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ABSTRACT

A simple rectangular finite element was developed for two-dimensional
analysis of laminated composite materials. The rectangular laminated com—
posite (RLC) element eliminates the need to add elements to a model simply to
account for the material properties of various laminae. This is particuiarly
advantageous for thick laminates with many lamina. Explicit integration in
terms of generalized displacements minimizes the algebraic effort required to
derive the element stiffnesses and the thermal load vector. A substitute
shape function technique is used to improve the performance of the element in

modeling bending type deformation. Results for several example problems are

discussed.
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INTRODUCTION

The development of an appropriate finite element mesh is a key step in
successful finite element analysis. For homogeneous materials the mesh
refinement is dictated by geometrical considerations. The shape of a
structure should be faithfully modeled. Also, extra mesh refinement is
required in regions with strong strain gradients caused by holes, cracks, or
boundary conditions. For laminated materials the analyst must also accounﬁ
for the different material properties of the various laminae. These ideas are
illustrated by the laminated composite beam shown in figure 1. Geometrical
considerations require very few elements except close to the point where the
load is applied, where strain gradients are large. But since standard finite
elements cannot account for stacking sequence effects such elements should not
span across lamina boundaries. Hence, because of the laminated character of
the material, the mesh should be highly refined even where the strain
gradients are small.

The expense of modeling each lamina individuall& rapidly becomes
intolerable as the number of laminae increases. Reference 1 presents an
approximate technique to reduce costs. Laminate theory is used to obtain
effective extensional moduli for a group of laminae. Then the group of
laminae rather than the individual lamina are modeled using finite elements.
This approach ignores stacking sequence effects within the lamina group.
Therefore, the flexural and flexural-extension coupling properties of the
lamina group cannot be faithfully modeled. Reference 2 presents a hybrid
analysis for thick laminates. In this analysis (which is not a finige element
analysis) the laminate is divided into global and local regions. The terms
globai and local refer to the detail with which the individual lamina is

modeled; the local region is modeled with much greater detail than the global



region. Conceptually, this is similar to using a finite element model with
smaller— or higher-order elements in one region than in another. However, the
analysis in reference 2 does not offer the inherent flexibility of the finite
element method for modeling complicated geometries and for performing con-
vergence checks. The objective of this paper is to introduce a new type of
two-dimensional (i.e., plane stress or plane strain) finite element for
analysis of laminated composites.

The element is a four—node, bilinear, rectangular element. An ordinary
bilinear rectangle performs poorly in modeling bending-type deformation. The
performance can be improved by using reduced numerical integration or substi-
tute shape functions (ref. 3). Because of the multiple laminae within the
element, numerical integration is not appropriate. Therefore, substitute
shape functions are used to improve the performance. Explicit integration of
the element stiffness matrix in terms of generalized displacements minimizes
the algebraic effort required to account for the various laminae within a
single element.

After describing the theoretical aspects of the element, results from

analyses of several simple configurations are discussed.




NOMENCLATURE

A area

gii:gig:gff'A33’} coefficients related to laminae material properties

a,b,c,f,§,§,2,5,$ generalized degrees of freedom

e,f,g,e,f,g,h

Cij plane stress or plane strain material stiffness coefficients.
i,j=1,3

F force vector

F transformed force vector

F, force corresponding to degree of freedom n

Fy subvector of force vector related to normal strains

Fg subvector of force vector related to shear strain

H matrix used in calculation of transformation matrix

K element stiffness matrix

K transformed element stiffness matrix

Kim stiffness term in K, n,m = 1, number of degrees of freedom

Ky submatrix of stiffness matrix related to normal strains

Kg submatrix of stiffness matrix related to shear strain

Ly half-length of element in x-direction

- half-length of element in y-direction

N number of plies

T transformation matrix

Ty transformation matrix for normal strain related terms in generalized

stiffness matrix and force vector

Tg transformation matrix for shear strain related terms in generalized
stiffness matrix and force vector

t thickness in z-direction

U strain energy



u displacement in x-direction

uy,up,u3,uy nodal displacements in x-direction

v displacement in y-direction

V15V9,V3,V, nodal displacements in y-direction

w potential energy of external loads

X,y rectangular Cartesian coordinates

¥y y-coordinate of bottom surface of ith ply. Bottom ply in element is

_ ply 1.

