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ABSTRACT

This document provides computational models for the plight

Experiment Demonstration System (FEDS), developed at the

Goddard Space Flight Center System Technology Laboratory

(STL), Code 580. FEDS is a modification of the Automated

Orbit Determination System developed at the STL during 1981

and 1982.
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SECTION 1 - INTRODUCTION

This document provides computational models for the Flight

Experiment Demonstration System (FEDS), developed at the

Goddard Space Flight Center (GSFC) System Technology Labora-

tory (STL), Code 580. FEDS is a modification of the Auto-

mated Orbit Determination System (AODS), developed at the

STL during 1981 and 1982. The purpose of FEDS is to demon-

strate, in a simulated spacecraft environment, the feasibil-

ity of using microprocessors to perform onboard orbit

determination with limited ground support.

During the demonstration, FEDS will execute on the STL's

PDP-11/23 microcomputer, located at a remote site. FEDS

will be connected to a transponder via a communications link

and to the AODS Environment Simulator for Prototype Testing

(ADEPT), modified to support FEDS. The transponder will

provide observation data, accumulated in real time from a

Tracking and Data Relay Satellite System (TDRSS) signal, to

FEDS for use in the orbit determination process. ADEPT,

executing on the PDP-11/70, will provide all other external

information required by FEDS.

The models presented in this document were largely taken

from the AODS System Description, Section 5 (Reference 1).

In most cases, only the algorithms are presented here; no

attempt is made to derive models or show how they are inte-

grated into FEDS. The reader should refer to the AODS Sys-

tem Description, Section 3, for a logical description of the

corresponding tasks.

The coordinate systems, transformations, and time systems

used throughout FEDS are described in Section 2. The orbit

propagation algorithms, including integration and interpola-

tion algorithms, the equations of motion, and the variational

1-1
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equations, are described in Section 3. Algorithms for

reduction of raw observation data and production of

frequency control words are given in Section 4, and the

estimation algorithms and observation models are presented

in Sections 5 and 6, respectively.
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SECTION 2 - COORDINATE SYSTEMS, TRANSFORMATIONS, AND
TIME SYSTEMS

This section contains a description of the coordinate sys-

tems, transformations, and time systems used in FEDS. It

also contains the algorithm for the Greenwich hour angle

calculation, which is used in transformations throughout the

system.

2.1 COORDINATE SYSTEMS AND TRANSFORMATIONS

In FEDS, the propagation of the satellite's state vector and

state transition matrix is performed in geocentric rec-

tangular coordinates referenced to a true Equator and

equinox of epoch (TOE) coordinate frame. The satellite's

acceleration vector and the partial derivatives of the ac-

celeration vector are also expressed in this geocentric sys-

tem. This system is obtained by freezing the true Equator

and equinox of date (TOD) system at a specified epoch (ref-

erence time). The tracking measurements are also computed

in the TOE system. However, the coordinates of the ground-

fixed antenna are expressed in Earth-fixed coordinates and

must be transformed to the TOE system. Each of these coor-

dinate systems is defined in the following subsections along

with the required transformations.

2.1.1 TRUE EQUATOR AND EQUINOX OF EPOCH (INERTIAL) SYSTEM

The geocentric TOE system is defined as follows:

Origin Center of the Earth

Reference plane Equatorial plane of the Earth,
perpendicular to the Earth's spin
axis at epoch

Principal direction True vernal equinox of epoch

The equinox is defined as the intersection of the planes of

the Earth's Equator and the ecliptic. The Equator is de-

fined as being normal to the Earth's instantaneous spin

2-1
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axis. The ecliptic is the Earth-Sun orbital plane. The TOE

system is equivalent to the TOD system associated with the

specified epoch date. However, the TOD system changes with

time because of the motion of the equinox, which is due, in

turn, to the combined motions of the two planes (the Equator

and the ecliptic) that define it.

The motion of the Earth's spin axis or of the Earth's Equator

is due to the gravitational attraction of the Sun and the

Moon on the Earth's equatorial bulge. This motion consists

of lunisolar precession and nutation. The motion of the

ecliptic is due to the planets' gravitational pull on the

Earth and consists of a slow rotation of the ecliptic. This

motion is known as planetary precession.

The rectangular Cartesian coordinates (see Figure 2-1) asso-

ciated with the TOE coordinate system are defined with re-

spect to the following axes:

x-axis = principal direction

y-axis = normal to the x and z axes to form a right-hand
system

z-axis = normal to the equatorial plane of epoch in the
direction of the Earth's spin axis

EARTH'S
SPIN AXIS

\
X

VERNAL EQUINOX
AT EPOCH

Figure 2-1. Geocentric Coordinate System
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Quantities r, x, y, and z designate the position vector and

Cartesian coordinates referred to the TOE frame.

2.1.2 EARTH-FIXED SYSTEM

The Earth-fixed coordinate system is defined as follows:

Origin Center of the Earth

Reference plane Equatorial plane of the Earth,
perpendicular to the adopted
polar geographic axis

Principal direction Intersection of the Greenwich
meridian with the reference plane

The Earth's axis of figure (i.e., principal moment of in-

ertia) is not coincident with the Earth's instantaneous spin

axis. It moves with respect to the latter, causing the

polar motion effect. Therefore, the motion of the spin axis

pole is given with respect to the pole at some established

epoch. The pole at the established epoch is referred to as

the adopted geographic pole and corresponds to the Earth-

fixed z-axis, z, . The adopted geographic pole is the mean

pole of 1903.0, which is consistent with that used by the

International Polar Motion Service.

The Greenwich meridian is the plane containing the adopted

polar axis that passes through the former Royal Observatory

at Greenwich, England.

The rectangular Cartesian coordinates (see Figure 2-2) asso-

ciated with the Earth-fixed coordinate system are defined

with respect to the following axes:

= principal direction

y^-axis = normal to the x^ and z^ axes to form a right-
hand system

z^-axis = axis along the vector passing through the
adopted geographic pole

2-3
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GREENWICH
MERIDIAN

ADOPTED
GEOGRAPHIC

POLE

Figure 2-2. Earth-Fixed Coordinate System

2.1.3 EARTH-FIXED-TO-TOE TRANSFORMATION

The exact transformation that relates the TOE coordinates to

the Earth-fixed coordinates accounts for three separate ef-

fects. The first relates the true vernal equinox of epoch

to the true vernal equinox of date (i.e., accounts for pre-

cession and nutation effects). The second effect relates

the true equinox of date of the Greenwich meridian of the

rotating Earth by means of the angle, a , the true right

ascension of Greenwich (see Figure 2-3). The third effect,

called polar motion, accounts for the fact that the pole of

the Earth-fixed axis, z,, does not coincide with the

Earth's instantaneous spin axis, the pole of the TOD geo-

centric axes.

In FEDS, the first and third effects are assumed to be

zero. This is equivalent to assuming that the TOE z-axis is

coincident with both the instantaneous spin axis and the

Earth-fixed z,-axis. The transformation from the TOE tob
the Earth-fixed coordinate system reduces to a rotation

2-4
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about the TOE z-axis through the true right ascension of

Greenwich, a , yielding
9

= V (2-1)

where

Bl -

cos a

-sin a.

sin a 0g
cos a 0 (2-2)

Computation of the true right ascension of Greenwich, a , i

discussed in Section 2.1.4.

Z' Zb GREENWICH
MERIDIAN

Figure 2-3. TOE-to-Earth-Fixed Coordinate Rotation

The Earth-fixed coordinates are transformed into TOE co-

ordinates as follows:

BT T>Bl rb
(2-3)
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Differentiation yields the velocity transformation

" (2-4)

where

Bl -

-sin a

-cos a.

cos a 0"
g

-sin a. (2-5)

and where a (the rate of change of a ) is considered to be

constant.

2.1.4 COMPUTATION OP THE GREENWICH SIDEREAL TIME AND HOUR
ANGLE

The TOD right ascension of Greenwich, a , is measured

easterly from the true vernal equinox to Greenwich. A

related quantity is the Greenwich hour angle (GHA), also

called the true Greenwich sidereal time, which is measured

westerly in the plane of the Equator from Greenwich to the

true vernal equinox. Thus, although their definitions

differ, the right ascension of Greenwich, a , and the

Greenwich sidereal time and hour angle are equal in magni-

tude. In FEDS software, the approximation is made that the

TOE Greenwich sidereal time is equal to the TOD Greenwich

sidereal time.

The true Greenwich sidereal time, a , is obtained from the

mean Greenwich sidereal time, aGM, by applying a correction,

AH, due to nutation in longitude and obliquity as follows:

ag ' aGM AH (2-6)

2-6

9681



The mean Greenwich sidereal time is calculated using the

following equation:

= 100?075542 + 0?98564735 Ad

+ (2°9015 x 10"13) Ad2 + w

(2-7)

where to is the angular velocity (degrees per second) of the

Earth and is given by

0°0041780742 ,, 0.> = ^ (2-8)
e 1.0 + (5.21 x 10 •"••*) Ad

where Ad = number of whole days elapsed from atomic time
(A.I) January 0, 1950

fd = fraction of days measured from midnight (seconds)

If the input request time is expressed in terms of the A.I

modified Julian date (i.e., days since 2430000), DJO, then

DJO - 3282.5 = Ad + f, (2-9)a

The nutation term, AH, is computed by evaluating a ninth-

order nutation polynomial derived from the GTDS solar-

lunar-planetary ephemeris (SLP) file (Reference 2,

Section 3.6)

10c
i=2

where P^ = coefficient of the ith term of the nutation
polynomial that covers the request time, DJO

At = DJO - (PDELHT + 10) (days)

2-7
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PDELHT = uplink start of polynomial fit (modified
Julian date in A.I days from start of SLP
file)

Since each nutation polynomial covers a 20-day span, two

polynomials are used in FEDS to provide for continuity over

the estimation data arc. Only the observation modeling rou-

tines require the addition of the nutation term described

earlier.

