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A Linear Aerodynamic Analysis for Unsteady Transonic Cascades

SUMMARY

A potential flow analysis is presented for predicting the unsteady airloads
produced by the vibrations of turbomachinery blades operating at transonic Mach
numbers. The unsteady aerodynamic model includes the effects of blade geometry,
finite mean pressure variation across the blade row, high-frequency blade motion,
and shock motion within the framework of a linearized, frequency-domain formula
tion. The unsteady equations are solved using an implicit, least-squares,
finite-difference approximation which is applicable on arbitrary grids. A
numerical solution for the entire unsteady field is determined by matching a
solution determined on a rectilinear-type cascade mesh, which covers an extended
blade-passage region, to a solution determined on a detailed, polar-type local
mesh, which covers and extends well beyond the supersonic region(s) adjacent to a
blade surface. Results are presented for cascades of double-circular-arc and
flat-plate blades to demonstrate the unsteady analysis, and to partially
illustrate the effects of blade geometry, inlet Mach number, blade-vibration
frequency and shock motion on unsteady response.
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INTRODUCTION

At transonic Mach numbers relatively small-amplitude unsteady motions can
produce large variations in the magnitude and phase of the aerodynamic forces and
moments. These characteristics enhance the likelihood of an aeroelastic insta
bility and thus are a major concern in transonic design. Of particular concern
are flutter boundaries. The aeroelastician is normally confronted with deter
mining the stability of a configuration with respect to infinitesimal distur
bances. For this purpose a linear unsteady aerodynamic theory is desirable.
Although substantial progress has been achieved towards the development of both
linear and nonlinear unsteady transonic theories for fixed wings (Ref. 1), these
are either too restrictive or require too much computing time to permit their
routine use in detailed turbomachinery aeroelastic investigations. Thus the
objective of the present effort is to provide a linear unsteady transonic
analysis for two-dimensional cascades which accounts for the effects of blade
geometry ana loading and applies at the frequencies of interest in turbomachinery
applications. Although the attention here is focused on two-dimensional
cascades, the basic aerodynamic model described in this report could also lead to
useful methods for predicting the unsteady loads associated with the motions of a
variety of aerodynamic configurations, including those of thick, blunt-nosed,
transonic airfoils.

Linear Unsteady Aerodynamic Theories

The unsteady aerodynamic models currently used for turbomachinery aeroelas
tic design predictions (Ref. 2) are essentially based on classical linear theory.
Here both steady and unsteady disturbances caused by airfoil shape and incidence
and by airfoil motion, respectively, are regarded as being of the same order of
magnitude and small relative to the free-stream speed, leading to linear,
constant-coefficient, boundary-value problems for the steady and unsteady distur
bance potentials. The classical formulation admits very efficient semi-analytic
solutions for entirely subsonic or entirely supersonic flows, but it does not
account for interactions between the steady and unsteady disturbances. Such
interactions are believed to be crucial to the successful prediction of unsteady
transonic air loads as well as for the understanding of a variety of turbo
machinery aeroelastic phenomena. The influence of steady disturbances on
unsteady response is retained in the so called "time-linearize~', transonic
small-disturbance approximation. Here, unsteady disturbances are regarded as
small relative to steady disturbances caused by airfoil shape and incidence,
which are in turn assumed to be small relative to the free-stream speed. These
assumptions along with appropriate independent variable scalings provide a
linear, variable-coefficient, boundary-value problem for the unsteady potential
which formally applies at free-stream Mach numbers close to one, but only for
low-frequency unsteady motions. Both frequency- and time-domain (Refs. 3 and 4)
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finite-difference methods have been developed for the time-linearized transonic
equations and applied to predict unsteady flows with moving shocks, but such
methods have only been applied to flows around isolated airfoils.

The simple treatment of arbitrary airfoils and their motions are the primary
ad~antages of the foregoing linearized unsteady models. Surface conditions can
be imposed on flat, mean-surface approximations of the airfoils and their wakes.
However, the assumptions, which permit this simplification, place severe restric
tions on airfoil geometry and loading, and in the transonic case, on the
frequency of the unsteady motion. As such, these theories fail to meet the needs
of turbomachinery designers over a wide range of practical operating conditions.
To partially overcome the limitations of classical theory, unsteady aerodynamic
models have been formulated for subsonic cascades which include the effects of
blade geometry and loading on unsteady response (Refs. 5 through 8). Here the
unsteady flow is regarded as a small-amplitude harmonic fluctuation about a fully
nonuniform steady flow. The steady flow is determined as a solution of the full
potential equation and the unsteady flow is governed by a linear equation with
variable coefficients which depend on the underlying steady flow. Several accur
ate and reliable numerical solution algorithms for the nonlinear steady problem
are currently available (c.f., Ref. 9). In addition, a finite-difference approx
imation, based on an implicit least-squares development and applicable on
arbitrary grids, has been developed by the present authors for resolving the
subsonic, linear, unsteady problem (Ref. 10). Results have been reported for
cascades of sharp-edged, double-circular-arc and thin- circular-arc airfoils
(Refs. 5 and 10) and for cascades of blunt-nosed NACA 0012 (Refs. 11 and 12) and
NACA 65 series airfoils. Predictions for the NACA 65 series airfoils were found
to be in excellent agreement with cascade wind tunnel measurements (Ref. 13).

Scope of the Present Investigation

In the present investigation the aerodynamic and numerical models, described
in Refs. 5 and 10 through 12, have been extended for transonic applications.
This has been accomplished by introducing shock-jump conditions into the linear
unsteady formulation and by including the concentrated loads produced by shock
motion (Refs. 14 and 15) in the determination of unsteady force and moment. In
addition, rotated (Ref. 16) and type-dependent (Refs. 17 and 18) differencing
strategies and shock fitting procedures have been incorporated into the unsteady
numerical approximation. The numerical approximation has been implemented on
both cascade and local meshes. Local mesh calculations are required to
accurately resolve the flow in supersonic regions and to fit shocks into the
unsteady solution. With the present unsteady transonic analysis, we seek a
first-order approximation to a weak solution (i.e., a solution containing dis
continuities) of the time-dependent full-potential equation for small-amplitude
(infinitesimal), harmonic, blade motions. This analysis is intended for
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application at reduced frequencies of order one - an important feature for turbo
machinery applications - and includes the effects of blade geometry, finite mean
pressure rise (or fall) across the blade row, and shocks and their motions within
the framework of a linearized frequency-domain formulation. In this report the
unsteady transonic aerodynamic model and numerical approximation are described,
and numerical results are presented and evaluated for cascades of vibrating,
sharp-edged, double-circular-arc (DCA) airfoils having their mean positions
aligned with the steady flow. This simple example configuration has been
selected to permit concentration on the transonic aspects of the unsteady problem
(i.e., local supersonic regions and moving shocks) without introducing the
additional complications associated with mean incidence and steady flow stagna
tion at blade leading edges.
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THE POTENTIAL FLOW AERODYNAMIC MODEL

Problem Description

In the following discussion all physical quantities are dimensionless.
Lengths have been scaled with respect to blade chord, time with respect to the
ratio of blade chord to upstream free-stream speed, and density and pressure with
respect to the upstream free-stream density and dynamic pressure, respectively.
We consider adiabatic flow, with negligible body forces, of an inviscid, non-heat
conducting, perfect gas through a two-dimensional oscillating cascade (Fig. 1).
The mean or steady-state positions of the blade chord lines coincide with the
line segments n = ~ tan e + mlGl, O.s. ~.s. cos e, m = 0, ± I, ± 2, •• " where ~
and n are the cascade axial and circumferential coordinates, m is a blade number
index, e is the cascade stagger angle, and G is the cascade gap vector which is
directed along the n-axis with magnitude equal to the blade spacing (Fig. 1). It
is assumed that in the absence of blade motions uniform subsonic conditions exist
far upstream and downstream of the blade row. The blades are undergoing
identical harmonic motions at frequency, w, and with constant phase angle, a,
between the motion of adjacent blades. Blade shape and orientation relative to
the inlet free stream and the amplitude, frequency, and mode of the blade motion
are assumed to be such that the flow remains attached to the blade surfaces.
Thus, thin vortex sheets (unsteady wakes) emanate from the blade trailing edges
and extend downstream. In addition, for sufficiently high subsonic inlet condi
tions, local supersonic regions which terminate at moving shocks will appear
adjacent to blade surfaces.