A vector of generalized displacements

A, generalized degree of freedom n

§ vector of nodal displacements

g strains (el e, & = & €3 E_exy)

ex’ey’exy strains

ﬁ total potential energy

Definitions

generalized displacements parameters related to tramslation, rotation,
and deformation of an element but not
associated with a node

generalized forces force associated with generalized

' displacement
generalized stiffness matrix stiffness of an element in terms of

generalized displacements




THEORY

The RLC element is a rectangular element with four nodes. All laminae
in the element are assumed to be orthotropic, oriented parallel to the
x—-axis, and to extend across the element width (fig. 2). The origin of the
x-y coordinate system is at the element centroid.

The following sections derive the RLC element stiffness matrix and the
equivalent nodal load vector for initial thermal strains; The derivation
begins with the presentation of general expressions for element forces and
stiffnesses for an arbitrary finite element. Next, the particular shape
functions used to approximate the displacements and strains are discussed..
Then explicit expressions for the stiffness matrix and element forces due to
thermal strains are derived. These expressions are in terms of generalized
displacements. The final section describes how to transform the stiffness
matrix and forces from a system of generalized displacements to.one of nodal
displacements.

Cartesian tensor notation is used herein to express several of the
complicated equations in compact form. In these compact equations the

strains €15 €y and €3 refer to €cs € and ¢__, respectively. Also,

y Xy
some parameters refer to an entire vector or matrix when there is no subscript

(eg. F) and to a single value when there is a subscript (eg. F,)-



General Expressions

The total potential energy, I , is given by equation (1) (ref. 1):

t
I=U+W -i-fcijejsidA L (L)

where U 1is the strain energy and W is the potential energy of the applied
loads. Minimization of 1 with respect to the generalized degrees of freedom

(d.o.£.), A, yields the generalized force F, associated with each d.o.f..

de
U 1
Fn —aTn- tfcijeja—AtI-dA (2)

The terms in the element stiffness matrix are calculated by differentiating

the generalized forces with respect to the d.o.f., equation (3).
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Shape Functions and Strain Expressions
The technique of substitute shape functions was used to improve the
performance of the RLC element in modeling bending type deformation (ref. 3).
This technique involves using different shape functions for terms related to

normal strains and for those related to shear strains.




The shape functions used in calculating terms related to normal strains

are given by equations (5):

u=a+bx+ cy + dxy

(5)
v = a+ bx + cy + dxy
The normal strains, e, and ey; are therefore
Ju
€ = % b + dy
(6)

3v——
=== c + dx
v W

The shape functions used in calculating terms related to the shear strain

are given in equations (7)

u=ce+ fx + gy

P
v=E+-f.x+-éy
The shear strain, Exy» is therefore
=3u, v r-
exy 3y + ax g+ f . (8)
Equation (8) shows that the shear strain is constant for the RLC element.
This constant value is defined to be "h" in equation (9).
=h=g+¢f 9
€y g 9

Element Stiffness Matrix
Identification of the relevant d.o.f. is the first step in the calcula-
tion of the element stiffness matrix. Equation (4) shows that K 1is only a

function of those d.o.f. used to define the strains. Hence, the relevant

d.o.f. are .



The 5 x 5

(6), (8),

A= |¢c : (10)

ul

L J

element stiffness matrix can now be calculated using equations (4),

(9), and (10). The non—-zero terms in the stiffness matrix are

- = E 3
Kyg = 22,t By, Kg5 = 24t A3g
Ky3 = 284t Ay Ko = Kyp
(11)
Kz = 24yt Dy K31 = K13
Ky3 = 22,4t Byy K3y = Kp3

K33 = 284t Ay

The remaining Knm are zero.
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half-width of élemehtv(see fig; 2)

half-height of element (see fig. 2)

ij = plane stress or plane strain stiffness coefficients, (i,j =

(12)

1,3)

Note that in equaﬁions (11);'the only nonzero term.in X related to the

shear strain is

KSS.