Subsequent requests to compute a at another time, t, may

use a reference time and an associated a as follows:
gref

a = a + «(t - t ) (2-11)

where a = reference GHA computed at time t f
gref

a) = rotation rate of the Earth

2.2 TIME SYSTEMS

The basic time system used in FEDS is the A.I system. Be-

cause time advances at a constant rate in A.I time, simula-

tion time can be compared directly with system clock time

(in seconds from reference) for system control and schedul-

ing purposes. All input time tags are in the Universal Time

Coordinated (UTC) system and are converted to A.I time on

input as follows:

where t̂ .i = internal time (A.I)

= input time (UTC)

2-8
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ail = constant^ adjustment (UTC to A.I) for time period
surrounding tjN

After output, all time tags are converted from A.I to UTC as

follows:

W • 'A.I - ali (2-13)

where t^.i = internal time (A.I)
= output time (UTC)

ail = constant^ adjustment (UTC to A.I) for time
period surrounding tOUT

One other time system is used in FEDS. The A.I time is con-

verted to ephemeris time (ET) during the computation of the

Sun and the Moon positions in the orbit propagator as

follows:

'ET ' 'A.I +

2.3 TIME REPRESENTATIONS IN FEDS

Time is represented in three basic ways in FEDS. When the

START command is received, a time message is requested from

an external Parallel Grouped Binary Time Code 5 (PBS) gener-

ator. This message is used to establish a simulation refer-

ence time. All input time tags are converted from the input

form of YYMMDDHHMMSS.SS (UTC) to seconds from reference

(A.I). All time parameters are kept and measured in FEDS in

terms of seconds from reference. System clock time is also

measured in seconds from reference for controlling real-time

processing.

1-The standard conversion polynomial is t̂ .i = type +
a2i At + 331 At^. However, since 321 and 331 are zero for
the times FEDS will use, they were omitted to save memory.
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The PBS time code used in FEDS comprises three groups,

totaling 41 bits: truncated Julian's Day (TJD), seconds of

day, and milliseconds. TJD is defined as the number of

whole days since midnight (UTC) of May 5, 1968, and is com-

puted as follows:

TJD = Julian Day Number - 244000.5

The TJD-to-calendar date conversion is presented in

Table 2-1.

Modified Julian dates are also used throughout FEDS. A

modified Julian date is defined as follows in FEDS:

DJO = days since 2430000 in A.I time

The reference time is also stored in modified Julian date

form for quick computation of days since reference time.

2-10
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Table 2-1. TJD-to-Calendar-Date Conversion

TJD Date (Year, Month, and Day)

0 680524*
222 690101
587 700101
952 710101
1317 720101*
1683 730101
2048 740101
2413 750101
2778 760101*
3144 770101
3509 780101
3874 790101
4239 800101*
4605 810101
4970 820101
5335 830101
5700 840101*
6066 850101
6431 . 860101
6796 870101
7161 880101*
7527 890101
7892 900101
8257 91U101
8622 920101*
8988 930101
9353 940101
9718 950101

0 951010

*Denotes Leap Year

9681
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SECTION 3 - ORBIT PROPAGATION MODELS

Orbit propagation is performed in FEDS using a multistep

integration process (with a single-step starter). The

propagator integrates one full fixed-length step at a time

and uses a multistep interpolator to obtain the spacecraft

state or state transition matrix at the request time.

Because the FEDS orbit propagator is required to propagate

high-altitude geosynchronous orbits (TDRS) and low-altitude

drag-perturbed orbits (user spacecraft), various forces are

modeled in the equations of motion, including atmospheric

drag, up to a 15-by-15 geopotential field, gravitational

effects of the Earth, the Sun, and the Moon, and solar

radiation pressure. However, due to timing and memory

constraints, only the gravitational effect of the Earth and

zonal coefficients, X , X , and X , are used in theJ2 J3 J4
variational equations.

The computational models for the multistep integrator and

interpolator, the single-step integrator (starter), the

equations of motion, and the variational equations are given

in the following subsections.

3.1 RUNGE-KUTTA STARTER

The multistep method avoids the multiple function evalua-

tions at each integration step that are required by the

Runge-Kutta single-step method, but it is not self-

starting. Starting from an initial position and velocity,

the Runge-Kutta method is used to build the required start-

ing array for the Cowell equations of motion and variational

equations. After the Runge-Kutta integrator has entered

10 equally spaced accelerations in the backpoints table, the

initial ordinate first and second sums are computed. The

Runge-Kutta algorithm and the initial computation of the

3-1
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first and second ordinate sums are presented in the follow-

ing subsections.

3.1.1 RUNGE-KUTTA INTEGRATION ALGORITHM

The Runge-Kutta method is a single-step, self-starting nu-

merical integration technique by which the value of the

dependent variable at some future time, t, + T, where T is

the starter integration step size (T = h/6, where h is the

multistep integration step size), can be calculated from a

weighted summation formula and the value of the dependent

variable at t. . The integrator algorithm is as follows.

Given a first-order differential equation of the form

ft " f(t' x)

and an initial value

xl =

the dependent variable, x, at time t, + T is as follows:

N

+ T) = X, + T V W.f . (3-1)

where

f = f r t x ) (3-2)J-1 i. V «.. , A, / \ - J f - l
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and

fj = f ltj + TYj, XL + T > m B..f,| (3-3)

The derivatives f are evaluated at n subintervals from t,

to t, + T. The location of these subintervals is defined by

coefficients ^.. The summation is weighted by 3-- and w • .

The number of derivative evaluations needed is N, and the

error made in the integration is of the order of T^ , where

p is the order of the method, which is not necessarily equal

to N.

Runge-Kutta methods have been developed by comparing two in-

tegrators of different order in which the lower order method

derivatives are a subset of those used for the higher

order. An estimate of the truncation error made from using

the lower order integration method can be obtained by dif-

ferencing the two solutions of orders p and q (where

q < p) to obtain

N

E(tx + T) = T Sf . (3-4)

where N is the number of derivative evaluations for the

solution of order p. Equation (3-4) can be used to compute

the relative truncation error, Ereif at each integration

step as follows:

E(t + T)
E = ± (3-5)

IX ( + T) I
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Runge-Kutta integration formulas are available for which the

integration constants have been chosen so as to minimize the

truncation error of the higher order method and to use all

free parameters in the equations of condition to optimize

the integrator. This approach produces better integrators

in that there are fewer function evaluations for the ac-

curacy obtained than for Runge-Kutta integrators derived

without such considerations.

The integrator used in FEDS is a fixed-step integrator de-

rived under these conditions. The integration coefficients

(see Table 3-1 drawn from Reference 3) require five deriva-

tive evaluations and produce a solution accurate to order p,

where p is greater than four but less than five. The error

coefficients, 6., are consistent with the difference of

solutions of orders p and q, where q equals three. For this

reason, the algorithm is referred to as a Runge-Kutta 3(4+)

method.

3.1.2 INITIAL COMPUTATION OF THE ORDINATE FIRST AND SECOND
SUMS

The equations for computing the initial ordinate first and

second sums for state integration are as follows:

Isn-l = IT ' X B*i+l Vi+1 (3'6)

XMn x ... « {3.7)

10

E
i=0

10

i=0

where n = 10

xn and xn = position and velocity vectors at time tn
integration
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h = integration step size

x = accelerations stored in the backpoints
table

8* = Adams-Moulton correction coefficients

a* = Cowell correction coefficients

These equations are derived by inverting the Adams-Moulton

and Cowell correction formulas given in Section 3.2 (Equa-

tions (3-15) and (3-17)).

The following equations are used to update the sums to time

(3'8)

IZS - ITS + XS 13-Sn " Sn-l + Sn (3

The equations for computing the initial ordinate first and

second sums for the partial derivative integration are as

follows:

10I
i=0

10
Y V^

"2'^

where n = 10

Y = partial derivatives of the velocity at t

Y = partial derivatives of the position at t

Ipn-l = ' E Bi+l - <3-10>
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Y = partial derivatives of the accelerations
stored in the backpoints table

h, a*, 3* = the values defined previously

These equations are derived by inverting the Adams-Moulton

and Cowell correction formulas given in Section 3.2.1.

The following equations are used to update the sums to time

tn

n =
 pn i + * (3-12)n n-1

3.2 MULTISTEP INTEGRATION

Multistep integration methods minimize the number of deriva-

tive evaluations required to produce a given accuracy at the

end of the requested interval of integration. Since, in

general, the major cost in computing an orbit is the evalua-

tion of the complex force function (see Section 3.4), multi-

step algorithms appear to be most efficient. FEDS uses a

12th-order, fixed-step, multistep integrator. A predict/

evaluate derivative/correct/pseudoevaluate (PECE*) algorithm

is used to integrate the equations of motion, and a

corrector-only algorithm is used to integrate the varia-

tional equations. The summed ordinate predictor/corrector

formulas are given in Section 3.2.1, and the algorithms for

integrating the equations of motion and the variational

equations are described in Sections 3.2.2 and 3.2.3, respec-

tively. Finally, the algorithm for computing the state

transition matrix for mapping the partial derivatives is -

given in Section 3.2.4.
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3.2.1 PREDICTION AND CORRECTION FORMULAS

In FEDS, the Adams-Bashforth predictor and the Adams-Moulton

corrector methods are used to integrate first-order equa-

tions of motion and the velocity vector. The Stormer pre-

dictor and the Cowell corrector methods are used for

second-order equations of motion of the position vector.

The Adams-Bashforth prediction formula used to predict

velocity is as follows:

xn+l = h

i=0

(3-14)

where n is the number of backpoints available and k+1 is the

order of the integrator. The Adams-Bashforth llth-order

coefficients, B1., are given in Table 3-2.

