic unsteady aerodynamics coupled with linear descriptions of aircraft structural
dynamics to perform stability analyses. In the transonic speed regime where the aerodynamic theories
were not on a technically sound foundation, numerous wind tunnel tests of flutter models and flight test
experience provided the confidence to operate aircraft. Due to the lack of nore accurate transonic aero-
dynamic theory, linear unsteady airloads have been used for flutter predictions and have been reasonably,
successful in providng conservative flutter boundaries. Emerging aircraft designs calling for aircraft
performance objectives at maneuvering flight conditions and seeking optimized aerodynamic and structural
configurations press these traditional aeroelastic design tools beyond their accuracy limits. New aero-
elastic response computational techniques based upon accurate simulation of the nonlinear transonic flow
field are needed to bridge this gap.

The past decade has witnessed a maturing of experimental and computational capabilities aimed at
filling this gap. Unsteady surface pressure measurements have been made at transonic speeds on a series
of two-dimensional (2-D) and three-dimensional (3-D) wind tunnel models oscillating in several mdes of
motion. Tijdeman and Schippers (Ref. 1) published pressure measurements for an NACA 64A006 airfoil with
an oscillating trailing-edge control surface for Mach numbers from 0.5 to 1.0, Tijdeman, (Ref. 2),
provided data for the 16.5 percent thick NLR 7301 airfoil oscillating in pitch for Mach numbers between
0.5 and 0.8 and gave seminal descriptions of the characteristics of transonic unsteady aerodynamics.
Davis and Malcolm (Ref. 3) tested two airfoils in pitching and plunging motions: a nominal NACA 64A010
airfoil (designated herein as NACA 64A010A) for Mach numbers up to 0.85 and an NLR 7301 airfoil for Mach
numbers up to 0.808. Landon (Ref. 4) gives data for the NACA 0012 airfoil representative of a helicopter
blade in dynamic stall conditions. Time-dependent results are given for large amplitude oscillatory
pitching motions and for transient ramp motions. The AGARD Structures and Materials panel has selected
these cases as AGARD Two-Dimensional Aeroelastic Configurations (Ref. 5). Also included in these
standard configurations are the 6 percent thick parabolic arc airfoil and the MBB A-3 and DO Al super-
critical airfoils for which no experimental data sets are currently available.

Five AGARD Three-Dimensional Aeroelastic Configurations also have been selected (Ref. 6). The
planforms include a rectangular unswept wing, three sweptback tapered wings and a horizontal tail model.
Data from pitch oscillation tests on the NORA horizontal tail model in four European wind tunnels is
presented in Ref. 7. The symmetrical sweptback RAE Wing A (Ref. 8) has been tested for both pitching and
control surface oscillations. Data for the LANN supercritical transport type wing oscillating in pitch
is available in Ref. 9 while some data for control surface oscillations on the ZKP wing is given in Ref.
10. A compendium describing the available data sets for the two- and three-dimensional standard configu-
rations has been published in Ref. 11. Lambourne's general review remarks (Ref. 11) are particularly
enlightening regarding the use of these data sets. Other three-dimensional unsteady pressure tests of
interest include a clipped-tip delta wing with pitching and control surface oscillations (Ref. 12) and an
aspect ratio 10.8 supercritical wing with oscillating control surfaces (Ref. 13). Of particular interest
because of its simple geometry is the data from a rectangular supercritical wing oscillating in pitch
reported by Ricketts et al. (Ref. 14).

Turning now to the computational capability of providing comparisons with these experimental data
sets, the situation nust be discussed in terms of algorithm developnent, computational expense and
conputer resource availability. The early results of Magnus and Yoshihara (Ref. 15) using an Euler equa-
tion code were promising but required excessive solution times on the computers available at that time.
Chyu and his colleagues (Refs. 16-18) have applied an unsteady Navier-Stokes equation code for benchmark
comparisons with the NACA 64AOL0A data of Ref. 3 at M = 0.8 and oy = 0 and 4 deg. and with the NLR 7301
data of Ref. 3 at M = 0.74 and am = 0.37 deg. Computational expense precludes exhaustive correlation
of such codes with the data sets. Also, current supercomputer memory sizes do not yet allow sufficient
grid density to enable accurate three-dimensional Navier-Stokes computations. Thus most of the published
comparisons of computed and experimental unsteady data has been accomplished with potential equation
codes with viscous effects sometimes simulated by coupling the inviscid outer flow to a viscous boundary
layer model. -