Thermal Load Vector
Equation (2) gives the general expression for element forces. As was
the case for the stiffness matrix, the relevant d.o.f. for thermal loads are

given by equation (10). The strain gy to be used in equation (2) is
€5 = ay AT (13)

Because the material 1s orthotropic, a3 = 0. The element forces
’éorresponding to each d.o.f. can now be calculated using equations 2), (6),

(8), (9), (10), and (13). These forces are

N
t 4,4, 4 1 .4
1= 268 3 (Cyop AT+ Clyop AT )y, - yy)

F =
i=1
T S ST B ST Tr 2.
Fp =t 3, (G0 817 + Chyay AT )(v5,, - ¥7)
=
. (14)
} 104 4. 4 4 .1 _
Fy =28, 3 (Cp0p AT" + Cyyay oT Ny, yy)
=
F4 =0
FS =0

Note that the force corresponding to the shear strain related d.o.f., F5, 1s

10



Transformation'of Element Stiffnesses and Forces
The preceding sections give expressions for element forces and stiff-
nesses for a system with genefélized d.o.f. A. However, to assemble element
" stiffnesses and forces into a giobal system of equations requires that the
d.o.f. be nodal displacements, not generalized displacements.
Equations (15) give the general procedure for transforming the stiffness

. matrix and force vector from one set of d.o.f. (A) to another set (§):

K' = TIKT

(15)
F' = TIF
where T 1s defined by the equation:

A= T§

In equations (155, K and F are in terms of generalized displacements A
and K' and F' are in terms of nodal displacements §. The ﬁatrix T 1is
the transformation matrix. |

The first step is to calculate the transformation matrix T. Since the
displaéements u and v are approximated'by different shépe functions for
terms related to normal and shear stfains, the transformation matrices for
these two types of terms must be cglculgted independently.

The transformation matrix for the terms related to normal strains 1is
calculated first. Equations expressing the nodal displacements uy, \Z
i = 1,4 1in terms of all the element's generalized displacements are given in

equations (16).

11
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Equations (16) are formed using the expressions in equations (5).

tiong (16) can be solved for A.
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Comparison of 1 in equation (17) and T in equation (15) shows that

T = 5 L. Since the generalized forces F_. and stiffnesses K,n 1involve

n
only the d.o.f. b, d, E, and E, only rows 2, 4, 7, and 8 of H-l are
required for the transformation matrix. Hence, the transformation matrix for

terms related to normal strains is

N &gy (18)

Now the transformation matrix for the terms related to shear strains is
derived. As before, the first step is to express the nodal displacements in

terms of the generalized displacements; in this case equations (7) are used.

—ulq r1 -2x -'Q'y 0 0 0— [ ]

v, 0 0 0 1 -z ol

u, 1 'Q’x-—’?’y 0 o o]llf

v, ] 0 0 0 1 g 2|8 15
ug L4 2,0 0 0 e

vyl [0 0o 0 1 TR

u, 1 -2 %, 0 o 0 g

v, 0 0 0 1 -g %

— L -
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Since the number of equations exceeds the number of unknowns, equations (19)
cannot be solved for A in terms of &. Equatibns (20) give a new set of
equations which are equivalent to equations (19) in a least squares sense

(ref. 3).
HTs = uTH A (20)

Solution of equatioms (20) yields:

] [ 2, g, 0 ga 0 g 0 gg O 17 u:
e ‘Zy 0 zy 0 2y 0 “2y 0 v
£ -4, 0 -z O g, O 8, 0 u,
g . 0 ge 0 ga 0 g2 0 gallv, o
s | %% L1 o - g, 0 g O p, 0 -2l | v :
£ 6 - 0 -z O g, 0 21| vy
E Y4
L L Z/ . _v4-J
L, | Laggy (u%a) "HT . ls

The parameters g and f are the only relevant d.o.f. These two are com-
bined to form h (see eq. (9)). Therefore the transformation matrix for the

' -1
shear related terms is obtained by adding rows 3 and 5 of [HTH] Hr.