The Adams-Moulton correction formula used to correct veloc-

ity is as follows:

= h "S +n

kr
i=0

., •n+l-i (3-15)

where n is the number of backpoints in the table and k+1 is

the order of the integrator. The Adams-Moulton correction

coefficients, $*., i.e., the llth-order coefficients for equa-

tions of motion and the 7th-order coefficients for varia-

tional equations, are given in Tables 3-3 and 3-4,

respectively.
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Table 3-2. Adams-Bashforth llth-Order Predictor Coefficients

61 = 3.451988400456282

e2 = -13.81683726526174

B3 = 35.43365334896585

64 = -60.83539672518839

P5 = 72.18373924011945

e6 = -59.70768131463444

37 = 33.93953914141414

^S = -12.67749704385121

e9 = 2.808681814424002

B10 = -0.2801895964439367
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Table 3-3. Adams-Moulton llth-Order Corrector Coefficients

3| = 0.2801895964439367

3* = 0.6500924360169152

3* = -1.208305425284592

3* = 1.810901775693442

3* = -1.99558147196168

3* = 1.575960936247395o

3^ = -0.8678660614077281

8| = 0.3167875681417348

3* = -0.06896520387405804

3|Q = 0.006785849984634707
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Table 3-4. Adams-Moulton 7th-0rder Corrector Coefficients

6* = 0.3155919312169312

6* = 0.3921792328042328

6* = -0.3760251322751323

6* = 0.2440806878306878

8* = -0.09009589947089947

B* = 0.01426917989417989o
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The Stormer prediction formula used to predict position is

as follows:

'n+1 = h"

k
II,

n "i+2 n-1
i=0

(3-16)

where n is the number of backpoints in the table and k+2 is

the order of the integrator. The 12th-order Stormer pre-

diction coefficients, a'/ are given in Table 3-5.

The-Cowell correction formula used to correct position is as

follows:

n+l
i=0

(3-17)

where n is the number of backpoints in the table and k+2 is

the order of the integrator. The Cowell correction

coefficients, a*, i.e., 12th-order coefficients for equa-

tions of motion and 8th-order coefficients for variational

equations, are given in Tables 3-6 and 3-7, respectively.

3.2.2 PECE* ALGORITHM FOR EQUATIONS OF MOTION

The concept of pseudoevaluation is introduced as a device to

help stabilize the numerical integration at little or no

cost in computation. It is recognized that in a predictor-

corrector scheme, the numerical stability region is propor-

tional to the number of derivative evaluations within a

given step (Reference 4) and that for systems of the form,

X = f(X) + eg(X), where e is a small parameter, the

stability region is mainly influenced by the f(X) term.

The idea, then, is to introduce into a predictor-corrector

algorithm, which is designed to solve the system above, a
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Table 3-5. Stormer 12th-0rder Predictor Coefficients

a'2 = 0.7093330001402910

a^ = -2.949775927679574

a'4 = 7.565365635521886

a£ = -12.95853327421036

a' = 15.34411576078243b

a} = -12.67150744799182

a£ = 7.193720363355780

a^ = -2.684381939434023

a^Q = 0.594237726972102

a' = -0.05924056412337662
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Table 3-6. Cowell 12th-Order Corrector Coefficients

a* = 0.05924056412337662

a* = 0.1169273589065256

a* = -0.2839505421276255

a* = 0.4564979407166907

a* = -0.5180148083012666b

a* = 0.4154936016915184

a* = -0.2309889820827321
o

a* = 0.08485266855058522

a*Q = -0.01855655388207472

a = 0.001832085738335738
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Table 3-7. Cowell 8th-0rder Corrector Coefficients

a* = 0.06820436507936508

a* = 0.05115740740740741

a* = -0.070006613756613764

a* = 0.05019841269841270

a* = -0.01936177248677249o

a* = 0.003141534391534392
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pseudoevaluation, i.e., a partial evaluation of X, where

f(X) is recomputed using the latest corrected value of X,

and g(X) is reused based on a previous value of X. For ex-

ample, assume that the equations to be integrated have the

form

r* = + P(t, •, ) (3-18)

where the first term represents the primary attracting body

acting on the satellite. Assuming that the accelerations

and sums are known, then the iterative algorithm to advance

to time t ,, isn+l

1. Predict. Using Equations (3-14) and (3-16), predict

values (denoted by superscript p)

, (P) V ( P ) 7 ( P ) | (3-19)kn+l' yn+l' zn+l (J i9 '

.' yn+l' ^n+lj

2. Evaluate. Using Equation (3-18), evaluate

rn+l

(3-21
n+l' rn+l/ U ZL

3. Correct. Using Equations (3-15) and (3-17), obtain the

-Me)improved values (denoted by superscript c), r +, and

•He)
rn+l*
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4. Pseudoevaluate. Compute the acceleration

-(c)-pr
/t
\tn+l'(c)3 T r\un+lf "n+1'

rn+l

(3-(3

where the P term is obtained from step 2

5. Update Sums. Compute the updated sums

"Sn

The computational cycle of steps 1 through 5 may then be

repeated with n = n + 1.

3.2.3 CORRECTOR-ONLY ALGORITHM FOR VARIATIONAL EQUATIONS

In the Cowell formulation, the position and velocity partial

derivatives of the satellite motion with respect to any pa-

rameter appearing in the acceleration model in Equa-

tion (3-18) or state (dynamic parameters) may be obtained by

the numerical integration of a system of equations of the

form

Y = A(t) Y + B(t) Y + C(t) (3-25)

from initial conditions at time tQ given by

.
Y(tfl) = - --, Y(t ) = - -- (3-26)

0 3p* ° 3p
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where

A(t) = 3r(t)

3x3

(3-27)

B(t) = 3r(t)

3x3
(3-28)

C(t) = 3 x I matrix of acceleration
partial derivatives (3-29)

Y(t) = t)!

J

Y(t) =

3 x 9, matrix of position partial
derivatives

3 x i matrix of velocity
partial derivatives

(3-30)

(3-31)

Vector ~p" contains the parameters in the acceleration model

to be estimated.

The components of matrices A, B, and c are developed in Sec-

tion 3.5.

Optionally, the components of p* correspond to the space-
craft's position and velocity at epoch and are expressed in

true of date Cartesian coordinates. Since the first six

elements of "p" are the state vectors, the first six columns

of C are zero. The model parameter, drag, enters into

P(t, r", ~r*) of Equation (3-18) linearly, so that the computa-

tion of C(t) is simplified by retaining many of the quanti-

ties used in the computation of r(t).

The integration of system Equation (3-25) is performed by

utilizing the corrector-only formula as follows. Assume
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that the satellite position and velocity, "̂ (t̂ )̂ and ^^fc

the matrices, Y i for step i, where i = 0, 1, 2, ..., k,

and the summation matrices, P and p (3-by-il, are known;

the algorithm to advance Y to time t , is

1. Compute matrices A(t +1) ,
 B(fcn+i)'

 and C ^ ^ ' wni-cn

depend only on tn+1, "?n+1, and

2. Compute the 6-by-6 matrix [I - H]"

H = (3-32)

3.

where a* and 6* are the corrector coefficients of Equa'

tions (3-15) and (3-17), and h is the step size.

Form the 3-by-Jl matrices, Xn and V , as follows:

Xn =

i%

TT "̂"̂  ••1 P + > a* Yn ' * i n+l-i aOCn+l
(3-33)

vn = h n+l-i P0 n+1
(3-34)

4. Compute the required position and velocity partial de-

rivatives, Y +, and Y lf by the matrix equation

Ln+l

n+1
= [I - H]-16x6

6xJl

n

n 6x5,

(3-35)
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5. Update acceleration and sums by

Yn+l - An+l
 Yn+l + Bn+l

 Yn+l + Cn+l (3'36)

Ipn+l

<3'38)

and complete the cycle. After computing ~r*n+2
 an<^

steps 1 through 5 may be repeated with n = n + 1.

3.2.4 STATE TRANSITION MATRIX COMPUTATION

In FEDS, the orbit propagator computes (if requested) the

state transition matrix that is used in the observation

model to map the observation partial derivatives with re-

spect to the solve-for parameters from the observation time

to the epoch time. Since the orbit propagator is always

restarted at epoch each time the epoch is changed, the state

transition matrix is as follows:

(3-39)

where t = request time

tn = epoch0
Y = partial derivatives of the position at time tn

with respect to the solve-for parameters (see
Equation (3-30))

Y = partial derivatives of the velocity at time tn
with respect to the solve-for parameters (see
Equation (3-31))

3-20

9681



3.3 MULTISTEP INTERPOLATION

The multistep interpolator uses the first and second ordi-
nate sums and the 10 backpoints (accelerations) computed

during multistep integration to compute the spacecraft posi-

tion and velocity and the associated partial derivatives (if

desired) at a request time.

The multistep interpolation algorithm is as follows:

1. Compute constants y! (0) and y'MO) to be used in later

calculations as follows:

Yj(0) = 1

i - i + 1 YJ(Q) (3'40)
j = 0

Yj(0) Yi-j{0) (3-41)
J-0

where i = 1, 2, ..., 10.

t - t
2. Let s = —r in the following steps

where tn = time associated with most recent entry in the
backpoints table, xn

t = request time
h = step size

3. Compute y•(s) , where i = 0, 1, ..., 12:

YQ(s) = 1
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Yi(s) =
 S * * " 1 Yi-i (i = 1, 2, ..., 12) (3-42)

4. Compute Y ^ ( s ) , where i = 0, 1, ..., 11:

Yj(8) -

Yi(s) = 2~i Yj (0) Yi-j (S) (i = lf 2' •"' U) (3~43)
j=0

5. Compute 6 ! ( s ) , where i = 0, lf ..., 10:

11

= (-1)

11

(3-44)

(i = 1, 2, ..., 9)

If) is computed as T—?', . ,11 / ^ m ̂  i / • i •

6'0(s) = Yi

6. Compute the velocity as follows:

x(t) = x(tn + sh) = h

10

6i(s)
i = 0

(3-45)
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where S = first ordinate sumsn

x = accelerations in the backpoints table

n = number of accelerations in the backpoints
table

and s, h, and 6!(s) have been defined previously.