Time-Dependent Full-Potential Formulation

Equations governing the fluid motion can be derived from the integral
conservation laws for mass, momentum and energy, and the thermodynamic equation
of state. These provide corresponding differential equations in regions where
the flow variables are cont inuous ly different iable and "jump" condit ions at
surfaces across which (in the inviscid approximation) the flow variables are
discontinuous; i.e., at shocks and blade wakes. In continuous regions the energy
equation can be replaced by the requirement that the entropy following a fluid
particle must remain constant (Ref. 19). In general, the discontinuous changes
in the flow quantities across shocks are proportional to the shock strength, but
the increase in entropy across the shock is proportional only to the third power
of the shock strength (Ref. 20). Thus for shocks of weak to moderate strength,
it is a reasonable approximation to neglect changes in entropy across the shock.
With this approximation, the uniform undisturbed flow far upstream of the cascade
will produce an isentropic and hence, by the Helmholtz theorem, an irrotational,
time-dependent flow.
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Field Equation

The mass conservation law then provide~ the following form of the~differen

tial equation governing the fluid density. P. and velocity potential. ~.

o (1)

where t is time. In addition. after substituting the isentropic relations into
the differential form of the momentum conservation law and integrating the
resulting expression. the following relations (Bernoulli's equation) between the
flow variables are obtained

~(Y-l)

Here y is the specific heat ratio of the fluid. M is ~he Mach number of the
undisturbed or steady flow. P is the fluid pressure. A is the speed of sound
propagation. and the subscript -00 refers to the upstream free-stream condition.
If the dependence of the density on the velocity potential is explicitly included
in Eq. (1). the latter can be written in the following nonconservative form

(3)

Since. by assumption. unsteady disturbances are produced solely by the blade
motion. the admissable solutions of either Eq. (1) or Eq. (3) for the present
application are those in which acoustic energy does not radiate towards the blade
row. Blade motions are then classified as subresonant if all acoustic waves
attenuate in the far field; as superresonant if at least one such wave propagates
axially and away from the blade row in either the far upstream or downstream
directions; or as resonant if at least one wave neither attenuates nor propagates
in the axial direction (Ref. 5).
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Surface Conditions

The foregoing equations are supplemented by boundary conditions on moving
blade surfaces, 8m, and jump conditions at moving blade wakes, ~m' and at
moving shocks,$hm,±' where the subscript + or - refers to a shock emanating from.. ..
the upper or lower surface, respectively, of the mth blade. The vectors N, n,
and t are introduced below in conjunction with the surface conditions. The..
relative displacement vector, R, measures the displacement of a point on the
instantaneous position of a surface (blade, wake, or shock) relative to its mean
or steady-state position. The unit vectors ri and t are normal and tangent,
respectively, to a surface and directed such that rixt = ~z points out from the
page. The unit normal vector is directed outward from blade surfaces, upward at
wakes, and downstream at shocks.

For attached flows, the normal component of the fluid velocity must equal
the normal component of the surface velocity at blade surfaces (flow tangency);
i. e. J

..• n (4 )

..
where the vector Ris prescribed. The blade wakes are also material surfaces;
i.e., a fluid particle on the wake always remains there. Hence, Eq. (4) also
applies at wake surfaces. However, since the wake displacement vector is unknown
a priori, "wake-jump" conditions are usually imposed. It follows from the fore
going kinematic condition and the integral conservation laws that the component
of fluid velocity normal to the wake and the thermodynamic properties of the
fluid must be continuous across thin vortex wakes. Thus, the conditions

[v~] ·ri =[p] =0 , on7Um (5)

apply at wake surfaces, where [ ] denotes that difference (upper minus lower)
in a quantity across a wake. Since the instantaneous wake locations'~m' are
unknown, the usual procedure is to apply these conditions on prescribed surfaces
which lie close to the actual wake positions.
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At shocks the integral form of the mass conservation law provides the
following condition

o , (6)

where [ ] denotes the jump or difference (downstream minus upstream) in a
quantity across a shock. Note that the normal shock-displacement must be deter
mined as part of the solution. Thus a second shock-jump condition is required.
This follows from the conservation of momentum tangent to the shock and requires
that the component of fluid velocity tangent to the shock or, after integrating
along the shock, that the velocity potential must be continuous across the shock;
i.e.,

to [ v~] 0, (7)

Equation (7) also represents the requirement that no vorticity be produced at the
shock. In the potential approximation neither the normal component of fluid
momentum nor energy is conserved across a shock.

This completes £he formulation of the boundary value problem for the
velocity potential,~. The problem posed is a formidable one consisting of a
nonlinear, time-dependent, partial differential equation along with conditions
imposed on moving blade, shock and wake surfaces, in which the instantaneous
locations of shock and wake surfaces must, in principle, be determined as part of
the solution. Even if accurate solution procedures could be developed for this
problem, they would be of limited practical value because their computing time
requirements would make it prohibitively expensive to obtain the unsteady
response predictions required for detailed flutter calculations. Thus in the
present effort we will derive a first-order approximation to the foregoing
boundary value problem for small-amplitude blade motions with the intention of
providing a useful analytical model for turbomachinery aeroelastic
investigations.
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THE SMALL UNSTEADY-DISTURBANCE APPROXIMATION

Linearization

+
For small-amplitude blade motions; i.e., I RBI -0(£) « 1, an approximate

solution for the time-dependent flow can be determined by employing a perturba
tion analysis. Flow variables are first expanded in an asymptotic series in £;
e.g. ,

(8)

where Xis a posltlon vector referred to the space-fixed x,y-Cartesian coordinate
frame of Fig. 1. In addition, Taylor series expansions; e.g.,

(9)

are applied to refer information at a moving blade, wake, or shock surface to the
mean position of this surface. In Eq. (9) the subscripts $ and S refer to the
instantaneous and mean surface locations, respectively, and ~ measures the dis
placement of a point on the moving surface relative to its mean position. Unit
tangent and normal vectors at a point on a moving surface are expressed in terms
of the unit tangent and normal vectors at the location of this point on the mean
surface by the following relations

(lOa)

(lOb)

After substituting the foregoing series expansions and surface vector relations
into the full governing equations, equating terms of like power in £ and neglect
ing terms of second and higher order in £, nonlinear and linear, variable-coeffi
cient, boundary value problems are obtained, respectively, for the zeroth- and
first-order flows.
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As £ + 0 the blade surfaces collapse to their mean posltlons. Hence, the
zeroth-order term, ¢o (X), of the asymptotic expansion (8) is the velocity
potential, ~(X), due to steady flow past a stationary cascade. Since the first
order, unsteady problem is linear, the first-order potential induced by the
harmonic blade motions must also have harmonic time-dependence. We take advan
tage 9f this feature by introducing a complex representation; e.g., £¢l (X,t) =
~{X)elwt, for all first-order flow properties, including the surface-displacement
vectors, and adopting the convention that the real parts of these complex para
meters represent the actual time-dependent physical quantities. The complex
representation serves to remove explicit time dependence from the unsteady
boundary value problem thereby facilitating the determination of a solution. In
addition, the cascade geometry, the prescribed form of the blade motion; i.e.,

Xon B (11)

where Ris now a complex displacement vector and the vector! defines the ampli
tude and direction of the reference blade displacement, and the linearity of the
first-order problem require that both the steady and unsteady flows exhibit
blade-to-blade periodicity. Thus

(12a)

(12b)

Conditions (12a) and (12b) allow a numerical resolution of the steady and
unsteady flows to be limited to a single, extended, blade-passage region of the
cascade and permit properties at the mth blade, wake, or shock surface to be
evaluated in terms of information provided at the corresponding reference (m = 0)
surface. For simplicity, the subscript m will be omitted in the following dis
cussion when referring to a reference surface.

It should be noted that the foregoing linearization is not valid in the
neighborhood of a moving shock (Refs. 14 and 15). An observer situated between
the extreme shock positions will experience large-amplitude jumps in the flow
variables as the shock passes by. Such local anharmonic effects can be accounted
for by including additional terms in the asymptotic representations of the flow
variables (c.f. Ref. 14). However, since these terms do not impact the steady or
unsteady boundary value problems, we defer their introduction to the subsequent
discussion on unsteady aerodynamic response.
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The Steady and Unsteady Boundary Value Problems

Equations governing the steady flow, which is assumed to be known in the
present study, follow from Eqs. ~1)AthIough (~), (6) and (7), after replacing the
time-dependent flow quantities, ~, P, P, and A, by their zeroth-order or steady
flow counterparts, ~, P, P and A, and setting time-derivative terms equal to
zero. The steady flow tangency and shock-jump conditions are imposed at the mean
positions of the blade, Bm, and shock Sh +, surfaces, and uniform subsonicmrconditions are imposed far upstream (~+~) and downstream (~+m) from the blade
row. In general, three of the following quantities: the inlet Mach number, M~,

the inlet flow angle, n_m , the exit Mach number, Mm, or the exit flow angle, nm ,

are prescribed and the fourth is determined by a global mass balance. However,
for sharp-edged blades, conditions (e.g., a Kutta condition at blade trailing
edges) can be imposed at blade leading and/or trailing edges in lieu of
prescribing an inlet and/or an exit flow parameter. Note that the wake-jump
conditions are automatically satisfied in the two-dimensional steady problem
since the steady flow is continuous downstream of the blade row. Further, since
the shock locations are unknown a priori, the usual practice in steady flow
calculations is to express the field equation in conservative form and then to
solve this equation through shocks. Thus the shock-jump conditions are usually
not imposed and steady shock phenomena are said to be captured.