1
T =
S 4£x2y

[—zx R VN S T T -zy] _ (22)
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The transformation matrices TN and TS are combined to form the total

transformation matrix, as illustrated in equations (23).

%y Ky Ky O ' 0
Kipg Kpp Koy 0 0
k' - ENT : TsT] Ki3 Ky3 K33 0 E 0 7::’
| 0 0 0 K, ,0
- . - - - - - - [
_o 00 0 K|

(23)

The stiffness matrix K' in equation (23) was derived assuming there
were multiple laminae within the element. If there is only one lamina (or all
the lamina are identical), the stiffness matrix 1is identical to that for an

ordinary bilinear rectangular element with reduced integration.
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EXAMPLE PROBLEMS

-This section discusses fésults>frbm analyses of several siﬁéle problemé
using the RLC elément. A1l the configurations consist of a laminated canti-
levered beam (fig. 3).with either mechanical or thermal load. The canti-
levered beam cénfiguration was chosen because it is a severe test for 2-D
plane stress (or plané straih) elements. Sevefél combinations of lamina
properties and stacking seqdence were examined. Material pfoperties for thé
various laminée are givéh in Tablevl. All laminae weré agssumed to be
isotropic. Lamina types H, I, and J have the éame Young's modulus and shear
modulus-—only the thermal expansion coefficients are different. Léminavfype S
has 10%Z of the stiffness of the other lamina types. Figure 4 shows the five
finite element meshes used in the convergence study. Results for'mechanical

and thermal loads are discussed separately in the following sections.

Mechanical Load
Three laminates were examined: (H/H/H/H), (H/S/S/H), and (S/H/H/S). The
first two laminates have about the same flexural stiffness. The third .
laminate i1s much more flexible, since the outer plies are soft.
The loading consisted of a single point load at the end of the beam. For
a long, thin cantilevered beam (such as that in fig. 3), the tip deflection

calculated using strength of materials, is given as:

P£3

% "3 | S | 24)

where P = applied load

£ = beam length

D flexural stiffness

bp = tip deflection calculated using strength of materials

16




‘Assuming equation (24) gives the correct solution, figure 5 shows the
error in the calculated tip deflection for. the three laminates using the five
meshes in figure 4. The open symbols show the results obtained using the RLC
element described in the preceding sections. The solid symbols are for a
modified RLC element and will be discussed later in this section. The error
reduces rapidly with increased mesh refinement. The laminate (H/H/H/H) has no
lamination effects--since all the layers are the same. As pointed qut
earlier, the element stiffness matrix is therefore identical to that for an
brdin#ry bilinear rectangular element with reduced integration. Figure 5
shows that the error for the nonhomogeneous laminates (ie. (H/S/S/H) and
(S/H/H/S)) is comparable to that for the (H/H/H/H) laminate. Therefore,
additiqnal errors due to lamination within an element appear to be small.

Much of the errof in the results is due to the assumption that €y
within an element does not vary in the y-direction (see eq. (6)). Because of
;he Poisson effect, the upper part of the beam (which has positive €x) should
have_a negative €y The lower part of the beam (which has a negative ex)
should.have a positive Eye But within a single element €y is constant in
the y-direction. 'Therefore, if there is only one element through the thick-
ness, €y is calculated to be zero. This results in an overly stiff
element. The magnitude of the error for a homogeneous isotropic can be esti-
mated by examining the constitutive equations. Assuming plane stress condi-

tions for an isotropic material, the stresses can be expressed as

E

B — +
o, - v2 (ex vey)
(25)
. ,
0. = (ve, + )
y 1 - vz X y

17



For a long, thin beam, o, should be negligible; therefore, ey = =ve, and

y
o, = Ee*( But if €, 1s constrained to be zero, then
- E
o = —E—s e, | (26)
1l -v

This results in an effective modulus of E/(1 - vz). For v = 0.3 this
produces a modulus which is 10% too large. Since the flexural stiffness is
linearly related to the modulus, the deflection is inversely and linearly
relateéd to the modulus (see eq. (24)). Therefore, a minimum of abouﬁ 10%
error 1s expected when 1 element is used through the thickness of the beam.
Figure 5 agrees quite well with this prediction. Of course, with two elements
through the thickness, the spurious stifféning is less (see fig. 5). Spurious
stiffening.due to Poisson's effect can be eliminated by artificially setting
Vo, = 0. When v

Xy Xy
to as the modified RLC element. The solid symbolé in figure 5 show results

is artificially set to zero, the element will be referred

obtained with the modified RLC element. The convergence is seen to be
extremely rapid. Further testing of the modified RLC element is needed to

determine when the artificial prescription of Vey = 0 may lead to problems.