7. Compute Y"(S), where i = Of 1, ..•, 12:

Y0'(s) -

Yj<s). =

j=0

Y- (0) (i = 1, 2, .... 12) (3-46)

8. Compute 6V(s), where i = Of 1, ...., 10

12

j=2

V (s)

12

(-1)1
J.TJ.

j=i+3

(i = 1, 2, ..., 9)

(3-47)

YJ2(s)

9. Compute the position as follows:

x{t) = x(t + sh) = h2n

10
6V (s) x

i=0

IIsn + (s n

(3-48)
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where S and S = first and second ordinate sumsn n

x = accelerations in the backpoints table

n = number of entries in the backpoints
table

and s, h, and 6'.'(s) have been defined previously.

The formulas for interpolating the partial derivatives are

obtained by substituting 3xn_]/3p for x lf P for S , and

I]:Pn for I]CSn in Equations (3-45) and (3-48).

3.4 EQUATIONS OF MOTION FOR STATE VARIABLES

The orbital equations of motion, expressed in Cartesian co-

ordinates, are

0-49)

where ~r~ = satellite position vector in the TOE coordinate
frame

"iT = total acceleration vector in the TOE coordinate
frame

In FEDS, this set of three second-order differential equa-
tions is transformed to an equivalent set of six first-order

differential equations:

dr* _ ̂
dt - r

(3-50)

^ - ̂dt ~ a

_»^

where r is the satellite velocity expressed in the TOE co-

ordinate frame.
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For the total FEDS state vector

X =

r
-ta.
r
CT

(3-51)

where C_ = atmospheric drag constant

b = clock bias coefficients (b, , b~, and

the equations of motion can be expressed as

X* = F()T, t)

where

(3-52)

F(X, t) =

The total acceleration of the satellite includes the follow-

ing components:

• Gravitational acceleration of the satellite due to

the Earth's mass (£„) and the solar and lunar
£j

masses (a*s and "â , respectively)

• Gravitational acceleration of the satellite due to

the nonsphericity of the Earth's gravitational po-

tential (â s)

• Satellite acceleration due to atmospheric drag

forces ("aU)
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• Satellite acceleration due to solar radiation pres-

sure <rSRj
The total acceleration, a, is expressed in terms of these

components as

{3'53)

All or any subset of these effects can be included in the

acceleration vector, which is used in constructing the equa-

tions of motion. These accelerations are discussed in the

following subsections.

3.4.1 EARTH, SOLAR, AND LUNAR POINT MASS ACCELERATIONS

To first order, the gravitational attraction of a body of

mass m can be approximated as that arising from a dimension-

less particle of mass m located at the center of mass of the

body. Three point mass terms are included in the accelera-

tion model of FEDS: the Earth's central body term and the

perturbing accelerations from the Sun and the Moon.

The acceleration experienced by a satellite attracted by n

point masses, expressed in an inertial coordinate system, is

d2? V^ Mk ̂* _ -?• / •* _ CL A \C

where ? = vector from the center of an inertial coordinate
system to the satellite

Uk = product of the universal gravitational constant
and the mass of the kth point mass

T. = vector from the kth point mass to the satelliteKP . ^
r. = magnitude of the vector, "f^

In FEDS, the motion of the satellite is referenced to the

Earth's position; i.e., an Earth-centered TOE coordinate
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system is used. The desired form for the acceleration is

obtained by subtracting the acceleration acting on the ref-

erence body

j 2~ n
d rE

rS-
 rk <3-55>

ME
k=l rk

from each side of Equation (3-54) to obtain

d2 (r" - r" ) Ul- n

2 ^ r
dt

3

For the case in which the reference central body is the

Earth and the perturbing point masses are the Sun and the

Moon, Equation (3-56) becomes

(3-57)
dt'

where

-- (3-58)

rs "
(3-59)

(3-60)
- Ti J i-?* i Jl

M
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The quantities \i-,, yg, and u are the gravitational con-

stants of the Earth, the Sun, and the Moon, respectively,
and if and "r*̂  are the position vectors of the Sun and the

o M,
Moon, referenced to the Earth.

The positions of the Sun and the Moon are determined by
evaluating series expansions in the latitude and longitude

of the Sun and the Moon, where the series are truncated from
those of Brown's lunar theory by Woodard (Reference 5,

pages 52 through 62). The Sun's position components are
(KS, yg, zs), and the Moon's position components are (XM,

*M' ZM}-

For the Sun, the components are related to the orbital ele-

ments by

XS- - cos XS

yS - . . (3-61)— = cos e sin XcrS S

— = sin e sin Xc
rS S

For the Moon, the -components are related to the orbital ele-

ments by

= cos 6M cos XM

VM _— = cos 9M sin X cos e - sin 6.. sin e
M

ZM _— = cos 9., sin X,, sin ? + sin 9,, cos e"r,. M M MM
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where e = mean obliquity of the ecliptic

Xg = solar longitude

A = lunar ecliptic longitude

0 = lunar ecliptic latitude.

The distances r., and r_ are found from evaluation of theM s
terms d-x/r.. and ds/rg (the ratios of the mean to the true

geocentric distances) as follows:

(3-63)

where d^ = mean lunar geocentric distance
(384399.06 kilometers)

dg = mean solar geocentric distance
(149497971.0 kilometers)

KM, Kg = series presented in this subsection

-4The time AD (the elapsed time since 1900.00 in units of 10

days) in the series expansion is given by

AD = 3.6525 T (3-64)c

where T , the number of Julian centuries since 1900.00, is

_ JD - 2415020.0
Tc - 36525.0 {3 65)

where JD is the full Julian date.
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The mean obliquity of the ecliptic, e, is as defined as

follows:

e = 23?4522940 - 0?0130125 T (3-66)c

The solar longitude, Xg, is

X = G + JZ, + 2e sin(£, ) (3-67)

where

= 281?220833 + 4?70684 AD

= 358?475845 + 98560?0267 AD (3-68)

es = 0.01675104 - 1.1444 x 10"
5 AD

In Equation (3-67), Gg is the longitude of perigee of the

solar orbit; &_ is the solar mean anomaly; and es is the

eccentricity of the solar orbit.

The series K is given by
o

KS = es cos(Jlg) (3-69)

The lunar ecliptic longitude, X , is determined by subtract-

ing a series in (DM, FM, HM, &g) (presented in Table 3-8)

from LM (the mean longitude of the Moon, measured in the

ecliptic plane from the mean equinox of date to the mean

ascending node of the lunar orbit, and then along the orbit)

XM = Hi * SerieS
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Table 3-8. Series for XM

Coefficient
(radians)

-0.000607 sin

0.11490 sin

-0.000267 sin

-0.001996 sin

-0.000801 sin

-0.003238 sin

-0.000118 sin

0.000138 sin

0.000716 sin

0.000192 sin

-0.000186 sin

-0.022236 sin

0.10976 sin

0.000931 sin

-0.000219 sin

-0.000999 sin

-0.000532 sin

-0.000149 sin

-0.001026 sin

0.003728 sin

0.000175 sin

Argument Multiple of

M

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

3

M

0

0

2

2

2

0

0

0

0

-2

0

0

0

0

2

0

0

0

0

0

0

"M

1

2

-2

0

-2

0

2

-2

0

0

-4

-2

0

2

0 .

-2

0

-4

-2

0

0

"S

0

0

0

0

0

0

0

-1

-1

0

0

0

0

0

0

1

1

0

0

0

0

3-31

9681



The lunar ecliptic latitude, 0 , is directly determined from

a series in (DM, F^, I.., £„) and is presented in Table 3-9.

The series < is determined from the series in (D , F ,

&, £ ) and is presented in Table 3-10. In these series,

LM = 210°26 t02"sB + (480960?0
1. 1

° '= 2 9 6 0 6 l 6 5 9 + ( 4 7 7 0 0 0 0 + 1985o se 79) TC

+ 3 3" 09 T^

= 358°28'33!'oO + (35640?0 + 359°02 ' 59 "lO) T_ (3-70)

= 1 1 1 5 0 3 2 0 + (483120°0 + 82°0l' 3o" 54)

» 2
11.56 TZ

c

(444960?0 + 307°

" 2
-17 Tc

where FM = argument of latitude of the Moon

DM = mean elongation of the Moon from the Sun

As noted previously, the series are summarized in Tables 3-8

through 3-10. These tables give the coefficients of each

trigonometric term and the angles that appear in that term.

The trigonometric terms contain only integer multiples of

the four angles. The first term in 6,, is3 M

eM = 0.089503 sin(FM) radians
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Table 3-9. Series of

Coefficient
(radians)

0.089503 sin

0.000569 sin

-0.003023 sin

-0.000144 sin

0.004897 sin

-0.000807 sin

0.004847 sin

-0.000967 sin

0.00301 sin

0.000154 sin

0.000161 sin

a

0

0

0

0

i
i
i
i
2

2

1

Argument

FM

1

1

1

1

1

1

-1

-1

1

-1

-1

Multiple of

DM

0

2

-2

-2

0

-2

0

-2

0

0

2

«,

0

0

0

1
0

0

0

0

0

0

0

9681
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Table 3-10. Series for

Coefficient
(radians)

0.0082488 . cos

0.0005604 cos

0.0003369 cos

-0.0002086 cos

0.0100247 cos

0.0545008 cos

0.0009017 cos

0.0004219 cos

-0.0002773 cos

0.0029700 cos

0.0001817 cos

Argument Multiple of
0 T? n Q

M M M S

0

0

1
1
1
1
1
1
1
2

3

0

0

0

-2

0

0

0

0

0

0

0

2

-2

0

0

-2

0

2

-2

0

0

0

0

1

-1

0

0

0

0

1
1
0

0

9681
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The formulas for the lunar position include the leading

terms of Brown's lunar theory as summarized by Woodard (Ref-

erence 5) . All perturbation terms with amplitudes greater

than 50 kilometers are included (22 terms in the ecliptic

longitude, 11 terms in the ecliptic latitude, and 11 terms

in the distance) ; this achieves an overall positional ac-

curacy of 1 arc-minute (0.005 radian or 200 kilometers) .

