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SYMBOLS

Since partial derivatives are used for many functions, the functional dependence
on state and control variables is indicated in parentheses.

The mathematical notation for division "/" follows FORTRAN convention. Unless

"/" is followed by "(" only the next term is the divisor. In the equations, angles
are in radians. For ease of reading, angles are given in degrees in the figures.

Ax .....Hx(h,v ) coefficients for simplifying the expression for Iv and I_

AH,...,QH(h,v ) coefficients for simplifying the expression for y

A(h,v) coefficient for simplifying the expression for D

C cruise cost = fuel/unit distance at optimal cruise speed and
altitude

Cj(h,v), Ck coefficients to calculate fuel flow rate, j = 0, 2, k = i, 12 _

D(h,v,u) aircraft drag, ib

D1(h,v ) drag for nonturning flight, ib

D2(h,v ) Bank angle induced drag, ib

F(h,v) fuel flow rate, ib/sec

FT total fuel used, ib

Fv, Du, HT _H/_T, etc.; subscripts v, u, T, etc. denote partial derivatives
of the Hamiltonian, fuel flow, and drag, with respect to the vari-

able in the subscript

f(t) derivative of the state vector fT = [_,_,_,_,_]

g gravitational constant, ft/sec 2

h vertical Cartesian coordinate, altitude above sea level, ft

H(h,v,u,T,y) Hamiltonian

J(F,t) performance index

kj coefficients to calculate drag j = i,

L lift, ib

M mixed state variable and control constraint

P integrant of the performance index

q constant needed to convert indicated to true airspeed in

v = Vl(l + qh), i/ft

v



R total flightpath length (see fig. i)

RCRUISE'RCLIMB'_ flightpath distances above 10,000-ft altitude, ft
RDESCENT

S distance along the horizontal projection of the flightpath

S state variable constraint

T thrust (control variable), ib

tj integration times j = i, 2, 3, 4

U(t) control vector

u tan i = tangent of the bank angle (control variable)

v true airspeed, also ground speed in no wind condition, ft/sec

vI indicated airspeed, ft/sec

W aircraft weight, assumed constant for each subproblem, ib

X(t) state variable vector

x,y horizontal Cartesian coordinates of the flightpath, ft

y flightpath angle (control variable), rad

A difference between two quantities

influence factor to append state constraint to the Hamiltonian

[_x,_y,_h,_,_v] row vector of adjoint variables consisting of individual adjoint
variables

influence factor to append mixed control and state constraint to
the Hamiltonian

_(h,v,_,_v) extremal u when not at maximum or minimum bank angle

T(h,V,%v) extremal thrust when not maximum or minimum

bank angle, rad

heading measured from x-axis, rad

( ) time derivative of ( )

(") second time derivative of ( )

( )T transpose of a vector or matrix

vi



Subscripts:

max maximum value

min minimum value

Superscript:

( )* optimal value; also denotes new expression used in section 3 when
derived from an expression given in Section 2

vii





MINIMUM-FUEL, THREE-DIMENSIONAL FLIGHTPATH GUIDANCE OF JET TRANSPORTS

F. Neuman and E. Kreindler*

Ames Research Center

SUMMARY

This is a report on minimum-fuel, three-dimensional flightpaths for commercial

jet aircraft. The theoretical development is divided into two sections. In both

sections, the necessary conditions of optimal control, including singular arcs and
state constraints, are used. One section treats the initial and final portions

(below i0,000 ft) of long optimal flightpaths. Here all possible paths can be

derived by generating fields of extremals. Another section treats the complete

intermediate-length, three-dimensional terminal-area flightpaths. Here only repre-

sentative sample flightpaths can be computed. The report provides sufficient detail

to give the student of optimal control a complex example of a useful application of

optimal control theory.

i. INTRODUCTION

Rising fuel costs have focused increasing attention on the problem of minimizing

fuel consumption of commercial aircraft, and recent work in aircraft guidance demon-

strates that on-board optimization of aircraft trajectories offers an efficient way

of conserving fuel.

Minimum-fuel aircraft trajectory problems can be divided into two classes:

en route problems with trajectory lengths of 50 n. mi. and longer, and terminal-area

problems with trajectory lengths of 5 to 50 n. mi. For the en route problem, an

on-board algorithm for optimum climb-cruise-descent has been developed for the verti-

cal plane only, since horizontal maneuvers are not a significant feature of en route

flight. The general class of terminal-area trajectory problems is more difficult to

solve, because vertical and horizontal maneuvers involving speed, altitude, and

heading changes, which are of comparable significance in influencing fuel consump-

tion, occur simultaneously.

In section 2 we study the subclass of terminal-area climb-out and descent tra-

jectories that are part of an overall optimal trajectory that includes an en route

nonturning optimal cruise segment. The trajectories complete the optimal trajec-

tory problem of reference 1 for longer flightpaths between airports by including the

initial and final turns from and to runway headings. For this subclass of problems,

essentially all possible extremals can be found, and the problem of global optimality
(ref. 2) encountered in the general class of terminal-area turning flightpaths can be
avoided.

The results presented for the problem in section 2 show that for fuel-efficient

turning climb-out and descent guidance, the altitude-speed profile is nearly the

*Department of Electrical Engineering, Israel Institute of Technology, Haifa,
Israel.



same as that generated for nonturning flightpaths (i.e., flightpaths confined to the

vertical plane). In the special case of nonturning flightpaths, the results pre-
sented in this paper are in agreement with those presented in reference i. The

material presented in section 2 of this report was previously published as an

informal NASA technical memorandum (ref. 3) (printed locally) and was summarized in

reference 4; however, many editorial corrections and changes have since been made
and are incorporated here.

Section 3 focuses on the second subclass of problems, namely, 15-50 n. mi.-long
terminal-area flightpaths, which are called optimal capture trajectories. These are

trajectories that end by aligning the aircraft with the Instrument Landing System

(ILS) localizer at a specific point, heading, and speed; they begin at any other

point heading and speed. These trajectories arise between airports in metropolitan
areas and in the descent phase when the aircraft does not arrive in the terminal area

at the proper state to complete the optimal approach or, for air-traffic control

reasons, is not permitted to complete the optimal maneuver. The approach in previ-

ous studies has been to synthesize and sometimes optimize vertical (ref. i) and hori-

zontal trajectories (refs. 5-8) separately and then combine them heuristically

(refs. 9-11). In this research we generate extrema!s to study samples of optimal

three-dimensional capture trajectories, which include speed changes, and thus verify
and refine existing heuristic solutions. The material in section 3 has not been

published elsewhere.

We will briefly describe the approach taken for both sections 2 and 3. The

first choice to be made was the set of differential equations, to describe the

aircraft motion. Point-mass equations of motion were chosen, and a set of controls

was selected that is not directly identified with physical aircraft controls. The

controls are bank angle, thrust, and flightpath angle, instead of the elevator,
rudder, and throttle lever position. In addition, one of the controls, thrust, is

difficult to measure in flight. However, we could fly the computed speed-altitude

profile, while selecting the speed by an autothrottle, which would result in the

proper thrust setting. In addition to the autothrottle, the guidance system needs a

flightpath-angle control system and an attitude control system. A more detailed
system description would require a more complicated theory.

The aircraft drag as a function of speed and altitude appears in the equations

of motion. For meaningful results, the drag must be modeled accurately as a poly-

nomial in altitude, speed, and bank angle. The derivation of this polynomial is

given in appendix A.

The performance criterion (minimum fuel) depends on the fuel flow, which must

also be modeled accurately for significant results. The fuel flow has been modeled

as a function of altitude, speed, and thrust and is also given in appendix A.

The approach for finding optimal flightpaths is as follows. We use the neces-

sary conditions of conventional optimal control theory, which involve the Hamiltonian,

adjoint variables, and optimal controls (which are functions of the state and adjoint

variables). Extremal paths, which are candidates for optimal paths since they

satisfy the necessary conditions, are found by integrating the equations of motion,
and the equations for the adjoint variables, while using the optimal controls. Cor-

rectness of the computations is verified by checking the Hamiltonian for the problem,

which must be zero. The mathematical development is given in sufficient detail so

that only knowledge of partial differentiation and algebraic manipulation is needed

to derive the equations from the fundamental equations of optimality. However, not
all the intermediate steps are shown, and a substantial amount of algebra is often



needed to derive the equations. It is assumed that the reader understands the funda-

mental equations, such as the necessary conditions of optimality.

The simplified equations of motion contain the flightpath angle control as a
linear variable, which results in an optimum flightpath angle; the flightpath angle
is either at maximum or minimum. Intermediate values of a linear control may be

optimal; the control is then called a singular control in the theory of optimal con-

trol (ref. 12). The singular control, the flightpath angle in our case, is found by

setting the partial derivative of the Hamiltonian with respect to the control equal
to zero, and by setting all the time-derivatives of that partial derivative equal to

zero also. The resulting extremal is called a singular arc, and the flightpath-angle

control on this arc is smoothly varying with the exception of a few steps. In addi-

tion, for the singular-arc solution, the values of the adjoint variables are severely

restricted. Only one adjoint variable can be chosen, and it determines the amount of

turning of the flightpath. Therefore, if we start an extremal on the singular arc,

integrate forward and backward in time, and get off the singular arc at both ends to
continue with the ordinary optimal control solution, we can obtain useful sample

trajectories.

It will be noted that we can generate useful sample trajectories, but that we do

not solve two-point boundary-value problems. Therefore, we cannot use this method in

flight, but we can generate a large set of representative flightpaths, and we can

compare the resulting fuel used with that of an equivalent suboptimal flightpath,
generated by an algorithm that does solve the two-point boundary-value problem. This

gives a measure of the penalty for flying with a suboptimal algorithm. Such

comparison is the major advantage of the approach taken in the present report. By

writing suboptimal algorithms of various complexity and comparing their performance

with the optimal, we can determine which features of the optimal trajectories con-

tribute most to fuel savings. A suboptimal algorithm is described in appendix B. It

was developed by abstracting the essential features from the optimal trajectory sam-

ples found by the methods described in this report.

In general, extremals are only candidates for optimality. The question of global

optimality has been avoided by taking advantage of knowledge gained in our earlier

work, reported in references 2 and 8. Only medium-length and long-distance trajec-

tories were investigated, where, for global optimality, turns are limited to 180 °

Although we cannot prove that our extremal trajectories are globally optimal, our

experience leads us to believe that they are.

2. MINIMUM-FUEL TURNING CLIMB-OUT AND DESCENT

Problem Statement

The problem is to minimize fuel consumption FT over the complete flightpath
from takeoff to touchdown. In order to solve this problem, the equations of motion

for the vehicle are needed and the performance index must be formulated.

The state equations are the point-mass equations of motion for an aircraft in

zero wind condition. The assumptions are as follows: lift = weight/cos 4; small

flightpath angle; constant mass; and coordinated turns. The equations are a set of

nonlinear differential equations of the form _ = f(X(t),U(t),t), where X(t) is a



column vector of the five states, and U(t) is a column vector of the three controls
(ref. 12, p. 48):

= v cos_ (i)

# = V sin _ (2)

= vy (3)

= -gu/v (4)

= g(T - D - Wy)/W (5)

Here the states X(t) are x and y the coordinates in the horizontal plane, h the

vertical coordinate, _ the heading angle measured counterclockwise from the x-axis,

and v the speed; g is the gravitational constant, W is the weight, and D is the

drag. The controls U(t) are the thrust T, flightpath angle y, and the tangent of
the bank angle u.

The thrust T, where thrust is constrained to be between idle and maximum allow-
able thrust is

<T<T
Tidle - - max

where Tidle = 0 and Tma x = 23,000 lb.

The flightpath angle y, which is constrained in accordance with present commer-
cial airline practice, is

< <
Ymin - Y - Ymax

= 0° = 5° for climb-out
Ymin ' Ymax

= -4 ° = 0° for descent
Ymin ' Ymax

The 0° bounds are imposed to eliminate optimal climb-out and descent flightpaths that

dip below h = 2,000 ft. The 5° bounds are imposed to eliminate flightpaths that

decelerate during climb at maximum thrust, and the -4 ° bounds are imposed to elimi-

nate flightpaths that accelerate during descent. The altitude limit of 2,000 ft
allows for obstacle clearance in climb-outs and glide-slope alignment on descent.

The tangent of the bank angle u, which is constrained in accordance with pres-
ent practice for commercial autopilots, is

-u < u _ u u = tan _ _maxm - m m max' = 30°

The only state constraint that was applied was on airspeed. FAA regulations state

that the indicated airspeed in the terminal area must not exceed vI = 250 knots
(422 ft/sec); when converted into true airspeed (which is equal to the ground speed
in the assumed no-wind condition) this translates into a state-variable constraint

for the speed v:

4



S = v - Vl(l + qh) J 0 ; vI = 422 ft/sec ; q = 0.162xi0 -4 ft-I (6)

For our altitude range from 2,000 to i0,000 ft this corresponds to a true airspeed

range from 258.1 to 290.5 knots, respectively.

The next problem is to develop the performance index for the low-altitude turning

segment. This requires some preliminary discussion of various approximations. The

intended procedure for the complete minimal-fuel turning flightpath is to connect the

optimal solution for the straight-line flightpath from reference 1 (cut off below an
altitude of i0,000 ft) with an optimal turning climb-out and descent (connected to the

straight-line path at the 10,000-ft altitude). Clearly, any portion of an optimal

trajectory is also optimal. However, the converse of piecing together portions of

optimal trajectories will result in an optimal trajectory only under rather special
conditions. But this piecing is precisely what we intend to do. Our experience leads

us to believe, from the numerical results, that piecing together a nonturning, optimal,

high-altitude trajectory with a turning, low-altitude trajectory will give a close

approximation of a complete optimal flightpath.

The first approximation is that the high-altitude portion of a long-distance

optimal flightpath has a straight line projection in the horizontal plane. In refer-
ence 8 it was shown that for optimal horizontal flightpaths that involve initial and

final turns, the flightpath does not contain a mathematically straight-line portion.

However, even for flightpaths as short as 20 n. mi. there is a center portion of the

flightpath that is straight for all practical purposes. Then, for the much longer

flightpaths considered here, the assumption of a straight-line horizontal projection

of the center portion of the trajectory appears reasonable. If, in addition, the ini-

tial portion of the turning descent is also almost a straight line and the speeds and

controls at the junction match, so that there is no discontinuity, then one can be

reasonably assured that the joining of the path segments will result in a close approx-

imation of a fuel-optimal flightpath.

To develop the performance index, J, it is convenient to refer to figure 1 in

which the flightpath has been drawn to include a turning climb-out segment from tI

_-RCLIMB-_ RCRUISE-_RDESC_

I I x

y I x2 -D4 iI I
t3 iI±l

Yl _ Y2 -_;_'_ xt2
1

t 5 t4
t O

Figure l.- Optimal flightpath. Note: t0-t I and t_-t s are not subject to
optimization.



to 10,000-ft altitude at t2, a straight-line climbing segment (RCLIMB) , from t2 to

cruise altitude, a straight-line cruise segment (RcRuISE), a straight-line descending

segment (RDESCENT) from cruise altitude to 10,000-ft altitude (t3) , and a turning

descent from 10,000-ft altitude to the final approach fix t_. Therefore, we are
concerned here only with optimization of the flightpath above 2,000-ft altitude.

Below that altitude other considerations do not permit fuel optimization of the path.

For a given range R, the optimal cruise altitude and speed change very little with

minor changes in the length of the straight flightpath RCRUISE + RCLIM B + RDESCEN T
which may occur when considering alternative low-altitude climb-outs and descents.

Any change is primarily reflected in the change of the cruise distance, and the high-
altitude climb and descent strategies are not affected. This means that the optimal

fuel consumed during the nonturning climb-out and descent segments is independent of

the rest of the flightpath and can, therefore, be represented by a constant Kl and
the fuel consumed during the cruise segment is directly proportional to the range
traveled at cruise altitude; then the total fuel consumed during the flight can be
expressed by the equation

FT = F dt + CRcRuISE + F dt + K1 (7)
_3

where F is fuel burn rate, C the cruise cost is the fuel per nautical mile expended

at optimal cruise speed and altitude (ref. i), KI is the fuel consumed during the

optimal straight-line climb and descent segments of flight, and RCRUISE is the dis-
tance traveled at cruise. From figure i it is seen that

RCRUISE = R - RCLIM B - _ESCENT - xl - x2

where R (the distance between the climb-out fix and final-approach fix), RCLIMB, and

RDESCEN T are constants. (Referring to fig. i, we realize that Yl and Y2 have
negligible effect on the length of the long-distance straight-line flightpath above
an altitude of lO,000 ft.) We define xI and x2 to be

ft _t_
xI = v cos _ dt ; x2 = v cos i dt

tl _8

SO that

t2 ft_
FT = (F - Cv cos _)dt + (F - Cv cos _)dt + KI + K2

_i t3

where

K2 = C(R - RCLIM B - _ESCENT)

and we define

_ttf ftf
J = (F - Cv cos _)dt = P dt (8)

t
s s



where P &= F - Cv cos 9, ts is tI for the climb-out and t3 for the descent,

and tf is t2 for the climb-out and t4 for the descent, and the upper limit of
integration is free. The performance index J, applicable to the low-altitude climb/

descent portions of the complete flightpath has two parts and equals the fuel

expended in the ascent (descent) minus the fuel saved in shortening the cruising

portion of the high-altitude flightpath. This, of course, is correct only if the

overall flightpath is long enough to have a cruise segment.