Finite-difference solutions of the transonic small disturbance (TSD) potential equation were first
obtained with the assumption of time linearization. This harmonic perturbation approach has been
followed by Ehlers (Ref. 19) and Ehlers and Weatherill (Ref. 20). Economical solutions of the time-
accurate TSD equations were enabled by the alternating-direction implicit (ADI) algorithm introduced in
the LTRANZ code by Ballhaus and Goorjian (Ref. 21). The LTRAN? algorithm has been extensively updated
with a series of improvenents including: addition of tine derivative terms in the boundary conditions
(Houwink and van der Vooren, LTRAN2-NLR, Ref. 22}, addition of ¢tt term (Rizzetta and Chin, Ref. 23 and
Isogai, Ref. 24), non-reflecting far-field boundary conditions (Kwak, Ref. 25), and monotone differencing
to eliminate expansion shocks (Goorjian and Van Buskirk, Ref. 26). Seidel et al. (Ref. 27) showed that
the influence of the computational grid for dynamic calculations can be severe for cases with sparse
grids, such as generally are used in three-dimensional calculations. The XTRANZL code (Ref. 28) incor-
porates all of these features as well as a transient aeroelastic response capability. Malone (Ref. 29)
gives comparisons of results from a 2-D full potential equation method with Davis' NACA 64A010A test
data. Results obtained by coupling viscous boundary layer models with 2-D TSD codes are given in Refs.,
30-33. Borland and Rizzetta (Ref. 34) used the ADI solution algorithm in the XTRAN3S code to obtain 3-D
TSD equation solutions for isolated wings. Comparisons of calculations from the XTRAN3S code with
experimental results are given by Malone and Ruo (Ref. 35), by Seidel et al. {Ref. 36) and by Guruswamy
and Goorjian (Ref. 37).

The published comparisons of calculated and experiwental unsteady pressures and airloads have most
frequently served to verify the correctness of computational algorithm modifications and have therefore
usually been of limited extent. Also, it is common to show calculations for a single test configu-
ration. Thus it would be beneficial to have comparisons for a range of configurations in which a
Common computational procedure is used. This is particularly true regarding TSD calculations wherein the
available approximations encompassed by the theory can account for significant differences in the calcu-




lations. This paper presents comparisons of unsteady pressures and airloads calculated by the XTRAN2L
code with the available 2-D data sets for the AGARD computational test case (CT) conditions. In each of
the calculations for the AGARD 2-D cases, the suggested AGARD Computational Test case conditions were
used (see Ref. 11). Comparisons with test data for the NACA 64A010A, NACA 64A006, NLR 7301 and NACA 0012
airfoils are presented. Comparisons with test data for all of the AGARD CT cases for the first three of
these airfoils are given in Ref. 44. In addition, sample comparisons of data from the rectangular
supercritical wing (Ref. 14) with XTRAN3S calculations are given. Comments on the use of these codes for
transonic unsteady aerodynamic calculations are included.

2. TRANSONIC SMALL DISTURBANCE EQUATION

2.1 Two-Dimensional Case.- All two-dimensional calculations were obtained using the XTRAN2L code

Ref. which solves the complete unsteady TSD potential equation. In terms of the scaled variables
used in the code, this equation is

(CoT + on)T = (on + Fo)z()X + (°Z)Z . (1)
The NLR scaling of Ref. 24 is used to define the variables and coefficients as
T=ut e* = :Mz(y* +1)
X = x/c Y =2-(2- Y)M2
Z=zext3)c o = ¢/(cver?/3)
C = Pl re/3 E = (1-M)/ex/3 .
A = akmdjes?/3 Fe-ghr )

(The reduced frequency k is based on semi-chord). The airfoil flow tangency and trailing wake conditions
are applied on the z = 0 line and, in the small disturbance approximation, become

b 4 b4 t
9 = Ry + 2kRp 3 2=07,0<X<1 (2a)

Loyl + kler) =0 3 2=0, X>1 (2b)
where the * refer to the airfoil upper or lower surfaces and R = re*l/3/c. The airfoil surface slopes,
Rx, required in Eq. (2a) were generated by spline curve-fitting the airfoil coordinates (Ref. 5). The
curve fits were performed parametrically versus surface arclength running continuously from the upper
surface trailing edge around the leading edge to the lower surface trailing edge. (Spline fitting the
upper and lower surfaces separately can lead to erratic results near the leading edge.) No modifications
to the resulting surface slopes were made to improve correlation of small perturbation calculations with
experiment, as is sometimes done.

Numerical solutions of Eq. (1) were obtained using the ADI algorithm of Rizzetta and Chin (Ref. 23)
which is similar to that used in the LTRAN2 code (Ref. 21) with the addition of a three-time-level
representation of the ¢, term in the Z-sweep. The monotone differencing method, first used in
implicit algorithms in RZ¥. 26, is used to eliminate nonphysical expansion shocks. Kwak {(Ref. 25)
implemented far-field boundary conditions in the LTRAN2 code appropriate for the low frequency version of
Eq. (1) (without the °l¥ term). The corresponding conditions for the full frequency equation

are given by Whitlow (R 28):
upstream (A/B + D/VB) o - 20X =0 (3a)
downstrean (-A/8 + D/VB) op + 200 = 0 (3b)
above (+) and below (-) (BD/A)ox e, =0 (3¢)

where B = E + 2Fo, and D = (4c + A%/B)M/2,

These nonreflecting far-field boundary conditions allow the boundaries to be moved closer to the
airfoil and allow greater freedom in tradeoffs among number of grid points, accuracy and expense. The
default XTRAN2L grid (Ref. 27) is 80 x 61 points in x,z and covers a fixed physical extent of t20c in x
and £25c in z. On the airfoil the x-grid has 51 grid points having a uniform spacing of 0.02c with an
additional point near the leading edge. Both of these features differ from the similar LTRAN2-HI (Ref.
38) and LTRAN2-NLR (Ref. 22) codes wherein the physical grid extent varies with Mach number and thickness
and covers several hundreds of chordlengths. Also, both of these codes cluster more x-grid points near
the leading and trailing edges, LTRAN2-NLR having a midchord grid spacing of 0.05c and LTRAN2-HI a value
of 0.03c. .

