
NASA
Technical Memorandum TM-86090

THE CORRECTION OF ABERRATIONS
COMPUTED IN THE APERTURE PLANE
OF MULTIFREQUENCY MICROWAVE
RADIOMETER ANTENNAS

R. F. Schmidt

May 1984

National Aeronautics and
Space Administration

Goddard Space Right Center
Greenbelt, Maryland 20771



TM-86090

THE CORRECTION OF ABERRATIONS COMPUTED IN THE APERTURE PLANE OF
MULTIFREQUENCY MICROWAVE RADIOMETER ANTENNAS

R. F. Schmidt

May 1984

GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland



All measurement values are expressed in the International System of
Units (SI) in accordance with NASA Policy Directive 2220.4, paragraph 4.

u



THE CORRECTION OF ABERRATIONS COMPUTED IN THE APERTURE PLANE OF
MULTIFREQUENCY MICROWAVE RADIOMETER ANTENNAS

R. F. Schmidt
NASAlGoddard Space Flight Center

Greenbelt, Maryland 20771

ABSTRACT

This document develops an analytical/numerical approach to identifying and
correcting the aberrations introduced by a general displacement of the feed
from the focal point of a single offset-paraboloid antenna used in deployable
radiometer systems. A 15-meter reflector with 18-meter focal length is
assumed for the analysis, which considers far-field radiation pattern quality,
focal-region fields, and aberrations appearing in the aperture plane. The
latter are obtained by ray-tracing in the transmit mode and are expressed in
terms of optical notation. Attention is given to the physical restraints im-
posed on corrective elements by real microwave systems and to the inter-
mediate near-field aspects of the problem in three dimensions. The subject
of wavefronts and caustics in the receive mode is introduced for comparative
purposes. Several specific examples are given for aberration reduction at
eight beamwidths of scan at a frequency of 1.414 GHz.
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NOTATION

n unit normal to a surface
5, incident ray vector (in context)
Sr reflected ray vector
Ij, I2,13 optical invariants
h, p, 0 transverse image displacement parameter, radial and azimuthal variables
8 phase perturbation (in context of aberrations)
W phase coefficient (in context)
1, m, n aberration indices
X, Y, Z Cartesian coordinates of fundamental reference frame
0s beam squint angle
K beam deviation factor (in context)
D aperture diameter
INV, EV involute, evolute of differential geometry
A wavefront
u> caustic (surface, line, or point in context)
RAD radius of Airy disc
A feed displacement in focal plane
(a, f) radial and azimuthal variables of offset paraboloid
F focus or focal length (in context)
(N, e) parameters of elliptical beam
pe a displacement vector
(«, 0,7) Euler angles
Q, <& polar and azimuthal angles for elliptical-beam feed
dB decibel

^x» l'y» ^z) umt Cartesian basis vectors
7 generic symbol for surface
X wavelength
K vector sheet current of physical-optics theory
H, incident magnetic field
P(I), P(J), P(K) polarization moments
S, scalar weighting factor of elliptical beam (in context)
i/>j phase argument
Q, quaternion rotation operator
Q2, W2 degenerate quaternion (vector W2)
0Q rotation angle in Euclidian space (E3 )
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NOTATION (Continued)

(1, i, j, k) Hamiltonian basis of real quaternions

(aQ, 0 , 7 ) direction cosines for the quaternion rotation axis

(g, h) axial and transverse feed displacements

£ feed function or Fourier transform (in context)

AP aperture

(g, h) column vectors

Pj transmission coefficients

Tu transfer matrices
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THE CORRECTION OF ABERRATIONS COMPUTED IN THE
APERTURE PLANE OF MULTIFREQUENCY
MICROWAVE RADIOMETER ANTENNAS

INTRODUCTION

The relative success of an attempt to compensate for the undesirable effects introduced by the dis-
placement of an antenna feed from the focal point of the reflector may be evaluated by calculating
(or measuring) the far-field radiation pattern. Because this pattern is the Fourier transform of an
aperture distribution, an analysis of the amplitude and phase in the aperture plane for a specified
polarization may reveal most of the features of the far-field pattern by inspection. An aperture
plane analysis is economical since integration is not required, it provides a large amount of informa-
tion, and it leads to an early diagnosis of the aberration problem.