The initial and final states for descent are

h = i0,000 ft
o

9° : 0

v(0) _ 250 knots IAS

hf = 2,000 ft

vf = 180 knots IAS

and 9f is specified between 0 and 7. The values are reversed for climbout. The
values for (xl,Y I) and (x2,y2) of figure 1 are not specified. The terminal altitude

hf and speed vf are chosen to permit a final straight-in landing approach along a
specified glide slope. The initial speed v(0) is either determined by the speed

constraint or, if the speed constraint is not violated, by the speed dictated when

flying the solution of the optimization problem. Numerical results show that the

low-altitude terminal conditions at 10,O00-ft altitude are the proper initial and

final conditions for the straight high-altitude en route portion of the flightpath.

In order to solve the minimum-fuel climb-out and descent problems, it is neces-

sary to model the drag, thrust, and fuel-flow rate for a specific aircraft. Choosing

the Boeing 727-100 as an example, the drag D is modeled by

D = DI + D2u 2 (9a)

where the drag for nonturning flight DI is given by

= kI(I + k2h) + k 3(I + k_h)v 2 + k5(I + k h)/v 2 (9b)D 1

and the bank-angle-induced drag D2 is given by

D 2 = kl(l + kzh)/2 + k 5(I + k6h)/v 2 (9c)

This approximation for drag results in a minimum drag of 9,000 ib and includes

sufficient flap deployment at the lower speeds such that an 8° angle of attack is

not exceeded. In general, takeoff and landing weights differ from the nominal

W = 150,000 lb. In this case, kI is multiplied by (W/150,O00) and ks by
(W/150,000) 2 to provide a reasonable approximation of the drag.

The thrust value Tma x was chosen to be 23,000 ib and Tidle was set equal to
zero. Actually, both the maximum and minimum or idle thrust values are altitude" and

speed-dependent. However, the idle thrust is small enough to be negligible, and the

maximum allowable thrust has been chosen, for simplicity, as the smallest maximum

value allowable over the altitude range of 0 to i0,000 ft.

7



The fuel-flow rate for the B-727-I00 is modeled by

F = C0 + CIT + C2Tz (i0)

where

Cj = c j+1(l + c4j+2h) + c j+3(l + c j+ h)v ; j = 0, i, 2 (ii)

and the numerical values of the k's and c's are provided in appendix A.

The optimal cruise fuel used per nautical mile, C, was set equal to

17.5 ib/n. mi., which was obtained from reference I. This particular C is for the

example of a 200 n. mi. flight with a takeoff weight of 150,000 lb. This number will

change for other weights and distances. We are interested here only in the character

of the optimal turning climb and descent and, therefore, do not change C or W in

our computations. However, if optimization of a specific path was required, one

would first optimize the straight-line path between airports and obtain C, as well
as takeoff and landing weights. This information would be accurate enough to compute

the turning terminal-area paths without having to resort to iteration.

Necessary Conditions

The Hamiltonian for this state-variable-constrained problem is (ref. 13)

H = P + %Tf + nS

where XT is a row vector of adjoint variables, In this optimal control problem,

which only requires the capturing of a specific heading, the state variables x and y

in equations (i) and (2) can be ignored (hence we do not have Xx and Xy in the
Hamiltonian); they are required, of course, for the flight trajectories in the hori-

zontal plane. In the above equation, P is obtained from equations (8) and (i0), f

from equations (3)-(5), D from equation (9a), and S from equation (6). Then

H = CO + CIT + C2T 2 - Cv cos _ + XhVY - X_gu/v + Ivg(T - D l - D2u 2 - Wy)/W

+ n[V - vI(l + qh)] (12)

where a necessaryconditionfor optimalityis n £ 0, _[v - vi(l + qh)] £ 0. The
differentialequationsthat must be integratedto obtain the costatevariablesare
derivedfrom the necessarycondition (ref.12, p. 48)

iT = -(_H/_f)

_h = -Hh = -Coh - ClhT - C2hT2 + kvg(Dlh + D_hU2)/W + _vlq (13)

i_ = -H_ = -Cv sin _ (14)

iv = -Hv = -C0v - ClvT - C2vT2 + C cos _ - Xhy - X_gu/v 2 + kvg(Dlv + D2vU2)/W -

(15)



where Hh = aH/_h, C0h = _C0/_h, etc. (see appendix C). The final time for the inte-

gration is not specified. The additional condition that determines the optimal final

time tf is (ref. 12, p. 75) that the Hamiltonian is zero at the final time,

HIt=tf = 0. Also, since equation (12) is a Hamiltonian and not an expressed function

of time (Ht = 0), we have

H _ 0, for all t E [0,tf] (16)

The necessary conditions for the optimal controls are given by Pontryagin's

minimum principle (see ref. 12, p. 108), according to which H must be minimized

over the set of all possible constrained controls. Since no cross products of the
controls appear in the Hamiltonian, H can be minimized for each of the three con-

trols separately as follows.

First, the extremal thrust T* is found by finding the value of T that mini-

mizes H, while using the permissible range of T, Tidle 5 T S Tmax. That portion of
H that is a function of T is denoted as H(T). Then from equation (12)

H(T) = CIT + C2T 2 + XvgT/W

where Cl and C2 are greater than zero and are functions of h and v. The function

H(T) and the terms of H(T) are plotted in figure 2(a) for the example %v < 0, since
otherwise the minimum of H(T) is at T = 0. The unconstrained minimum, if it exists,

would occur at T = T where HT = 0 and (HT)T > O. Two possible cases depending on

the value of Tmax are shown in figure 2(a). If Tma x = Tlmax which is smaller than
T, then T* = Tlmax. If Tma x = T2max which is larger than T, then T* = T. This
is expressed in the following equations:

Figure 2.- Optimal thrust. (a) Finding T* for a specific (h,v); (b) range of

%v that results in intermediate thrust, T*.

9



ma x if T _ Tmax

T* = if Tidle < T < Tmax (17)

_-_idle if T S Tidle

where from HT = 0

T = -(C 1 + %vg/W)/(2Cz) (18)

Since minimization of H yields T* uniquely, it can be seen (see ref. ii) that

T* and Xv are continuous at junction times between velocity-constrained and the

unconstrained arcs. Thus, thrust is seen to be a continuous function of %v and t.

Solving equation (18) for Xv and inserting T = 0 and T = Tma x gives the range

of Xv that results in an intermediate thrust; this is shown in figure 2(b). Since

C2 is small for all h and v, the range of %v for intermediate thrust is narrow
and, as we shall see in the results section, intermediate thrust will not occur for

the optimal turning climb-outs and descents.

Next, the extremal bank-angle control u* is found by finding the value of u

that minimizes H while using the permissible range of u, -um S u S um. First,
however, we observe that equations (4) and (14) imply that

u = 0 if %_ = 0 on an interval of time (19)

which results in straight-line flight in the horizontal plane.

That portion of H that is a function of u is denoted as H(u). Then, from

equation (12),

H(u) = -%_gu/v - %vgD2u2/W

The function H(u) and the terms of H(u) are plotted in figure 3(a) for % < 0 and

_@ > 0. The unconstrained minimum, u = v, will occur where Hu = 0 and (_)u > 0,

Figure 3.- Finding u*. (a) %v < 0; (b) %v > 0.

i0



if it exists. Two possible cases of um are shown in figure 3(a). In case i, Ulm

is smaller than v, hence u* = Ulm. In the second case, U2m is larger than _,
hence u* = _.

The case in which Iv > 0 and I_ < 0 is shown in figure 3(b). Here (Hu)u < 0

at Hu = 0 for a maximum value, and the minimum value of H(u) is at one of the
limits of u, in this case u* = -um. The two mirror symmetric cases (not shown

Iv < 0 and 1_ < 0, and Iv > 0 and 1_ > 0, give similar results. In summary,

I_ umif _Umll

u* = if -um < _ < u Iv < 0 (20)

-um if _ J -um

where from Hu = 0

= -(I,w)/(21vh2V) (21)

If Iv [ 0, minimization of H gives

u* = um sgn i_ ; Iv Z 0 and I_ _ 0 (22)

We note that in equation (22), I_ is not identically zero on an interval. For

1_ _ 0 and Iv > 0, minimization of H with respect to u gives u* = ±Um; how-
ever, this is not compatible with equation (19). This incompatibility results from

the nonconvex velocity set (see fig. 30, appendix D). This incompatibility and the

nonconvexity can be removed by allowing a so-called "relaxed control," that is, a

chattering bank angle u(t), oscillating at infinite frequency between +um and -um.

If the average of the chattering u(t) is zero, then it is compatible with IV _ 0
and _ = constant; that is, a nonturning flightpath. It is shown in appendix D how,

by admitting a chattering control u, the velocity set is made convex. A chattering

bank angle on a nonturning flightpath may be called for when maximum drag at zero

thrust (Iv > 0 implies, by equations (17) and (18), that T = 0) is needed for maxi-
mum deceleration. This makes no sense for the type of long flightpaths we computed;

indeed, in our numerical work, Iv was always negative and we never got near a

chattering bank angle.

We further note that if I_ vanishes on an interval of time (u _ 0) from equa-
tion (19) and %v crosses from negative to positive values, say at t = t2, then u

switches from u(t) = 0, t < t2 to u(t_) = ±um, from equation (22) dependent on I_
which is no longer zero. This is a transition from a straight-line flightpath to a
curved one. Such discontinuous bank angle would have to occur at zero thrust (see

fig. 2(b)); thus, it might occur (but actually did not occur) after initiation of the

optimal descent.

Lastly, the extremal flightpath angle y* is found by finding the value of y

that minimizes H while using the permissible range of Y' Ymin S ¥ i Ymax" That

portion of H that is a function of y is denoted as H(y). Then, from

equation (12)

H(y) = lhVY - Ivgy

ii



Since H(y) is linear in y (see fig. 4(a)), y will be at one of its limits in order
to minimize H,

Ymax if _ < 0y* = (23)

_Ymin if _ > 0

where

= %hv - %vg

_min _'max

_ H(3,)

H,_>O

I

Figure 4.- Finding y*.

Since H is linear with respect to y, a special optimal solution for y

exists, namely, when H(y) _ 0 for an interval of time. In this case, the rela-

tion _ = 0 does not involve % and, therefore, does not determine y*. However,
it determines the relationship between %h, %v, and v:

= %hv - Xvg = 0 _ _h = %vg/v on a subinterval (24)

In the next section, this relationship, as well as others, will be used to determine

a special optimal flightpath angle, which is called the singular solution.

Flightpath Guidance along a Singular Arc

When flying along a singular arc, equation (24) implies that all time-derivatives

of Hy vanish. We start with the first derivative,

(_) = ihV + %h_ - ivg = 0 (25a)

Inserting the values for Xh (eq. (13)), %h (eq. (24)), _ (eq. (5)), and iv (eq. (15))
and simplifying equation (25a) results in

(_) = -FhV + %v[DhV + g(T - D)/v - gDv]g/W + g(Fv - C cos _ + %_gu/v 2) (25b)

Solution of the simultaneous equations for H = 0 (eq. (12)) and (H_) = 0 will permit

then %h follows fromthe calculation of the adjoint variables %v and %_; Y

12



equation (24). For simplicity, Xv and X_ will be calculated under the assumption
(to be verified) that T = Tma x for optimal climb-out and T = Tidle for optimal

descent. There are three cases for u: u = O, lul = um (maximum), and
[u[ < um (intermediate). We then examine the equations numerically to check

whether they are consistent with these assumptions (e.g., Xv must be in the appro-
priate range for the assumed T, v must be in the speed range of interest, and the

X's must be real numbers).

The singular-arc X's can now be found as follows. By using equation (24) in

the equation for H = 0 (eq. (12)) the dependence of equation (12) on y is elimi-

nated. The additional (temporary) assumption is made that the solution is not

bounded by the speed constraint, _ = O. In addition, by using H = 0 and _ = 0,
we have three equations with three unknowns u, Xv, and X_:

2H/v = Xv(Ax + Bxu2) - X_Cxu + Dx = 0_

Hy/g - H/v = Xv(Ex + Pxu2) + X_CxU + Gx = 01 (26a)u = HxX_/Xvllul<um

with the following coefficients

Ax = 2g(T - D_)l(vW)

Bx = -2gD2/(vW )

Cx = 2g/v 2

Dx = 2F/v - 2C cos
, (26b)

Ex = DIhV/W - gDIv/W

Px = D2hV/W - D2vg/W

Gx = -F/v - FhV/g + Fv

Hx = -W/(2D2v )

First case: -um < u < um. Solving equations (26) for %v and X_

Xv = [Dx(PxH x + Cx) - Gx(BxH x - Cx)]/[Ex(BxHx - Cx) - Ax(PxH x + Cx)] (27)

_ = _v((GxAx- DxEx)l{Hx[Dx(PxHx+ Cx)- Gx(BxHx- Cx)]})_12 (2S)

and Xh follows from equation (24).

Second case: u = 0. From equation (19),

_ = 0 (29)

and equation (26a) becomes

13



XvAx + Dx = 0 (30a)

XvEx + Gx = 0 (30b)

For (30a) and (30b) to be consistent requires

GxA X - DxE x = 0 (31)

This is consistent with equation (28) for X_ = O. The variables Gx, Ax, Dx, and Ex
are functions of altitude and speed so that we can expect a single altitude-versus-

speed profile. If we attempt to obtain an explicit expression for h versus v by
expanding equation (31), we encounter an extremely long polynomial in the seventh

power of v and second power of h, which is not very illuminating. We therefore
shall be satisfied with a numerical solution of equation (31) which is described

later. In this case, the altitude-speed profile is the state trajectory and we do
not need to solve _.= 0 to determine y. Instead, by replacing h with Ah/At

in equation (3) and v with Av/At in equation (5), and by dividing equation (3)
by equation (5) and solving for y, we obtain y directly

y = [(T - D)/W] [(Ah/Av)/(Ah/Av + v/g) ] (32)

where Ah/Av can be determined from the altitude-speed profile.

Third case: lul = um. Solving equation (26) for Xv and X_ with lul = umresults in

Xv = -(Dx + Gx)/[ (Ax + Bx_) + (Ex + Pxu2m)] (33)

and

X_ = [Xv(Ax + BxU_) + Dx]/(Cxum) (34)

and Xh follows from equation (24). This last case is of little interest for opti-

mum ascents and descents, since u = um on the singular arc did not occur in our
numerical investigation.

It should be noted that for all cases -- even though Xv and X_ can be computed
directly from the above equations all along the singular-y arc -- it is computationally

simpler to use the above equations to compute initial values only and to integrate

equations (15) to obtain Xv and (14) to obtain X_, and to use equation (24) to
obtain Xh. This can be done also across junctions of speed-constrained and uncon-

strained arcs as it is shown in the next subsection that Xv and Xi are continuous
at such junctions.

We now must check whether all constraints and the assumptions on u and T are

satisfied so that the singular-arcs are candidates for optimal paths. These checks

are made at h = i0,000 ft, which is used for the start of forward integration in
descent and backward integration in climb. At that altitude, the case u = 0 is

of primary interest, since most of the turn is executed at low altitude. From the

numerical solution of equation (31), which applies to u = 0, Xv is obtained from
equation (30a) or (30b). When this Xv is substituted into equation (18), it is

consistent with T = Tma x for climb and T = 0 for descent. For descent, the solu-
tion of equation (31) gives an indicated airspeed below 250 knots, which means that
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the speed limit will be inactive. During the climbout, the speed profile along the

singular arc is, however, above the speed limit. Thus, climbout on the singular-y
arc violates the speed constraint. Nevertheless this case is investigated, since the

speed limit in the terminal area may be relaxed by ATC.

