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ABSTRACT

A simple rectangular finite element was developed for two-dimenslonal

analysis of laminated composite materials. The rectangular laminated com-

posite (RLC) element eliminates the need to add elements to a model simply to

account for the material properties of various laminae. This is particularly

advantageous for thick laminates with many lamina. Explicit integration in

terms of generalized displacements minimizes the algebraic effort required to

derive the element stlffnesses and the thermal load vector. A substitute

shape function technique is used to improve the performance of the element in

modeling bending type deformation. Results for several example problems are

discussed.
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INTRODUCTION

The development of an appropriate finite element mesh is a key step in

successful finite element analysis. For homogeneous materials the mesh

refinement is dictated by geometrical considerations. The shape of a

- structure should be faithfully modeled. Also, extra mesh refinement is

required in regions with strong strain gradients caused by holes, cracks, or

boundary conditions. For laminated materials the analyst must also account

for the different material properties of the various laminae. These ideas are

illustrated by the laminated composite beam shown in figure i. Geometrical

considerations require very few elements except close to the point where the

load is applied, where strain gradients are large. But since standard finite

elements cannot account for stacking sequence effects such elements should not

span across lamina boundaries. Hence, because of the laminated character of

the material, the mesh should be highly refined even where the strain

gradients are small.

The expense of modeling each lamina individually rapidly becomes

intolerable as the number of laminae increases. Reference i presents an

approximate technique to reduce costs. Laminate theory is used to obtain

effective extensional moduli for a group of laminae. Then the group of

laminae rather than the individual lamina are modeled using finite elements.

This approach ignores stacking sequence effects within the lamina group.

Therefore, the flexural and flexural-extension coupling properties of the

lamina group cannot be faithfully modeled. Reference 2 presents a hybrid

analysis for thick laminates. In this analysis (which is not a finite element

analysis) the laminate is divided into global and local regions. The terms

global and local refer to the detail with which the individual lamina is

modeled; the local region is modeled with much greater detail than the global



region. Conceptually, this is similar to using a finite element model with

smaller- or higher-order elements in one region than in another. However, the

analysis in reference 2 does not offer the inherent flexibility of the finite

element method for modeling complicated geometries and for performing con-

vergence checks. The objective of this paper is to introduce a new type of

two-dimensional (i.e., plane stress or plane strain) finite element for

analysis of laminated composites.

The element is a four-node, bilinear, rectangular element. An ordinary

bilinear rectangle performs poorly in modeling bending-type deformation. The

performance can be improved by using reduced numerical integration or substi-

tute shape functions (ref. 3). Because of the multiple laminae within the

element, numerical integration is not appropriate. Therefore, substitute

shape functions are used to improve the performance. Explicit integration of

the element stiffness matrix in terms of generalized displacements minimizes

the algebraic effort required to account for the various laminae within a

single element.

After describing the theoretical aspects of the element, results from

analyses of several simple configurations are discussed.



NOMENCLATURE

A area

AII'AI2'A22'A33'IBII,BI2,DI1 coefficients related to laminaematerlal properties

a,b,c,d,a,b,c,d, 1
.... generalized degrees of freedom

e,f,g,e,f,g,h

Cij plane stress or plane strain material stiffness coefflclents.
i,j = 1,3

F force vector

transformed force vector

Fn force corresponding to degree of freedom n

FN subvector of force vector related to normal strains

FS subvector of force vector related to shear strain

H matrix used in calculation of transformation matrix

K element stiffness matrix

transformed element stiffness matrix

Knm stiffness term in K, n,m = I, number of degrees of freedom

KN submatrix of stiffness matrix related to normal strains

KS submatrix of stiffness matrix related to shear strain

half-length of element in x-dlrection

half-length of element in y-direction

N number of plies

T transformation matrix

TN transformation matrix for normalstrain related terms in generalized
stiffness matrix and force vector

• TS transformation matrix for shear strain related terms in generalized
stiffness matrix and force vector

t thickness in z-direction

U strain energy



u displacement in x-direction

Ul,U2,U3,U 4 nodal displacements in x-direction

v displacement in y-direction

Vl,V2,V3,V 4 nodal displacements in y-direction

W potential energy of external loads

x,y rectangular Cartesian coordinates

Yi y-coordinate of bottom surface of ith ply. Bottom ply in element is
ply i.