3.4.2 NONSPHERICAL GRAVITATIONAL ACCELERATION

The inertial acceleration vector resulting from nonspherical

gravitational effects is given by the gradient of the non-

spherical terms in the geopotential function, ^ g

Expressed in terms of spherical polar coordinates,

r = magnitude of the vector from the Earth's center
of mass to the satellite

$ = geocentric latitude

X = geocentric longitude (measured east from the
prime meridian)

The nonspherical geopotential, ^f is given by

where

E X""* 0 / e I 0
" — 2L, Cn \T) Pn(sin *>

n

n=2
n n

r _̂-r / j
n=2 m=l

sin mX + C cos mX

y_, = gravitational constant of the Earth
£j

R = Earth's equatorial radius

(3-72)
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Pm(sin
n

-.
n' Cn

= associated Legendre function

= harmonic coefficients (zonal harmonics for
m = 0, sectorial harmonics for m = n, and
tesseral harmonics for n > m ^ 0)

(NOTE: n = -C , where J are the zonal

coefficients

The first and second terms are the nonspherical potential

due to the sum of zonal and tesseral harmonics, respec-

tively. The term n = 1 is not present, since the origin of

the coordinate system is placed at the center of mass of the

Earth.

Expressing the gradient in Earth-fixed coordinates,

~r*k = {x,, y, , z.) (see Section 2.1.2), the form for the in-

ertial acceleration vector is obtained as follows:

'NS

NS

3r

(3-73)

where x. , y, , and z, are the components of the inertial
DNS DNS NS

acceleration of the spacecraft, expressed in the Earth-fixed

coordinate system and not the acceleration with respect to

the Earth-fixed coordinate system. Thus, it is necessary to

transform these components into the TOE coordinate system in

which the orbital equations of motion are expressed.
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This transformation, which is discussed in Section 2.1.2, is

given by

(3-74)

where the B, rotation matrix is defined in Equation (2-2) ,

and it is assumed that the geographic pole axis, z, , is

aligned with the spin axis, z, of the TOE coordinate system.

This rotation is equivalent to replacing (r, , x., y, , z, )

in Equation (3-73) by (r, x, y, z), the TOE components, and

calculating the longitude and latitude as follows:

X = a - a.

<t> = sin

(3-75)

where a = right ascension of the spacecraft [a =

a = right ascension of Greenwich
9

Equation (3-73) can be written as

tan'1 (y/x)]

1NS

"NS
yNS

'NS
(3-76)

NS

8<t>
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The partial derivatives of the nonspherical portion of the

Earth's potential with respect to r, <J>, and X are given by

111 cos mX
\ ^

n=2 " ' m=0

+ S™ sin mX] P^(sin <)>)

00 n
Ug ^—\ /R \n ^—V (/ m m
— 7 I e\ 7 sic cos mX + S sinr L~i I—I 2lu \ n n

n=2 m=0

P̂ +1
in $) - m tan <)> P^'(sin <J>)

O \ \. ^^ E
n

,m .
_« — _ » i ^-v i v T n i w / ™ » r \ e » m i ^ * ~~

3X ~ r
n=2 " m=

The Legendre functions and the terms cos mX, sin mX, and

m tan <j> are computed via recursion formulas, as follows:

P°(sin <J>) = (2n - 1) sin $ P°_1(sin <j>)

- (n - 1) P°_2(sin 4>)| /n

0) + (2n - 1) cos

(m ^ 0; m < n)

(3"78)

Pm(sin 4>) = (2n - 1) cos $ pJJ~* (sin <t>) (m ^ 0; m = n)
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where

PQ(sin = 1; P°(sin <(>) = sin = cos <J>

sin mX = 2 cos X sin(m - 1) X - sin(m - 2) X

cos mX = 2 cos X cos(m - 1) X - cos(m - 2) X

m tan <J> = [ (m - 1) tan <|>) ] + tan <j>

The partial derivatives of r, 4>, and X, with respect to x,
y, and z, are computed from the expressions

3J>_ _ 1 I z"T <^z

^~/(x2 + v
2)!- '2 3^-v (x" + y")

1

(3-79)

3T 3r ' ̂3r

where the row vectors (1, 0, 0)/ (0, 1, 0), and (0, 0, 1),
respectively, are given by

3x 3y 3z
/ i

3"T 3̂  3"?
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Substituting Equations (3-79) into Equation (3-73) yields

NS ~ r 3r

NS

V »*W\ ,/X̂ 7̂
NS

3.4.3 ATMOSPHERIC DRAG ACCELERATION

Atmospheric drag acceleration is modeled as a drag force in

the direction of the relative wind vector acting on a satel-

lite of constant surface area. The velocity of the satel-

lite relative to the atmosphere is computed in the inertial

coordinate system by subtracting the motion of the atmos-

phere, assumed to rotate with the Earth, from that of the

satellite:

= IT - u* x •? (3-81)

The Earth's rotation vector, oT, is directed along the

Earth's instantaneous spin axis with a magnitude equal to

the rotation rate of the Earth and components (w,, w-f w.,)
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In the TOE coordinate system, ignoring the effects of pre-

cession and nutation, the z-axis is aligned with the north

polar spin axis such that w, and u)_ are equal to zero. In

addition, u> is assumed to be constant. Therefore, in the

TOE system, Equation (3-81) reduces to

Vrel

x + wy

y - wx

z

(3-82)

For the case of a spherical satellite, the atmospheric drag

acceleration is computed as

P0<h> * ' 1 {3"83)

where CD = aerodynamic force coefficient, which~is an ad-
justable parameter

A = surface area of the satellite

m = mass of the satellite

Pn(h) = altitude density function computed from the
atmospheric drag model

Nominally, for a spherical satellite, the aerodynamic force

coefficient, C , is equal to 1.0. In order to absorb an

error in any of the above terms, Cp is an adjustable

parameter.

In FEDS, the altitude density function, pQ(h), is modeled

using a Harris-Priester atmospheric model. Harris and

Priester determined the physical properties of the upper

atmosphere theoretically by solving the heat conduction

equation under quasi-hydrostatic conditions (see Refer-

ences 6 through 8). Approximations for fluxes from the
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extreme ultraviolet and corpuscular heat sources were in-

cluded, but the model averages the semiannual and seasonal-

latitudinal variations and does not attempt to account for

the extreme ultraviolet 27-day effect.

The atmospheric model presented here is a modification of

the Harris-Priester concept. The modification attempts to

account for the diurnal bulge by including a cosine varia-

tion between a maximum density profile at the apex of the

diurnal bulge (which is located approximately 30 degrees

east of the subsolar point) and a minimum density profile at

the antapex of the diurnal bulge. Discrete values of the

maximum- and minimum-density altitude profiles, correspond-

ing to mean solar activity, are stored in tabular form as

p (h.) and p . (h.)f respectively. Different maximum and
max i mm i

minimum profiles are available for different levels of solar

activity (Reference 2). Exponential interpolation is used

between entries; i.e., the minimum and maximum densities,

pmin and pmax' are

= Pm,.«(hi) exp
mm /

(3-84)

p ( h >'max-i' — I Hmax
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where (h. <_ h £ n-+]) an<^ the respective scale heights,

Hmin and Hmax' are 9i

Hmin =

(3-85)

A good approximation (neglecting polar motion) for the

satellite height, h, is given by

h = r - RE . (3-86)

where R-, is the mean radius of the Earth, given as

Red - fE)
RE =

 e (3-87)

/I - (2f_ - fj) cos2 6'E'

and r = magnitude of the satellite position vector

R = equatorial radius of the Earth

f^ = Earth's flattening coefficient
Cj

6 = declination of the satellite (it is assumed that 6
equals the geocentric latitude of the subsatellite
point)

If the density is assumed to be maximum at the apex of the

bulge, then the cosine variation between the maximum and

minimum density profiles is

pmin<h) + tpmax(h) ' pmin<h)l ̂ ^ (2)
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where y is the angle between the satellite position vector

and the apex of the diurnal bulge.

The cosine function in Equation (3-88) can be determined

directly as

n Y. fl + cos Y"l
 n/2 fl . r ' Sin/2

cos \ = L 2 LJ = [2 + ~2r—J (3'89)

where ^ =' satellite position vector (TOE coordinates)

^ = unit vector directed toward the apex of the
diurnal bulge (TOE coordinates)

For FEDS, n has been assigned the value of 6.

Vector Un has the following components:
D

U_ = cos 60 cos(a + X)
D O S
X

U_ = cos 60 sin(a + X) (3-90)
By b S

U-, = sin 5C
Bz S

where 6 = declination of the Sun
O

as = right ascension of the Sun

X = lag angle between the Sun line and the apex of
the diurnal bulge (approximately 30 degrees)

3.4.4 SOLAR RADIATION PRESSURE ACCELERATION

The model for acceleration "a", due to direct solar radiation

acting on a satellite, is

RSUN TT
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where v = an eclipse factor such that
v = 0 if the satellite is.-in shadow (umbra)
v = 1 if the satellite is in sunlight
0 < v < 1 if the satellite is in penumbra

The vector from the Sun to the satellite is given by

"£.„ = "? - tL (3-92)

where PS = mean solar flux at one astronomical unit, di-
vided by the speed of light

~r"0 = position vector of the Sun
O

~z* = position vector of the satellite

R = one astronomical unit
^ U IN

C_. = solar radiation pressure constant
K

A = surface area of the satellite

m = mass of the satellite

r = magnitude of the vector "r"vs vs

The solar radiation pressure constant is given by

CR = 1 + n (3-93)

where n is the reflectivity of the surface. All of the

factors listed above/ except r , are constant for a given

satellite.