Being assured that the singular-7 case satisfies the constraints and assump-
tions at high altitude for u = O, the singular-arc flightpath angle for intermediate
u is now determined. The complete flightpath is determined by the choice of one

parameter, e.g., %_ (see p. 18) and the v-h profile can be obtained by a numerical
procedure similar to that given for the nonturning flightpath. Then y can be cal-
culated from the v-h profile via equation (32), and the three-dimensional path can

be determined in one additional step. However, we prefer to calculate y directly

from the condition (4) = 0 which, it turns out, contains y explicitly. We dif-
ferentiate (25b) to obtain

0 = (_) = D(_)/Dt = D/Dt{-FhV + Xv[DhV + g(T - D)/v - gDv]g/W

+ g(F v - C cos _ + X_gu/v2)}

= -Fh_ - Fhv + iv[Dh v + g(T - D)/v - gDv]g/W + Xv[Dh v + DhV - g(T - D)_/v 2

- g(DuU + Dhh + DvV)/V - gDv ]g/W + g(Fv + C sin _ + i_gu/v2

• 9
- 2X_guv/v + X_g_/v 2) (35)

When the equations for the time-derivatives are inserted in equation (35), y appears

linearly.

Solving equation (35) for y is straightforward but tedious and will only.be
sketched out. First, all terms with identical time-derivatives -- v, h, _, Xv, X_, _,

#v, Fh' Dv, and Dh -- are combined. Second, the last five time-derivatives are elimi-
nated with expressions (C17), (C3), (C5), (C13), and (C15) from appendix C. This

results in the following equation for (_):

(_y) = AH_ + BH_ + CH_ + DHi v + EHi_ (36)

where the coefficients have the following values:

AH =-F h + gDhXv/W- g_Xv(T- D)/(Wv 2) - 2g_X_u/v _ - g2XvDv/(Wv ) _]

[+ QH[I - kl(l + k2h)/D2]/v- VFvh + 2gk3k_v2Xv/W - 2gksks(l + u2)Xv/(Wv 2)

- 2g2k3(l + k_h)Xv/W - 6Xvg2ks(l + k6h)(l + u2)/(v_W)

BH = -g2XvDh/(Wv) _ QHD2h/D_ + gFvh _ 2g2k3k_VXv/W + 2g2ksk6 (I + u2)Xv/(Wv3) _ (37)

JCH = gC sin

DH = g[DhV + g(T - D)/v - gDv]/W - QH/Xv
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EH = g2u/v_ + QH/%_

QH = [g2X_/v2 - g2XvDu/(Wv) + (klk2v + 2ksks/v)g%vU/ (37)

(cont.)
+ 4g2ks(l + kGh)u%v/(Wv3)]u , lul < um

QH = 0 , ]u] = um

None of the coefficients (eq. (37)) involve y. When the equations for the

time-derivatives are inserted into equation (36), y appears linearly and the solu-
tion for y is

y = [AHg(T - D)/W - CHgU/v + DH(-F v + C cos _ - g%_u/v 2 + g%vDv/W)

+ EH(-Cv sin _)]/[AHg - BHV + DH%h] (38)

For equation (38) to be a candidate for an optimal solution, the generalized Legendre-
Clebsch condition must hold:

(-_)7 _ 0 . (-_)7 = AHg - BHV + DHXh > 0 (39)

This condition was verified numerically along all singular arcs. The case (-_)y__ = 0
is not possible since equation (39) is also the denominator for equation (38), which

would imply y . =.

On the speed-constraint arc, to be discussed next, y(t) is also intermediate and

singular. But now _(t) > 0, so that an appropriate term with _ and _ should be

added to _ and to equation (38) for y. There is no need to do this, however,
since y(t) for the speed-constraint arc is determined by the speed constraint.

Flightpath Guidance along a Speed-Constraint Arc

Since the climb speed for the singular y was above the speed constraint, we

must now develop the equations for y when flying at the speed-constraint

vI = constant, n > 0. On the speed constraint, inequality (6) converts to an
equality and can be solved for v, and the derivative can be taken in order to

express the relationships for v and _ on the constraint which are needed for the

computation of _ and y.

v = Vl(l + qh) (40a)

then

= Vlqh (40b)

But from equations (3) and (40a)

= Vl(l + qh)y (40c)

which with equation (40b) implies
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-$ = qv_(1 + qh)¥ (41)

Substituting for _ equation (5) and solving for y results in the following expres-

sion, which must hold on the speed-constrained arc:

y = [(T - D)/W]{g/[g + v_q(l + qh)]} (42)

Here the factor in braces varies only from 0.92 to 0.91 over the altitude range of

0 to i0,000 ft, respectively. It turns out that y in (42) is intermediate and is

the primary control to hold v at the speed-constraint; the thrust T, if it is
intermediate, is tied to the speed-constraint via equation (18) and by the multiplier

_(t) in equation (15) for Xv.

Since y is intermediate on the speed-constraint, it is singular. For con-

venience of designation we differentiate between the "singular arc" where y is

intermediate and the speed constraint is inactive or is ignored, and a portion of the

flightpath where the speed constraint is active, which is called a "speed-constraint

arc," even though y is singular.

At a junction time with a speed-constraint arc, the singular y(t) undergoes a

jump; this corresponds to the necessary conditions given in reference 14. Also,
according to reference 14, there is no jump in the adjoint variables at the junction
time. This can be shown in our case as follows. According to reference 13, at the

junction time ti the costates must satisfy the jump condition

AXh(ti) = -Xh(t +) - Xh(ti) = -_iSh = _iVlq

A_v(ti)= _v(t+)- _v(ti)= -_iSv= -_i , _i >-0

whence

AXh(ti )/AXv(ti) = -vlq (43)

But since y(t) is singular across ti we have from equation (24)

Xh(t_) Xh(ti) V

Xv(t+) Xv(t_.) g

from which it follows that

AXh(ti)/AXv(ti) = v/g

which contradicts (43). 'Hence _i = 0 and the X's are continuous across the

junction.

The condition N(t) _ 0 must be checked along the speed constraint arc. Fur-

thermore _(t) is needed for the computation of Xh and Xv in (13) and (15), recpec-

tively. Since y is singular on the speed-constraint arc, equation (24) must hold.

Differentiating (24) gives
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ih = g(vi v - %vV)/V 2 (44)

By combining equation (43) with equations.(13) and (15), we can obtain an expression

for D which is not dependent on %h or %v:

{iC0h + ClhT + C2hT2- _vgDh/W. g(vA_ + _v_)/v2]/(vlq + g/v)> 0, on the

- constraint
N=

off theconstraint

(45a)

where

An =_ C0v + ClvT + C2vT2 - C cos _ + XhY + X_g u/v2 - XvgDv/W (45b)

and where v and _ are given by equations (40a) and (41), respectively.

Computation of Extremals

The extremals are computed by numerical integration of the state and adjoint

equations (1)-(5) and (13)-(15) with the control T given by equations (17) and (18),

the control u given by equations (19)-(22), and the control y given by equa-
tion (23) when we are neither on the singular arc nor on the speed constraint; and

y is given by equation (38) on the singular arc or by equation (40) on the speed-

constraint arc. On the singular arc, the costate variables %v and _ are obtained
by integrating equations (13)-(15) instead of finding them directly from equa-

tions (27) and (28); we find %h directly from equation (24) for both singular and
speed-constrained arcs.

In the climbout and descent cases discussed in section 2, a heading capture with

specified altitudes and speeds, the starting values for integration of the adjoint

variables can be treated as parameters in such a manner that families of extremals

will sweep out all desired headings at the final altitude and speed. To achieve

this, forward time-integration is used for descent and reverse time-integration for

ascent. This technique permits the path integration to be started at I0,000 ft on a

speed-constrained- or a singular-arc portion of the path, which limits the freedom

of choice for the initial values of the adjoint variables and makes it easier to pick

them. For convenience of integration, the (x,y) coordinates at the 10,000-ft alti-

tude were chosen (0,0). When starting on a singular-arc portion of the path, the

optimal path leaves the singular arc when required by the 2,000-ft end altitude con-

ditions, provided the solution is not previously forced off by failing to meet the

speed constraint (eq. (6)) or the generalized Legendre-Clebsch condition (39)). When

starting on a speed-constrained portion of the path, the optimal solution will leave

the constraint boundary as required by the 2,000-ft end altitude conditions, provided

the solution is not forced off by failing to meet n > O. If in the singular-arc

descent the speed constraint is violated before reaching the reference altitude of

2,000 ft, the guidance switches to the speed-constrained arc at this point. The

singular case and the speed-limited case starting values are discussed separately.

Startin$ values for the sinsular arc-- To calculate an extremal, we must know the

starting values of all states and adjoint variables, x, y, h, 9, v, %h, %_, and %v,
which when known also define the controls. As stated before, the first four starting
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states for integration are given as x = 0, y = 0, h = i0,000, _ = 0, but v is
unknown. To find v, we make use of the fact that the control u must be close to

zero at the 10,000-ft level, where the nonturning, high-altitude path begins. There-
fore, we choose v iteratively to solve equation (31), which is the condition for

singular y when u = 0. Small variation from the speed thus found will permit us

to find Iv and I_ from equations (27) and (28) and Ih from equation (24) which
when used to obtain extremals, cover the range of end-heading 0 < _ < 180 °. Changes

in v to cover the range of headings were so slight (of the order of 10-19 knots)

that double-precision calculations were required. Once this was known, for practical

purposes, we used a fixed starting v as determined from equation (31) and Iv from

equation (30a), and then selected I_ over a small range close to zero to cover all
turns (0°-180°). This starting speed was 331 knots for the climb and 275 knots for

the descent. For the climb, this is above the speed constraint of 290 knots

(250 knots IAS); thus, backward integration of the climb can start either on the

singular arc, if we allow speeds above the speed constraint, or on the speed-

constraint arc. For the descent it follows that the forward integration cannot start

on the speed-constraint arc.

Starting values for the speed-constraint arc-- In the speed-limited case, we know

all initial states, even v = vI. We must, therefore, only determine the starting

adjoint variables Iv, Ih, and I_. Using equation (16) with Ih given by equa-
tion (24), the unsaturated u by equation (21), and y by equation (42), we obtain

I_ = ±2v{-[C 0 + CIT + C2T2 - Cv + Ivg(T - Dl)/W]IvD2/(gW)}i/2 , lul < um (46)

Here, Iv is a parameter and, thus the choice of one adjoint variable, Iv, determines
the other two, once the thrust is chosen (T = 0 or T = Tmax). As before, initially

u, and hence 1_, must be extremely close to zero. Hence, from equation (46), Iv
must be close to

= -(C + CIT + C2T2 - Cv)W/[g(T - D1) ] (47)
IvlI_= 0 o

Now, from equations (18) and (20), we get the lower and upper bounds of Iv, respec-

tively; thus Iv must be in the range

-WCl/g _ Iv _ 0 for T = 0 (48)

and from equation (18),

Iv _ -(C l + 2C2Tmax)W/g for T = Tma x (49)

The above considerations limit the possible values of Iv that can be considered
when starting on the speed constraint, and equation (47) must fall within these
limits.

Numerical solutions of equations (47)-(49) confirm that at i0,000 ft, starting

the forward or backward integration at the speed constraint is optimal for climb-out

but not for descent. When we insert the values from equation (26b) for Ax and Dx

and solve for Iv, we obtain an expression identical to equation (47) for the speed-
limited case. We note, therefore, that at the transition from the singular arc to

the speed-limited arc, Iv and Ih are continuous. Therefore, after the starting

value is known, %v can be computed in both cases by integrating equation (15).
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3. MINIMUM-FUEL CAPTURE FLIGHTPATHS IN THE TERMINAL AREA

Problem Statement and Necessary Conditions

The problem is to find minimum-fuel, intermediate-length capture flightpaths

after arrival in the terminal area. Intermediate-length capture flightpaths are

those flightpaths that start from an arbitrary position, altitude, and heading in

the terminal area, that have a central essentially nonturning segment, and that end

on the centerline extension of the approach runway with the proper final heading,
altitude, and speed (see fig. 5). This would mean that we would have to solve a

two-point boundary-value problem. However, in accordance with the methods estab-

lished in reference 8, we do not seek to solve the two-point boundary-value problem.

We only generate a set of representative samples, from which we can deduce the essen-

tial features for suboptimal approximations. More complex, highly turning, short

distance paths can easily be generated from the equations, but they were not studied,

since operationally they do not occur frequently. However, it has been shown in
reference 8 that short, suboptimal paths that meet the two-point boundary-value prob-

lem can always be generated, but at a cost substantially above optimal.

The equations of motion are the same as in section 2 (eqs. (1)-(5)). Also, the
controls and the limits on the controls are the same. In section 3 the speed con-

straint equation (6) is also considered, even though the speed-constrained flight-

paths have a very narrow range of speeds. Most of the results are, therefore, given

for unconstrained paths. The performance index is the integral of the fuel-flow rate

fl I _
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Figure 5.- x-y plot of sample capture flightpaths.
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and does not contain the term -Cv cos _ as the performance index (eq. (8)) of

section i:

J = rF dt (50)
J

The end conditions on the state variables are ho = hf = 2,000 ft, vo = 250 knots

IAS, vf = 180 knots IAS, 0 _ 4o _ 180°, and 0 j _f j 180 ° For convenience, when

generating extremals we usually choose as origin x = 0, y = 0, and _ = 0 at the

point of the trajectory where thrust is equal to drag. To move the flightpaths to
the actual required terminal conditions is then a simple task of coordinate
transformation.

The same drag and fuel flow models hold as in section 2 (eqs. (9)-(11)). The

assumptions are also the same as in section 2. The Hamiltonian for the capture prob-
lem is

H = CO + CIT + C2T 2 + _xv cos _ + XyV sin _ + XhVY - _gu/v

+ Xvg(T - D I - D2u 2 - Wy)/W + n[v - Vl(l + qh)] (51)

We observe that by setting X = 0 and Xx = -C, the Hamiltonian becomes iden-

tical to that of equation (12). T_us, the problem discussed in section 2 can be

treated as a special case of the problem in this section. Furthermore, this obser-
vation ties our work to that of reference 1 where X is the only adjoint variable

(corresponding to the energy as the only state variable) and it turns out there that
X = constant = -C.

Comparing this with equation (12) we note that here %x and Xy are not zero,
but that C = 0. As before, the adjoint variables are defined by

ix = _ _-_H= 0 ; Xx = constant (52)

_H 0 ; Xy = constant (53)iy = - _-_=

_H - C1h T - C2hT2 + Xvg(D1h + D2hU2)/W + _viq (54)ih =- _-_=-C0h

_H

iV = - _--_= XxV sin _ - XyV cos _ (55)

iv = _H_v= -C°v - CIvT - C2vT2 - Xx cos _ - Xy sin _ - Xhy - X_gu/v 2

+ Xvg(D1v + D2vU2)/W - n (56)

The differences between equations (12) and (51) are minor. When the minimum principle

is applied, it is found that the controls are given by identical expressions, equa-
tions (17) and (18) for the thrust, (20) and (21) for the bank angle, and (23) and

(24) for the flightpath angle, but, of course, the expressions from which the lambdas

are integrated differ.
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Flightpath Guidance along a Singular Arc

Again, when flying along a singular arc, equation (24).implies that all time-

derivatives of H_ must vanish. Inserting the value for Ih (eq. (54)), _ (eq° (5_),

and Iv (eq. (56)) into equation (25) and simplifying, the following equation for
is obtained.

_ = -FhV + Iv[vD h + g(T - D)/v - gDv]g/W + g(Fv + Ix cos _ + Iy sin _ + I_gu/v 2)

(57a)

Nonturnin$ flisht-- Solution of the simultaneous equations H = 0 and _ = 0
will permit the calculation of %x and %v for a nonturning flightpath because then

u = O, _ = O, %y = 0, I_ = 0, and Ih is given by equation (24). The additional

assumption is made that the solution is not bounded by the speed constraint, _ = 0.

With u = _ = %y = O, the equations for H (eq. (51)) and Hy (eq. (57a)) simplify to
permit the construction of nonturning optimal flightpaths by forward and backward inte-

gration, while starting somewhere on a portion of the flightpath where optimum thrust

is intermediate, because at such a point there is only one possible Iv .

= 0 results in

Ivg[DlhV - D1vg + (T - DI)g/v]/W + gFv - FhV + g%x = 0 (57b)

where equations (CI0), (C12), and (C14) (appendix C) were used. H = 0 results in

%vg(T - DI)/W + F + IxV = 0 (58)

where F is defined in equation (CI). Equations (57b) and (58) are solved for Iv

and Ix

-W(Fvg - Fg/v - FhV)
%v = (59)

g(DlhV - D1vg)

Ix = -F/v - %vg(T - DI)/(vW) (60)

Setting %x = -C, equations (58) and (59) reduce to equations (30a) and (30b),

respectively. Note that Iv is a function of the unknown thrust via F, Fv, and Fh.
When the thrust is intermediate, equation (18) must also hold, and can be solved

for Iv:

%v = -(2C2T . Cl)W/g (61)

To find starting values for the states and adjoint variables, we can now

equate equations (59) and (61). An intermediate thrust, for example, T = Dl, is
chosen, and for a given altitude h, v is numerically changed until the equality

between equations (59) and (61) has been achieved. Once one has a consistent v and

h pair one can solve equation (60) for the numerical value of Ix" For the example

T = D l in equation (60), -Ix is s_mply F/v, the cruise fuel consumption in pounds
per foot. As will be explained later, these initial values can also be used for the

22



turning flightpath or, as shown next, they can be used to calculate the speed-

altitude profile of the variable-thrust portion of the singular-y arc for a non-

turning flightpath.