A vector of generalized displacements

An generalized degree of freedom n

vector of nodal displacements

strains(5 _ %, % _ _y, % _Cy)

€x,_,_y strains
total potential energy

Definitions

generalized displacements parameters related to translation, rotation,
and deformation of an element but not
associated with a node

generalized forces force associated with generalized

displacement

generalized stiffness matrix stiffness of an element in terms of

generalized displacements
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THEORY

The RLC element is a rectangular element with four nodes. All laminae

in the element are assumed to be orthotropic, oriented parallel to the

x-axis, and to extend across the element width (fig. 2). The origin of the

x-y coordinate system is at the element centroid.

The following sections derive the RLC element stiffness matrix and the

equivalent nodal load vector for initial thermal strains. The derivation

begins with the presentation of general expressions for element forces and

stiffnesses for an arbitrary finite element. Next, the particular shape

functions used to approximate the displacements and strains are discussed.

Then explicit expressions for the stiffness matrix and element forces due to

thermal strains are derived. These expressions are in terms of generalized

displacements. The final section describes how to transform the stiffness

matrix and forces from a system of generalized displacements to one of nodal

displacements.

Cartesian tensor notation is used herein to express several of the

complicated equations in compact form. In these compact equations the

strains €l, _2' and _3 refer to Cx, Cy, and Cxy, respectively. Also,

some parameters refer to an entire vector or matrix when there is no subscript

(eg. F) and to a single value when there is a subscript (eg. Fn).
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General Expressions

The total potential energy, H , is given by equation (I) (ref. i):

r
= tic cjci aA-F A (I)_=U+W _ iJ n n

where U is the strain energy and W is the potential energy of the applied

loads. Minimization of H with respect to the generalized degrees of freedom

(d.o.f.), An, yields the generalized force Fn associated with each d.o.f..

i = /¢iJcj _iFn- _ t T_.dA (2)

The terms in the elementstiffnessmatrix are calculatedby differentiating

the generalizedforces with respectto the d.o.f.,equation (3).

8Fn= _2U = / _J 8ci / 82_iKnm = 8--_m8An 8Am t Cij 8Am _An dA+ t Cij_j 8_n 8Am dA (3)

Since linear strain-displacement relations are used in thls paper, the

82_i
term is zero. Therefore, the terms in the element stiffness matrix84

n m

are

_cj _€IKnm = t Cij _Am _An dA (4)

Shape Functions and Strain Expressions

The technique of substitute shape functions was used to improve the

performance of the RLC element in modeling bending type deformation (ref. 3).

This technique involves using different shape functions for terms related to

normal strains and for those related to shear strains.
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The shape functions used in calculating terms related to normal strains

are given by equations (5):

u =a + bx + cy + dxy

(5)

• v =a+_x+cy+_xY

The normal strains, zx and _y, are therefore

_U
=---b+dy

Cx _x
(6)

_v -
=B__= c+'dx

y

The shape functions used in calculating terms related to the shear strain

are given in equations (7)

u=e+fx+gy

(7)
v = e + fx + gy

The shear strain, _xy, is therefore

8u _v
Cxy=_y_+_= g+? (8)

Equation (8) shows that the shear strain is constant for the RLC element.

This constant value is defined to be "h" in equation (9).

€ = h = g + _ (9)
xy

Element Stiffness Matrix

Identification of the relevant d.o.f, is the first step in the calcula-

tion of the element stiffness matrix. Equation (4) shows that K is only a

function of those d.o.f, used to define the strains• Hence, the relevant

d.o.f, are



b

d

a = _ (10)

d

h

The 5 x 5 element stiffness matrix can now be calculated using equations (4),

(6), (8), (9), and (i0). The non-zero terms in the stiffness matrix are

KII = 2£xt AlI K44 ffi_ t A22

KI2 = 2£xt BII K55 = 2£xt A33

KI3 ffi2J&xtAl2 K21 = KI2
(ii)

K22 = 2_t Dll K31 = K13

K23= 2txt BI2 K32= K23

K33 = 2_t A22

The remaining Knm are zero.



where

N

A11"_ c_1_Yi.1-Yi)
i'l c.

N
i

AI2 = _ CI2(Yi+I - yi )
- i=l

N i • "

A22 = E C22(Yi+I - Yi)
i=l

". N. '*i

A33 " _ C33(Yi+I - yi) (12)

.i N i 2 .2
BIt_ cIICYI+IYi) _ "

" _ i=l

N
i i 2 2

_12"2-_ %2(yi+1-yl)
i=l .•

N
I i 3 3

Dll___ c11(Yi+1-Yl)
i=l

where

t = element thickness •

= half-wldth of element (see fig. 2)

= half-height of element (see-fig, 2)

N = number of lamlnae .