Transient airloads due to pulsed airfoil motions allow complete airload frequency response functions
to be calculated from a single response calculation using transfer function techniques. Of course this
requires the assumption of at least local linearity of the response to the forcing function, which
appears to hold widely for integrated airloads in attached flow. These features are studied in Refs. 39
and 40 which demonstrate the use of XTRAN2L in aeroelastic calculations (in Ref. 39 the code did not con-
tain the ¢y term). Ref. 27 uses this pulse transform technique to demonstrate key features of the
relation between computational grids, boundary conditions and dynamic computations. The importance of
controlling reflections of disturbances at the outer boundaries either by moving the boundary to large
distances or by implementing nonreflecting boundary conditions is demonstrated. Of particular importance
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are the far-field z-boundaries. Disturbances observed in the transient responses for perfectly
reflecting boundaries correlate with the acoustic propagation time for travel to and return from these
boundaries. These disturbances contaminate the unsteady airloads at low reduced frequencies (k < 0.15).
The nonreflecting boundary conditions of Ref. 28 eliminate these disturbances. The option of moving the
boundaries to large distances introduces the complication of grid stretching in the near-field. In this
case, disturbances observed in the transient responses correlate with propagation times for travel to and
return from regions of the z-grid where grid spacing first becomes more than two chordlengths. These
disturbances tend to contaminate the unsteady airloads in the frequency range 0.2 < k < 1.0. Calcu-
lations verify that these features, which are most easily studied for linearized examples, carry over to
fully transonic calculations.

A warning is called for with regard to the use of potential equation codes for transonic
calculations with strong shocks. Salas et al. (Ref. 40) summarize the understanding of nonunique solu-
tions of the transonic full potential equation for these situations. Williams et al. (Ref. 42) have con-
firmed the existence of such solutfons for the time-accurate TSD XTRAN2L code. Figure la shows the three
upper surface solutions which may be obtained for the NACA 0012 airfoil at M = 0.84 and a = 0 deg. The
middle pressure distribution is a symmetric nonlifting solution while the other two are lifting solu-
tions. Fig. 1b gives the 1ift coefficient at M = 0.84 versus mean angle-of-attack for 1) steady condi-
tions, 2) pitching oscillation for k = 0.01 and 3) pitching oscillation for k = 0.05. The nonlifting
steady case at a = 0 deg., denoted B in the figure, is unstable and diverges with an extremely small time
constant to either A or C depending upon initfal conditions. At k = 0.05, a solution is calculated which
oscillates about the positive 1ifting solution. The average 1ift curve slope of this oscillation is not
unreasonable even though the underlying steady flow is anomalous. In contrast, the solution for k =
0.01 exhibits a hysteresis loop, Jumping between the two stable steady solutions. The large phase lag
implied by this solution is unphysical and caution must be exercised against such calculations.

2.2 Three-dimensional code XTRAN3S.- Three-dimensional calculations were performed with the XTRAN3S code
Refs. R which uses a time-accurate ADI finite-difference scheme to solve the three-dimensional TSD
equation

(coT + on)T = (on + Foﬁ + G°$)x + (°Y + H°x°Y)Y + (oz)Z (4)

The nondimensional variables are

X = x/cr T= 'E'Vt/cr
Y=y, ¢ = ¢/(Ve)
l= z/cr
Two different sets of coefficients are provided for the TSD eq. {4). For both cases
C = M A = ZkMe £ = 1-M

where k is an arbitrary scaled frequency (k = 1 herein). The coefficients for the nonlinear terms may be
chosen as either

Feag v+ 1)¥ G =% (v- 3 Ho= - (v - 1Ml (5)
or
Fr-g(3-(2- Mo G=-1# H o= M2 (6)
The outer boundary conditions imposed on the flow-field are
upstream ¢=20 (7a)
downstream oy + FbT =0 (7b)
above and below 0, =0 (7c)
spanwise and wing root oy = 0 (74)
wake [¢;] = [oy + EBT] =0 (7e)

The airfoil flow tangency condition is

P % + t
07 =Ry +kR; ; =07, Xg<X< Xy (8)

where R = r/c.. The code was run on a CDC CYBER 203 computer using the computational grid described in
Ref. 26 with 60 x 20 x 40 points in the x, y, and z directions. The program grid size restrictions and
the reflecting boundary conditions, Eq. 7, assure that disturbances reflected by the boundaries or
internal grid stretching will be present. The x, z grid was chosen to minimize the effect of the
internal grid reflections for k < 0.50 (Ref. 27). The CYBER 203 1is capable of scalar or vector
arithmetic. The scalar version of the XTRAN3S program required 1.9 seconds of central processor unft
(CPU) time per time step. Vectorizing the ADI x-sweep and a matrix manipulation routine reduced the
required time to 1.2 CPU seconds per time step.

Although both the XTRAN2L and XTRAN3S codes have provision for including quasi-steady boundary layer
effects, this capability was not used, and only inviscid results are given.