It follows from the differential form of the mass conservation law, Eq. (1),
the Bernoulli relations, Eq. (2), and the asymptotic expansions for the flow
variables (e.g., Eq. (8» that the linear unsteady flow is governed by the con
servative-form equation

iwp+ V.[pV4> + pV~] = 0 (13)

and that the complex amplitudes of the unsteady density, p, pressure, p, speed of
sound, a, and velocity potential, 4>, are related by

pip -2 DS4>
-A -

Dt
(14)

11



where DS/Dt is a mean-flow convective derivative operator; i.e.,

DS
Dt

a
at

iw + v~·v (15)

Upon substituting the steady and unsteady, Eq. (14), Bernoulli relations into Eq.
(13), or alternatively, the series expansion, EQ. (8), into the nonconservative,
time-dependent, full-potential equation, Eq. (3), and performing some algebra,
the following field equation for the unsteady potential is obtained

(16)

Since we intend to fit shocks into the unsteady solution; i.e., to satisfy the
first-order shock-jump conditions, we will seek a numerical solution to this non
conservative field equation for prescribed blade motions.

Surface Conditions

Conditions on the unsteady flow at blade, wake, and shock mean positions are
similarly obtained by substituting the asymptotic and Taylor series expansions
and the surface vector relations, Eqs. (10), into the time-dependent flow tan
gency, Eq. (4), wake-continuity, Eqs. (5), and shock-jump, Eqs. (6) and (7),
conditions. After performing some straightforward algebra, the following condi
tions on the linear unsteady flow are determined. The first-order flow tangency
condition has the form

(17)

The first term on the right-hand-side of Eq. (17) is the velocity of the blade
motion. The second and third terms account for the effects of a varying dis
placement along the blade surface and of motion through a spatially varying mean
velocity field, respectively. Since the steady flow is continuous downstream of
the blade row, the conditions of continuity of normal velocity and pressure
across blade wakes (c.f., Eqs. (5)) reduce to

12



[:~¢] = 0, (I8)

where the wake mean positions, Wm, are assumed to coincide with the downstream,
steady-flow, stagnation streamlines.

At shocks, conservation of mass and tangential momentum require that

and

respectively, where

(20)

+
R. (X + mC, t).; (21)

and r n is the complex amplitude of the shock displacement normal to the mean
shock locus. For normal shocks ~1 ISh = 0, and it follows from the zeroth-order
continuity equation that [(p~n)n] = O. Therefore from Eqs. (19) and (20) we
have

After employing the zeroth- and first-order Bernoulli relations to eliminate p in
Eq. (22) and rearranging the resulting expression, the following relation for the
jump in the unsteady potential across the shock is obtained.

(23)
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where P, ~, and the mean shock locations, Shm +, are assumed to be known from the
steady solution. Equations (23) and (20) pro~ide the required relations for
determining the jump in the unsteady potential at the mean location of a normal
shock and the complex amplitude of the shock displacement in the streamwise dir
ection. The latter quantity is required to determine the concentrated loads
produced by the shock motion.

Unsteady Far-Field Behavior

In general unsteady disturbances do not attenuate with distance from the
blade row, and hence, it is difficult to place explicit conditions on the
unsteady potential in the far field. However, under uniform subsonic inlet and
exit conditions, the departure of steady flow quantities from their free-stream
values will be of 0(£) beyond some finite distances upstream and downstream from
the blade row, say ~ ~ ~_ and ~ ~ ~+, where ~ is the cascade axial coordinate
(Fig. 1). Thus to within the first-order approximation considered here, the
unsteady differential equation, Eq. (16), reduces to constant coefficient
equations, for which analytic far-field solutions can be determined. The
unsteady potential is continuous upstream of the blade row and has both a
continuous and a discontinuous component downstream. The continuous potential
accounts for acoustic wave propagation. Fourier methods (Refs. 5 and 21) can be
used to provide expressions for this component of the potential in the far field
in terms of the cascade axial and tangential coordinates ~ and n (Fig. 1). The
discontinuous component of the unsteady potential accounts for the counter
vorticity shed from the blade trailing edges and convected along the blade wakes.
A closed-form solution for the discontinuous component of the potential in the
far field has been determined in terms of Cartesian coordinates parallel and
normal to the far-downstream reference (m ~ 0) wake (c.f., Refs. 5 and 21).
These analytic solutions can be matched to a near-field numerical solution, and
thus serve to complete the specification of the unsteady boundary value problem.

14



AERODYNAMIC RESPONSE COEFFICIENTS

Surface Pressure Distributions

Solutions to the steady and unsteady boundary value problems are required to
determine surface pressure distributions and unsteady airloads. The latter are
the important results of an aerodynamic analysis intended for flutter prediction;
since they permit the evaluation of aerodynamic work per cycle and/or aerodynamic
damping (Ref. 22), either of which can be used to determine whether the airstream
tends to support or suppress a prescribed blade motion. The pressure acting at
the instantaneous position oj the mth blade surface is given by

+ P~4 (T , t ) + Pi?, (T , t) + •••
G m,+ a m,-

(24)

where T is a coordinate measuring distance in the counter-clockwise direction
along .the mean blade surface. The first two terms on the right-hand-side of Eq.
(24) are the steady and first-harmonic components of the pressure acting at the
mth moving blade surface outside the small intervals bounded by the mean and
instantaneous shock locations. The third and fourth terms represent the anhar
monic contributions to the unsteady surface pressure caused by the motion of the
shocks along the upper and lower surfaces of the mth blade.

A

After expanding the pressure P in the manner indicated by Eqs. (8) and (9),
it follows from the steady and unsteady Bernoulli relations that

and

p a [-2(M~)2/(Y-l) DS~ + (toV)p]
B Dt B

(25)

(26)

Thus the steady and the first-harmonic components of the pressure acting at a
moving blade surface, Bm, are evaluated in terms of information supplied at the
mean position, B, of the reference blade. The first term of the right-hand-side
of Eq. (26) is the harmonic unsteady pressure at the mean position of the
reference blade and the second is the harmonic pressure produced by motion
through a spatially varying steady pressure field.

15



The local anharmonic effect caused by shock motion is accounted for by
assuming that (c.f. Ref. 14)

where rn(O) 1S the displacement of the shock foot along the blade surface,

0, T < 0

1, T > 0

and

(27)

(28)

The first two terms on the right-hand-side of Eq. (24) are discontinuous at the
undisturbed shock locations. The third and fourth terms cancel these discon
tinuities and transfer them to the instantaneous shock locations. Thus after
setting T = T$4± in the foregoing equations it follows that

The discontinuous terms on the right-hand-side of Eqs. (29) and (30) are
evaluated at the mean position of the shock foot. Although the unsteady pressure
disturbance is not everywhere harmonic, its regions of anharmonicity are small.
Consequently (c.f., Refs. 3 and 23), the first-order global aerodynamic
coefficients are harmonic in time.

Unsteady Force and Moment

Up to this point we have placed no restriction on the mode of the blade
motion. But we now limit consideration to the case usually considered in turbo
machinery flutter calculations wherein each incremental blade section is under
going a rigid-body motion. In this case only the unsteady force and moment
coefficients must be determined to analyze the stability of the blade motion.
For rigid blade motions the first-order displacement-amplitude vector is given by

16



, X on B

where h defines the amplitude and direction of blade translations, a defines the
amplitude and direction (positive counter-clockwise) of blade rotations, and Rp
is a position vector extending from the mean position of the reference blade axis
of rotation (i.e., the point Xp ' Yp) to points on the mean position of the
reference blade surface. These rigid two-dimensional motions model bending and
torsional vibrations of actual rotor blades. The components, hx ' hv ' and n, are,
1n general, complex to permit phase differences between the translations in the
x- and y-directions and the rotation.