We will first describe how we calculated the altitude-speed profile for the non-

turning flightpaths without first calculating y directly. Such a calculation is a

valuable check on the results for the general turning flightpath where y must first

be very laboriously computed. The altitude-speed profile is computed in the follow-

ing manner. In equations (57b) and (58), one replaces Xv from equation (61) and

also replaces F, Fv, and Fh by the expressions (CI), (C2), and (C4) given in
appendix C. The equation for H = 0 (eq. (58)) can then be solved for the thrust,

T = DI ± [D_ + (Co + CID l + Xxv)/C2]i/z (62)

where it turns out that the positive sign is used for the higher-speed part of the

variable thrust trajectory and the negative sign for the lower-speed part. Then,

beginning with the consistent v,h pair, we change v slightly and calculate the

value of T from equation (62) which is inserted into (61) to get Xv, which is then

put into (57b). Then h is iteratively adjusted in all three of the above equations
((62), (61), (57b)) until (57b) holds. Thus, a consistent set of v, h, and T is

found. Then v is changed by a few knots and the process is repeated. This con-

tinues until T = 0 in one direction of the speed change and T = Tma x in the other

direction of the speed change. We now must obtain the portions of the singular arc

in which the thrust is limited to either Tma x or Tidle. To do this, equation (58) is

solved for Xv. For T = 0, a speed v slightly smaller than the last speed obtained
for T = 0 is chosen in equation (58), and a smaller h is also chosen. The result-

ing Xv is inserted into equation (57b), and h is iteratively adjusted both in the

equation for Xv from equation (58) and in (57b) until the equality in (57b) holds
true. Then a smaller v is chosen and the process is repeated, each time finding

a new v,h pair to obtain the descent altitude-speed profile at T = 0. The same

process holds true for T = Tma x = constant, to obtain the climb altitude-speed pro-

file. During these iterations we must check in equations (17) and (18) that the

thrust remains at its respective limit.

We can now calculate complete altitude-speed profiles of nonturning terminal

area flightpaths and the associated thrust. The bank angle, of course, is zero, and

the flightpath angle y can be calculated from equation (32). At the point T = DI,

dh/dv = -v/g and equation (32) becomes indeterminate, (0/0). Since the thrust
varies with time, this occurs only for an infinitesimal interval and is of no conse-

quence. Also, if for some altitude-speed profile for T = D, y = 0, the flightpath

length would be infinite. As expected, this does not happen for our model, which is

valid only over the range of 0-i0,000 ft, since the minimum-fuel cruise altitude is
above 30,000 ft.

In the results section it is shown that the climb and descent altitude-speed

profiles differ, depending on the maximum altitude of the flightpath. To study this

effect algebraically, for a given altitude h in equations (57b) and (58) all the
variables are replaced by more fundamental quantities from appendix C until a single

equation is obtained, which is a polynomial in v and has coefficients that are com-
binations of the thrust and drag coefficients and the altitude. The resulting poly-

nomial for the constant thrust climb and descent profiles is of the form

v7 + alv _ + a2v s + a3v 4 + a4v 3 + asv 2 + a6v + a7 + Xx(a8 v7 + a9vs + al0v) = 0 (63)
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This is a seventh-order polynomial in v, which depends on %x" Numerical results

for intermediate thrust show that each different %x defines a portion of an

altitude-speed profile which does not intersect with any other such altitude-speed

profile. Since the polynomial (63) changes with change in %x associated with each
%x is also a different climb and descent profile.

Turning flight-- Just as in section 2, the equations for the %'s can be derived
from H = 0 and from _ = 0 for the different constrained and intermediate values

that the controls T and u might take. For example, the case in which controls are
I

intermediate, Umi n < u < Uma x and 0 < T < Tmax, equations (51) and (57a) are solved
in the same way as (12) and (25) were solved,

Xv = 2(b a - b_) ± (b3 b_ b 3 b_J (64)

2 b1 v+ bs)]/2_ = ± [%v(b3%v + (65)

where the b coefficients are functions of g, v, h, 4, %x' %y' and of the thrust
and drag coefficients. Similar expressions hold for other cases of combinations of

constrained and intermediate controls. For reasons similar to those given in sec-
tion 2, equations (64) and (65) are not actually needed for the calculation of the

singular arc; thus, the coefficients are not given. However, the structure of these

equations tells us something about the solution. Since medium-length flightpaths are

desired rather than short highly turning ones, equations (64) and (65) are appropriate

for the portion of such flightpaths, which must have intermediate controls, especially

small u's, which means small %_'s. The choice of the plus or minus sign in front
of the square root in the expression for kv is determined by that sign that makes
the expression agree numerically with the initial value given by equation (59). The

plus and minus signs in the expression for _ indicate that right or left turns
may be chosen.

Now the flightpath angle y can be obtained by a procedure identical to that

described in section 2, equations (35)-(38). Taking the derivative of equation (57)

gives

(_) = _/_t

= _/_t{-FhV + %v[DhV + g(T - D)/v - gDv]g/W

+ g(Fv + lx cos i + ky sin _ + l_gu/v2)} (66)

Note that this expression differs from equation (35) only in the addition of the %x

and %y terms and the absence of the C cos _ term. Using the same mathematical
procedure as before, we can write an equation analogous to equation (36),

where EH is as before in equation (37), and the other coefficients have the follow-
ing values:
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* g2AH = AH + XvTv/(Wv ) + Tv(gFvT - VFhT ) 0 < T < Tma x

= AH T ---0, T - Tma x

BH = BH + g2XvTh/(Wv ) + Th(-VFhT + gFvT ) 0 < T < Tma x

= BH T _ 0, T _ Tma x (68)

CH = -g(Xx sin _ - Xy cos 4)

DH = DH + TXv(g2Xv/(Wv ) - FhTV + gFvT ) 0 < T < Tma x

= DH T _ 0, T _ Tmax

and the nonstarred coefficients are those of equation (37). The additional terms in

the coefficients are due to the change in the thrust while on the portion of the

flightpath where that happens. The partial derivatives of the thrust Tv, Th, and

T%V are defined in appendix C. When the thrust is constant in the climbout and

descent Tv, Th, and TXv are set to zero. We can now insert the values for the

derivatives v, h, _, i , and i-,. from equations (3) (4) (5) (55) and (56) into
V _ r ' ' ' '

(67) and solve the resulting equation for y:

y = [A_g(T - D)/W - C_gu/v + DH(-Fv*- kx cos _ - ky sin _ - k_gu/v2 + kvgDv/W)

* * D_Xh) (69)+ EH(Xx v sin _ - XyV cos _)]/(AHg - BHV +

For equation (69) to be a candidate for an optimal solution, the generalized Legendre-
Clebsch condition must hold:

* B_v + D_X h > 0 (70)(-_)y = AHg -

Equations (69) and (70) are similar to equations (38) and (39). This concludes the
derivation of the singular y.

Flightpath Guidance along a Speed-Constraint Arc

Since the state equations (1)-(5) in section 2 are applicable to this section as

well, and, since there is only a small difference in the Hamiltonian (compare

eqs. (12) with (51)), equations (40)-(45) apply. One change occurs in equation (45)

where -C cos _ is replaced by Xx cos _ + Xy sin _. Then

A_ = C0v + CIvT + C2vT2 + Xx cos _ + Xy sin _ + Xhy + X_gu/v 2 - XvgDv/W (71)

Conditions similar to those discussed in section 2 hold for the transition from the

singular arc to the speed-limitedlarc. Recplacing C by -Xx in equation (47)

gives the expre@sion for %v on the speed-limited arc. The resulting expression is
identical with equation (60) for the singular arc solved for Xv. Again, this means

that there is no jump in Xv at the transition, and it can be computed on the whole
path by integrating equation (56).
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Computation of Extremals

The extremals are computed by numerical integration of the state and adjoint

equations (1)-(5) and (54)-(56) with the thrust given by equations (17) and (18), u

given by (19)-(22), and y given by (69) on the singular arc or by (23) after getting

off the singular arc at both ends of the flightpath. The adjoint variables Xv and %_
are obtained by integrating equations (55) and (56) but on the singular-T arc, %h is
found directly from equation (24); off the singular arc it is found from equation (54).

A representative set of capture flightpaths is obtained by restricting the ini-

tial and final altitudes and initial and final speeds to a specific set. Flightpaths

of different lengths and with different magnitudes of initial and final turns are

needed. This is achieved by using the following strategy. Nonturning flightpaths,
which have the T = D point at different altitudes and which, therefore, have dif-

ferent lengths, are generated. Starting from the initial states and adjoint varia-

bles obtained by the earlier described procedure involving equations (59)-(61), we

integrate forward and backward in time. In this manner we obtain the altitude-speed

profile for the nonturning path and we also obtain and store initial conditions

(h, x, v, %h' Xv' T, y) along the path, which may later be used as initial conditions

for the turning paths. Then, for turning paths, a point u = 0, %_ = 0 is chosen

anywhere along the arc where the initial conditions have been saved, and a %y is
chosen by trial and error to achieve the desired turns as determined by forward and

backward integration. The sign and magnitude of %y determine the magnitude and

direction of the turns. By choosing the X_ = u = 0 point closer to one endpoint or
the other, we control which end of the flightpath will turn the most. The turn

farthest away from the initial point will have the larger magnitude turn. In this

manner we can generate sets of flightpaths with similar altitude speed profiles,
which individually are distinguished by their initial and final turns.

A singular arc usually forms a portion of a complete speed-limited trajectory,

because it has portions that are below the speed limit of 250 knots IAS. Since the

singular arc has the most severe restrictions on the values of the costate variables,
we always begin integration of an extremal on the singular arc. Once the speed limit

has been reached, we transfer to the speed-limited arc by using equations (40)-(45a)

and (71) and with present values of the X's as initial values.

The portion of the singular arc that is below the speed limit is primarily the

unpowered descent. Hence, by storing all states and adjoint variables at a point

below the speed limit, while computing sets of complete singular-arc trajectories

without speed limit, we can obtain initial conditions for speed-limited trajectories

that have final turns that are identical with those of the nonspeed-limited set of

trajectories. Hence, final turns for speed-limited trajectories need not be studied

separately.

4. RESULTS FOR CLIMB-OUT AND DESCENT

Nonturning Flight

We will first discuss the special cases for ascent and descent whose ground

tracks are a straight line (A_ = O) and show that our results agree with those of

reference i. (We will call those flightpaths nonturning flightpaths for short.)

This will be followed with results for optimal turning ascents and descents. For the

following comparisons of the fuel efficiency of different flightpaths, it should be
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noted that the flightpaths are not necessarily of the same lengths. However, the

comparison is valid by having the term Cv cos _ in the performance index (8). This

term corrects for the effect of the length of the low-altitude path on the fuel con-

sumption for the complete path.

Figure 6(a) is a plot of the altitude-versus-speed profiles for nonturning climb
and descent. The thin line is representative of a figure from reference 1 for a

200-n. mi. altitude-speed profile, which we will use for comparison with our results.

The singular-arc ascent profile, denoted by the number 1 in figure 6, is above the

FAA terminal-area speed constraint. The altitude-versus-speed profile connects to

the profile for the complete 200-n. mi. path (point A) at a speed somewhat less than

the speed at which the ascent is resumed from the 10,000-ft altitude (point B). This

is a result of a conservatively chosen Tma x of 23,000 lb. By setting Tma x at
25,000 ib, the 10,000-ft intercept shifts to 338.5 knots (point B), indicating that

the following climb is the continuation of the singular arc. It is thought that this

is closer to the effective Tmax used in reference i. The FAA often permits a climb-
out faster than 250 knots IAS. In this case, the optimal (singular-arc) climb-out

saves 36 ib of fuel for the complete 200-n. mi. path compared with the speed-limited

climb-out, denoted by the 2 in figure 6, which is followed by an acceleration to the

1 - SINGULAR ASCENT
2 - 250 knot INDICATED AIRSPEED ASCENT

3 - MINIMUM-FUEL CLIMB (C = 0)
30 - 4 - SINGULAR DESCENT

× / _ TRAJECTORY

" 10- _f4/ _/_SB FROMREF, 1°
(a) _ :_1 / /

0 I I I
210 270 330 390

v, knots

1:F 4 1 2
×
e-

l (b) , , , , ,
0 1 2 3 4 5

I_,l,deg

Figure 6.- Straight-line optimal flightpaths. (a) Altitude-speed profile;

(b) flightpath angle command.
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singular-arc speec at the lO,O00-ft altitude (point B). Figure 6 also shows (dash-dot

line 3) the singular-arc climb when C = 0 in equation (8), which would be the opti-
mum climb profile if the cruise had not been considered. Then, an acceleration to the

speed at point B (fig. 6) is required, and the total fuel consumption is higher than

it is for the singular-arc climb with C _ 0 in equation (8), but less than the fuel
consumption for the speed-limited climb.

The start of the singular-arc optimal descent speed, on curve 4 in figure 6(a),

is below the speed limit of 250 knots IAS, denoted by curve 2 in figure 6(a) and turns

more sharply toward the speed constraint than the altitude-speed profile given in

reference i. Therefore, it meets the speed constraint at a higher altitude than the

example in reference i. From this point on, one can continue on the singular arc and

violate the speed constraint (dashed line), or one can continue on the speed con-

straint (curve 2). This we shall call a mixed descent. The altitude-speed profiles
are very sensitive with respect to small differences in the engine-idle fuel-flow

model. For instance, when the modeled engine-idle flow is reduced to one third that

of the present value, the singular descent altitude-speed profile will always remain

below the 250-knot-IAS constraint. Once the model is fixed, the resulting fuel con-

sumption is not very sensitive with respect to the altitude-speed profile. For

instance, flying the mixed descent requires less than 1 ib more fuel than flying the
pure singular-arc descent (dashed-line extension of 4). Figure 6(b) shows that for
both climb and descent, the y's remain almost constant with altitude, which makes

flying these flightpaths relatively easy. With our results for nonturning climbout
and descent agreeing well with those of reference i, we shall first look at the data

for turning-climbout flight and then at those for turning descents.

Turning Flight

Solutions to the optimization problem for the singular arc that include ascend-

ing turns result in altitude-speed profiles that are practically identical to those
of the straight-line optimization problem (see fig. 7(a)). Most of the turn occurs

in level flight before ascent from the minimum maneuvering altitude of 2,000 ft in

this study (see fig. 7(b)). In general, the greater the permissible range of a con-
trol, the better will be the performance of a system. This idea was tested for our

example by removing the restriction on the minimum altitude and defining Ymin = -4°
instead of 0°. The resulting extremals are shown in figure 7(c). The performance

index versus total turn angle was plotted (not shown) for both types of climb-outs.

The fuel consumption (as measured by the performance index, eq. (8)) was about 20 ib

less for the flightpath with the increased range in permissible y, independent of
the turn. This is about 2% of the fuel for the climb-outs to I0,000 ft. For the

only paths for which a direct comparison can be made, the nonturning flight, it was
noted that the primary fuel savings were obtained by reducing the time it took to

fly from the initial point at 2,000 ft altitude to the 2,000-ft altitude point on
the singular arc. All turns in figure 7 are flown at maximum thrust (eq. (17)) and
at Ymin (eq. (23)). To illustrate further the above statements, the numerical
values for the key flightpath variables are summarized in table 1 as a function of

the total heading change for both the singular arc of figure 7 and speed-constrained

ascents (which are not shown graphically). We notice from table 1 that the speed at

which ascent begins (column 3) depends on the type of ascent and not on the required
total heading change (column 2). A similar statement is largely true for the initial

flightpath angles, which vary only minimally (column 4). The bank angles experienced
during both the entire turning singular arc and speed-constrained climb-outs are

shown as functions of the heading change in figures 8(a) and 8(b), respectively. We
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TABLE i.- NUMERICAL VALUES OF KEY FLIGHTPATH VARIABLES IMMEDIATELY AFTER

SWITCH-OVER FROM LEVEL TURN TO CLIMB (for case Ymin = 0°)

Case A_total, deg v, knots y, deg _ to go, deg i, deg
(i) (2) (3) (4) (5) (6) Type of ascent

I 0 301.7 4.356 0 0 Singular arc

II 90 301.7 4.355 1.6 1.7 Singular arc

III 180 301.7 4.353 5.2 5.2 Singular arc

IV 0 258.1 4.79 0 0 Speed constrained

V 90 258.1 4.76 9.2 7.2 Speed constrained

VI 180 258.1 4.65 30 17.8 Speed constrained
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Figure 8.- Bank angle versus heading-change-to-go in optimal climb-out;

A_m = maximum heading change. (a) Singular y-arc climb; (b) speed-
constrained climb.

notice that the bank angles gradually go to zero as the desired heading (A_ = 0) is

approached. As table 1 shows for case III, which is the 180 ° turn, the bank angle at

the point of switching from level flight to climb is already as small as 5.2 °, the

early part of the turn is flown at or nearly at the maximum bank angle. Intuitively,

this makes sense, because while flying away from the target we must turn as fast as

possible. (This is true in spite of the opposite effect that maximum bank angle has
on acceleration, which also must be maximized.) The penalty for observing the speed

constraint is still 36 ib of fuel, independent of the amount of turn.