3. RESULTS AND DISCUSSION

Results are given for four of the AGARD Standard Configuration airfoils and for the rectangular
supercritica) wing of Ref. 14, The modes of motion are described as follows. For pitch about a mean
angle of attack, ap, the total angle of attack is expressed as:

aft) = a, + u°s1n wt (9)
where w = 2kV/c. For control surface rotation

5(t) = 8+ 8osin ut (10)

For each case shown, the steady flow pressure distribution is plotted and compared with the measured dis-
tribution. Upper and lower surface unsteady pressures for the oscillating cases are given as the real
and imaginary parts (or magnitude and phase angle) of the first harmonic component of the pressure
computed from the last cycle of the imposed simple harmonic motion using a fast Fourier transform analy-
sis. These first harmonic components are normalized by the nondimensional amplitude of motion. Tables
1-4 give the computational test (CT) cases for each of the 2-D airfoils with the priority cases indicated
by an asterisk. Also noted are the figure numbers corresponding to the cases included hérein (all of the
CT cases have been analyzed). The reduced frequency is based on semichord. In addition to the plotted
pressure distributions, the first harmonic force coefficients for all of the CT cases for the NACA
64A010A, NACA 64A006, and NLR 7301 airfoils are given in tables 5-7.

3.1 Two-Dimensional Cases. The airfoil geometry and analysis conditions were taken as the AGARD standard
configurations in reference 5. For the 2-D cases calculated with XTRANZL a steady flow field was first
computed using either a steady flow algorithm or the time accurate ADIL algorithm with no afrfo{l motion.
Then the unsteady calculation was commenced using the ADI scheme. Typically, five cyclies of oscillation
were computed with 360 steps per cycle for the oscillatory cases. These relatively conservative condi-
tions assured that unwanted transients had died out.

NACA 64A010A. The AGARD CT cases for this airfoil are listed in table 1. The cases are for the
model tested at the NASA Ames Research Center for which experimental data are reported in Refs. 3 and
11. Note that the NACA 64A010A airfoil as tested has a small amount of camber and is 10.6 percent thick,
in contrast with the 10 percent thick symmetric design section. The model had a chord of 0.5m and a
tunnel height/model chord ratio of 6.7. The CT cases are for the model pitching about the quarter-chord
with a zero mean angle at essentially two Mach rumbers, M = 0.5 and 0.8. No transition strip was used
and no wind tunnel corrections were made to the data.

Figure 2 gives the calculated and measured steady pressure distributions for M = 0.5 (CT 2) and
M= 0.796 (CT 3-8). At the lower Mach rumber, agreement is very good with a slight overprediction of
pressure over most of the chord. At the higher Mach number, the agreement is also quite good with the
predicted shock location slightly aft of the measured location. Thus viscous effects appear to be rela-
tively small for these cases.

The unsteady results are shown in figures 3-5 and table 5. At M = 0.5 (fig. 3) the agreement is
excellent for both upper and lower surface for this subsonic case. Figure 4 shows the effect of fre-
quency at M = 0.796 with k varying from 0.025 to 0.30. The calculated shock pulse occurs 5-10 percent
aft of the measured position in contrast with the steady shock locations which are within two percent. A
systematic decrease in calculated shock pulse width with increasing frequency s evident, with agreement
of the theory and experiment perhaps being somewhat better at the intermediate frequencies. Also of note
s the agreement in pressure levels and trends between the upper and lower surfaces. The effect of
oscillation amplitude is illustrated in figure 5 for ag = 0.5, 1.0, and 2.0 degrees (CT 8,5,9) at
k = 0.101. With the exception of the shock pulse locatfon, the agreement with the experiment is good and
the effect of amplitude on the shock pulse is well illustrated by the theory. Away from the shock, the
plotted normalized pressures are essentially independent of amplitude. However, for smaller amplitudes,
the shock pulse is narrower (less shock motion) and higher (because of the amplitude normalization).

Figure 6 summarizes the integrated 1ift and moment coefficient data for M = 0.796 (table 5). The
LTRANZ-NLR inviscid and the LTRANV viscous results reported in Ref. 32 are included for reference. The
agreement shown between the XTRANZL and LTRAN2-NLR results s noteworthy since they are obtained from
significantly different computational codes. The inviscid results deviate from experiment at the lowest
frequencies but otherwise show proper trends with increasing frequency. With the exception of
Im(cg ) the LTRANV viscous corrections improve the agreement with experiment. The Im(clu)
correttion is unnecessary at k = 0.1 and has the wrong sign at k = 0.2,

NACA 64A006. The AGARD test cases for this airfoil are listed in table 2 and are for the model
tested at the NLR. The test cases all involve oscillation about zero mean angle of a flap with hinge
axis located at three-quarter-chord. The variations include five Mach numbers, two frequencies, and two
oscillation amplitudes. Experimental data are given in Refs. 1 and 11. The model had a chord of 0.18m
and a tunnel height/model chord ratio of 3.1. Transition was fixed at O.lc and no wind tunnel correce
tions were made to the data.