Cij = plane stress or plane strain stiffness coefficients, (i,J = 1,3)

Yi = y coordinate of bottom surface of ply number "i", (i = I,N)

Note that in equations (i'i),the only nonzero term.in K related to the

shear strain is K55.

i
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Thermal Load Vector

Equation (2) gives the general expression for element forces. As was

the case for the stiffness matrix, the relevant d.o.f, for thermal loads are

given by equation (i0). The strain _j to be used in equation (2) is

cj= ajAT (13)

Because the material is orthotropic, a3 = 0. The element forces

:_orresponding to each d.o.f, can now be calculated using equations (2), (6),

(8), (9), (I0), and (13). These forces are

N

_- i i ATi)(yi+1 Yl )
I=1

N
i i ATi_ 2 2

F2 = tax E (0iI_ ATi + 012a2 °(yi+l - Yi )
i=l

(14)
N

i i i i
F3 = 2tAx Z (C12_1 ATi + C22a2 ATi)cyi+I - Yi )

' i'1

F4 = 0

F5 = 0

Note that the force corresponding to the shear strain related d.o.f., F5, is
zero.

I0



Transformation of Element Stfffnesses and Forces

The preceding sections give expressions for element forces and stiff-

nesses for a system with generallzed d.o.f. A. However, to assemble element

- stlffnesses and forces into a global system of equations requires that the

d.o.f, be nodal displacements, not generalized displacements.

Equations (15) give the general procedure for transforming the stiffness

matrix and force vector from one set of d.o.f. (A) to another set (6):

"K' = TTKT

(15)
F' = TTF

where T is defined by the equation:

A = T6

In equations (15), K and F are in terms of generalized displacements A

: and K' and F' are in terms of nodal displacements 6. The matrix T is

the transformation matrix.

The first step fs to calculate the transformation matrix T. Since the

displacements u and v are approximated by different shape functions for

terms related to normal and shear strains, the transformation matrices for

these two types of terms must be calculated independently.

The transformation matrix for the terms related to normal strains is

calculated first. Equations expressing the nodal displacements ui, vf,

i = 1,4 in terms of all the element's generalized displacements are given in

equations (16).
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ul I i -_ -_ _ o o o o a

vl I 0 0 0 0 i -9. -% _ b

u21 1 _ -_ -_ o o o o

v21 0 0 0 0 i _x -_y -_x_y d
= (16)

u3 I 1 _x £y £x£y 0 0 0 0 a

V3l o o o o 1 _ _ _y g

•" £y 0 0 0 0 eu4 ( I £x -_xZy

v41 o o o o i -_ 5 -_-5

L
Equations (16) are formed using the expressions in equations (5). Equa-

tions (16) can be solved for A.

a3 _x_ 0 _ 0 _x_ 0 _x_ 0 uI

_ o _ o _ o _ o vI

c -_x o -_x o _x o _ o u2

d i i 0 -i 0 i 0 -i 0 v21

_ :4_x_ (17)
a 0 _x%y 0 _x_y 0 _x%y 0 %x_y u3

b 0 -_ 0 _ 0 _ 0
Y Y Y - _y v3

o -_x o -_ o _x o _x u4

d 0 i 0 -I 0 i 0 -i v4
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Comparison of H-I in equation (17) and T in equation (15) shows that

T = H-I. Since the generalized forces Fn and stlffnesses Knm involve

only the d.o.f, b, d_ c, and d, only rows 2, 4, 7, and 8 of H-I are

• required for the transformation matrix. Hence, the transformation matrix for

terms related to normal strains is

-5 0 5 o 5 o -5 o

I 0 -i 0 I 0 -I 0i

" _£ (18)
TN 4£x Y 0 -_x 0 -_x 0 _x 0 _x

0 i 0 -I 0 i 0 -i

Now the transformation matrix for the terms" related to shear strains is

derived. As before, the first step is to express the nodal displacements in

terms of the generalized displacements; in this ease equations (7) are used•

I m

u1 1 -£x -£y 0 0 0

vI o o o 1-_-5 e

U2 I _X -_ 0 0 0 f

v2 0 o 0 1 _-5 g
ffi (19)

u3 I _x £y 0 0 0 e

• v3 o o o 1 _ 5

u4 i - _x _y 0 0 0 g

v4 0 0 0 1 -£x £y

13



Since the number of equations exceeds the number of unknowns, equations (19)

cannot be solved for A in terms of _. Equations (20) give a new set of

equations which are equivalent to equations (19) in a least squares sense
i

(ref. 3).