The force and moment (coefficients) acting on the mth blade surface are
given by

and

Re {- gSfl
m

p ri dt} (32)

(33 )

where the moment is taken about the moving pitching axis and R extends from this
axis to points on the moving blade surface. After some algebr~, it follows that
the complex amplitudes of the unsteady force and moment can be determined in
terms of information evaluated at the mean position of the reference blade;
Le. ,

and

Recall that Pfl is the complex amplitude of the harmonic unsteady surface pres
sure, Eq. (26), the subscript B refers to the mean blade surface, and r n is the
streamwise shock displacement. The last two terms in Eqs. (34) and (35) account
for the concentrated loads due to shock motion, and they are evaluated at the
mean positions of the shock roots.
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THE UNSTEADY NUMERICAL APPROXIMATION

For simplicity the numerical approximation will be outlined for transonic
flow through a cascade of oscillating, sharp-edged airfoils in which at most a
single shock occurs in each blade passage. Thus unsteady phenomena associated
with mean flow stagnation (c.f. Refs. 11 and 12) and multiple shocks are omitted
from present consideration. A numerical resolution of the linear, variable
coefficient, unsteady, boundary-value problem is required over a single,
extended, blade-passage region of finite extent. The unsteady differential
equation must be solved in continuous regions of the flow, subject to boundary or
jump conditions at the mean positions of the blade, wake and shock surfaces.
Blade mean positions are prescribed, and the mean positions of wake (i.e., the
downstream stagnation streamlines) and shock surfaces are determined as part of
the steady solution. Finally, the unsteady, near-field, numerical solution must
be matched to far-field analytical solutions at finite distances (~ = ~+)

upstream and downstream from the blade row. The major elements of the numerical
approximation, i.e., the discrete domains or calculation meshes, the finite
difference model, and the solution procedure are described briefly below.

Calculation Meshes

In Vlew of the stringent and often conflicting requirements placed on the
construction of a computational mesh for cascade flows, we have adopted a two
step solution procedure for the resolution of unsteady cascade flows. The basic
approach is to first capture large scale unsteady phenomena on a rectilinear-type

cascade mesh of moderate density and then to determine a solution on a dense,
polar-type local grid. The cascade mesh covers the extended-blade-passage
solution domain, while the local mesh covers (and extends well beyond) a region
of high velocity gradient; for example, near a rounded leading edge in Refs. 11
and 12 or near a shock in the present study. The velocity potential distribution
as determined by the cascade mesh solution provides the outer boundary condition
information for the local mesh calculation. The solution to the unsteady
boundary value problem is taken to be the local solution in a region covered by a
local mesh and the cascade solution elsewhere.

The cascade mesh is the periodic and body-fitted, but non-orthogonal, one
shown in Fig. 2a. It is composed of axial lines·(~ = constant) which are
parallel to the blade row making the mesh periodic, and tangential curves which
are percentile averages of the upper and lower boundaries making the mesh body
fitted over most of the blade and wake surfaces. This mesh facilitates the
implementation of blade and wake boundary conditions as well as the cascade
periodicity conditions. It also allows for a convenient matching of the
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analytical and numerical unsteady solutions at the far field boundaries.
However, the cascade mesh does not provide an accurate solution near rounded
blade edges or near shocks. Moreover, for staggered cascades this mesh is not
well-suited for the accurate implementation of transonic differencing
procedures.

Thus in the present study, a local mesh such as that 8hown in Fig. 2b is
applied to resolve the flow in the vicinity of a normal shock and in the super
sonic region lying adjacent to the blade surface and upstream of the shock. This
mesh consists of radial and circumferential lines, normal and roughly parallel,
respectively, to the reference blade surface. Two of the radial lines (herein
referred to as the upstream and downstream shock mesh lines) are positioned at
the mean location of the shock foot so that information on the upstream and down
stream side of the shock can be accurately represented. Hence, the mean shock
locus is currently approximated as being normal to the airfoil surface in the
local unsteady calculation. The local mesh facilitates the implementation of the
unsteady shock-jump conditions as well as the implementation of rotated and type
dependent transonic differencing approximations. At present unsteady transonic
solutions are calculated by the two-step procedure just described in which the
local solution is essentially a correction to the cascade solution. Because of
this it is necessary to choose a rather extensive local region.

Difference Approximation

Algebraic approximations to the various linear operators, which make up the
unsteady boundary value problem, are obtained using the implicit, least-squares,
interpolation procedure of Ref. 10. Thus consider a linear differential operator
1 which operates on a constant by multiplying that constant by qO. An algebraic
approximation, L4>, to 14> at the mesh point QO can be written in terms of the
values of 4> at QO and at certain neighboring points, Q1' ••• , Qm' which
together with QO are called a neighbor set. This approximation can be expressed
in the form

M

(14))0 .. (L4»O - q°4>o + L Bm(4)m-4>O)
m=l

where the difference coefficients, Bm, are evaluated in terms of a prescribed
set of interpolating functions and a set of interpolating coefficients. The
latter are determined by a weighted least-squares procedure. For the present
application the neighbor sets are defined as shown in Fig. 2; i.e., in a
"centered" fashion for interior points and in a one-sided fashion for boundary
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points. The foregoing finite-difference model along with its application to
unsteady subsonic cascades has been described in detail in Refs. 10 and 11. Here
we describe only those modifications to the overall difference approximation
which are required for transonic applications.

Transonic Differencing Strategies

Following Murman and Cole (Refs. 17 and 18), the plan is to distinguish
between regions of subsonic flow where the unsteady differential equation is
elliptic and supersonic flow where it is hyperbolic and to use a differencing
scheme which is sensitive to its local character. To accomplish this we first
apply the rotated differencing concept introduced by Jameson (Ref. 16). Thus at
each point of the discrete domain the field equation is expressed in canonical
form; Le.,

where

2A epNN + •••

(37)

(38)

Sand N are the local canonical coordinates; i.e., the Cartesian coordinates
aligned with and normal to, respectively, the local steady flow direction, and ~

and n are the computational coordinates; i.e., the cascade axial and circumferen
tial coordinates (Fig. 1). The principal part of the unsteady differential
equation is shown explicitly in Eq. (38) and the dots refer to the remaining
terms.

It is now clear that the local character of the unsteady differential
equation depends on the local steady Mach number, and it becomes a simple matter
to construct a suitable type-dependent differencing scheme. Thus, the linear
operator 12 is always approximated by a central difference expression, but the
difference approximation to the operator 11 will depend on the local steady Mach
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number, and hence, on the local type of the unsteady field equation. If Mi . is
less than one, where the indices i and j refer to the axial and tangential tines,
respectively, of the cascade mesh or to the radial and circumferential lines,
respectively, of the local mesh, the flow is locally subsonic (elliptic) and we
set

M· • < f
1.,]

where LI is a central difference operator. If M· . is greater than one, the flow
is locally supersonic (hyperbolic) and (ll ¢)i,j i~Japproximated by the retarded
or upwind difference expression

.ll¢/· ... L1¢1'- 1 .1.,] 1.,]
M· . > I

1.,]
(40)

i.e., a central difference expression evaluated at the previous upstream mesh
point on the jth tangential or ~ircumferential mesh line. Strictly speaking, at
supersonic points the differencing should be retarded along both sets of mesh
lines in the cascade and local calculations, but since the tangential and circum
ferential mesh lines are closely aligned with the mean flow direction, it should
be sufficient to employ upwind differencing only along these lines.

Unsteady shock phenomena are captured in the cascade calculation; i.e., the
unsteady differential equation is approximated, using either Eq. (40) or Eq. (39)
at the field points immediately upstream or downstream, respectively, of the mean
shock location. Shocks are subsequently fitted into the local unsteady solution
by imposing the jump condition, Eq. (23), at shock points on the downstream shock
mesh line. The shock-jump condition is modeled using one-sided difference
approximations (first-order accurate on the upstream side and second-order
accurate on the downstream side) to evaluate the normal derivatives of the
unsteady potential at the shock mean position. At points on the downstream shock
mesh line at which the steady flow is continuous, the condition [¢] = 0 is
imposed. To assist in evaluating the numerical solution procedure, a shock
capturing option ~as also been included in the local calculation. In this case
the condition [¢j = 0 is imposed at all points on the downstream shock mesh
line.
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Solution Procedure

For the cascade calculation all neighbor points fallon the axial mesh line
through the calculation point and on the two immediately adjacent axial mesh
lines. This placement leads to a desirable structure for the system of algebraic
equations which approximate the unsteady boundary value problem. At a field or
interior point the unsteady differential equation is approximated using neighbor
sets centered at this point and, if the flow is locally supersonic, at the
adjacent upstream point. The field equation is approximated at points on the
upper, upstream, periodic boundary with ~ values at neighbors above the mesh
region related to ~ values at points within the mesh region by the periodic
condition of Eq. (12b). On the lower periodic boundary the periodic condition is
applied directly. For points on the far-upstream or far-downstream boundaries
(i.e., at ~ = ~+) ~ values at the neighbors upstream or downstream, respec
tively, of the mesh region are related to ~ values at the boundaries using the
far-field analytic solutions of Ref. 5. Finally, at blade and wake poipts the
flow tangency condition, Eq. (17), and the wake continuity conditions, Eqs. (18),
are approximated, respectively, using one-sided neighbor sets.