The steady flow pressure distributions for Mach numbers from 0.80 to 0.875 are shown in figure 7.
Figures 8 and 9 shown the unsteady upper surface pressures at each Mach number for frequencies near
k = 0.06 and 0.24 respectively. In general, the agreement between experiment and theory improves with
decreasing Mach number and increasing frequency. The steady flow comparisons (fig. 7) are very good at
subcritical Mach numbers, but deteriorate as the shack wave develops. For unsteady flow, figures 8 and 9
il1lustrate the better agreement between theory and experiment that occurs at higher frequency for all
Mach numbers. This is particularly true of the surface pressures forward of the shock pulse. Unsteady
- pressures on the control surface, aft of x/c = 0.75, are well predicted at all conditions except the
imaginary part for the Tow frequency case at M = 0.875. For both frequencies, as the Mach number
increases, the calculated shock pulse moves aft and interacts with the pressure pulse at the hinge loca-
tion. The experimental shock pulse is 10-15 percent further forward than the calculated pulse at
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M = 0.875. At this Mach number, the experimental shock peak (near x/c = 0.55) and the hinge peak
(x/c = 0.75) are easily distinguished. In the calculations the two peaks have merged into one at the
lower frequency (fig. 8) but can be identified at the higher frequency (fig. 9). This result is not
surprising since the shock excursion is expected to decrease as frequency increases.

Figures 10-11 show the integrated 1ift, moment and hinge moment coefficient data for these cases
(table 6). Again the LTRAN2-NLR inviscid and LTRANV viscous results from Ref. 32 are included for
comparison. As for the NACA 64A010A airfoil, the airloads calculated by XTRANZ2L and LTRAN2-NLR compare
very well with each other for all Mach numbers and frequencies. At k = 0.24 the calculated XTRANZL loads
compare favorably with experiment in magnitude and in the trend with Mach number. This agreement
deteriorates at the lower frequency, and is worst at the higher Mach numbers. The viscous corrections of
%;RANV (%ef. 32) generally improve agreement with experiment, particularly at the higher frequency

ig. 11).

NLR 7301. The test cases for this 16.5 percent thick supercritical airfoil are listed.in table 3.
The experimental data are taken from the tests at the NLR. They were chosen for comparison instead of
those from the NASA Ames Research Center (Chapter 5 of Ref. 11 and Ref. 3) because the mode] matched the
design airfoil more closely, and data were available for both upper and lower surfaces. The calculated
harmonic forces are given in table 7. Cases 1-9 (table 3) are for pitch oscillation about an axis
located at 40 percent chord and include variations in frequency and amplitude of motion. Cases 10-14 are
for oscillation of a flap located at three-quarter chord with variations in frequency at the design
point. These two different modes of motion were achieved with separate wind tunnel models, designed to
have identical profiles. The nodels had a chord of 0.18m and a tunnel height/model chord ratio of 3.1.
The tests encompassed conditions with free transition and conditions with transition strips located at
0.07¢c and 0.3c (Table 4.4 of Ref. 11). Futhermore, the CT case conditions (Ref. 5) include steady wind
tunnel interference corrections (table 0.2 and section 9.6 of Data Set 4 of Ref. 11). )

Three mean flow conditions were analyzed: a subcritical condition at M = 0.5 (CT 1,2); a super-
critical case with shock at M = 0.7, ap = 2.0 deg. (CT 4); and the design point at M = 0,721,
ap = -0.19 deg. (CT 6,12). The steady flow pressures for the three mean flow conditions are shown in
figure 12. At the subcritical condition, M = 0.5, the upper surface pressures are in good agreement, but
the pressures on the lower surface show a discrepancy in level. It would not be surprising if small
disturbance theory were inadequate for this 16.5 percent thick, blunt nosed airfoil. The comparison for
the case with the strong shock, M = 0.7, is poor, with the calculation giving a shock that is too strong
and located too far aft. The same overprediction of pressure on the lower surface which was seen at
M = 0.5 is present while the upper surface pressure level near the leading edge is well predicted. With
this deyree of mismatch between the predicted and measured steady pressures no unsteady pressures are
included for this case. The comparison of the steady pressure distributions at the design point
(M = 0.721) are also poor. The predicted pressures show two weak shocks at about x/c = 0.25 and 0.60.
In addition, there is a sharp pressure rise near the leading edge on the upper surface. One may antici-
pate that these features will lead to several shock pressure pulses in the unsteady results described
below. Also of note are the differing steady pressures on the two models, cases CT 6 and CT 12, although
the models were designed to have the same shape and were tested at the same conditions. The model with
the trailing edge flap (CT 12) shows a gradual pressure rise on its upper surface with no evidence of 2
shock. Note that for the three mean flow conditions analyzed, a uniform trend of overprediction of lower
surface pressures is abserved.

The calculated unsteady results for M = 0.5 shown for pitching oscillations at two frequencies in
fig. 13 agree well with the experimental data. Figures 14 and 15 give the comparisons at the design
point for the model oscillating in pitch and the model with the oscillating flap. The oscillation
frequency is k = 0.068 in both cases. In fig. 14 a large shock pulse is calculated on the upper surface
at 0.20c with smaller pulses at 0.45c and 0.60c while the experimental shock pulses occur at 0.50c and
0.65c. The oscillating flap case, fig. 15, shows similar effects. On the upper surface, calculated
shock pulses are seen at 0.20c, 0.40c and 0.65c whereas a broad experimental pulse is seen near 0.50c. A
lower surface shock pulse at 0.45¢c is seen in the experimental data due to the critical steady pressure
value at that point (fig. 12, CT 12). Note in fig. 15 that the pressure peaks due to flap motions at
0.75c are overpredicted on both the upper and lower surfaces and that the real part of the upper surface
experimental pressure does not tend to zero at the trailing edge. Similar effects were seen for CT 14
where k = 0.453 {not shown). Compare these features with figs. 8 and 9 where the pressure peaks on the
NACA 64A006 airfoil are well predicted at k = 0.06 and slightly underpredicted at k = 0.24.