In the present document, the transmit point of view is taken, and phase departures from an aperture
plane of a paraboloidal reflector are determined and classified by analogy to an optical approach.
The latter approach takes the receive point of view at a Gaussian focus and regards phase departures
from a Gaussian sphere. The receive point of view is retained in the present document to locate dis-
placed focal regions and determine their size. This is accomplished by several means, including a
simple three-ray trace method, a multiray caustic analysis, and a focal region mapping based on
physical optics theory. It is shown that the caustic may, alternatively, be obtained as the evolute
of the received wavefront. Subsequently, the placement and size of corrective feed elements is
predicated on this knowledge of the focal region.

ABERRATIONS

The aberrations observed in the focal plane of an offset paraboloid in vacuo may be due to the wave-
front associated with the feed, the position of that feed with respect to the focal point of the re-
flector, or imperfections in the reflector itself (Ref. 1, p. 186). Assuming that the feed wavefront
is spherical and the reflector is an ideal paraboloid, the feed displacement alone is responsible for
the aberration. In any event, a ray trace that obeys SnelFs law of reflection and accounts for optical
path length yields a phase distribution in the aperture plane.

The equations,

n X S, = n X Sf (1)

and

n • S, = -n • Sr (2)

are fully descriptive regarding the angular relationship between the incident rays, reflected rays, and



surface normal, but the equation,

Sr = S, - 2n(S, ' n) (3)

is probably more useful. (See Ref. 2, pp. 354-355.)

A convenient notation for classifying aberrations in paraxial optics is one that employs the optical
invariants of a symmetrical optical system,

Ij = h2, I2 = p2, I3 = hpcostf (4)

and the expansion for the optical path difference

OPD = a = £ W21+n 2m+IM|h
21+ Vm+n cosn 0 . (5)

l,m,n

Here, h relates to lateral image displacement and p and 0 are radial and azimuthal variables in the
aperture. See Reference 3, pages 46 and 47, Reference 4, and Reference 5, page 859 for details
of the classification. Large aberrations lead to all orders in the expansion. Apodization and aper-
ture blockage have also been treated (Ref. 3, p. 95).

If certain constant terms, aQ , bQh2 , cQh4, and d0h6 , are admitted as "aberrations," the classical
aberrations of Gauss, Seidel, and. Schwarzschild may be generated by simple factors, powers of
the optical invariants. The aberrations of degree zero, two, four, and six emerge as products of
these invariants with mixed degree of zero, one, two, and three. (See Appendix A of this docu-
ment.)

An Infra-Red Handbook (Ref. 4) defines W2J+n 0 0 equal to zero. This is explained as follows in
Reference 6, pages 87 and 88. "It is customary in Hamiltonian theory to postulate that in the
wavefront expansion the reference sphere for each field angle has its centre at the Gaussian image
point." Also, "The constant term is omitted because in the definition of wavefront aberration we
have assumed that both the wavefront and the reference sphere are chosen to pass through the
centre of the pupil." In the present aperture plane analysis, the Gauss "aberrations" are retained.
This was also done in Reference 5, page 858, and Reference 7, page 18, where three, six, and ten
aberration terms are associated with Gauss, Seidel, and Schwarzschild, respectively.

•>
The two views regarding the optical path difference (OPD) are illustrated in Figure 1 for an optical
system and an offset paraboloid microwave reflector. It is noted that the offset reflector is in-
herently an asymmetrical geometry, but is a part of a parent paraboloid that is a symmetrical con-
figuration. The development reverts to the latter, on occasion, and then proceeds after invoking a
truncation argument.

The primary aberrations of Seidel are illustrated in Reference 8, page 212, as surfaces lying above
or below a circular disk representative of the aperture plane. (They are not reproduced here.) It is



noted that the Cartesian aperture coordinates are

x = p cos 0, y = p sin 0 (6)

so that aberrations such as the coma term may be rewritten to advantage as

S4 = W13,I2I3 = W131 hp3 cos* = W13,h(x3 + xy2) (7)

to exhibit cross-gradients among the phase variations.