For the local calculation, neighbor sets are chosen in a similar fashion;
i.e., centered at field points and one-sided at points on the blade surface.
With the exception of those points on the upstream shock mesh line, the unsteady
differential equation and flow tangency condition are approximated as described
above. At the upstream shock mesh line derivatives normal to the flow direction
are evaluated only in terms of information provided along this mesh line; i.e.,
without crossing the shock. On the downstream shock mesh line the ShOCk-j~mp

condition, Eq. (23), is approximated at shock points and the condition [~ = 0
is applied at the remaining points. The normal derivative, ~n' in Eq. (23 is
approximated by first- and second-order accurate one-sided difference expressions
on the upstream (supersonic) and downstream (subsonic) sides of the shock,
respectively. Thus the streamwise derivatives appearing in the unsteady differ
ential equation and in the unsteady shock-jump condition are approximated to
within the same order of accuracy in the local calculation. At points on the
outer boundary of the local mesh the unsteady potential is given the values
interpolated from the cascade mesh solution.

Let !i be a vector of ~ values on the ith axial mesh line for the cascade

calculation or on the ith radial mesh line for the local calculation. Because:
(1) neighbor sets for points on the ith line include only points from the lines
i-I, i, and i+I; (2) the difference approximation to the unsteady differential
equation involves only neighbor sets centered on the lines i and i-I; (3) first
and second-order accurate difference approximations are used in the local calcu
lation to approximate normal (to the shock) derivatives on the upstream and
downstream sides of the shock, respectively; and (4) the cascade mesh is
periodic; the system of linear algebraic equations which approximates the
unsteady boundary value problem on both the cascade and local meshes has the
following block-quindiagonal form
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F·
~l

2 < i < I-I (41)

where the submatrices Ai' Bi , Ci , Di , and Ei are sparse being basically scalar
tridiagonal. Note that, with the exception of the points on the downstream side
of a fitted shock, Ai = 0 at subsonic points and Ei = O. With this structure
the system of equations (41) can be solved directly and efficiently using
Gaussian elimination.
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NUMERICAL RESULTS

The foregoing analysis has been applied to cascades of vibrating, sharp
edged, double-circular-arc (DCA) airfoils operating at high subsonic and
transonic Mach numbers. The mean location of the zeroth or reference blade
surface is defined by

(42)

0, o

where 0 < x < 1, H is the y-coordinate of the surface at midchord, R = IHI-1

(H2+ 0.25)/2 is the radius of curvature of the surface, sgn(H) = ±l for H ~ 0,
and the subscripts + or - refer to the upper or lower surfaces of the blade.
Mean inlet Mach numbers (M_oo<l) are prescribed and corresponding exit Mach
numbers (Moo<l) and inlet (n_oo ) and exit (noo ) flow angles are determined as part
of the steady solution by applying a global mass balance and imposing the
requirement that

+ +
VOdTI

B
x 0,1 (43)

at blade leading (unique incidence condition) and trailing (Kutta condition)
edges. For simplicity we will present results only for two DCA configurations:
an unstaggered (6= 0 deg.) array and a staggered (with 6 = 45 deg.) array each
with unit gap/chord ratio (G = 1) and consisting of 5 percent thick, flat
bottomed, DCA blades (i.e., H+ = 0.05, H_ = 0). In addition, for purposes of
comparison, results will also be presented for similar arrays of flat-plate
(H± = 0) airfoils. For the flat-plate cascades the steady Mach number is
constant throughout the field, and hence, there is no coupling between the steady
and unsteady flows.

Unsteady solutions have been determined on a cascade mesh extending one
axial chord upstream and downstream from the blade row. For those cases in which
a normal shock emanates from the suction surface of each blade, solutions are
also determined on a local mesh extending from 10 to 90 percent of blade chord
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along the suction surface of the reference blade and outward from this surface to
well beyond the end of the shock. For the unstaggered configurations the cascade
mesh consisted of 62 axial lines, 30 of which intersected blade surfaces, and 20
tangential lines. A finer mesh is generally required for the 45 deg. staggered
configurations and one consisting of 100 axial lines, 44 of which intersect the
blade surfaces, and 30 tangential lines was employed. The local mesh consisted
of 61 radial lines and 11 circumferential lines. Variable mesh spacings were
used in both the cascade and local calculations with cascade tangential and local
circumferential lines concentrated near blade surfaces, cascade axial lines
concentrated near blade edges, and local radial lines concentrated near shocks.
Harmonic, unsteady, pressure-difference (~p) distributions, where

~p(x) ~ on B (44)

the shock displacement at the foot of the shock (rn(O», and unsteady lift (cL)
and moment (CM) coefficients will be presented for blades undergoing pure
torsional motions (with a = 1, 0) about midchord (Xp , Yp = 0.5, 0) at
prescribed frequencies (w) and interblade phase angles (0). When the imaginary
part of the torsional amplitude is set equal to zero, the real and imaginary
parts of the response coefficients are in- and out-of-phase, respectivelY,with
the blade displacement. Further, the stability of a single-degree-of-freedom
torsional motion is governed by the sign of the out-of-phase component (imaginary
part) of the unsteady moment. Thus if 1m {CM} < 0 for a pure torsional motion,
the airstream tends to suppress the motion, and hence, this motion is stable
according to linear theory (Ref. 24).

Steady Mach Number Distributions

Full potential steady flows have been determined on similar but coarser
cascade and local meshes using the finite-area numerical approximation developed
by Caspar, Hobbs and Davis for subsonic cascade flow (Ref. 25) and subsequently
extended by Caspar for transonic flow (Ref. 26). It should be noted that with
the procedure of Refs. 25 and 26, the steady differential equation is solved in
conservative form and shocks are captured. It would be preferable to use a
steady solution with a fitted shock for the present application. However, it
appears that steady information in the vicinity of a shock can be determined with
sufficient accuracy, using the methods of Refs. 25 and 26, to define the mean
shock location and to permit the imposition of shock-jump conditions in the
present unsteady calculation.
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Predicted steady, surface-Mach-number distributions for the example DCA
configurations are shown in Figs. 3 and 4. For the unstaggered cascade (Fig. 3)
prescribed inlet (and calculated exit) Mach numbers of 0.70, 0.72, 0.74 and 0.76
are considered. Corresponding inlet and exit flow angles vary from n+~ =
±4.3 deg for M_~ = 0.70 to n+~ = ±4.65 deg for M~ = 0.76. At the three lower
Mach numbers, M-~ = 0.7, 0.72 and 0.74, the calculated steady flows are
continuous with peak Mach numbers of 0.91, 0.95 and 1.01, respectively, occurring
at midchord on the blade suction surface. For ~ = 0.74 the supersonic region
extends from 43% to 57% of blade chord along the suction surface. At the highest
inlet Mach number, M_~ = 0.76, a shock emanates from the blade suction surface
at 64.5 percent of chord downstream from the leading edge. The Mach numbers at
the foot of the shock are 1.157 upstream and 0.935 downstream, and the supersonic
region extends from x = 0.32 to x = 0.645 along the blade suction surface. For
the 45 deg. staggered DCA cascade (Fig. 4) the prescribed inlet Mach numbers are
0.7, 0.8, and 0.9 and the calculated exit Mach numbers are 0.57, 0.62 and 0.65,
respectively. The corresponding inlet flow angles are 49.2 deg, 49.4 deg, and
49.6 deg, respectively, and in each case the exit flow angle is 43.0 deg. The
steady flows at M-~ = 0.7 and M-~ = 0.8 are entirely subsonic with peak
suction-surface Mach numbers of 0.804 and 0.941 occurring at 38.5 and 36.7
percent of blade chord, respectively, downstream from the leading edge. The
steady flow is transonic for M-~ = 0.9 with the supersonic region extending
from 18.5 to 52.5 percent of blade chord along the suction surface and termi
nating at a shock. The Mach numbers at the foot of the shock are 1.193 on the
upstream or supersonic side and 0.871 on the downstream or subsonic side.