NACA 0012. The final AGARD case for which 2-D data is available is this 12 percent thick
symmetrical airfoil tested with free transition for sizable mean angles and oscillation amplitudes
(CT 1-5, table 4) as well as cases with transient angle-of-attack changes at nominally constant pitch
rates (CT 6-8, table 4). The model had a chord length of 0.1016m and a tunnel height/model chord ratio
of 4.5. This model is unique in that its test conditions matched the full scale Reynolds numbers of
helicopter blades of which it is representative. In Ref. 11 the experiemental quantities a, oy, ag,
g, and ¢y (but not Cp) were corrected for wind tunnel interference effects. The corrections were
applied to each instantaneous condition as if it were steady (Data set 3 of Ref. 11).

Results for the priority case CT 8 in which the angle-of-attack increases from O to 15 deg. in 42.3
semi-chordlengths at M = 0.60 are given in figure 16. Instantaneous pressures are shown for a = 0, 5.67,
8.54 and 11.62 deg. At a = 0 deg. the calculated starting (steady) pressures are below the experimental
values in the leading edge region. Comparison of the similar subsonic cases for the 6 percent thick NACA
64A006 at M = 0.80 and a = 0 deg, fig. 7, and the 10.6 percent thick NACA 64A010A at M = 0.5 and « = 0
deg., fig. 2 does not show a consistent trend. The comparison of surface pressures as the angle-of-
attack increases to 5.67 and 8.54 deg. is good considering the large value of a. At a = 8.54 deg. the
calculated shock is sharper than the experimental. At 11.62 deg. the experimental pressures indicate a
leading edge flow separation which cannot be treated by the calculations. Figure 17 compares the experi-
mental and calculated 1ift coefficients versus angle-of-attack for this case, CT 8, and also for CT 7,
for which the rate of change of a is decreased by one-third (0-15 deg. in 133.3 semi-chordlengths). The
experimental results show that stall occurs at a ~ 7 deg for CT 7 where ¢y = 1.0 and at a ~ 9 deg. with




cg ~ 1.1 for CT 8, The calculations are able to match the experimental 1ift coefficients very well up
to the stall angle-of-attack for these dynamic' cases.

Figure 18 presents comparisons of 1ift and moment coefficients versus a for the oscillatory cases
CT 1,2,3 and 5. The first three cases are for oscillations of ag ~ 2.5 and 5 deg. about non-zero mean
angles while the last case is for oscillations of a9 = 2.5 deg. about a zero mean angle. Agreement for
the 1ift coefficients varies from very good to good. In contrast, the moment coefficients for fig. 18a-c
show a systematic difference between the calculated and experimental values which is due in large part to
the underprediction of pressures on the upper surface near the leading edge discussed above. The
characteristic shape of the ¢y - a curves is caused by a large second harmonic contribution. In fig.
18d, the different shape of the Cm - @ curve is due to increased amplitude of the third harmonic
component. These examples demonstrate the ability of the TSP code XTRANZ2L to predict with reasonable
accuracy airloads due to large amplitude airfoil motions within the limits of attached flow.

3.2 Three-Dimensional Case

Rectangular Supercritical Wing. Results from tests of this 12 percent thick supercritical wing are
reported by Ricketts et al. (Ref. 14) and Seidel et al. (Ref. 36). The unswept wing had a 2 foot chord
and a panel aspect ratio of 2.0. The design Mach number was 0.80 with a design 1ift coefficent of 0.60.
The model was oscillated in pitch about an axis at 0.46¢c. The model was tested over a range of Mach
nunber from 0.40 to 0.90 and for angles-of-attack from -1 to +7 degrees in freon. Oscillation fre-
quencies were 5, 10, 15 and 20 Hz. This model provides a good calibration test of the 3-D TSP equation
XTRAN3S code due to its moderate thickness and simple planform geometry.

Comparisons of steady pressure distributions are shown in figure 19 for Mach numbers of 0.70 and
0.825 at o = 2 degrees. Calculations are shown for both sets of coefficients, Eqs. 5 and 6. Agreement
at the lower Mach nunber, fig. 19a, is generally good over the mid portion of the chord but with some
deviation near the nose and lower trailing edge regions. There is little difference in the results
obtained using the different coefficient sets except near the weak shock near the leading edge. The
£q. 6 coefficients give a somewhat stronger shock for this case. Some of the lack of agreement in the
nose area nay be the result of using a relatively coarse grid near the nose.

For M = 0.825, fig. 19b, the shock is further aft on the inboard portion of the wing and approaches
the leading edge at the tip, showing a large three-dimensional effect. The comparison between experi-
mental and calculated results shows trends similar to the results for M = 0.70 but with significantly
poorer agreement. The coefficients of Eq. 6 give a shock that is significantly stronger and located
further aft than that predicted by the coefficients of Eq. 5. Neither calculation captures the inboard
shock detail (near x/c = 0.60 for n = 0.31). The comparison of pressure levels on the upper surface
ahead of the shock is good. On the lower surface, agreement of presures for both fig. 19a and b is
?easonab;y good with the same tendency for overprediction of pressure noted for the NLR 7301 airfoil

fig. 12).