The altitude-speed profile for the singular-arc climb (fig. 7(a)), can be well

approximated by a constant-IAS climb. If we set the speed constraint to a value that

corresponds to the singular-arc speed at 10,000-ft altitude -- 331.4 knots -- the
resulting performance is basically identical with the singular-arc performance,

In figure 9, we compared two minimum-fuel, speed-constrained climbs (both for a

heading change of 68°): one that has the term Cv cos _ in equation (8) and another
with C = 0. The latter indeed takes 7 Ib less fuel, but it climbs in an x-distance

that is 2.93 n. mi. shorter, thus requiring an additional 52 ib of fuel for the

longer cruise. The bank-angle histories, shown in figure 9(b), are quite different
for the two cases.

For the optimum descent, only an extremal starting with a singular-arc descent

is a candidate for optimality (fig. 10(a)). Figure i0 illustrates the more restricted
but also more realistic case, in which we forced a level turn after leaving the

descending arc by constraining the permissible y to a narrow range by restricting
Ymin to -0.001 °. Since such a state-dependent control constraint has not been taken

into account optimally, this is, strictly speaking, a suboptimal procedure. We note

here that this turning descent has actually three phases: singular-arc, speed-

constrained arc, and level-deceleration. Again, most of the turn occurs in level

flight (fig. lO(b)) and the altitude-speed profiles are identical within the power

of resolution of the graph (fig. 10(a)). Figure ii shows the bank angles versus
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heading. The bank angles essentially follow the same curve, independent of the total

heading change. This allows a simple approximation of the optimal descent in an

on-board algorithm. Note that for this example the beginning of the turn is executed

with gradually increasing bank angle until, for heading changes greater than 25 °, the
bank angle is at its maximum for all but the first part of the turn.

Again, for the descent, we removed the restriction on the minimum altitude and

defined Ymax = 5° and Ymin = -4°- The resulting extremals are shown in fig-
ure 10(c). The performance index was plotted (not shown) for both types of descents

versus total turn angle. The fuel consumption (as measured by the performance index

(eq. (8)) was about 2.5 ib less for the flightpaths with the increased range in

permissible y, independent of the turn. This is a saving of about 1.2% for the

straight-line descent and of 1.6% for the 180 ° turning descent from i0,000 to 2,000 ft.

In the cases illustrated in table 2, the initial descent is completed on the

singular arc, and the speed limit is disregarded. Table 2 summarizes the numerical

values for the key flightpath variables as functions of the total heading change, A_.
The entries in table 2 are similar to those in table I, except for the addition of

colume 3, which indicates the altitude at which the system leaves the singular arc.
The situation for descent is somewhat more complex than for the climbout; this will be

explained by means of the six representative cases in table 2.

For small turn angles (see cases I and II, table 2), the singular descent to

2,000 ft is followed by a horizontal decelerating turn. As stated earlier, for large

angles of turn the optimal path required a change in y from Ymax (level flight) to

Ymin part way in the final turn, after having left the singular arc (see cases III
and IV, table 2). The changes in altitudes for y-switching that are required would

make an on-board algorithm quite complex. Therefore, the following test was made.

Upon leaving the singular arc we forced the aircraft to stay at 2,000 ft by setting

very narrow limits for maximum and minimum y (see cases V and VI, table 2). We find
that there is a negligible difference between performances for the optimal case with

the y-switching cases III and IV and the corresponding constant-altitude decelerat-

ing turn cases V and VI.

TABLE 2.- NUMERICAL VALUES OF KEY FLIGHTPATH VARIABLES IMMEDIATELY BEFORE

SWITCH-OVER FROM SINGULAR ARC DESCENT TO LEVEL TURN

h switch Ai during

A_t°tal' to level v, y, initial i, Comments
Case deg knots deg descent, deg

turn deg

(i) (2) (3) (4) (5) (6) (7)

I 0.4 2000 258.6 -3.35 0.0 0.0 Ymax = 0°, Ymin = -4°
II 58.1 2000 258.6 -3.35 0.0 .02 Aircraft optimally wants

to stay at Ymax

III 109 2025 259.1 -3.28 3.6 3.6 Ymax = 0°, Ymin = -4°

IV 166 2591 257.1 -3.28 4.6 4.6 y switches to Ymin
after initial level

turn

V 132 2000 258.6 -3.35 1.3 2.3 Ymax = 0°' Ymin = -0'001°
VI 170 2000 258.1 -3.78 20.0 30.0 System forced to level

turn
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It is not possible to extend the forced level turn case optimally to a full

180 ° turn. At the initial value for %_ needed to turn &_ = 170 ° the singular arc

is left at the desired altitude of 2,000 ft just before the bank angle reaches

Imax = 30° If one increases %1 to force a larger turn, Imax is reached while
still on the singular arc. As a consequence of _ = 0 in (38) the singular y

switches to a positive value for a quick decelerating turn. Since Ymax = 0° is
violated, we must get off the singular-y arc as soon as Uma x is reached. However,

for purposes of a possible on-board algorithm, we studied a 180 ° turn singular-y

descent such that When Uma x is reached before the 2,000-ft altitude, we hold

u = Uma x and then continue nonoptimally at constant Ymin = -4° to 2,000 ft, fol-

lowed by Ymax = 0° such that Vfina I = 180 knots is reached at the completion of
the turn. Again, there is only a 3.2 ib increase in the fuel used for this case over

that used in the optimal descent, which left the singular arc at a higher altitude
(similar to cases III and IV in table 2).

The question of global optimality remains. We must find all extremal controls

and choose one with the lowest fuel consumption. We have shown earlier that on the

singular arc and on the speed limit we have single-parameter families of extremals.

The variations of those parameters were very small in order to cover the range of

final headings. For larger changes of the parameters we get descending or ascending

turns that include a 360 ° loop. Such loops and turns above 180 ° are not likely to be

optimal, since they could be replaced by smaller turns using less fuel. By restrict-

ing turns to 180 ° and less, we believe our extremals to be globally optimal, but we
have no proof.

We conclude this discussion by noting that we did not explore extremals where

y is always on its maximum or minimum bound rather than including singular arcs.

Although it is easy to generate such extremals, it is extremely hard to meet our
desired end conditions.

Comparison with Suboptimal Procedures

The question is often asked how much fuel is saved by using the optimal proce-
dure. Such questions are difficult to answer, since we must ask: "What should the

optimal procedure be compared with?" To have a valid comparison of optimal and sub-

optimal paths, we have to match the end conditions: speed, altitude, and heading.

However, we need not match the path length because the effect of different path

lengths is taken into account by the term Cv cos _ in the performance index

(eq. (8)). We shall compare the suboptimal paths with those optimal ones that
include a level turn.

We shall first compare optimal climb-outs with reasonable suboptimal climb-out

procedures, which more and more closely mimic the optimal. In order to meet the

terminal conditions we will fly at least the latter part of the climb-out at an

approximation of the optimal altitude-speed profile. Such an approximation is a

climb at maximum thrust at a flightpath angle that is the average of the singular-

arc angles. We consider three procedures which begin with a maximum bank-angle turn
at constant y = 0, at y = 3°, and at a constant rate of climb of 500 ft/min until

the desired heading is reached. This is followed by a nonturning path (at the same

y or h) until the approximation of the optimal h-v profile is reached, which is

then followed. This is illustrated in figure 12(a). (The paths were found by back-
ward integration and some search to obtain the correct initial altitude.)
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Figure 12.- Various suboptimal climb-out strategies compared with the optimal.

(a) Sketch of speed-altitude profiles; (b) fuel expenditure above optimal;

(c) sketch of speed-altitude profiles; (d) change in climb-out fuel cost for

various climb-out angles on nonturning paths.

The results are shown in figure 12(b). Let us first consider an initial 3°
climb. The additional fuel is between 10% and 28% over the optimum, which gives

285 ib of additional fuel for a 180 ° turn. If we climb at a slower rate of

500 ft/min, the extra fuel cost is about 4%, or 36 ib, for the 180 ° turn. The best

approximation of an optimal turning climb-out is an initial horizontal flight. Here
the additional fuel consumption is primarily a result of the incorrect bank-angle
schedule rather than the incorrect climb angle, which is an approximation of the

slightly varying singular y. This is further illustrated in figures 12(c) and
12(d) for a nonturning flightpath, where we plot the additional fuel when we change

the climb angle from the average singular y. Over a range of 0.04 ° the fuel con-

sumption deviates from the optimal by only 0.I ib, and it is fairly insensitive for
errors of ±0.15 ° from the singular y. Considering these results, we can say that

the most important fuel-saving features of the optimal climb-out are the initial
horizontal turn and acceleration up to the singular speed, which are then followed

by a climb at singular y.
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We can make a similar investigation of the turning descents. The h-v profiles
considered are shown in figure 13(a). We descend on a flightpath angle that is the

average singular-arc descent angle. At a certain altitude we reach a speed of

250 knots IAS. At this point we select the varying flightpath angle that will hold

this airspeed. At a certain point we must change our flightpath angle to the final

one, yf, and at a different point we must begin the turn at maximum bank angle in

such a manner that the desired heading and final speed are reached simultaneously.
To find these two critical points without trial and error, the path must be inte-

grated backward from the final altitude and heading.

10-

/ APPROX- _ 6F (10.31 Ib)

/IMATION OF _ _ 4 __ =-2"5°8 - ]SINGULAR" _ :;

r ARC h-v _) _ _o_23 Ib)6 APROFILE _€ O 2 "_ _ 7=-1

x 4 _.-'_._,,'f _ CONSTANT IAS _ _ 01 0°

_ 250 knots _ I-,m,_ (0,62 Ib)

2 _=0 1 \ _0 0-2"
= -1 ° 3 ,,,

m (b)
(a) ; I I I t _ I i

0180 205 230 255 280 305 -40 90 180
v, knots _J, deg

Figure 13.- Optimal versus suboptimal descents. (a) h-v profiles; (b) fuel

comparison of suboptimal descents with optimal descents having level turns.

To interpret the results properly, it should be noticed that the optimal descent
flightpaths with which we are making the comparison are those that have a level final

turn (fig. 13(a), curve i). We stated earlier that for large turns, in which y was

less constrained, to a 0° maximum and a -4 ° minimum, it was optimal to begin the level
turn at a higher altitude than the final altitude and to finish the turn at -4 ° to

reach the desired final altitude and speed (fig. 13(a), curve 2).

We will compare various suboptimal descents in which the only change is the

flightpath angle of the final turn (see fig. 13(b)) with optimal descents that have
a level final turn. For the descent that mimics the optimal descent constrained to

a level turn most closely (curve 1 in figs. 13(a) and 13(b), final flightpath

angle = 0°), the suboptimal performance is within 0.2% for all heading changes. A

final descending turn (curves 3 and 4 in figs. 13(a) and 13(b)) will usually result

in an increased fuel use. For large turns and a small descent angle yf (curve 3
in figs. 13(a) and 13(b)) the trend reverses, since this approximates better the
optimal turn of curve 2 in figure 13(a).
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5. RESULTS FOR CAPTURE FLIGHTPATHS

Nonturning flight without Speed Constraint

Figure 14 shows altitude-speed profile, flightpaths, and controls for flight on
nonturning flightpaths, which consist of nothing but singular arcs. For completeness,

these profiles are shown to zero altitude. Figure 15(a) shows the altitude-speed

profiles for nonturning flight that are derived from the general singular-arc formu-

lation by setting %Y = %4 = 0. For the purpose of cross-checking, these profiles
were derived twice, once from the general formulation and once from the simpler for-

mulation for nonturning flight. The first portion of the climb is performed at maxi-

mum thrust. The altitude-speed curves have a first corner when the thrust begins to

decrease. During the entire varying-thrust portion of the flightpath, the thrust is

slowly reduced, until it is zero. At this time, a second corner of the altitude-

speed curves occurs and the almost constant-flightpath-angle descent at zero thrust

begins.

0 I I
250 275 300 325 350

v, knots

(a) Altitude-speed profile for flight on the singular-_ arc.

Figure 14.- Straight-line, singular-arc flightpath and controls.
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The parametric curves of the y = 0 condition and of the T = D condition

are also shown on the altitude-speed diagram. These two curves tend to converge at

higher altitudes, but they do not intersect over the altitude range considered, which
means that only finite-length flightpaths are generated.

The flightpath profiles and controls plotted against the horizontal path-length
are shown in figures 14(b)-14(d). The origin of the x-axis corresponds to the

T = D point on the flightpath. The paths (fig. 14(b)) have nearly constant

flightpath-angle ascents, followed by a steep climb, a variable-y segment, and a

nearly constant-y descent. The thrust (fig. 14(c)) is at its maximum value for the
initial almost constant-y climb, which is followed on the variable-y segment by a

smoothly decreasing thrust. On the final descent the thrust is zero. The flightpath

(fig. 14(d)) has an almost constant flightpath angle climb followed by a steep ascent

to reduce speed. This "zoom climb" aspect of the flightpath is less pronounced for

longer flightpaths. The steep ascent is followed by a gradual reduction in flight-

path angle from climb to descent. When the thrust reaches zero, a small step reduc-

tion of flightpath angle occurs, which is followed by an almost constant-y descent.
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x
.=

4

3

7

2

0
-25 -20 -15 -10 .-5 0 5 10 15 20 25 30

x, n. mi.

(b) The flightpath.

Figure 14.- Continued.
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Figure 14.- Concluded.
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Steps in the singular y are caused by the discontinuity of terms containing T

which appear in equation (69). In figure 14(d) the flightpath angle briefly exceeds
the constraint of Ymax = 5°. This is allowed for computational convenience. From

the principle "the fewer the constraints the better the optimal performance," it just
means that the optimal system will have an advantage (of less than 0.2% as we shall

see later) when compared with a suboptimal one in which the constraints are observed.

We will now discuss figure 15 and discuss the results for an optimal nonturning
flightpath, which starts and ends at an altitude of 2,000 ft and at true airspeed of

250 knots. Figure 15(a) shows the altitude-speed profiles, figure 15(b) the alti-
tude profile, and figure 15(c) the speed profile. The controls are shown in

10

6

03
O

X
.C

4

2 j
INITIAL AND FINAL
CONDITION

(a)
0 i I I 1 1 I I
175 200 225 250 275 300 325 350

v, knots

(a) Altitude-speed profiles.

Figure 15.- Minimum fuel nonturning flightpath.

figures 15(d) and 15(e). The singular arc is in all cases preceded by a horizontal

accelerating path at maximum thrust and is followed by a brief horizontal decelerat-
ing path. A minor exception is the shortest path, No. i, which has some thrust

reduction in the horizontal accelerating portion of the flightpath (dashed line in
fig. 15(d)).
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Figure 15.- Continued.

Strictly speaking, the flightpaths shown in figures 15(a)-15(e) are not optimal

because of the restrictions on % off the singular arc, which have not been intro-

duced optimally. Figure 15(f) shows the altitude profiles of flightpaths that have

specified Ymax = 5° and Ymin = -4° for both the initial and final portions of the
flightpath. The only end condition different from those in figures 15(a)-15(e) is

that the final speed is 180 knots, rather than 250 knots, to result in a longer final
climb. The fuel consumed for these optimal flightpaths was plotted (not shown) versus

distance and compared with a plot of identical flightpaths that have initial final

horizontal segments. The purpose of such a plot instead of direct comparison was to

avoid having to match the lengths of the flightpaths as well as the speeds and
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Figure 15.- Continued.

altitudes. It was found that the paths of figure 15(f) consume about 4 ib less fuel

than the equivalent flightpaths with horizontal initial and final segments (which is

0.65% for the shortest and 0.28% for the longest path). We conclude that it would be

of negligible benefit to introduce the restrictions optimally. When the maximum

altitude and fuel consumption of the paths of figure 15(f) are plotted against the
path length the relationships turn out to be nearly linear.