Response Predictions for Unstaggered Cascades

Although unstaggered configurations are of limited practical interest, they
are the simplest and therefore perhaps the most useful ones for the initial
evaluation of complicated aerodynamic and numerical analyses. We therefore
present rather detailed results for unstaggered arrays of DCA and flat plate
airfoils undergoing out-of-phase (0 = 180 deg.) and in-phase (0 = 0 deg.)
torsional vibrations at low (w = 0.1) through moderate (up to w = 1.0) frequen
cies, and at the inlet Mach numbers indicated in Fig. 3. Particular emphasis is
placed on unsteady response predictions for the discontinuous mean flow at ~
= 0.76, and the highest frequency considered (i.e., w = 1.0) is the most repre
sentative one for turbomachinery flutter applications.
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As a first example we consider the aerodynamic response to low-frequency,
out-of-phase, torsional vibrations for the DCA cascade in Fig. 5 and for the
flat-plate cascade in Fig. 6. These results have been determined by performing
unsteady calculations on the cascade mesh only, and hence, unsteady shock
phenomena have been captured in the numerical solution for the DCA cascade
operating at M-~ = 0.76. The well-defined shock depicted in Fig. 5 results
from using one-sided difference approximations to evaluate the surface pressures
at the mesh points just upstream and downstream of the shock and extrapolating
the calculated surface pressures to the known mean shock location. A comparison
of the low-frequency predictions for the unstaggered DCA and flat plate cascades
reveals (as expected) the substantial effect of the steady flow gradients
produced by blade thickness and camber on the unsteady response to low-frequency
blade motions, particularly at transonic Mach numbers.

The results shown in Figs. 7 through 10 are presented to illustrate several
features of the unsteady numerical solution procedure for discontinuous transonic
flows. Cascade and combined (i.e., cascade and local) mesh response predictions
are depicted in Figs. 7 and 8 for the unstaggered DCA cascade operating at an
inlet Mach number of 0.76. These results have been determined by shock capture;
i.e., the unsteady differential equation has been sOJved across the shock in the
cascade calculation, and the continuity condition, ~ ¢] = 0, has been applied on
the downstream shock mesh line in the local calculatlon. The two solutions are
in very close agreement, except in the vicinity of the shock. In particular, the
sharp rise in the imaginary component of the unsteady pressure difference for
w = 1.0 just upstream of the shock (Fig. 7) is removed by the local solution
(Fig. 8). The overall agreement between the cascade and combined mesh solutions
for unstaggered cascades of relatively thin blades is not too suprising since the
cascade axial lines are nearly normal to the mean flow direction. The
differences between the cascade and the local solutions near the shock can be
attributed to local radial lines being more closely aligned with the mean shock
locus than cascade axial lines and to the greater mesh density used in the local
calculation.

Unsteady velocity potential distributions on the suction surface of the
reference blade are shown in Figs. 9 and 10 to partially illustrate the effect of
fitting shocks into the unsteady solution. The results depicted in Fig .[9 have
been determined by imposing the shock capture or continuity condition ( ¢] = 0)
on the downstream shock mesh line in the local calculation, while those depicted
in Fig. 10 have been determined by fitting the shock (i.e., imposing the shock
jump condition of Eq. 23). The continuous and discontinuous surface potential
distributions are identical upstream, but they differ substantially downstream of
the mean shock location. Recall that the jump in the unsteady potential across
the shock is proportional to the shock displacement (c.f. Eq. (20». For the
steady flow at M-~ = 0.76 the results shown in Fig. 10 indicate that the
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complex shock displacement along the blade surface leads the blade rotational
displacement, a, by a phase angle which is greater than 90 deg for w = 0.1 and
w = 0.5, and slightly less than 90 deg for w = 1.0. Hence, the instantaneous
location of the shock foot will generally be upstream of its mean position at the
two lower frequencies and downstrea~ of its mean position at the highest
frequency when the blade is displaced nose-down from its mean position.

The effect of frequency on the response to out-of-phase torsional vibrations
of the unstaggered DCA and flat plate cascades is illustrated in Figs. 11 and 12.
The DCA results (Fig. 11) include the effects of shock motion. A comparison of
these results with the continuous, shock-capture solutions of Fig. 8 reveals that
the shock displacement has a substantial impact on the harmonic component of the
unsteady surface pressure downstream of the shock. In particular, the out-of
phase (imaginary) moments corresponding to the pressure difference distributions
in Fig. lIb are substantially less than those corresponding to the pressure
difference distributions shown in Fig. 8. This stabilizing effect is partially
compensated for by the unsteady moment due to the concentrated shock load. For
the DCA cascade operating at M~ = 0.76 there is a steady pressure jump, [p],
on the blade suction surface of 0.509. Since the shock mean position is down
stream of the torsional axis (RpotB = -0.142) and Im{rn(O)} is positive for the
motions considered in Fig. 11, the anharmonic component of the unsteady pressure,
produced by.the shock motion, provides a positive or counterclockwise out-of
phase moment (c.f. Eq. 35) which tends to destabilize the blade motion. However,
at least for the present examples, the net effect of shock motion is a stabiliz
ing one. A comparison of the DCA results (Fig. 11) with those for the flat plate
cascade (Fig. 12) reveals the dramatic influence of blade geometry on the low
through moderate frequency unsteady response at high subsonic inlet Mach number.
Note that the torsional stability margin increases much more substantially with
increasing frequency for the flat plate than for the DCA configuration.

The effect of frequency on the response to in-phase (0 = 0 deg.) torsional
vibrations of the unstaggered DCA and flat plate cascades is illustrated in
Figs. 13 and 14, respectively. For subsonic inlet and exit conditions in-phase
blade vibrations are superresonant; i.e., acoustic energy persists far-upstream
and/or downstream of the blade row, 'whereas the out-of-phase motions considered
above are subresonant. The magnitudes of the complex response coefficients for
the in-phase torsional vibrations of Figs. 13 and 14 are much smaller than those
for the out-of-phase torsional vibrations of Figs. 11 and 12. As a result, the
stability margin for each in-phase torsional vibration considered is signif
icantly lower than it is for the corresponding out-of-phase torsional vibration
at the same frequency. For the DCA configuration, the out-of-phase component of
the shock displacement; i.e., Im{rn(O)}, is negative for each of the five
frequencies considered. Thus, in each case, the anharmonic component of the
unsteady pressure tends to amplify the blade motion. However, due to its
influence on the harmonic pressure response, the net effect of the shock motion
is a destabilizing one for each of the in-phase vibrations considered in
Fig. 13.

28



The effect of Mach number on the unsteady response to unit-frequency, out
of-phase, and in-phase torsional vibrations of unstaggered DCA and flat-plate
cascades is illustrated in Figs. 15 through 18. A comparison of these DCA and
flat-plate results again reveals the substantial impact of mean flow gradients on
the unsteady response at transonic Mach numbers. Recall that for MLoo = 0.74
the calculated steady flow is continuous with a local supersonic region occurring
adjacent to the suction surface of each blade. There is some question as to
whether a continuous linear perturbation of a continuous, transonic, zeroth-order
or steady flow is meaningful, or whether a shock must form as a result of the
small excitation. Indeed, the present authors have determined spurious unsteady
solutions which suggest the formation of a shock for different sets of contin
uous, steady, transonic, input data (e.g., see Fig. 8 of Ref. 27). Since current
steady codes predict continuous transonic phenomena over a range of inlet condi
tions, this question is an important one with regard to the range application of
a linear unsteady analysis and deserves future research consideration. The
unsteady pressure difference distributions, shown in Fig. 15 and 17, corres
ponding to the continuous transonic mean flow at MLoo = 0.74 do contain
surprisingly large variations with distance along the blade chord over an
interval in which the local steady Mach number is close to one. However, the
distributions for MLoo = 0.7, 0.72 and 0.74 follow reasonable trends with
increasing inlet Mach number.