A simple cylindrical shadow model is used to determine the

eclipse factor. From Figure 3-1, it is apparent that the

satellite is in sunlight (v = 1) if the vector product

("r* • ul) is greater than zero, where "r*" is the satellite
O ^

position vector relative to the Earth, and Ug is the solar

position unit vector relative to the Earth.
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SC>REP

Figure 3-1. Cylindrical Shadow Model

If this product is less than zero and the vector to the

satellite along the normal to the solar unit vector

sc = us> us (3-94)

has a magnitude less than the Earth's radius, then the satel-

lite is in shadow (i.e., v equals 0); otherwise, it is as-

sumed that the satellite is in sunlight and v equals 1.

3.5 VARIATIONAL EQUATIONS

The variational equations are differential equations describ-

ing the rate of change of state parameters. The variational

factors are used to solve the following equation (see Sec-

tion 3.2.3) :

Y = A(t) Y + B(t) Y + C(t) (3-95)
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where

A(t) = 2±
3r

B(t) = -^ =
(3-96)

C ( t ) = 3a
3C D 3Cr

To reduce computation in FEDS, the acceleration vector used

in the variation equations is reduced to the following: the

Earth's central body acceleration, "a* , the zonal terms

, in the nonspherical gravitational acceleration,' T 'J2
• T t
J3

a , and the atmospheric drag acceleration, "tTD. Using this

reduced acceleration model, A(t) can be expressed as

A(t) =
3a

3r"

3a 3a
(3-97)

The Earth's central body acceleration is defined in Equa-

tion (3-58). The partial derivatives with respect to the

position vector are given by

daE-~
3r

PEI 3yE

T5" +^~

2
X

xy

xz

xy

y
yz

™

xz

yz
2z

1 (3-98)
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The nonspherical gravitation acceleration is defined in

Equation (3-76) . The zonal terms in the nonspherical poten-

tial, iJJMCr have m equal to zero, such that the partial de-
No

rivatives of these terms with respect to the longitude, X,

are zero. In this case, Equation (3-76) reduces to

where the zonal potential, ip7, is given by

*Z = T ^i -n
n=2

and

n=2

0 1
n Pn<sin

n=2

The partial derivatives of al with respect to "r" are ob-
u

tained by differentiating Equation (3-99) as follows:

8 Z /3r T

.
(3-102)
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The required partial derivatives of i|> are as follows:

(3-103)

• £ (»'I' •
To minimize computations, the symmetry property of the sec-

ond partial derivatives of ^z is utilized as shown below.

These partial derivatives are obtained by differentiating

Equation (3-100) as follows:

3^ 7 U F /R \ n on
— Y- = -f V (\ <n + 2) (n + D c° Pn(sin
3r r n=2 \r /

W ^ Rn 0 1 (3'104)
(n + X) Cn Pn(sin *>

r n=2

CO

— ) Cn [Pn(sin
" tan

T n=2

where

P2(sin <t>) = 2 tan 4> PL(sin <j>) - n(n + 1) P°(sin <j>) (3-105)
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The partial derivatives of r and <j> with respect to ~r* are

given in Equations (3-79). The required second partial de-

rivatives of r and <j> with respect to "r* are obtained by

differentiating Equations (3-79) with respect to ~r", yield-

ing

(3-106)

324>

3-r2 3/2
(x* + y )

tex\
I3f /

3z T

(3-107)

+ zl 2 rr

where Sx/Sr', 3y/3"r", and 3z/3r are (lf 0, 0), (0, 1, 0),

and (0, 0, 1), respectively.

Taking into account the symmetry properties of the second

partial derivatives of rf <j>, and X

3
3̂7

32

3x3z

32

3y3z

3
3y3x

32

3z3x

32

3z3y
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and the fact that the potential function, ip, satisfies
2

Laplace's equation, A \|> = 0; therefore

32*, 324>,

33'
(3-108)

reduces the amount of computation required.

The atmospheric drag acceleration is defined in Equa-

tions (3-83) and (3-84) . The partial derivatives of ~al

are as follows:

!!i
3r*

3a",

3aD 3Vrel 3p0(h)

avrel
P0(h)

3r 3V

3a

rel

'D

3Vrel

(3-109a)

(3-109b)

(3-109c)

Making use of Equations (3-82) and (3-83) yields

3Vrel

3r

0 +w 0

-a) 0 0

0 0 0

3V

1
2 m

rel

r , ̂  ITrel rel

IVrel'

+ IVrel' I! (3-110)
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The partial derivatives of the density with respect to posi-

tion are derived from Equation (3-88) as follows:

3p0(h)

3h

+ cos

I

n 3pmax(h)

3h
!£
aT

(»

il
alT

(3-111)

where

dh
P • (h)M _
Hmin

(3-112)

3h max

IX
3r Sln

U
r - B

(3-113)

The partial derivative of the height with respect to "? is

obtained by differentiating Equation (3-86), yielding

! i-f-«. f1 - £
E> (2£

E - £E) cos
3 (cos 6) (3-114)
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where

9681

3(cos 6) 1
r4 cos 6

xz2

yz2

9 9
-z(x* + yz)_

(3-115)

3-53



SECTION 4 - DATA PROCESSING FOR TRANSPONDER INTERFACE

This section contains algorithms used in processing data

received from and to be sent to the transponder, including

algorithms to convert the raw Doppler data message into

engineering units and to create a frequency control word.

Communication with the transponder is accomplished using an

Intel 8086 microprocessor interface provided by Code 530.

FEDS forms data to be sent to the transponder into a message

and transmits it to the microprocessor via a standard RS232

terminal port. The microprocessor then translates the mes-

sage into pulses to be sent to the various connectors on the

transponder. For data traveling from the transponder to

FEDS, the microprocessor collects the pertinent information

from the transponder ports, forms a message, and transmits

to FEDS again via a standard terminal port.

4.1 REDUCTION OF TDRSS DOPPLER DATA

In FEDS, the only observation data collected are one-way

TDRSS Doppler measurements. The raw measurement consists of

a nondestruct Doppler count of a nominal bias frequency

added to a Doppler sample over a fixed time interval. The

count is cumulative because the accumulator is reset only

between passes, not between successive measurements.

The one-way Doppler measurement is performed by transmitting

a signal from a ground transmitting station to a forward-

link TORS. The TORS coherently translates the signal to the

tracking frequency of the user transponder. The transponder

then accumulates a Doppler measurement for transmission to

FEDS.

Although all measurements should be valid due to the reset-

ting of the accumulator and interception by the microproc-

essor interface of measurements with invalid lock flags, the
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first measurement of a tracking pass is ignored. The rejec-

tion of the first measurement should not significantly af- -

feet the results of the estimation because there is expected

to be an abundance of observation data. The following algo-

rithm is used to preprocess all Doppler observations:

/ANi \ 1 fu ' 17f ft \ = i. _ f I ± . _H (4-£DQ
(ti) \ N £B/ K 220 .

 (4

where f (t.) = observed Doppler shift (hertz) averaged over
0 x the time interval between t. , and t-

N. = value of the accumulator (counts) at time t.

ANj_ = N^ - ^i-i = change in the value of the ac-
cumulator (counts) between t^_i and t£

M = number of Doppler samples added to the ac-
cumulator during the time interval between
ti_i and ti (nominally 40000)

£Q = frequency bias (nominally 221 = 2097152)

K = rational multiplier of the Doppler sample
(nominally 1/4)

fu = frequency of the oscillator used by the
transponder in forming a Doppler sample
(nominally 19.056392 megahertz)

During a nominal pass, the Doppler accumulator is expected

to overflow at least once. When overflow is detected,

AN., used in the preprocessing of the Doppler observa-

tion, will be adjusted as follows:

4f)
2 u - N_ (4-2)

4.2 CREATION OF FREQUENCY CONTROL WORDS

The frequency control word is produced by FEDS and trans-

mitted to the transponder to enable acquisition of the TDRSS

signal. FEDS outputs an initial control word at a fixed

timespan (nominally 60 seconds) prior to the beginning of a
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tracking interval and will provide an updated control word

at a fixed frequency (nominally one control word every

6 seconds) until acquisition occurs or until the end of the

scheduled tracking pass. Output of control words will re-

sume if the tracking signal is lost before the scheduled end

of the pass.

The first bit of the frequency control word is not used by

FEDS. The second bit is always set to 1. The remaining

14 bits of the control word are a signed binary (two's com-

plement) number computed as follows:

f ,(t.) • 216 • 3121
CW(t. ) = ——±—2 (4-3)

1 £ref

where CW(tj^) = data portion of the frequency control word
(-8196 <_ CW <_ 8195) for output at time ti

i) = predicted Doppler shift at time t^

f - = reference frequency

4-3

9681



SECTION 5 - ESTIMATION LOGIC

Reference 9 provides the basis for the following section,

which describes the estimation technique used in FEDS: a

sliding batch differential correction (SBDC) algorithm. The

procedure uses a classical weighted least-squares method

solved by Newton iteration. The SBDC moves in discrete

steps along the observation data, performing a state estima-

tion at each step (slide). The output solve-for state for

each slide becomes the a priori input state for the follow-

ing slide. The major assumptions underlying this approach

are as follows:

1. Given moderate changes in the solve state from

iteration to iteration, the measurement partial derivatives

do not vary enough to affect the DC process. Thus, the par-

tial derivatives are computed for the first iteration of

each slide and are held constant for subsequent iterations

at which moderate state changes occur.