Solution of equations (20) yields:

_xb o _xb o _x_yo _xb o u1

o -b o b o b o -b o ¢_
f -_'x 0 -£x 0 £x 0 %x 0 u 2

g o _x_y o _x_yo _x_y o _,=_yv2
. I (21)

- 4_ o -_ o _ o _ o -_ u3e

f o -_ o -_ o _x o _x v3

g u 4

- - - /4 - -v4-
L A _ [HTHI-IHT L_

The parameters g and f are the only relevant d.o.f. These two are com-

bined to form h (see eq. (9)). Therefore the transformation matrix for the

shear related terms is obtained by adding rows 3 and 5 of [HTH]-IH T.

TS = 4_x£y -_y-_x _y _x _y _x -_ (22)

14



The transformation matrices TN and TS are combined to form the total

transformation matrix, as illustrated in equations (23).

, KII KI2 KI3 0 0

• KI2 K22 K23 0 0

K' = T :Ts KI3 K23 K33 0 0

0 0 0 K44 0

0 0 0 0 |K55

(23)

-FI"

F2

F' "1 ETNTII TS_ F3

F4

The stiffness matrix K' in equation (23) was derived assuming there

were multiple laminae within the element. If there is only one lamina (or all

the lamina are identical), the stiffness matrix is identical to that for an

. ordinary bilinear rectangular element with reduced integration.

15



EXAMPLE PROBLEMS

Thissectiondiscussesresultsfromanalysesof severalsimpleproblems

usingtheRLC element.All the configurationsconsistof a laminatedcanti2

leveredbeam (fig.3) with eithermechanicalOr thermalload. The canti_ '

levered beam configuration was chosen because it is a severe test for 2-D

plane stress (or plane strain) elements. Several combinations ofiamina

properties and stacking sequence were examined. Material properties for the

various laminae are given in Table I. All laminae were assumed to be

isotroplc. Lamina types H, I, and J have the same Young's modulus and shear

modulus--only the thermal expansion coefficients are different. Laminatype S

has 10% of the stiffness of the other lamina types. Figure 4 shows the five

finite element meshes used in the convergence study. Results for mechanical

and thermal loads are discussed separately in the following sections.

Mechanical Load

Three laminates were examined: (H/H/H/H), (H/S/S/H), and (S/H/H/S). The

first two laminates have about the same flexural stiffness. The third

laminate is much more flexible, since the outer plies are soft.

The loading consisted of a single point load at the end of the beam. For

a long, thin cantilevered beam (such as that in fig. 3), the tip deflection

calculated using strength of materials, is given as:

= p_3 (24)3v

where P = applied load

= beam length

D = flexural stiffness

ARffi tip deflection calculated using strength of materials

16



Assuming equation (24) gives the correct solution, figure 5 shows the

error in the calculated tip deflection for the three laminates using the five

meshes in figure 4. The open symbols show the results obtained using the RLC

- element described in the preceding sections. The solid symbols are for a

modified RLC element and will be discussed later in this section. The error
A

reduces rapidly with increased mesh refinement. The laminate (H/H/H/H) has no

lamination effects--since all the layers are the same. As pointed out

earlier, the element stiffness matrix is therefore identical to that for an

Ordinary billnear rectangular element with reduced integration. Flgure5

shows that the error for the nonhomogeneous laminates (ie. (H/S/S/H) and

(S/H/H/S)) is comparable to that for the (H/H/H/H) laminate. Therefore,

additional errors due to lamination within an element appear to be small.

Much of the error in the results is due to the assumption that _y

within an element does not vary in the y-directlon (see eq. (6)). Because of

the Poisson effect, the upper part of the beam (which has positive Cx) should

have a negative _. The lower part of the beam (which has a negative _x)

should have aposltive _y. But within a single element _y is constant in

the y-dlrectlon. Therefore, if there is only one element through the thick-

ness, Cy Is calculated to be zero. This results in an overly stiff

element. The magnitude of the error for a homogeneous isotroplc can be esti-

mated by examining the constitutive equations. Assuming plane stress condi-

tions for an isotroplc material, the stresses can be expressed as

E

=' ' 2 (% + vcy)" Ox i -

(25)

E
% 2 (Wx+€)

i - v Y

17



For a long, thin beam, ay should be negligible; therefore, _y = -v_ x and

_x = ECx." But if Cy is constrained to be zero, then

E

ax- i - v2 ex (26) .

•Thls results in an effective modulus of E/(I - 2). For v = 0.3 this

produces a modulus which is 10% too large. Since the flexural stiffness is

linearly related to the modulus, the deflection is inversely and linearly

related to the modulus (see eq. (24)). Therefore, a minimum of about 10%

error is expected when I element is used through the thickness of the beam.