Response Predictions for Staggered Cascades

The discussion on the unsteady response behavior of staggered (at e = 45
deg.) DCA and flat plate cascades will parallel that just given for the
unstaggered configurations. Thus numerical results will be presented for blades
undergoing out-of-phase and in-phase torsional vibrations, about an axis at
midchord , at low (w = 0.1) through moderate (up to w = 1.0) frequencies.
Particular emphasis will be placed on the resolution of unsteady transonic
phenomena. Only three inlet Mach numbers (i.e., MLoo = 0.7, 0.8 and 0.9) will
be considered. The steady flow through the DCA cascade is everywhere subsonic at
the two lower inlet Mach numbers and transonic with a shock discontinuity
emanating from the suction surface of each blade for MLoo = 0.9. The inlet and
exit Mach numbers differ substantially for the staggered DCA configuration, and
this difference effects the overall character of the unsteady flow. For example
at MLoo = 0.9, the unit-frequency, out-of-phase, torsional vibrations of both
the staggered DCA (Moo = 0.65) and flat plate (Moo = 0.9) cascades are super
resonant. However, acoustic energy only propagates in the far upstream direction
for the DCA array, because the waves travelling downstream at the lower exit Mach
number attenuate with increasing distance from the blade row.
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The results shown in Figs. 19 through 22 are analogous to those given 1n
Figs. 7 through 10, and are provided to illustrate the cascade and local mesh
solutions as well as the effect of imposing the shock-jump condition, Eq. (23),
in the local unsteady calculation. Cascade and combined mesh response predic
tions for the staggered DCA configuration operating at an inlet Mach number of
0.9 are shown in Figs. 19 and 20, respectively. These results have been deter
mined by shock capture and they clearly illustrate the need for the local
unsteady analysis to resolve the flow through a staggered transonic cascade. The
unsteady pressure difference distributions determined from the cascade mesh
solution (Fig. 19) are unsatisfactory, especially in the vicinity of the normal
shock. In particular, the cascade mesh solutions suggest that local maxima of
minima will appear in the unsteady pressure difference distributions upstream of
the shock. The errors associated with the cascade calculation occur because this
mesh is highly skewed for a cascade with a 45 deg. stagger angle and, as a
result, a number of axial mesh lines cross the normal shock. The combined mesh
solutions shown in Fig. 20 indicate the significant improvement in the resolution
of the unsteady flow near the shock that can be achieved with the local mesh
calculation.

The unsteady velocity potential distributions on the suction surface of the
reference blade of the transonic DCA cascade are shown in Figs. 21 and 22. The
results in Fig. 21 have been determined by shock capture and those in Fig. 22
have been determined by shock fit. As in the case of the unstaggered DCA cascade
(Figs. 9 and 10), the continuous and discontinuous surface potential distribu
tions are identical upstream of the mean shock location, but they differ substan
tially just downstream of the shock discontinuity. For the staggered configura
tion the complex shock displacement along the blade surface, rn(O), leads the
blade rotational displacement, n, by an angle greater than 90 deg. for w = 0.1
and less than 90 deg for w = 0.5 and w = 1.0. Hence, the instantaneous location
of the shock foot will generally be upstream of its mean position at w = 0.1 and
downstream of its mean position at w = 0.5 and w = 1.0 when the blade is
displaced nose-down from its mean position.

The effect of frequency on the response to out-of-phase torsional blade
vibrations for the staggered DCA and flat-plate cascades is illustrated in Figs.
23 and 24. These motions are subresonant at the lower frequencies, w = 0.1 and
w = 0.25, and super- resonant at w = 0.5, 0.75 and 1.0. The results for the DCA
cascade have been determined by shock fitting and, as in the previous examples,
there are significant differences between the unsteady responses to the DCA (Fig.
23) and flat plate (Fig. 24) blade motions. A comparison of the DCA results in
Fig. 23 with the continuous solutions shown in Fig. 20 again reveals the substan
tial impact of shock motion on the harmonic pressure differences downstream of
the shock mean position, particularly at low reduced frequency. For the examples
considered here, one effect of including the shock-jump condition in the local
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unsteady calculation is a decrease in the imaginary part of the unsteady pressure
difference downstream of the shock, and hence, a decrease in the out-of-phase
moment; i.e., stability enhancement. However, the anharmonic component of the
unsteady pressure produced by the shock motion partially compensates for this.
The steady pressure jump across the foot of the shock is positive ( [p ]F0.593),
the shock mean position is slightly downstream of the torsional axis (R oT B =
-0.025), and the out-of-phase component of the shock displacement is po~itive
(Im{rn (O)} > 0). Therefore the anharmonic component of the unsteady pressure
produces a small but positive or counterclockwise imaginary moment (c.f. Eq.
(35» which tends to amplify the blade motion. For the motions considered in
Figs. 20 and 23, the net effect of including the shock motion in each unsteady
solution is a stabilizing one. The moment predictions for the staggered DCA
configuration indicate that the stability of out-of-phase torsional vibrations
will be enhanced with increasing blade-vibration frequency unless the frequency
increases through a resonance condition, in which case, there will be a signif-O
icant reduction in the stability margin. The limited results presented in Fig.
24 for the flat plate cascade indicate a reduction in stability margin with
increasing frequency.

The effect of frequency on the response to the in-phase, torsional, blade
vibrations for the staggered DCA and flat-plate cascades is illustrated in Figs.
25 and 26. The motions considered are superresonant with acoustic energy propa
gating away from the blade row in both the far-upstream and far-downstream direc
tions, and the amplitudes of the complex response parameters are generally
smaller than those for out-of-phase torsional vibrations at the same frequency.
For the staggered DCA cascade operating at M-m = 0.9, the complex shock
displacement, rn(O), lags the blade rotational displacement for w = 0.1, 0.25
and 0.5 and leads the rotational displacement for w = 0.75 and 1.0. Thus the
out-of-phase component of the shock displacement, Im{rn(O)}, is negative at the
three lower frequencies and positive at the two higher frequencies. Since the
mean shock location is slightly aft of midchord, the concentrated load due to
shock motion produces a small stabilizing moment for w = 0.1, 0.25 and 0.5 and a
small destabilizing moment for w = 0.75 and 1.0. The stability margin for in
phase torsional vibrations of the DCA cascade tends to increase with increasing
frequency (Fig. 25b). This is not the case for the flat-plate cascade (Fig. 26)
where the moment resisting the blade motion (-Im{cM}) is greater at w = 0.5
than it is at w = 1.0.

The effect of Mach number on the unit-frequency response to out-of-phase and
in-phase torsional vibrations of DCA and flat-plate cascades is illustrated in
Figs. 27 through 30. Inlet Mach numbers of 0.7, 0.8 and 0.9 are considered.
Recall that at ML~ = 0.7 and M~ = 0.8 the flow through the DCA cascade is
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everywhere subsonic, while at M~ = 0.9 it is transonic with a shock emanating
on the suction surface of each blade. The out-of-phase motions of the DCA
cascade are subresonant at MLoo = 0.7 and superresonant at the two higher Mach
numbers, while the out-of-phase motions of the flat-plate cascade are subresonant
at M-~ = 0.7 and M-~ = 0.8 and superresonant at MLoo = 0.9. For each
cascade the out-of-phase motion at MLoo = 0.8 is close to a resonance condition,
and as a result accurate response predictions can be difficult to achieve. The
in-phase motions of both the DCA and flat-plate cascades are superresonant. The
unsteady pressure difference distributions for the out-of-phase vibrations of the
DCA (Fig. 27) and flat-plate (Fig. 28) cascades are very similar for MLoo = 0.7,
but differ substantially for MLoo = 0.8 and MLoo = 0.9. The differences at
M-~ = 0.8 are primarily due to the different character of the unsteady motions
(i.e., superresonant or subresonant) and to the near resonance operation of each
cascade. At the highest Mach number the differences in the DCA and flat~plate

unsteady pressure difference distributions are due to the transonic and shock
motion phenomena associated with the DCA configuration. For the three inlet Mach
numbers considered the stability margin for the out-of-phase torsional vibrations
of the DCA cascade decreases with increasing inlet Mach number, while the
stability margin for the flat plate cascade is lowest at MLoo = 0.8. The
unsteady pressure difference distributions for the in-phase vibrations of the DCA
and flat plate cascades are again similar for MLoo = 0.7, differ somewhat for
M-~ = 0.8 and differ substantially for ~ = 0.9. The differences at ~ =
0.8 can be attributed to the large mean Mach number variations which occur along
the suction surface and upstream of midchord of each DCA blade, while those at
M-~ = 0.9 are due to the transonic phenomena occurring in the DCA cascade. The
in-phase torsional stability margin for the DCA cascade is smaller at MLoo = 0.7
and M-~ = 0.8 but larger at M-~ = 0.9 than it is for the flat-plate cascade.
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CONCLUDING REMARKS

An unsteady aerodynamic analysis has been developed for turbomachinery
aeroelastic applications. Here, the unsteady flow is produced by the small
amplitude (infinitesimal), harmonic vibrations of the blades of a two-dimensional
cascade operating in an inviscid transonic flow with embedded shocks. The
unsteady potential is determined as the solution of a linear, variable-coeffi
cient, boundary value problem in which surface conditions are imposed at the mean
positions of blade, wake, and shock surfaces, and the variable coefficients
depend on the underlying full-potential, mean or steady flow. The local
character of the unsteady differential equation (i.e., elliptic or hyperbolic)
depends on the local steady Mach number, and the unsteady potential is discon
tinuous at the mean shock positions.. Shock displacement and hence, the concen
trated loads produced by this displacement are proportional to the discontinuity
in the unsteady potential. The analysis applies at the reduced frequencies of
interest for turbomachinery flutter applications (i.e., w ~ 0(1» and includes
the effects of real blade geometry and finite mean pressure rise (or fall) across
the blade row as well as the effects of transonic Mach numbers and shock motions
within the framework of a linear frequency-domain formulation. It therefore
represents an important advance over the classical linearized analyses currently
employed in turbomachinery aeroelastic studies, and over the time-linearized,
unsteady, transonic analyses that have been developed for fixed-wing applica
tions.