2. If the a priori state is reasonably close to the

actual state, all of the spurious measurements can be edited

during the first DC iteration. Thus, an iterative residual

edit loop is always performed for the first DC iteration

and, on subsequent iterations, is done only when the linear-

ity constraint is violated.

3. Idle time in the system should be used to advan-

tage. The algorithm provides a precompute phase that ini-

tiates the next DC slide before all of the measurement data

is available.

4. The solutions are not noise dominated; as a result,

data ca'n be sampled down to produce a reduced observation

set that decreases the data storage requirements.
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The following subsections describe the SBDC algorithm as

implemented in FEDS; this algorithm resembles the estimator

used in GTDS (Reference 2).

This description is not meant to be a rigorous derivation of

the techniques used in FEDS. The first three subsections

describe one complete slide of the estimator, and later sub-

sections cover the preliminary edit criteria (Section 5.4)

and the special-case logic used to complete a partially pre-

computed slide (Section 5.5).

Each slide consists of one or more iterations through the

measurement data to determine a state vector, X, that best

fits the data in a least-squares sense. The state vector,

X, that is solved for contains a maximum of 10 parameters

(the first 6 are mandatory, whereas the last 4 are optional)

X = [r, T, CD, b]

where 7" = user spacecraft position vector in inertial
Cartesian coordinates

~r* = user spacecraft velocity vector in inertial
Cartesian coordinates

CD = coefficient of drag term

b = user spacecraft clock error terms (second-order
polynomial)

Each iteration can be divided into three functional areas:

• An initial summation of the normal matrix and asso-

ciated batch estimation matrices

• An inner iterative process that consists of the

computation of the state correction vector followed

by an adjustment to the matrices previously accumu-

lated

• End-of-iteration testing for slide convergence or

divergence and linearity violations
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Depending on the result, the slide may either terminate with

a new solution (converge) or terminate with no new solution

(diverge) or continue by performing another iterative cycle.

5.1 INITIAL SUMMATION OF BATCH ESTIMATION MATRICES

The first functional area of the iterative process performs

one complete pass through the measurement data. The com-

puted measurements from the observation model (Section 6)

are used to form the measurement residuals, which are then

subjected to a preliminary edit procedure (Section 5.4).

Partial derivatives are computed for the nonedited measure-

ments, and the normal matrix is formed. To facilitate the

description of this algorithm, the following standard index-

ing has been adopted.

Parameter Meaning

Subscript i Iteration-dependent variable

Subscript j Observation-record-dependent variable

The initial summation is performed by processing each avail-

able observation record in the following manner:

1. Compute measurement residuals (o - c):

(o - c)j = Oj - Cj (5-1)

where o. = preprocessed observed measurement (Section 4)

c- = computed measurement (Section 6)

2. Perform preliminary editing based on maximum allow-

able residual test and, for new measurements only, check the

measurement geometry (Section 5.4).
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3. For the nonedited measurements, compute the partial

es, a., the observation at time t.,

the solve-for variables, X, at epoch time tQ:

derivatives, a., the observation at time t., with respect to

3o .

3X,
(5-2)

3£ ft ) 3f ft ) 8f (t ) 3f ft )
O ^ O J O ^ O D *

3"T(t.) Sr ' f t . ) 3CD . 3tT

j

j )

3lT0

3CD(t . )

3XQ

where f = the observation equation used to compute c .

The first matrix on the right is explicitly determined from
the observation equations in Section 6. The second matrix

is obtained by integrating the variational equations (Sec-
tion 3.5). The values of a. are used to form a single row

of the F-matrix.

T4. The normal matrix, F WF, and two other estimation
Tmatrices, F WF(o - c) and Q, are then updated with current

measurement information as follows:

w = (5-3)

where a equals the measurement standard deviation.
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FTWF. . = FTWF. . , + (aT * w * a.) (5-4)
1 ' J 1 » J~J- J J

FTWF(o - c). . = FTWF(o - c). . , + a. *w* (o - c) . (5-5)1 ij i»J "-1- J j

<0 • °'

The total number of observations used in the summations, n,

is also incremented. Only the upper half and diagonal of

the symmetric FTWF matrix are stored.

5.2 STATE CORRECTION AND INNER EDIT

1. The correction to the state, AX., is formed by
T — "• Tsolving the system (F WF) . AX. = F WF(o - c) . as follows:

AlT = (F̂ W)?1 FTWF(o - c)i (5-7)

Twhere F WF. is inverted using the Schur identity method of

partitioning (Reference 2, Section 8.6.1).

2. Estimation statistics are computed for later use.

The standard error fit is as follows:

S. =

Qi - . * F WF(0 - C) .

i V n - 1

The residual root mean square is as follows:

(5-8)

r-I-T (5-9)

5-5

9681



3. Inner loop editing is performed on the first itera-

tion or if the linearity constraint was violated on the pre-

vious iteration (Section 5.3) as follows:

Predicted residuals, r -, are computed and tested

rj = 2 [(0 " c)j " (aj) <A1V1 (5-10)

Given m, an input scaling parameter, each r- is compared

with m.S.. If the r . is greater, the observation is edited,

and its contribution is subtracted from the F WF.,
T L

F WF(o - c)^, and Qi matrices. The total number of obser-

vations used, n, is also decremented.

4. If no observations are edited, inner editing is

terminated. Otherwise, new S. and RMS. statistics are com-

puted based upon the modified sums and a new state correc-

tion vector, AX., is obtained. Inner editing will terminate

at this point if either the maximum number of inner loops

has been performed or if S. - S . _,/S . £ E, where E is the

standard error fit input tolerance. Otherwise, the inner

edit loop is repeated until one of the above conditions is

satisfied. The last state correction vector computed during

this process becomes the state correction vector, AlT. , for

this iteration.

5.3 END-OF-ITERATIQN TESTING

Various tests are made at the end of each iteration to de-

termine whether the solution state has been attained and, if

not, whether the correction has violated linearity con-

straints. The convergence/divergence tests are performed in

the following order:

1. Divergence indicators from previous operations are

checked for one of three conditions: error return from in-

version of the normal matrix, observation timespan less than
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the minimum required, or all observations in the latest pass

have been edited.

2. Convergence checking is performed next. The slide

converges if both of the following are true:

3

£
1=1

IAP.I = / AX?. < conv, (5-lla)
i *• J-

6

[
Z=4

or if

2
IAV. I = / 7 AX. „ < conv0i A / L^i ix. 2

, - Si
< conv., (5-llc)s.

where conv, , conv2, and conv3 are uplinked convergence tol-

erances.

3. The slide diverges if i = 1 and either of the fol-

lowing is true:

(5-12a)

IAV.I > div (5-12b)

where div, and div2 are uplinked divergence tolerances.

The slide diverges if i > 1 and either of the following is

true:

I AP. I > m2 lAP.^I (5-12c)
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(5-12d)

where n^ is a scaling factor.

4. If the maximum number of iterations has been per-

formed, a test for reduced convergence is made by multiply-

ing conv,, conv-, and conv.. by 3 and checking for

convergence based on the new tolerances. Otherwise, the

slide diverges.

5. If neither convergence or divergence has occurred,

a linearity check is made and another complete iteration is

performed. The linearity test determines whether or not new

partial derivatives, a., are to be computed and the inner

loop edit performed during the next iteration. The

linearity constraint is satisfied (i.e., the test succeeds)

if IAr..l < e, and l A r . i < €„/ where e, and e- are uplink

linearity tolerances.

If the test just described succeeds, no new partial deriva-

tives are computed, and the partial derivatives from the

previous iterations are used to compute the [F WF(o-c)]

matrix while the normal matrix remains unchanged.

5.4 PRELIMINARY EDIT CRITERIA

During the initial processing of the measurement data de-

scribed in Section 5.1, two edit checks are performed to

detect and remove anomalous data from the estimation proc-

ess. The first simply verifies that the measurement resid-

uals, (o - c)•, fall within acceptable limits. The

residual is compared with the maximum allowed, and the ob-

servation is edited if the residual exceeds the maximum.

The next edit check is based on the measurement geometry

between the user spacecraft and the TORS spacecraft.
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For the geometry edit test, two parameters are computed: H,

the height of the TDRS-to-user ray path segment, and C, the

central angle formed between two vectors (the Earth center-

to-TDRS spacecraft and the Earth center-to-user space-

craft) . These parameters are compared with two uplink

parameters, Hg and CQ; the measurement is edited only if

H < HQ and C > Cg, where H and C are defined by the fol-

lowing :

H = I"P" I - R (3 > 90°)
user e '

(5-13)

= I"P* i sin 3 - Ra (3 < 90°)e

where

3 = cos'1 (5.14)
ilT i i^" - IT iuser user TORS

where PUSer ~ user satellite position (appropriate geocentric
coordinates)

**TDRS = appropriate TORS position (appropriate geo-
centric coordinates)

Re = equatorial radius of the Earth

NOTE; 6 is in units of degrees with 0° £ 3 < 180°.

where 0° _< C £ 180°

5.5 SLIDE PRECOMPUTATION

During precomputation of the next slide, an arbitrary epoch

is chosen by advancing the epoch of the previous slide by a
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fixed At. Therefore, the measurement partial derivatives

computed during the precompute phase of estimation are ref-

erenced to that arbitrary epoch. When additional measure-

ments are made available to the estimator and when the

actual estimation process begins as described in Sec-

tion 5.1, a new epoch may be chosen. If the epoch used

during precomputation is earlier than the new observation

timespan, the epoch for the slide is set to the latest ob-

servation time. If this is done, the partial derivatives

are no longer referenced to the proper epoch time. To ad-

vance the partial derivatives to the new epoch, the measure-

ment partial derivatives are postmultiplied by the state

transition matrix, which maps the Cartesian state from the

old to new epochs. The updated partial derivatives are then

used during the estimation process. If the epoch used dur-

ing precomputation is later than the final new observation,

estimation is referenced to the precomputation epoch-.
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SECTION 6 - OBSERVATION MODELS

This section contains the mathematical specifications for

the observation models in FEDS. Section 6.1 contains the

observation model for one-way TDRSS Doppler measurements.