Thermal Load
Two laminates were examined: (H/H/I/I) and (H/H/J/J). 1In the first
laminate, the initial thermal strains in the top two laminae are simply the
negative of the initial thermal strains in the bottom two laminae. The second
laminate is like the first except that the initial thermal strain €y is the

same for all four laminae. Using elementary beam theory, the end displacement

is independent of the initial strain ¢ Hence, both beams should have the

y.
same end displacement. The technique for solving this problem using strength

of materials is outlined in referenée 4 and will not be discussed here.

18



Figure 6 shows the accuracy of the RLC element in calculating end
displacement for the (H/H/I/I) laminate. The strength of materials solution
dp 1s assumed to Be correct. The open and solid symbols are'results for the
standard and modified RLC elements, respectively. Since there is no gradient
in the stresses in the x-direction, the accuracy is independent of the refine-
ment in the x-direction.

As was the case for mechanical load, the assumption of constant €y
within an element in the y-difeqtion severely stiffens the system when only
one element is used through the thickness. This is because the initial €y
in the upper two lamina is of opposite sign to the initial €y in the lower
two lamina. TImposing constant final €y in the y-direction results in a
calculated value of gy = o, eveh though physically there is nothing in the
beam to restrict the expansion or contractioh in the y-direction. Figure 6
shows that using the modified RLC element eliminates this problem entirely.
Note that very accurate results Are also obtained with just two unmodified RLC
elements through the thickness.

The other laminate examined was (H/H/J/J). This laminaﬁe is like the
previous one, except the initial £y is the same in all four plies. For this
case the assumption of constant final €y in the y-direction is not a
problem, since all four laminae are supposed to have nearly the same €y
Consequently, even with only an unmodified RLC element through the thickness,

the error was less than 0.12.
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CONCLUSIONS

A simple two-dimensional (2-D) element was developed for analysis of
laminated composite materials. The rectangular laminated composite (RLC)
element eliminates the need to add elements to a model simply to account for
the material properties of various laminae. Explicit integration in terms of
generalized displacements minimizes the algebraic effort required to derive
the element stiffnesses and the thermal load vector. A substitute shape
function technique was used to avoid the excessive bending stiffness of
ordinary bilinear rectangular elements.

SeQeral sample problems were analyzed using the RLC element. Results
from these analyses demonstrated that the RLC element accurately accounts for
the presence of multiple lamina within a single element. Usé of the RLC
element will reduce the number of elements required to analyze many linear 2-D
laminated composite problems. The basic technique described herein also
should be applicable for deriving elements for linear three—dimensional (3-D)

and geometrically nonlinear 2-D and 3-D problems.

20
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Table 1 Lamina Properties

Lamina Type Ex Ey Vxy Cxy
H 1.0 1.0 3 0.385
I 1.0 1.0 .3 .385
J 1.0 1.0 .3 .385
S .1 .1 .3 .0385
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Fig. 1. - Beam with many lamina.

(Not all lamina are shown)
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24



A

40 in.

Y

lin.

AN
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@ 1x 1 mesh

(b) 2x 1 mesh

(c) 4x1 mes{h

(d) 4 x 2 mesh

(e) 8 x 1 mesh

Fig. 4. - Finite element meshes for.cantilevered

beam problem.
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Fig. 5. - Accuracy of calculated tip displacement
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symbols are for unmodified RLC element.
Solid symbols are for modified RLC element.
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Fig. 6. - Accuracy of calculated tip displacement for
thermal loading of unsymmetric cantilevered
beam. Open symbols are for unmodified RLC
element. Solid symbols are for modified RLC
element. (Laminate = (H/H/I/I))
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