Figure 5 agrees quite well with this prediction. Of course, with two elements

through the thickness, the spurious stiffening is less (see fig. 5). Spurious

stiffening due to Polsson's effect can be eliminated by artificially setting

Vxy = 0. When Vxy is artificially set to zero, the element will be referred

to as the modified RLC element. The solid symbols in figure 5 show results

obtained with the modified RLC element. The convergence is seen to be

extremely rapid. Further testing of the modified RLC element is needed to

determine when the artificial prescription of Vxy = 0 may lead to problems.

Thermal Load

Two laminates were examined: (H/H/l/E) and (H/H/J/J). In the first

laminate, the initial thermal strains in the top two laminae are simply the

negative of the initial thermal strains in the bottom two laminae. The second

laminate is llke the first except that the initial thermal strain Cy is the

same for all four laminae. Using elementary beam theory, the end displacement

is independent of the initial strain _y. Hence, both beams should have the

same end displacement. The technique for solving this problem using strength

of materials is outlined in reference 4 and will not be discussed here.

18



Figure 6 shows the accuracy of the RLC element in calculating end

displacement for the (H/H/l/l) laminate. The strength of materials solution

AR is assumed to be correct. The open and solid symbols are results for the

standard and modified RLC elements, respectively. Since there is no gradient

in the stresses in the x-directlon, the accuracy is independent of the refine-

ment in the x-direction.

As was the case for mechanical load, the assumption of constant Cy

within an element in the y-dlre@tion severely stiffens the system when only

one element is used through the thickness. This is because the initial Cy

in the upper two lamina is of opposite sign to the initial _ in the lower

two lamina. Imposing constant final _ in the y-direction results in a

calculated value of _ = O, even though physically there is nothing in the

beam to restrict the expansion or contraction in the y-direction. Figure 6

shows that using the modified RLC element eliminates this problem entirely.

Note that very accurate results are also obtained with Just two unmodified RLC

elements through the thickness.

The other laminate examined was (H/H/J/J). This laminate is like the

previous one, except the initial _ is the same in all four plies. For this

case the assumption of constant final _y in the y-direction is not a

problem, since all four laminae are supposed to have nearly the same _y.

Consequently, even with only an unmodified RLC element through the thickness,

the error was less than 0.1%.

19



CONCLUSIONS

A simple two-dimenslonal (2-D) element was developed for analysis of

laminated composite materials. The rectangular laminated composite (RLC)

element eliminates the need to add elements to a model simply to account for

the material properties of various laminae. Explicit integration in terms of

generalized displacements minimizes the algebraic effort required to derive

the element sti_fnesses and the thermal load vector. A substitute shape

function technique was used to avoid the excessive bending stiffness of

ordinary bilinear rectangular elements.

Several Sample problems were analyzed using the RLC element. Results

from these analyses demonstrated that the RLC element accurately accounts for

the presence of multiple lamina within a single element. Use of the RLC

element will reduce the number of elements required to analyze many linear 2-D

laminated composite problems. The basic technique described herein also

should be applicable for deriving elements for linear three-dimensional (S-D)

and geometrically nonlinear 2-D and S-D problems.
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Table 1 Lamina Properties

Lamina Type Ex Ey _xy Gxy ax ay

H 1.0 1.0 .3 0.385 I.E-6 I.E-6 .

I i .0 1.0 .3 .385 -i .E-6 -i .E-6

J 1.0 i.0 .3 .385 -I.E-6 i.E-6

S .i .I .3 .0385 - -
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r

Fig. i. - Beam with many lamina.

(Not all lamina are shown)
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Fig. 2. - Element configuration.
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Fig. 3. - Cantilevered laminated beam.
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(a)1x 1mesh

• I I
(b)2 x 1 mesh

I I I
(c) 4 x 1 mesh

(d) 4x 2 mesh

I I I I11 I
(e) 8 x 1 mesh

Fig. 4. - Finite element meshes for cantilevered

beam problem.
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-. 35 - 0 0 (HISISIH)
[] [] (SIHIHIS)

-25- II " J_
Error, _ TA

AFE _AR _20-

AR -.15-

-.05 ! []

lxl 2xl 4xl 4x2 8xl
Mesh

Fig. 5. - Accuracy of calculated tip displacement

• for tip loaded cantilevered beam. Open

symbols are for unmodified RLC element.

Solid symbols are for modified RLC element.
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•25 -

Error2o
AFE-Z_R i _A 15 AR

.I0-
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0

0 a, a,, _ _,, a,,
Ixl 2xl 4xl 4x2 8xl

Mesh

Fig. 6. - Accuracy of calculated tip displacement for

thermal loading of unsymmetric cantilevered

beam. Open symbols are for unmodified RLC

element. Solid symbols are for modified RLC
element. (Laminate = (H/H/I/I))
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