Section 6.2 contains the algorithm for computing the partial

derivatives of the measurements with respect to the target

satellite state. Section 6.3 contains miscellaneous models

required to solve the observation and observation partial

derivative equations.

6.1 MEASUREMENT EQUATIONS

A monochromatic source of electromagnetic radiation in

motion with respect to the observer experiences a phenomenon

referred to as Doppler shift. It can be approximated by the

following relation:

f = f_* -=-TTr (6-D

where f = observed, Doppler-shifted frequency

fref = transmitted, reference frequency (no relative
motion between source and observer)

vrel = line-of-sight component of the relative velocity
between the source and the observer

c = speed of light

For FEDS, observation measurements have the geometry shown

in Figure 6-1. The figure shows a series of nodes that are

connected by legs. The nodes are the end points of the sig-

nal path (i.e., TDRSS spacecraft, White Sands Ground Track-

ing Station (WSGT), FEDS at GSFC, and a fictitious target

spacecraft); the legs are the signal paths between the

nodes. The arrows on the legs represent the direction of

signal propagation.
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LEG1

NODE 1
(WHITE SANDS GROUND

TRACKING STATION)

(TORS)
NODE 2

LEG 2
s

NODE 3
(FICTITIOUS TARGET SPACECRAFT)

NODE 4
(FEDS ON LSI-11/23

AT GSFC)

Figure 6-1. Signal Geometry for Doppler Observation

During the demonstration, WSGT will transmit at a frequency

given by

ffc(t -
_ fi _

ref (6-2)

where f (t) = frequency of signal transmitted at time t
fref =

oi(t)

6ti

demonstration reference frequency (nominally
2287.5 megahertz)

Doppler shift due'to leg i at receive time t

time of signal propagation for leg i
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It should be noted that leg 1 and leg 3 signal propagation

times are affected by transmission through the atmosphere.

The propagation time is given by the following relation:

(6-3)

where A&i = time of signal propagation in a vacuum for
leg i (light-time correction; see Section 6.3.1)

ARCj[ = refraction correction associated with leg i,
applied only for ground-to-space or space-to-
ground legs (see Section 6.3.2)

WSGT will compute a-(t) based on predicted fictitious space-

craft ephemeris, actual ground antenna position, and real-

time TORS solutions. Equation (6-3) indicates that the

signal would arrive at a fictitious target spacecraft at a

nearly constant frequency.

The signal will arrive at the experiment transponder at a

frequency given by

fQ(t) = Ol(t - 6t3) <x3(t) ffc(t - 6t3 - St^) (6-4)

where fG(t) is the frequency received by the transponder

located at GSFC. Combining Equations (6-2) and (6-4), the

received frequency becomes

o,(t)
fG(t> - a,(t - 6t, + 6t,) fref
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Substituting Equation (6-1) into Equation (6-5) twice and

dropping negligible terms, the instantaneous Doppler shift

is obtained as

fD(t) = fG(t) - fref = -|* (p2 - PS) (6-6)

where fQ(t) = the instantaneous Doppler shift at time t

dp.

P i = d t T <6-7)

The various leg distances, p., are defined as follows:

P = l r ( t ) - -?(t - 6t) I (6-8a)

= \Tf(t - 6t.. + 6t9) - f (t - St.,) I (6-8b)

where ~?G(t) = position vector of the transponder at time t

~r*T(t) = position vector of TDRSS satellite at time t

"r"f(t) = simulated position vector of the fictitious
target satellite at time t

Averaging over the interval At, the Doppler observation is

computed as

fD(t) dt

where the change in leg length, Ap . , is defined as

ApA = p^t) - Pi(t - At) (6-10)
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6.2 PARTIAL DERIVATIVES OF MEASUREMENTS WITH RESPECT TO
TARGET STATE

In general, the partial derivatives of an observation are

computed as follows:

3f(t ) 9f(fcp)
ix _ Ix

3lT3(t0) 3lT3 (tR - 6t3 + 6t2)
<tR - 6t3 + St2, to)

where f(t) = a measurement at time tag t

it (t) = state vector of node 3 at time t

$3(t, tQ) = 3lT3 (t)/3lT3 (t ) = state transition matrix

t = epoch time

t_ = observation time tag
.K

The Doppler measurement partial derivatives are obtained

from Equation (6-9) as follows:

fref
/. . cAt i a-y- . . „— ., .
(tQ) \3X3(tQ) 3X3(tQ)

Since leg 3 is independent of the target state,

3X3(tQ)

Equation (6-12) reduces to

= 0 (6-13)

3lT3(to)
 cAt

fref /3AP2 ,ret ' ^ ! (6-14)
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where

3Ap.

ax3(t0>

3P2(tR)

0

0

0

3p2(tR - At)

* 4>(t - 6t3 + 6t2, t0)

3X3(tR - At -

0

0

0

* *(tR - At -

(6-15)

t0)

with

3p2(t) (t -

3X3(t - 2
•(6-16)

6.3 FREQUENCY BIAS EFFECTS ON OBSERVATION MODELING

In FEDS, frequency biases are modeled as a second-order

polynominal given by

AF(t) = AF(te) + AF(te)(t - t3) + AF(te) (t - (6-17)

where AF(t) = frequency bias at time t

t = epoch time

AF(t ) = frequency drift at epoch

AF(t ) = frequency acceleration at epoch

When frequency biases are included in the transmitted

frequency, Equation (6-5) becomes

f(t) =

o3(t)

a2(t 6t2) ref AF(t)
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Since a3(t) and a-i(t - St^) are near unity, the Doppler

shift can be obtained from Equation (6-6) as follows:

fD(t) = -^ (p2 - p3) + AF(t) (6-19)

The averaged Doppler over the interval At is then

2(S-20)

Partial derivatives with respect to frequency biases can be

obtained by differentiating Equation (6-20), as follows:

3F (t)

3FD(t) _ (t - te)
2 - (t - At - te)

2

3AF(te)
 2 At

(6-22)

3F (t) (t - t )3 - (t - At - t )3
_D = S e_ 3

3AF(t ) 6 At

6.4 MISCELLANEOUS MODELS REQUIRED FOR OBSERVATION MODELING

The miscellaneous models required to compute both the

observation and the observation partial derivatives are

• Newton-Raphson light-time corrector

• Tropospheric refraction corrections
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6.4.1 NEWTON-RAPHSON LIGHT-TIME CORRECTOR

The Newton-Raphson iterative method for calculating the time

at a transmitting node, given the receiving node's time,

(backward light-time correction) is

^ (6-24)

where t"
n

= new estimate of the transmission time from
node n

t = previous estimate of the transmission time
n from node n /initialized to time t^

\

= receive time at node n + 1
n+l

~r" (t) = position vector at time t

u" , = unit vector between nodes n and n + 1 (leg n)

"r" (t) = velocity vector of node n at time t

c = speed of light

Ignoring negligible terms, Equation (6-24) can be reduced to

'*„•*
n+1 n 'n (6-25)

or

-pN
(6-26)

6-8

9681



The equation is solved N times until

6.4.2 TROPOSPHERIC REFRACTION CORRECTIONS

< meter.

The general approach to the problem of refraction correction

of measurements is to obtain the most accurate corrections

possible that are consistent with rapid computations. To

preserve the raw tracking data in its original form, refrac-

tion corrections are applied to the computed values of the

measurements. Furthermore, the corrections are applied only

to range. The Doppler observation is corrected by relating

it to corrected range values. The method of computing tro-

pospheric refraction presented here was taken from Refer-

ence 10.

Measurement Corrections. The refraction-corrected, computed

measurements are obtained as follows:

Rcc = Rc + *RT (6'27)

where R__ = corrected, computed range
^C

Rc = computed distance between two nodes (uncorrected
range)

ART = refraction correction

The Doppler shift is corrected for refraction effects by

using the corrected range in Equation (6-9).

Tropospheric Correction. Tropospheric refraction correc-

tions to range are assumed to be functions of two varia-

tions: elevation angle and surface refractivity. Range

correction is tabulated for nominal surface refractivity,

indexed by elevation angle.- The tabulated values were com-

puted by a ray tracing algorithm presented in Reference 10.

The standard value of surface refractivity was chosen to be

340 N units, because it is the average value of the range of

surface refractivities encountered at the stations (280 N to

6-9

9681



400 N units). The approximation for range correction is in

terms of variation of the surface refractivity from the

standard. The method, then, is an algorithm that produces

tropospheric refraction correction to range, and these re-

fraction corrections agree with ray tracing results to

within the specified design criteria.

The refraction correction to range is therefore obtained by

evaluating

_ /3ART\ ' ,
ARm = ART + \-3ir) AN + ± 1 —T^ 1 AN' (6-28)

where ARm = interpolated range correction for the
standard surface refractivity

3ART/3N = first-order partial derivatives of the
range correction with respect to change
in surface refractivity from the standard

^ = second-order partial derivative of the
range correction with respect to change
in surface refractivity from the stand-
ard; the superscript bar denotes values
for the standard refractivity obtained
through interpolation

The method of computing the tropospheric refraction correc-

tions for the range proceeds as follows. For the specified

elevation angle, the necessary parameters are obtained from

the tabulated data by numerical spline interpolation. (The

spline interpolation method is the mathematical analog of

the draftsman's mechanical spline, which is a long, very

flexible, slender device used to pass a smooth curve through

many data points. The technique is presented in Refer-

ence 11.) Equation (6-28) is evaluated to obtain the re-

fraction correction to the range.
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