Comparisons of unsteady results at M = 0.70 are shown in fig. 20. The coefficients of Eq. 6 are
used and linear theory results from the RHOIV computer program (Ref. 43) are included for reference.
In fig. 20a, ap = 1 deg, k = 0.178 and results are presented in terms of magnitude and phase of the
1ifting pressure coefficient. The pressure amplitudes calculated by XTRAN3S are in good agreement with
the experimental data over most of the wing with some overprediction in the inboard leading edge region
and underprediction over the outboard portion of the wing. The linear theory results are in good agree-
ment with experiment except near the leading edge where transonic effects are evident. As for the pres-
sure amplitude, the XTRAN3S results for phase show an overprediction in the inboard leading edge region.
The large change in the phase data near 0.60c is due to lower surface pressures and is probably caused by
viscous effects. The linear theory results for phase are in good agreement with experiment over the
forward part of the airfoil. The best agreement between XTRAN3S and experiment occurs in the mid-span
region where the dynamic shock is not overpredicted and the tip effects are not pronounced. Similar
results are shown in fig. 20b for k = 0.356. The comparison with XTRAN3S is improved for this higher
reduced frequency, particularly in the phase near the trailing edge. The linear theory pressure ampli-
tude prediction is not as good as in fig. 20a, underpredicting the pressure near the leading edge and
overpredicting the pressure near the trailing edge. Better grid resolution should lead to {mprovements
in these predictions, particularly for the leading edge pressure peak feature of figs. 19a and 20a.
Also, viscous boundary layer modeling should improve the ability to capture the upper surface shock of
fig. 19b and lead to better agreement of the lower surface phase results shown in fig. 20.

4. CONCLUDING REMARKS

Comparisons of experimental unsteady pressures with calculations from transonic small disturbance
theory have been presented for four of the AGARD Two-Dimensional Aeroelastic Configurations and for a
rectangular wing. Results for NACA 64A010A and NLR 7301 airfoils oscillating in pitch and for NACA
64A006 and NLR 7301 airfoils with oscillating flaps have been presented. In addition, large amplitude
oscillations and transient ramping motions through stall are given for the NACA 0012 airfoil. Three-
dimensional results for an unswept rectangular supercritical wing oscillating in pitch are given. The
cases presented cover a wide range of test conditions including subcritical flow cases and cases showing
variations in Mach number, reduced frequency, and amplitude of motion. The comparisons with calculations
from computer codes implementing solutions of the inviscid transonic small disturbance equation help to
delineate the conditions under which this equation provides reasonable predictions. Conditions under
which viscous effects need to be treated and conditions under which the small disturbance assumption is
questionable are discussed.

The two-dimensional calculations are from the XTRANZL computer code while the three-dimensional
results were obtained with the XTRAN3S code. The XTRAN2L code gives very good predictions for symmetric
nonlifting airfoils in subcritical flows as shown by the results for the NACA 64AC10A and NACA 64A006
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alrfoils. For lifting cases, both codes tend to overpredict lower surface steady pressures at both sub-
sonic and transonic conditions (NLR 7301 airfoil and supercritical wing). For the moderate transonic
conditions of the NACA 64AC10A calculations, pressure levels and trends were very well predicted (except
for the lowest reduced frequencies) over the range of reduced frequencies from 0.025 to 0.30 and for
oscillation amplitudes from 0.5 to 2.0 degrees. Viscous effects were more noticeable for the NACA 64A006
airfoil with calculated shock pulses being too far aft. Comparisons of integrated airloads for this
airfoil improve significantly with increasing reduced frequency.

The NLR 7301 results illustrate the requirement of treating viscous effects. The inviscid results
for this airfoil do not adequately define the shock locations, although the reasonable pressure levels
give some promise of the ability of small disturbance theory coupled with viscous corrections to treat
such cases. The large amplitude oscillation and transient response cases for the NACA 0012 airfofl
illustrate the ability of the small disturbance theory to give reasonable unsteady calculations at condi-
tions approaching dynamic stall.

Finally, the XTRAN3S results for the rectangular supercritical wing hold promise for the utility of
transonic small perturbation equation codes for aercelastic applications. Again, pressure levels are
reasonably predicted and the agreement between calculations and experiment improves with increasing
frequency. With the incorporation of more adequate computational grids and viscous modeling, significant
improvements 1in unsteady airload predictions may be anticipated. :
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Table 1. -

Case M Rext0™® o
1 0.490 2.5 0.96

2 0.502 10.0 1.02

3 0.796 12.5 1.03

4 0.796 12.5 1.02

5 0.796 12.5 1.02
6* 0.796 12.5 1.01

7 0.796 12.5 0.99

8 0.796 12.5 0.51

9 0.797 12.5 2.00
10* 0.802 3.4 0.94

Note:

NACA 64A010A Airfoil, Computational Test Cases

f k Figure
10.4 0.100
10.8 0.100 2,3
4,2 0.025 2,4
8.6 .0.051 2,4
17.2  0.101 2,4,5
34.4 0.202 2,4
61.5 0.303 2,4
17.1  o0.101 2,5
17.2  0.101 5
33.2 0.200

a, = 0, xq/c = 0.25

Table 2. - NACA 64A006 Airfoil, Computational Test Cases

Case M 60 f k Figure
1 0.800 1 30 0.064 7,8
2 0.800 1 120 0.254 7,9
3 0.85 1 30 0.062 7,8
4 0.825 2 30 0.062
5 0.825 1 120 0.248 7,9
6 0.850 1 30  0.060 7,8
7 0.850 1 120 0.242 7,9
8* 0.875 1 30  0.059 7,8
9* 0,875 2 30 0.059
10 0.875 1 120 0.235 7,9
11  0.960 1 30 0.054
12 0.960 1 120 0.217
Note: a, = a = 6m =0, x6/c = 0.75
Table 3. - NLR 7301 Airfoil, Computational Test Cases
Case M a, a, 5, f k Figure
1 0.500 0.40 0.5 O 30 0.098 12, 13a
2 0.500 0.40 0.5 0 80 0.263 12, 13b
3 0.700 2,00 0.5 © 30 0.072
4 0.700 2,00 1.0 0 30 0.072 12
5 0.700 2.00 0.5 0 80 0.192
6 0.721 -0.19 0.5 © 30 0.068 12, 14
7 0.721 -0.19 1.0 O 30 0.068
g* 0.721 -0.19 0.5 O 80 0.181
9 0.721 -0.19 0.5 0 200 0.453
10 0.500 0.40 0 1 30 0.098
11 0.700 2.00 0 1 30 0.072
12 0.721 -0.19 0 1 30 0.068 12, 15
13* 0.721 -0.19 0 1 80 0.181
14 0.721 -0.19 0 1 200 0.453
Note: xa/c = 0.4, xslc = 0.75, 6 = 0
Table 4. - NACA 0012, Computational Test Cases
Case M v Rex107® a9 o f ok Figure
1* 0.601 197 4,8 2.89 2.41 NA 50 0.081 18
2 0.599 197 4,8 3.16 4.59 NA 50 0.081 18
3 0.599 197 4,8 4.86 2.44 NA 50 0.081 18
4 0.755 243 5.5 0.02 ~0 NA 62 0.081
5 0.755 243 5.5 0,02 2.51 NA 62 0.081 18
6 0.292 96 2.6 NA  0+15 0.83 NA NA
7 0.600 191 4.6 NA  0+10 0.11 NA NA 17
8* 0.606 194 4.7 NA 0+10 0.38 NA NA 16,17

Note: x /c = 0.25, final o' is given.




Table 5. -

Case

1

1

*

2
3
4
5
6
7
8
9
0

*

NACA 64A010A Airfoil, harmonic forces

c

Real

5.767
5.802
. 12.552
9.836
7.342
5.635
4.942
7.370
- 7.247
5.496

lﬂ

Imag

-0.561
-0.581
-4.202
-4.092
-3.446
-2.157
-1.341
-3.384
-3.713
~2.421

Real

-0.052
-0.054
-0.903
-0.709
-0.600
-0.648
-0.793
-0.583
-0.674
-0.744

c
m“

Imag

-0.186
-0.189

0.169

0.039
-0.160
-0.472
-0.631
-0.195
-0.014
-0.310

Table 6. .~ NACA 64A006 Airfoil, harmonic forces

c C C
_ L mg he
Case Real Imag Real Imag Real Imag
. 1 4,793 -2.053 -1.248 -0.052 -0.082 -0.003
2 2.546 -1.744 -1.368 0.024 -0.082 -0.024
3 4.986 -2.459 -1.383 -0.043 -0.083 -0.005
4 5.006 -2.520 -1.405 -0.036 -0.082 -0.005
5. 2.336 -1.968 -1.526 0.172 -0.087 -0.026
6 5.148 " -3.434 -1.703 0.103 -0.080 -0.013
7 1.672 -1.891 -1.460 0.685 -0.100 -0.030
8* 3.568 -5.687 -2.079 1.655 -0.072 -0.071
9* 3.493 -5.726 -2.062 1.835 -0.111 0.010
10 1.699 -1.372 -0.902 0.644 -0.111 -0.024
11  1.555 0.025 -0.963 -0.013 -0.190 -0.002
12 1.537 -0.004 -0.956 0.004 -0.188 0.001
Table 7. - NLR 7301 Airfoil, harmonic forces
[ c
l“ mu ha
Case Real Imag Real Imag Real Imag
1 5.860 -0.792 0.842 -0.311 -0.030 -0.009
2 4.771 0.045 0.684 -0.504 -0.024 -0.032
3 8.280 -8.584 -0.320 0.751 0.028 -0.121
4 8.067 -8.867 -0.343 0.935 0.025 -0.124
5 4.697 -3.547 0.152 0.232 -0.025 -0.087
6 8,535 -2.839 1.364 -0.860 -0.022  -0.011
7 8.604 -3.048 1.272 -0.842 -0.020 -0.013
8 6.104 -1.948 0.758 -1.122 -0.021 -0.030
9 4.808 -0.555 -0.112 -1.078 -0.021 -0.079
C c
% Mg hg
Case Real Imag Real Imag Real Imag
10 3,537 -0.787 -0.238 -0.190 -0.061 -0.005
11 4,022 -4.348 -0.873 0.399 -0.046 -0.059
12 4,989  -2.164 -0.412 -0.478 -0.057 -0.009
13* - 3,139 -2:038 -0.867 -0.382 -0.059 -0.022
14 1.830 -1.05 -0.747 0.068 -0.072 -0.043
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