What is the effect of neglecting the change in weight? In section 2, we took

care of the weight change during the long cruist (flight above I0,000 ft) by using
a different but constant weight for ascent and descent. In this section we assumed

that the weight did not change. This appears to be a reasonable approximation, since

the actual weight change for the longest path considered was only 0.025%. A simple

improvement of the results can be obtained by updating the weight-dependent drag for

the fuel via equations (C2) and (CI0) and updating W wherever it appears in the
equations without, however, defining W as a new state variable. This includes

changing kI and ks as a function of weight, as discussed below equation (9c). This
method has been successfully used in reference i, and its success is based on the

slow change of W relative to all other state variables. To test our assumption

that using constant weight has negligible effect on the results, we implemented the

method of reference I. The results for the example shown in figure 15(f) are the

following. Starting with the same initial conditions and adjoint variables at the

T = D points the variable weight trajectories are slightly longer and take somewhat
more fuel. The fuel used per nautical mile is on the average 0.016 ib/n. mi. more

than for the W = constant flightpaths. This is expected, since we are beginning
the computations at the T = D point with W = 150,000 ib; the initial climb-out
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Figure 15.- Concluded.

weight is higher and it takes more fuel to get to the T = D point on the trajectory.

The reduction in weight beyond the T = D point and the associated smaller amount
of fuel used does not compensate for the larger amount used in climb-out, since most

of the remaining flightpath is at idle thrust and the weight reduction is minimal.
On the scale of our braphics, however, the flightpaths and controls are indistin-

guishable from the constant-W flightpaths and are not shown. As a check on the
calculations we printed out the Hamiltonian; it should be zero, but it was not. For

the correct formulation (W-constant) most of the error in the Hamiltonian was due to

finite step size of the integration. In fact, as the integration-time interval At
was reduced from 0.05 sec to 0.005 sec for a special test run, the Hamiltonian at

±40 sec from the start of the integration reduced by a factor of i0 without affecting

the trajectory. (Reducing At and comparing H's was our usual check for program-
ming errors). When the variable weight was introduced, however, the Hamiltonian was

larger by a factor of i0 than for the W = constant formulation and it practically

did not decrease for decreasing At. A general investigation of the effects and

errors of such approximations may be an interesting research topic.
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Figure 16 shows the comparison in fuel efficiency for the optimal nonturning cap-

ture flightpath of figures 15(a)-15(d) with various suboptimal procedures. The first

comparison (curve a, fig. 16) is with a constant-speed (250-knot), constant altitude

(2,000-ft) cruise. Here, the greatest amount of extra fuel is required for the

longest flightpath. This is over 10% (or 155 ib of fuel) for a 45-n. mi. flightpath.
The second comparison is with a constant altitude flightpath with a speed profile,

which approximates that of an optimal constant-altitude flightpath (see ref. 15).

JAdding this speed profile to the constant-altitude path reduces the extra fuel con-

sumption by about 4% over the range of distances considered (curve b). The third

comparison (curve c), which will be discussed in the next paragraph, is with a simple

suboptimal algorithm, which includes both speed and altitude changes. As can be

seen, when both altitude and speed changes are considered, the performance becomes
near optimal. The percentages between the curves indicate the costs of various

simplifications. We notice that the cost incurred by not climbing increases with
the length of the flightpath.

FLY CONSTANT ALTITUDE

10 CONSTANT SPEED

0.
.7 WITH INITIAL ACCELERA-
u.= TION AND FINAL
_ 5 DECELERATION

SIMPLE SUBOPTIMAL

, ,c,,30 40 50
S, n. mi.

Figure 16.- Fuel efficiency comparison for nonturning flightpaths.

The next question that must be asked is how closely the optimal results can be

approximated with an easily implemented on-board, suboptimal algorithm. The sub-
optimal algorithm is described in appendix B. Briefly, it uses characteristic fea-

tures of the optimal flightpath. Two of the primary features are climb at maximum
thrust at the average of the optimal climb angle and descent at zero thrust at the

average of the optimal descent angle. The complete suboptimal command structure is

schematically shown in figure 17. By comparison with figures 15(d) and 15(e) it can
be seen that it is much simpler than the optimal command structure.
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Figure 17.- Suboptimal command sequence for nonturning flight against distance along

the path (see appendix B for details). (a) Flightpath angle; (b) thrust.

In figure 18 the heavy line gives the decrease in performance of the suboptimal

algorithm, when compared with the optimum (also shown as curve e in fig. 16). The

performance is within 0.2% of the optimum, with a slight improvement for the longer

paths. Since only slightly more fuel is consumed when flying according to the sub-

optimal algorithm than according to the optimum, most of the improvement shown in

figure 16 can be realized in a simple on-board system. Figure 18 also shows the

slight additional fuel consumption when deviating from the average of the optimum

climb angle and the average of the optimum descent angle, as identified by the pair

of numbers opposite each curve that correspond to a nonturning capture path.
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Figure 18.- Performance of suboptimal nonturning flight: Ay = change in y from

the average of the optimum climb or descent angle.

Nonturning Flight with Speed Constraint

Figure 19(a) shows the altitude-speed profile. It is the same profile as that

shown in figure 15(a), with the high-speed portion cut off by the speed limit of

250 knots IAS. The flightpath profiles, speed profile, and controls plotted against

the horizontal distances are shown in figures 19(b)-19(e), In this case, the thrust-

equal-drag point is not at S = 0, but from equation (42) it is where y = 0 at the

peak of the altitude profile. We notice that thrust and flightpath angle change

more gently than in the nonspeed-limited path of figure 15. The speed-limited paths

were compared, with respect to maximum altitude and fuel consumption, with nonspeed-

limited paths of the same lengths. This was done not by solving the two-point
boundary-value problem, but by plotting curves of maximum altitude versus distance

and total fuel consumed versus distance for both types of paths, and by interpolating

between the curves (not shown). Over a range of 29 to 52 n. mi. the speed-limited

paths achieved a maximum altitude about 1,000 ft lower than the nonspeed-limited

paths. The speed-limited paths used between 20 and 50 ib more fuel than the

nonspeed-limited paths of the same length. The increase in fuel used was linear with

increased distance, but the percentage increase was approximately a constant 3.7%.

Turning Flight

Capture trajectories without speed constraint-- Turning flight will now be dis-
cussed. Since a capture trajectory ideally captures the centers of the localizer
and elevation beams of an Instrument Landing System, the final turn will include a

speed reduction to 180 knots IAS, which is the landing speed with the flaps extended.

Only the longest and the shortest flightpaths that have the turn-straight-turn char-

acteristic will now be examined. The longest flightpaths have the T = D point at

the 7,000-ft altitude and the shortest ones have the T = D point at 4,000-ft alti-

tude. Paths that have various combinations of large and small turns at either end

were computed. We will discuss four sets of flightpaths: long and short flightpaths

with the full range of initial turns, and long and short flightpaths with the full

range of final turns. The initial states and adjoint variables for each set were
chosen such that some of the examples have turns on both ends and others do not. All
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Figure 19.- Minimum-fuel, nonturning, speed-limited flightpaths.

flightpaths start at h = 2,000 ft and v = 250 knots IAS and end at h = 2,000 ft
and v = 180 knots IAS. Unless noted otherwise, turns off the singular arc were forced

to be level by restricting y to be

0.001 ° for climb I_i.O ° for climb

= Ymin =

Ymax L 0"0° for descent .001 ° for descent

Long terminal-area flightpaths that have initial turns with heading changes
between 0° and 180 ° and final turns between ii° and 67 ° will be discussed first (see

fig. 20(a)). The individual paths are labeled 1 to 5 in figure 20(a). All initial
turns are predominantly level turns, which are almost completed when the climb begins.

The turns have similar characteristics that have been reported in reference 8 for

level flightpaths. Small turns are made at maximum thrust (fig. 20(d)), with a bank

angle that is slowly decreasing toward zero (fig. 20(c)). Large turns either start

with zero or intermediate thrust, which builds up toward the maximum thrust as the
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Figure 19.- Continued.
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Figure 20.- Optimal long terminal area flightpaths with initial turns up to 180°.
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Figure 20.- Continued.
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Figure 20.- Concluded.

remaining turn becomes less than 90 ° (fig. 20(d)). Depending on the terminal point

chosen, the same extremal can either be a large turn (e.g., 176.9 °) or a small turn

(e.g., 68.9°), since the speed of 250 knots IAS is achieved at those two points (see

the speed profile in fig. 20(b)). The singular flightpath angle is practically inde-

pendent of the turns (fig. 20(e)), and the thrust is practically identical for most

flightpaths, except for the initial low thrust for deceleration in the initial por-

tion of large turns (fig. 20(d)). The flightpath profile (fig. 20(f)) is practically
the same for all flightpaths, and, except for the starting and final altitudes, is

the same as that in figure 15(b), curve 4, for the nonturning flightpath.

For short flightpaths, shown in figure 21, the initial turns look similar to the

initial turns for long flightpaths (compare figs. 20(a) and 21(d)). In this example,
there are no final turns. Most of the comments made for the initial turns of long

flightpaths apply to the short ones also. The thrust schedule, however, is quite
different and never reaches maximum thrust (fig. 21(d)). The importance of this dif-

ference will be explored when optimal and suboptimal flightpaths are compared. Here

too, the flightpath profile (fig. 21(f)) is the same for all flightpaths, and, except
for the starting and final altitudes, is the same as in figure 15(b), curve i, for

the nonturning flightpath.
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Figure 21.- Short terminal-area flightpaths with initial turns between 0° and 180 °
and initial speed 250 knots IAS.

Figure 22 shows the altitude profiles of flightpaths identical to those in

figure 21, except that an initial climb was permitted, Ymax = 4°. Hence, the paths
begin to deviate from those in figure 21 when (in the backward integration) the opti-

mal control logic requires the flightpath angle to switch to Y = Ymax' Here we
made no attempt, by adjusting the altitude where we leave the singular arc (point a),

to match the initial altitude of 3,000 ft of figure 21. In any case, a comparison

with the forced level-turn case of figure 21 cannot be made because we do not solve

the two-point boundary-value problem. The largest initial climb is for the largest

initial turn, and, even for the largest initial turn, the initial climb is fairly

small. Therefore, to avoid complicating the algorithm, this initial climb will not

be introduced in the suboptimal algorithm. Physically, the initial climb and result-

ing deceleration allows a tighter turn, thereby saving fuel.

The next flightpaths to be examined are long flightpaths that have the full

range of turns at the end, but none at the start (see fig. 23). Here, a possible

second descent was permitted during the final turn after getting off the singular

arc by setting Ymax = 0°, Ymin = -4°" This was easier than not permitting it,
because, just as in section 2 (discussion of table 2), large level turns could not

be produced without running into the bank-angle limit on the singular arc with its

associated sharply decelerating zoom climb. (In the suboptimal algorithm, the
change in flightpath angle during the final turn will be avoided and the slight

additional cost in fuel will be tolerated.) Only the results that are different from

the nonturning flight are shown in figure 23. The _ = 119.2 ° turn begins its

second descent after a level horizontal turn of 95 °. The _ = 162.9 ° turn begins its

second descent after a level turn of _ = 90°. Initial turns are not shown, since
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Figure 21.- Concluded.
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Figure 23.- Final turns for long terminal-area flightpaths: vf = 180 knots (true).
(a) x-y plots of final turns; (b) bank angle.
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none occurred for the initial conditions that produced the final turns shown in

figure 23. 0nly the bank angle is shown in figure 23(b), since other controls were

essentially the same as that for nonturning flight.

Finally, similar information is given in figure 24 for finall turns of short

flightpaths where again Ymax = 0° and Ymin = -4°" Comparison of figures 23(a)
and 24(a) shows that the final turns are quite similar for long and short flight-

paths. In figure 24, the initial turns, which have an initial speed of 180 knots
true airspeed, are also shown. In contrast to the turns presented in figure 21,

which had an initial speed of 250 knots, the initial portions of even the large turns

are flown at full thrust, and the thrust is reduced later in the almost nonturning

portion of the flightpath (see fig. 24(d)). Here too, the altitude profile

(fig. 24(f)) is the same for all flightpaths except for the final portion of the

final turn. Also, except for the starting and final altitudes (3,000 versus

2,000 ft), the altitude profile is practically the same as in figure 15(b), curve i,

for the nonturning flightpath.

When observing the overall results for section 3, it is noticed that especially

for short flightpaths, the thrust for an initial turn of a given magnitude changes

noticeably as a function of the magnitude of the turn at the other end of the flight-

path (compare figs. 21(d) and 24(d)). In other words, the turns are not decoupled.

However, the bank angles that produce the turns are very similar, independent on the

length of the flightpath (see figs. 20(c), 21(c), and 22(c)). Large initial turns

start with maximum bank angle that, after a while, slowly get reduced to zero as the

heading of the nonturning portion of the flightpath is approached. Small initial

turns show the same trend except they begin with less than the maximum bank angle.

All the final turns begin with a shallow bank angle, which gradually increases until

the final heading or the maximum bank angle is reached. Also, turning and nonturning

flightpaths essentially follow the same altitude-versus-distance profiles provided
that they reach the same peak altitude.

2 - 156,_ ° 140.4 °
__ ?=-4 °+_ _117.3 °

___u °_-6_ -It -I- 99'0° o
7=0 _6J 5J 4}3) 82.7

o- 21°-J/.Z
8 6°/___T'-- V DESCENT! . J.^ \ "_

17"3o/ ,<\ .,,--, 3,203,0403,000

>:-1 3516°/9 "f3_6816_k_ Tmax '---'_
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-2 o \ 146.2 °

-3 1 I I I I i_/i i I I I I I-11 -10 -9 -8 -7 -6 5 6 7 8 9 10 11
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(a) Details of the turns (horizontal profiles).

Figure 24.- Turns for short terminal-area flightpaths: vo = 180 knots (true),

vf = 180 knots (true).
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Again the question is asked how can the optimal results be approximated with a

simple suboptimal algorithm. The suboptimal algorithms for turning and nonturning

flight described in appendix B are identical except for the following additions. For
large turns the beginning of the turn is flown at zero thrust until the remaining
turn is less than 120 °, at which time the thrust is commanded to maximum. Both ini-

tial and final turns are flown at maximum bank angle. Because these turns are

quicker than the optimal turns there is always a straight-line segment following the
initial and preceding the final turns. The turn computations described in appendix B
are similar to the "more sophisticated algorithm" described in reference 15.

When compared with the optimal, the resulting performance of the suboptimal

algorithm is as expected. For relatively long paths with small turns the performance

of the suboptimal algorithm for turning flight is as good as that of the suboptimal

algorithm for nonturning flight; for instance, the suboptimal path that matches the

end conditions of the optimal turning flightpath, curve 1 of figure 20, is only 0.19%

worse than optimal (1,024 Ib versus 1,022 ib). The performance decreases slightly

for large turns; for instance, the suboptimal path that matches the end conditions of

the optimal flightpath with the largest turns, curve 4 of figure 20, is 0.37% worse

than optimal (1,346 ib versus 1,340 ib).

For the short flightpath with the largest turning angles, shown in figure 24,
which has an initial turn of 146.2 ° and a final turn of 156.6 °, the performance is

2.17% worse than the optimal (738 Ib versus 722 Ib). This decrease in performance

is quite understandable, since the suboptimal algorithm was an approximation of the

control commands for longer paths, but the optimal controls of the shorter paths of

figure 24 are quite different from those of longer paths. For instance, note that
because of the initial altitude of 3,000 ft, and in contrast to figure 20, there is

no approximately constant-y climb portion. Also, in contrast to figure 20, the

thrust is maximum in the early portion of the turn and decreases in the latter por-

tion of the turn. The development of a suboptimal algorithm that is a close approxi-

mation of the optimal for all flight conditions might be quite complex, and quite

possibly not worth the additional complexity.

Capture trajectories with speed constraint-- Initial turns for speed-limited

flight are shown in figure 25. Final turns are at or below the speed limit and there-

fore are identical with nonspeed-limited turns; therefore, they will not be discussed

here. Figure 25(a) shows the details of the horizontal profiles of the initial turns.

The dashed line in figure 25(a) shows where the horizontal turn ends and where the

climb begins. As figure 25(b) shows, the larger forced horizontal turns decrease in

speed to below the speed limit for the initial portion of the turn. All flightpaths

are at the speed limit for the complete climb and for part of the descent. The

thrust is zero for the early part of the larger turns (see fig. 25(d)). The maximum-

thrust limit is never reached, but where the thrust peaks for the individual paths is

indicated in figure 25(a) by a dotted line labeled Tm. The bank angle has the same

shape for all the initial turns (fig. 25(c)). Furthermore, this shape is the same as

for nonspeed-limited turns (fig. 19(c)). As figure 25(a) shows, the bank angle begins
to decrease when the remaining heading change is less than about 33 °. As fig-

ures 25(d)-25(f) show, the thrust, flightpath angle, and altitude are different only

during the turns. A suboptimal algorithm was not developed for this case. However,

in general, the more constrained an optimal path is, the easier it would be to write

a suboptimal algorithm that approaches the optimal performance.