The numerical solutions, presented in this report, have been determined
using an implicit, least-squares, finite-difference approximation which has been
modified to include transonic differencing strategies and options for fitting or
capturing unsteady shock phenomena. Unsteady solutions have been determined on
cascade and local grids. The local analysis is required for the accurate resolu
tion of unsteady transonic flows through staggered cascades as well as for the
prediction of shock motion phenomena. Examples have been provided to establish
confidence in the unsteady transonic analysis, especially at high reduced
frequency, and to illustrate the strong impact of nonuniform steady flow on the
unsteady response at high subsonic and transonic Mach numbers. Particular
emphasis has been placed on evaluating the effect of shock motion. Such motions
must be included to achieve a uniformly valid first-order solution; however, at
least for the examples considered here, they produced harmonic and anharmonic
unsteady surface pressure responses which gave opposing contributions to the
global unsteady airloads. Thus the solutions determined by shock capture
provided reasonable estimates of the unsteady lift and moment. In future work it
is recommended that detailed parametric studies be conducted to provide a more
complete understanding of the effects of blade geometry and loading, blade-vibra
tion mode and frequency, and shock motion phenomena on the unsteady aerodynamic
response, and hence, on the aerodynamic stability of cascades operating at
transonic Mach numbers.
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Efforts should also be undertaken to extend the range of application of the
present analysis and to improve the accuracy of the unsteady response predic
tions. In particular, the local calculation should be applied on a mesh which
wraps around the leading edge and extends along the lower surface of the
reference blade so that mean incidence effects and shocks emanating from both the
suction and pressure surfaces of each blade can be simultaneously analyzed. In
addition, mean-flow equi-potential and streamlines should be used as local mesh
lines in the vicinity of a shock to permit a more accurate resolution of unsteady
shock phenomena, and an iterative procedure should be used in matching the
cascade and local solutions. The latter is particularly important for transonic
applications because essentially different boundary value problems are solved in
the cascade and local analyses. The unsteady differential equation is solved
across the shock in the former, and shock-jump conditions are imposed in the
latter. This situation can lead to errors at the cascade-local interface.
Finally, since steady transonic cascade analyses tend to predict continuous
transonic flows over a range of inlet conditions, the impact of continuous
transonic input data on unsteady perturbation solutions must be carefully deter
mined and evaluated.
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LIST OF SYMBOLS

NOTE: All quantities are dimensionless. Lengths have been scaled with respect
to blade chord, time with respect to the ratio of blade chord to upstream
free-stream speed, and density and pressure with respect to the upstream
free-stream density and dynamic pressure, respectively.

Latin

A

A

B

B

H

38

Submatrices of block-quindiagonal system of algebraic
equations, Eq. (41)

Speed of sound, Eq. (2)

Zeroth-order or steady speed of sound, Eq. (14)

Harmonic component of unsteady (first-order) speed of
sound, Eq. (14)

Instantaneous position of blade surface

Mean position of blade surface, Fig. 1

Aerodynamic force, moment coefficient, Eqs. (32) and (33)

Zeroth-order or steady force coefficient, Eq. (34)

First-order or unsteady force, moment coefficient,
Eqs. (34) and (35)

Unsteady lift coefficient

Material or convective derivative operator relative to
the zeroth-order or steady flow, Eq. (15)

Differential vector tangent to mean blade surface,
Eq. (32)

Cascade gap vector, Fig. 1

y-coordinate of reference DCA blade at midchord, Eq. (42)



Latin

H(

I

Im{

i

.1

L

M

m

+n

P

P

LIST OF SYMBOLS (Cont'd)

Unit-step function, Eq. (28)

Translational displacement vector, Eq. (31)

Number of axial or radial mesh lines, Eq. (41)

Imaginary part of { }

Imaginary unit

Linear differential operator, Eq. (37)

Linear difference operator, Eq. (39)

Zeroth-order or steady Mach number, Eq. (2); number of
neighbor points

Blade number index (m = 0 denotes the reference blade)

Unit normal vector directed outward from blade surfaces,
upward at wakes, and downstream at shocks

Order symbol

Pressure, Eq. (2)

Zeroth-order or steady pressure, Eq. (14)

Harmonic component of unsteady (first-order) pressure,
Eq. (4)

Anharmonic component of unsteady pressure, Eq. (27)

Mesh point, m = 0 refers to calculation point, m = 1,
•••• , M refers to neighboring mesh points

Shock transfer function, Eq. (27)
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Latin

+
R

R

Re { }

+r

r n

S,N

$1.,

Sh

t

V

'It!

w

X

Xp,Yp

4C

LIST OF SYMBOLS (Cont'd)

Multiplicative constant, Eq. (36)

Blade, Eq. (4), wake, or shock, Eq. (6), displacement
vector

Radius of curvature of DCA blade surface, Eq. (42)

position vector~ extending from the mean, instantaneous
position of the reference blade axis of rotation to
points on the mean, instantaneous position of the
reference blade surface, Eqs. (31) and (33)

Real part of { }

Blade displacement-amplitude vector, Eq. (11)

Amplitude of shock displacement normal to the mean shock
position, Eq. (20)

Local canonical Cartesian coordinates with S-axis
directed along steady streamline, Eq. (38)

Instantaneous position of shock surface

Mean position of shock surface, Fig. 1

Time

Zeroth-order or steady velocity, Eq. (12a)

Instantaneous position of wake surface

Mean position of wake surface, Fig. 1

position vector in space-fixed x,y-coordinate frame,
Eq. (8)

x,y-Coordinates of mean position or reference blade
pitching (torsional) axis



Latin

x,y

Greek

+a

£

e

~,n

p

a

LIST OF SYMBOLS (Cont'd)

Space-fixed Cartesian coordinates with x-axis coinciding
with mean position of the reference blade chord line and
directed downstream, Fig. 1

Rotational displacement vector, Eq. (31)

Difference coefficient, Eq. (36)

Specific heat ratio

Harmonic unsteady pressure difference coefficient,
Eq. (44)

Small parameter, Eq. (8)

Cascade stagger angle, Fig. I

Space-fixed Cartesian coordinates with the ~-axis lying
along the cascade axis and directed downstream, Fig. 1

~-coordinate of far upstream, downstream boundaries

Fluid density, Eq. (2)

Zeroth-order or steady density, Eq. (14)

Harmonic component of unsteady density, Eq. (14)

Interblade phase angle, positive when motion of the
(m+I)th blade leads the motion of the mth blade, Eq. (11)

Unit vector tangent to blade, wake, or shock surface and
directed such that ri x t = ~z

Velocity potential, Eq. (1)

Zeroth-order or steady velocity potential

Harmonic compoqent of unsteady velocity potential,
Eq. (6)
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Greek

fl+ CXl

w

Subscripts

IJ

B

i,j

m

$

S

$h

Sh

S,N, , , ,n

t

0

0,1

+ -J

+00
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LIST OF SYMBOLS (Cont'd)

Inlet, exit flow angle, Fig. 1

Frequency (circular) of blade motion, Eq. (11)

Instantaneous position of blade surface, Eq. (24)

Mean position of blade surface, Eq. (24)

Axial, tangential or radial, circumferential mesh line
index

Blade number; neighboring mesh point

Instantaneous position of blade, wake or shock surface,
Eq. (IO)

Mean position of blade, wake, or shock surface, Eq. (10)

Instantaneous shock location, Eq. (27)

Mean shock location, Eq. (27)

Vector component or partial derivative in indicated
direction

Local time derivative

Calculation point

Zeroth-, first-order quantity, Eq. (8)

Upper, lower surface of blade or wake; downstream,
upstream of blade row

Far upstream, downstream of blade row
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Fig. 1 Two-Dimensional Oscillating Transonic Cascade with Finite
Mean-Flow Deflection
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a) Cascade Mesh

b) Local Mesh

• CALCULATION POINT

o NEIGHBORS

DOUBLE MESH
LINE AT SHOCK
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Fig. 2 Calculation Meshes for Unsteady Transonic Cascade Flow
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