In the case of the speed-limited turns, which begin at the speed limit of
250 knots IAS, there are two choices to execute the larger turns. They can be

started on the ascending arc, or they can be started on a forced horizontal turn.
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Compare, for example, the curve in figure 25(a) labeled 163 °, which begins with a
turning climb at the speed limit of 250 knots IAS with the turn labeled 175 ° which

begins at the same speed with a forced level turn and initially zero thrust for ini-
tial deceleration to fly a tighter turn, and which finally reaches the 250 knot IAS

speed limit again to start climbing when it has only 32° left to turn. Without solv-

ing the two point boundary value problem, we cannot prove which type of extremal is

optimal. However, from the unconstrained results and the suboptimal results for non-

turning paths, we suspect that the forced level turn is optimal.

1
FORCED

LEVEL -_ )_ CLIMB AT 250 knots IAS
TURN

0 14°

.,.2
E
_ -2 _-

-3 --NN

T=0_{ 13_ " 175° _133°__163 °
150° -

-4 178°

(a)
-5 I i I I i I i I i I

-20 -19 -18 -17 -16 -15 -14 -13 -12 -11 -10
x, n. mi.

(a) Details of the turns.

Figure 25.- Intermediate-length speed-constrained terminal-area flightpaths with

initial turns between 0° and 180 ° (initial speed 250 knots IAS).

60



(b) Speed.

-1511-30 c) , , i , i , , i , , ,

(c) Bank angle.

x d) , ' II-- 0 = i i i

(d) Thrust.

10

5

°(e)
-5 ! i i i i i i i I i i

(e) Flightpath angle.

54x
3

2 (f) i i, i i i I i i i i I
-25 -20 -15.-10 -5 0 5 10 15 20 25 30

S,n. mi.

(f) Altitude profile.

Figure 25.- Concluded.

61



6. SUMMARYOF RESULTSAND CONCLUSIONS

The objectives of this work were to extend the work of reference i to include

turns in optimal climbs and descents (sec. 2) and that of reference 8 to include

altitude changes in optimal capture flightpaths (sec. 3). In particular, we wanted

to discover the common characteristics of representative families of optimal flight-

paths that are of practical interest and to identify the characteristics that provide

most of the fuel savings. This is essential in order to devise suboptimal algorithms
that can eventually be implemented on board. We were also interested in the extent

the unconstrained optimal flightpaths violate the FAA-imposed 250-n. mi.-IAS con-

straint and the extra fuel consumption for implementing this constraint optimally.

The principal results of section 2 (turning climb-out and descent) are summarized
below.

i. The results of section 2 are in qualitative and to some extent quantitative
agreement with those of reference i, as seen from figure 6; the quantitative differ-
ences are due to differences in aircraft modeling.

2. Climb-out turns are at level flight and are practically completed before the

onset of climb. If altitudes below the initial altitude are permitted, the flight-
path first dips at Ymin = -4° while turning, as shown in figure 7(c).

3; In the descent, most of each turn is at level flight, with a small amount

of turn during descent. If altitudes below the initial altitude are permitted, the

flightpath dips during the initial small turn while descending, and then climbs for

the remainder of the turn. For large turns, an additional unexpected final dip
occurs, as shown in figure 10(c).

4. The altitude changes in climb-out and descent flightpaths are essentially
nonturning with an almost constant (singular) flightpath angle y of 4.4 ° on climb

and -3.3 ° on descent, independent of the amount of turn (see table I). The optimal
thrust is T = Tma x on climb and T = 0 on descent, including on turns in both
cases.

5. These characteristics of optimal climb and descent facilitate approximations.

Thus, for on-board optimization of fuel-efficient turning descents and climb-outs,

it is sufficient to use an existing climb-cruise-descent fuel-optimization algorithm
and superimpose initial and final level turns from and to the airport. The extra

fuel consumption for forcing level turns is much larger on climb (where T = Tmax)
than on descent (where T = 0). Thus, forcing the turns to be level by restricting
y within the range -0.001 = Ymin S y S _max = 0 costs about 20 ib as compared with

climbs in which an initial dip along Ymin = -4° is permitted, independent of turn;
for descent, the cost is only about 2 lb.

6. The main fuel-saving characteristic of optimal flightpaths is the completion

of turns before climb. Thus, turning level with full bank angle instead of with
optimal bank angle results only in the consumption of 4 ib of additional fuel on a

180 ° turn. But combining this turn with a climb at y = 3° wastes 285 ib of fuel

(see fig. 12). That it is inefficient to start climbing at once, rather than turning
and accelerating horizontally, surprised some experienced pilots.

7. Only on the later part of descent is the 250-knot-IAS constraint violated;
its imposition (optimally, as a state-variable constraint) costs about 1 ib of fuel.
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The optimal climb, however, is at an almost constant 294 knots IAS and the cost of

imposing the 250-knot constraint is 36 ib of fuel, independent of the required head-

ing change.

The principal results of section 3 (capture flights in the terminal area) are
summarized below.

i. The optimal capture flightpaths computed can serve not only for missed

approaches, but also as complete flightpaths between nearby airports in a metropoli-

tan area. To estimate the fuel savings afforded by the optional flightpaths would

entail elaborate piloted simulations, as was done for the case of reference i. We

believe the savings should be about the same, namely, about 5%.

2. The characteristics of the turns are the same as those in reference 8; for

example, there is typically a deceleration on large turns to accomplish a tighter

turn. But now, as expected, there is a climb to and a descent from a higher altitude
(see fig. 15). The flightpath angle is singular also on the transition between climb

and descent. The climbs and descents have the characteristics enumerated in items (2)

to (4) under section 2 results above, except that the thrust is not always T = Tma x
on climb. Except for the thrust for short flightpaths, the controls along turns at

both ends of the flightpath are decoupled; this of course facilitates approximations.

3. Various approximations to optimal flightpaths were studied. An example is

a nonturning 45 n. mi. long flightpath, which begins and ends at an altitude of

2,000 ft and a speed of 250 knots. The simplest approximation to this flightpath is

flying at constant altitude and speed. This results in a 10% additional consumption

of fuel. As a better approximation, if at level flight we accelerate with T = Tma x
immediately to the best cruising speed and at the last moment decelerate with T = 0

from the cruising speed to the final speed, we reduce the extra fuel used to 6% above

optimal. Using the suboptimal algorithm described in appendix B, which includes

altitude changes, results in only 0.3% extra fuel over the optimal (see figs. 16-18).

When approximating turning optimal flightpaths, the efficiency of the near opti-
mal algorithm is reduced somewhat. Using the near optimal algorithm for long and

short paths, all with large turns, results in 0.44% and 2.24% additional fuel use,

respectively.

4. The speed on climb portions of capture flightpaths exceeds the 250-knot-IAS

constraint (see fig. 15(a)). Imposing the constraint results in a 3.7% increase in

fuel use for nonturning flightpaths, that is, 20 to 50 ib for ranges of 30 to

50 n. mi. We did not make a comparison for the case of turning flightpaths, but we

expect the increase in fuel consumption to be about the same.

Of course, not all possible flightpaths of interest were computed. None of our

flightpaths exceeded the altitude of i0,000 ft because our drag and fuel-flow models

were developed to be valid only up to that altitude. It would certainly be of inter-

est to extend these models and to compute long-range airport-to-airport minimum-fuel

flightpaths, including turns. Furthermore, families of capture flightpaths with end

states different from ours could be added, for example, flightpaths that start and

end at different altitudes. Of course, portions of the flightpaths presented in this

report are also optimal. We did not compute very short (e.g., 2-n. mi.-long), highly

turning flightpaths. Such flightpaths are rare, difficult to approximate, and more-

over consume little fuel; for horizontal flight they are explored in reference 8.
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Some of the results were unexpected, whereas others confirmed well-known results

and practices. Of course, all results can be rationalized in retrospect on physical

grounds, but only a quantitative optimization can confirm with confidence physical

reasonings and intelligent guesses.

The fuel savings afforded by optimally flying the type of flightpaths studied

here are, of course, small in relation to the fuel expenditure of long-distance

airport-to-airport flightpaths. However, the cumulative saving is significant.

Furthermore, with the present trend toward automation of air-traffic control, we feel

it is economically worthwhile to incorporate, into future on-board flightpath manage-

ment systems, fuel saving algorithms that approximate the optimal flightpaths. The

development of such a suboptimal algorithm, in all its details, is a major task.

However, NASA's considerable experience to date indicates that it is definitely
feasible.

Ames Research Center

National Aeronautics and Space Administration

Moffett Field, California 94035, April 19, 1984
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APPENDIX A

DRAG AND FUEL-FLOW EQUATIONS

Reference 16 explains the use of subroutines that calculate drag, thrust, and

fuel flow from comprehensive table lookup data over the complete operating range of

the Boeing 727-100 aircraft. For our method of calculating extremals, we need func-

tional relationships for the limited range of 150- to 350-knot speeds and 0- to

10,O00-ft altitudes, which are derived here.

Drag as a Function of Speed, Altitude, and Bank Angle

Over the range of speeds considered, flaps must be deployed for the lower speeds.

However, we do not want to consider flaps as a control variable. Therefore, flaps

are eliminated as an independent control by putting a limit on the angle of attack,

_ _max = 8° (AI)

and by automatically deploying the minimum amount of flaps so that _ = 8° is never

exceeded. Although the drag curves are shown in figure 26 for all altitudes, in
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Figure 26.- Drag versus speed from table lookup.
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practice flaps are deployed at low altitudes only. It turns out that the optimal
results agree with this practice. Since we have the constraint,

n = W/cos i (A3)

assumed tO be satisfied by automatically adjusting the angle of attack, the drag is
bank-angle dependent, rather than _ dependent.

D = D(v,h,i) (A3)

It should be noted here that our flap schedule is different from that in refer-

ence 16, which deploys flaps as a function of indicated airspeed. Our flap program
results show less drag at the lower speeds than the schedule of reference i. How-

ever, neither method represents the real world completely, since, at present, flaps
are controlled manually in steps, based on speed cues.

The calculation of the drag proceeds as follows. Given h and v, from the 1962

atmospheric model we obtain density p and Mach number M. Knowing the bank angle,
we calculate the required lift coefficient to meet the constraint (eq. (A2)),

CL = W/(0.5 pSv 2 cos i) (A4)

where S = area of the wings = 1,560 ft, W = weight of the aircraft = 150,000 ib, and

p = density of air at the given altitude. Then, for _ = 8° the subroutine CLIFT

(ref. i) computes the available lift coefficient CLav(_,h,M _f) I_=_o. Starting with
zero flaps, the flaps are increased in 0.01 ° steps until

CLav _ CL (A5)

This final flap value is then used in the subroutine CDRAG of reference 1 which deter-

mines the drag coefficient CD(M,CL,_f). This permits us to calculate the drag

D = 0.5 pSV2CD = D(h,v,!)l_8O,L=W/cos! (A6)

An example of the drag curves obtained by the above method, including the flaps

required, is shown in figure 26. The bumpiness of the drag-versus-speed curves in

the region where flaps are deployed is an artifact of linear interpolation of the

drag polars which are given only for 0°, 2°, 5°, 15 °, 25 °, and 40 ° flap angles. Our
model will be designed to smooth out these bumps.

It is our task (i) to determine an analytic relationship for drag that involves

only _, v, and h; (2) to determine approximate values for the parameters; and (3) to

minimize the error between the analytic representation and the full table lookup of
the fuel flow when using the standard 1962 atmosphere. In order to minimize the

number of parameters required, we shall first develop an expression from the approxi-
mate theory of wings, and then determine parameters that fit the data.

The lift coefficient of a clean wing is
I

CL = CL_ (A7)

Adding flaps shifts the curve upward
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= + CL_ (A8)C_ CL0

Without flaps the lift-drag polar is

CD = CDo + _CL _2 = CD0 + _CL_ (A9)

Assuming the same form when the drag polar is shifted owing to flaps adds a linear
term in _:

= C'D0* _'C_ = C'D0* n'(CL0_ * CL a2) (AI0)C6

From equation (A4) setting CL C'= L and using equation (AS) we can solve for

= [W/(0.5 pSv 2 cos i) - CL0]/CL_ (All)

and using equation (All) to replace _ in the drag equation (AI0) results in an

equation for drag of the form

D = C_ 0.5 pSv 2 = b0/cos _ + blv 2 + b2(l + tan 2 _)/v 2 (AI2)

where the b's are functions of p S, W, _'
, , CL0, CLa, and C_0.

This is the form of the functional relationship for a constant altitude and con-

stant flap angle. In actuality, the flap changes with speed for constant altitude as

shown in figure 26. The bank angle, which is one of the controls, appears twice in

the above expression. The first approximation of the b's in equation (AI2), which

must be functions of altitude, as found as follows. We write for i = 0

D = k1(l + k2h) + k3(l + k_h)v 2 + ks(l + k h)/v 2 (AI3)

Using the tabular data that are graphically represented in figure 26, for h = 0,
= 0 and for three different speeds of 150, 225, and 350 knots, we obtain three

equations with three unknowns, kl, k3, and k s. With these solved, we choose

h = i0,000 ft and _ = 0, and solve for k2, k_, and k_. These six constants are
a good first approximation to the drag equation. These constants are then used for

the complete drag equation (AI2),

D = kl(l + k2h)/cos _ + k3(l + k4h)v + ks(l + k6h)(l + tan 2 _)/v 2

which using cos _ = i/(I + tan 2 _)I/2 _ 1/(l + 0.5 tan 2 _) is approximated as

D = k1(l + k2h) + k3(l + k_h)v 2 + ks(l + k6h)/v 2 + [k1(l + k2h)/2

+ ks(l + k6h)/v2]tan 2 _ (AI4)

For the purpose of an improved analytic approximation of the drag function, we

generate 180 samples from equation (AI4) and the corresponding values from the inter-

polation of the original data for all combinations of the following parameters:
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= 0° I0 ° 20 ° 30 °

h = O, 2,500, 5,000, 7,500, i0,000 ft

v = 150, 175, 200, 225, 250, 275, 300, 325, 350 knots

and calculate the rms percent error between the table lookup values and the analytic

drag equation. By means of an extremum-finding subroutine (ref. 17) the parameters

are adjusted to minimize the rms percent error, which results in an rms error of

2.387%. This apparent error is primarily a result of the desirable smoothing of the

drag curves in the flap deployment region. The polynomial fit agreed within 0.8%

(max) with the drag in the 6f = 0 region. The values of the coefficients in equa-
tion (AI4) are

kI = -0.4078×10 _ k3 = 0.1146 ks = 0.3830xi09

k2 = 0.2429xI0 -_ k_ = -0.2005xi0 -_ k6 = 0.4227xi0 -4

The resulting drag curves are shown in figure 27, which may be compared with the table

lookup data in figure 26. For example, the node for u = 0 is at

v = 0.5 klk2/(k3k_) + {0.25[(klk2)/(k3k_)] 2 - ksks/(k3k_)} I/2 (AI5)
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Figure 27.- Drag versus speed from algebraic equation.
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The curves derived from the table lookup have a constant minimum (fig. 26) drag,

which occurs at increasing speeds for increasing altitudes. This is not the case for

the polynomial approximation. However, the nature of the increasing speed with alti-

tude for minimum drag is preserved in the polynomial representation.

Fuel Flow as a Function of Thrust Speed and Altitude

Reference 1 presents fuel-flow data in tabular form,

fn = fn (Mach,Tn ,h) (AI6)

where fn is a normalized fuel flow rate,

fn = f/(T/e) } (AI7)= actual fuel flow rate

and

T = thrust for three engines = _Tn (AI8)

where Tn is the normalized thrust for three engines,

_- = square root of the temperature ratio "_

0 = the ratio of temperature at altitude h to the temperature atl (AI9)zero altitude •

and

6 = pressure ratio = ratio of pressure at altitude h to pressure at

zero altitude (A20)

It is our task (i) to determine an analytical relationship for fuel flow that

involves only T,v,h; (2) to determine approximate values for the parameters; and

(3) to minimize the error between the analytic representation and the full table

lookup of the fuel flow when using the standard 1962 atmosphere.

The fn entries in the three-dimensional table used in reference 1 are normal-

ized there in such a way that they are almost altitude-independent. For the first

two steps of the task we are therefore using only the table for h = 5,000 ft. In

figure 28, "the fn values multiplied by the normalized thrust Tn are plotted

versus Tn over the range of Mach numbers of interest, because this quantity is the
actual fuel flow normalized by atmospheric constants where, from equations (AI7)
and (AI8),

Tnf n = Tnf/(T_-) = f/(_/g) (A21)

The relationship between normalized fuel flow and normalized thrust is shown in fig-
ure 28; it was approximated as

= 0.45 + M + 3.75 + 3.35M 0.5(1 - M) z
6/@ 30,000 Tn + Tn (A22)-- 30,0002
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Figure 28.- Fuel-flow rate versus Tn for h = 5,000 ft.

Equation (AI7), used in (A22), gives the actual fuel flow:

f = _¢_-_.45 + M + 3.75 + 3.25M T 0.5(i- M)(_)2]30,000 _ + 3--O_,0002 (A23)

Fuel flow is still a function of the pressure ratio, temperature ratio, and Mach

number, which are all functions of altitude. The altitude dependence for the normal
atmosphere is presented in table 3.

TABLE 3.- NORMAL ATMOSPHERE

Sound

Altitude, Temp, _ P, 0, _ = P/P0 o 0/p 0 o-I/2 speed,
ft 3 K ib/ft2 slugs/ft3xl0_ = ft/sec

0 288.15 1.0 2,116 23.77 1.0000 1.0000 1.0000 1,116.9

2,000 284.19 .99 1,968 22.41 .9298 .9428 1.0299 1,109.2

4,000 280.23 .99 1,828 21.11 .8637 .8881 1.0611 1,101.4

6,000 276.27 .98 1,696 19.87 .8014 .8359 1.0938 1,093.6

8,000 272.31 .97 1,572 18.08 .7428 .7860 1.1279 1,085.7

i0,000 268.35 .97 1,455 17.55 .6877 .7385 1.1637 1,077.8

We can see from table 3 that the speed of sound decreases with altitude, so that the

speed expressed in units of Mach number M increases with altitude,

M = v(l + 0.363x10-Sh)/ll16.9 (A24)

where v is given as true airspeed in feet per second. The pressure ratio can be
expressed as

= i/(i + 0.45h/i0,000) = I - 0.31h/10,000 (A25)
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and the square root of the temperature ratio as

/_ = 1 - 0.363×i0-Sh (A26)

Using equations (A23)-(A26) allows us to obtain f when T, H, and v are given. We

can rewrite equation (A23) as

= C0(h,v) + C1(h,v)T + 02(h,v)T 2 (A27)

where each of the C's is a function of altitude and speed. When equations (A24),

(A25), and (A26) are used to replace M, 6, and /_ in equation (A23), and when all

resulting higher-order terms except terms involving hv are neglected, all C's end
up in the same form,

Cj = c_j+1(l + c_j+2h) + c_j+3(l + c4j+_h)v ; j = 0,1,2 (A28)

The numerical values of the 12 parameters in equation (A28) were used as initial

values in the extremum-finding subroutine (ref. 17) where the parameters cI to c12
are adjusted to minimize the rms error between table lookup _alues and the results of

equations (A27) and (A28) for the 210 points given by all combinations of

T = 7,000, 9,500, 12,000, 14,500, 17,000, 22,000, 24,500 ib

v = 150, 200, 250, 300, 350 knots

h = 0, 2,000, 4,000, 6,000, 8,000, i0,000 ft

For this procedure, the actual fuel flow was calculated by using all appropriate fuel-

flow tables, as well as the exact nominal atmospheric model. This resulted in an rms
error of 0.039 ib/sec. The values are

cI = 0.47537 cs = 0.10823×10 -_ c9 = 0.91747×10 -9

c2 = -0.24360xi0 -_ c_ = -0.80509×10 -5 cl0 = 0.79644×10 -_

ca = 0.17702xi0 -2 c7 = 0.15898xI0 -_ c11 = -0.85521xi0 -12

c_ = -0.28995xi0 -_ ca = -0.12439xi0 -4 cl2 = -0.45624xi0 -4

These data are known to be accurate for T _ 7,000 lb. Additional data are available

only for engine idle (T = 0). These data agreed reasonably well with the expression
for T = 0 in equations (A27) and (A28). Hence, equations (A27) and (A28) will be

used over the complete range of thrust. An example of the resulting fuel flow versus

thrust function is shown in figure 29.
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APPENDIX B

SUBOPTIMAL ALGORITHM FOR THE SYNTHESIS OF INTERMEDIATE-LENGTH CAPTURE FLIGHTPATHS

The algorithm described here uses simple commands to abstract the essential fea-

tures of the optimal capture trajectories and generate capture trajectories with

specified terminal conditions. In contrast to reference 15, in which capture flight-

paths were generated even for very short flightpaths (2-5 n. mi.) (which required

complicated turning to solve the two-point boundary-value problem), the algorithm
described here only solves intermediate-length flightpaths. Such flightpaths are

the more common ones. The turning portions of the flightpaths are calculated in a

way similar to that described in reference 15. In addition, the algorithm described

here is not fully developed for flight, since it uses more data from the optimal path
than would be available on board, where only the boundary conditions are known. A

complete development would require that functional relationships be abstracted from

the optimal solution for the climb and descent angles. In addition, the speeds and
altitudes at which climb and descent would be initiated would have to be known, as

well as the altitudes for the nonsteady cruise, as a function of the path length.

This would not be a difficult task.

For the algorithm, data are required at six points of the optimal flightpath:

the initial point, the point where the initial climb begins, the point where the ini-
tial climb ends and the thrust reduction begins, the point where the descent begins,

the point where the descent ends, and the final point. Selected elements of the

following data at each of the above points are required: position (x,y,z), heading,

speed, and, for comparison with the suboptimal path, also the fuel used.

Straight-Line Flightpath

The suboptimal command sequence for nonturning flight was shown in figure 17 and

is discussed here in greater detail. The aircraft accelerates horizontally until it

reaches the speed for initiating the climb (point a in fig. 17). At this point the

aircraft begins to climb at the average of the optimal climb angle, which is calcu-
lated from the positions at the beginning and end of the optimal maximum thrust
climb. The maximum thrust climb ends at the altitude where in the optimal control

the thrust reduction begins (point b). At this point, the thrust is reduced linearly
with time until thrust equals drag (point c), which is then maintained. The best
time interval for the linear thrust reduction as a function of the path length was

found via simple trial and error. During this thrust reduction the climb is contin-

ued at the same flightpath angle until a certain altitude is reached (point d). This
chosen altitude is the one at which the optimal flightpath begins the zero thrust

descent.

The remaining path is found via backward integration and is described in back-
ward time. The aircraft accelerates in level flight from the final speed at zero

thrust until it reaches the optimal speed for initiating zero thrust climb (point e

in fig. 17). At this point the aircraft begins to climb at the average of the opti-
mal climb angle, which is calculated from the positions at the beginning and end of

the optimal zero thrust descent. This climb continues to the altitude where the

optimal descent begins (point f). The forward and backward integrated paths (points d

and f) are now at the same altitude; however, the speed of the zero thrust climb

(point f) turns out to be lower than the speed reached in the forward integration of
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the path (point d). Therefore, a final level-flight zero-thrust acceleration in

backward time follows until the speeds match (point g). Now the speeds and altitudes

match, but the positions do not. In the forward integration, the thrust equaled the

drag (point c); hence, it is natural to fly from point c to point g at constant

speed. This completes the development of the straight-line flightpath.

Turns

Since, in contrast to the optimal turns, the suboptimal turns are accomplished

at maximum bank angle, they are always completed before the climb begins. This

applies for both the initial turn in the forward-time integration and the final turn

in the backward-time integration.

To determine the directions and approximate magnitudes of the turns, the capture

algorithm of reference 7 is used. This capture algorithm delivers circular turns

with radii as a function of the entry speeds to the turns. Because this is only an

approximation we calculate the paths of the true constant bank angle turns, using
forward and backward integration of equations (1)-(5) for one-half the heading

changes specified by the algorithm of reference 7. Then the algorithm of reference 7

is called again from the new endpoints, and the process is repeated until both
remaining turns are less than 0.5 ° From these new endpoints the remaining path is

essentially a nonturning path.

There is one additional fuel-saving element incorporated in the suboptimal turn

generation. If the initial turn is large, it is flown at zero thrust until the

remaining turn is less than 120°; at that point full thrust is applied.
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APPENDIX C

FUEL-FLOW AND DRAG DERIVATIVES USED IN THE TEXT

In the development of the singular-y arc equations, we need certain time-
derivatives and other derivates which we shall enumerate here. Let us assume that

T and u are time variable.

F = [cl(l + c2h) + c3(i + c_h)v] + [c5(I + c6h) + c7(i + csh)v]T + [c9(i + cl0h)

+ c11(i + cl2h)v]T 2 = Co + CIT + C2T 2 (CI)

Fv = c3(i + c4h) + c7(i + csh)T + cl1(l + cl2h)T2 =Cov + CIvT + C2vT2 (C2)

#v = Fvhh + FvTi = (c3c_ + CvCsT + C11Clz T2)_ + [C7(I + ceh) + 2c11(I + c12h)T]i

(C3)

Fh = (clc2 + c3c4v) + (c5c6 + cTcsv)T + (c9ci0 + CllCl2v)T 2 = C0h + CIhT + C2hT2

(c4)

#h = FvhV + FhTT = (c3c4 + c7cs T + c11cl2 T2)_ + [c5c_ + c7csv + 2(c9cl0 + Cllcl2 v)T]_

(c5)

T = -(C I + %vg/W)/(2C 2)

T* = TvV + Thh + TXvi v if 0 < T < Tma x ;_ (C6)T* = 0 if T* = 0 or T* = Tma x

Tv = -[C2CIv - (C1 + %vg/W)C2v]/(2C_) (C7)

Th = -[C2CIN - (C1 + %vg/W)C2h]/(2C_) (C8)

T%v = -g/(2WC2) (C9)

D = kl(l + k2h) + k3(l + k_h)v 2 + k5(l + k6h)/v 2 + [kl(l + k2h)/2

+ ks(l + k6h)/v2]u 2 = D I + D2u 2 (CI0)

Du = 2D2u (CII)

Dv = 2k3(i + k_h)v - 2k5(i + k6h)(l + u2)/v 3 = Dlv + D2vU2 (C12)

• 3

Dv = 2k3(i + k4h)v + 2k3k_hv + 6k5(i + k6h)(l + u2)v/v_ - 4k5(i + k6h)uu/v

- 2ksk6h(l + u2)/v 3 (C13)

75



Dh = klk2 + ksk_ v2 + ksk6/v2 + (klk2/2 + ksk6/v2)u 2 = D1h + D2hU2 (C14)

Dh = 2k3k_vv + (klk2 + 2ksk6/v2)u_t - 2ksk_(l + u2)_r/v3 (C15)

6 = Dhh + Du_ + Dv_r (C16)

= u 1 - D2 v + X_ %v D2 (C17)

_=0; u=u m
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APPENDIX D

CONCAVE VELOCITY SET PROBLEM

Chattering Solution

If the velocity set is not convex then for some end conditions the optimal solu-

tion may not exist (ref. 18). The velocity set is defined as follows. Let

= f(x,u) be the differential equation describing the system (the aircraft in our

case), where x is the state vector and u the control vector. For a fixed state

x, the set of all possible vectors f(x,u), or _, obtained by using all possible
controls u, is called the velocity set.

Figure 30(a) shows the projection of the velocity set on the (_,v) plane. It

shows that for deceleration, the velocity set is not convex in the region of zero

thrust because of increased drag at nonzero bank angles. In this case, a relaxed

controller (or chattering control, an idealized condition in which the control moves

in zero time between its limits forming a square wave at infinite frequency) may
result in better performance if maximum deceleration will improve performance. To

make the velocity set convex we allow the possibility of a chattering bank angle and

define a combined control, which enlarges the area of the velocity set:

u = _us - (i - _)u s = Us(2_ - i) (DI)

where us is the magnitude of the tangent of the bank angle Us = Itan _I,

0 S us S um, and _ is the chatter parameter (fig. 30(b)), 0 J _ S i

= per unit time the bank angle is at us

i - e = per unit time the bank angle is at -us

then equation (4) changes to

= -gu s(2_ - l)/v (D2)

and the Hamiltonian (eq. (12)) becomes (assuming n = 0, off the speed limit)

2 _ Wy)/WH = CO + CIT + C2T 2 - Cv cos _ + XhVY - %_gUs(2_ - l)/v + Xvg(T - DI - D2u s

(D3)

2 and does not depend on the value of theNote that the drag is only a function of us

chatter parameter e, because the control is either at us or -us. The optimal
and us are those that minimize H while using their permissible range. Then,

removing terms not functions of _ and us equation (D3) becomes

H(_,Us) = -l_g(2_ - l)us/V - %vgD2u_/W

from which _* and u_ can be found
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Figure 30.- Cross section through the velocity set h, _, _, and F, given v and h

and Y = Ymax" (a) Nonconvex set; (b) convex set that has increased velocity set
volume compared to (a); (c) convex set that has decreased velocity set volume
compared to (a).
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01 if _ < 0

_* = (D4)

if X_ > 0

and equations (20) and (21) become

_ if _ < um and %v < 0
Us* = (D5)

um if _ >_um and Xv < 0

= -[(2_* - l)W%_]/[2XvD2V ] (D6)

We note that u_ is always positive as required. When _* from equation (D4)
and u_ from equations (DS) and (D6) are inserted into equation (DI), we can see
that the combined control, u*, has the same value as it had when equations (20)

and (21) were used and equations (D2) and (D3) revert to the original equations (4)

and (12). However, _ is linear and we must also consider the singular-_ solution.

From equation (D3),

Ha = -2g%_Us/V = 0 . X_ = 0 (D7a)

But from equations (20) and (D5), us = 0 when %_ = 0. This is equivalent to the
nonchattering straight descent and again is included in the earlier solutions, which

do not require a chattering bank angle. Since the results for the convex set are the

same as those for the original nonconvex set, we can solve the optimal descent prob-

lem as if the original velocity set were convex. For X_ H 0 minimization of H
in equation (D3) gives

= _0 if %v < 0 (D7b)u S

if Xv > 0 (D7c)

Here, equation (D7b) implies u = 0 as from equations (20) and (21). When X4 _ 0,
a nonturning flight, the undetermined _* in equation (D4) must be set at _*-= 1/2

in order for equation (D7c) to be consistent with a nonturning flight.

Introducing Constraints

A different approach to make the velocity set convex is to apply appropriate

constraints. This will cut off portions of the earlier velocity set. A reduced

velocity set in general means reduced performance. We will, therefore, reduce the

velocity set in such a way as to minimize the excised area. To do this, we impose an

acceleration constraint, which limits deceleration to a constant value for each (v,h)

such that it equals the maximum value which can be obtained at zero bank angle
(fig. 30(c)). The resulting deceleration constraint is a mixed state and control

constraint. From equation (5) with T = 0, v = 0 for the final turn after the

descent we find the deceleration constraint that will keep the deceleration inside

the curve of figure 30(c):

M = -g[DIL(v,h) + WYmax0]/Wj - v _ 0 (D8)

79



!
where Ymax 0 is the maximum flightpath angle for wings-level flight in descent. In

the following development we only express the changes from the original set of equa-
tions, where we express the original equations as before and star (*) the new values.

Then, from equations (12) and (D8), as an additional constraint,

H* = H + _{-g[D 1(v,h) + WYmax0]/W- _} (D9)

Inserting equation (5) for _ and simplifying gives

H* = H + _{-g[T- D2(v,h)u 2 - W(y -Ymax0) I/W} (DI0)

and the adjoint equations (13), (14), and (15) become

i_ = ih - _gD2hUe/W (DII)

X4 = _ (DI2)

v = iv - _gD2vU2/W (DI3)

On the deceleration bound we have T - D2(v,h)u 2 - W(y - Ymax0) = 0; therefore,

y = Ymaxo- D2u2/W + T/W (DI4)

We are interested in the decelerating descent at T = 0; hence, y is just decreased

sufficiently from the maximum allowable for nonturning flight by flying a steeper

descent to compensate for the additional drag term D2u2/W owing to a nonzero bank
angle. Since the turn is not exactly horizontal, we must get off the speed-limited
arc at somewhat above the desired final altitude.

From _ = 0 = _ + _g we have

= Iiv- %hv/g > 0 on the deceleration constraint (DI5)off the deceleration constraint

The requirement that _ be greater than zero on the acceleration constraint is a

necessary condition for optimality. Thrust control is determined by

H_ = HT - _g/W

Hence, instead of equation (18) we now have

T = -[C1(h,v ) + (Xv - _)g/W]/[2C2(h,v)] (DI6)

and for bank angle control,

= Hu + _2gD 2(h,v)u/W

80



Thus, instead of equation (21), we now have

= -XCW/[2(X v - _)D 2(h,v)v] (DiT)

Note in equations (DI6) and (DI7) Xv - p can be replaced via equation (DI5) by

Xv - _ = khv/g (DI8)

We are now in a position to compare the solutions for the convex set with those

of the original set. The above constraints, which only apply to the descent, did not

affect the performance (worse by less than 0.2 ib of fuel than the unconstrained
optimal). Since the solutions for the larger but nonconvex set have a better per-

formance we shall accept them. The acceleration constraint was only artificially

introduced to satisfy the minimum principle rather than representing passenger or

equipment requirements.
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