CAUSTIC SURFACES AND WAVEFRONTS

The receive point of view may be taken to obtain an appreciation of the behavior of the offset
paraboloid for various angles of wave arrival, initially in the limit of zero wavelength, by means of
caustic surface analysis. Detailed discussions of point, line, and surface caustics are found in Ref-
erence 8, page 792; Reference 9, page 498; and Reference 10, page 526. "One of the earliest dis-
coveries in optics (F. Maurolycus, 1S7S) was that the rays of a normal system are tangential to a
surface, the so-called caustic surface, and that the general ray is tangential to the caustic in two
points." (See Ref. 9, p. 156.) The caustic has physical reality (Ref. 11, p. 79). It may be defined
as the envelope to a system of rays of an orthotomic system or the locus of the principal centers
of curvature of a wavefront (Ref. 12). Used in conjunction with a "spot diagram," the intersection
of rays with a chosen image plane, the caustic surface approach leads to useful impressions of geo-
metrical image quality and intensity (Ref. 6, p. 93).

The offset paraboloid geometry of the present discussion is shown as Figure 2, together with the
surface-generating equations and assumed parameters. A system of three rays at plane-wave inci-
dence 0° and -8° is shown in Figure 3. From this figure, it may be inferred that the focal axis and
focal plane of an offset paraboloid are not the same as for the parent paraboloid, although the
geometrical focal point is the same. Furthermore, the central ray of the three-ray approach is seen
to be strongly indicative of the approximate focal axis (AFA) for various angles of wave arrival.
The approximate focal plane (AFP) was, by analogy to parent paraboloids, initially taken to be
orthogonal to AFA and passed through the focal point (F). The AFP was not obvious for general
angles of arrival since the displaced pseudofocus (F') is not known prior to a focal region mapping.

A ray trace based on 15 rays (Figure 4) maps an arc of the caustic surface in the x-z plane for a
plane-wave angle of arrival of (-8°). An approximation formula relating the angle of arrival (0s) to
the lateral feed displacement (A) of a parent system of focal length (F) is:

KA
sin et = — • <8>

Here, K is a beam-deviation factor (Ref. 1, p. 488). Further,

0.92 < K < 1.00 (9)



for

0.50 < F/D < 1.00 (10)

of the parent system. If the approximation formula is applied to the offset geometry, and A is now
taken to lie in the inclined focal plane AFP(0°) as shown, the location of the pseudofocus (F') may
be estimated. It is seen to fall on the caustic arc for 0, = -8°, but is not in the center of that arc.
Rather, it is situated near one end of the caustic arc (K « 1.0 assumed, F/D = 0.5, F/DQ = 1.2).

Returning to the parent paraboloid, it is instructive to further develop the caustic, here based on 16
rays, and identify the bounding rays (1,7, and 16) for the offset and parent surfaces as seen in the
x-z plane of Figure 5. The caustic arc is nearly circular for the truncation of the parent paraboloid
shown. This fact may be exploited to develop the involute (INV) of the caustic (u>), or reflected
wavefront (A), since parameterizations by arc length are sometimes difficult to formulate. The
caustic (cj) is the evolute (EV) of wavefront (A). These concepts will be developed subsequently
for the offset paraboloid geometry.

For the present it is merely noted that:

EV(A) = w (11)

and

INV(w) -A- (12)

It follows that:

ENV[EV(A)J = A (13)

and

EV[INV(cj)] = w (14)

where GJ may have branches (cut and cj}) as mentioned previously.

The nearly circular caustic arc of Figure 5 is actually part of an inclined and translated curve known
as Tschirnhausen's cubic (Ref. 2, p. 25). It has been associated with corrective lens methods for off-
set paraboloids. Figure 6 shows the analytical caustic curve, which is equivalent to the envelope of
rays tangent to that curve. The offset surface and incident plane wave comprise an asymmetrical
geometry, but Tschirnhausen's cubic is a symmetrical function given by:

y"(y"-b)2/3b (15)

= 9asin0 . (16)



The inclination of the (x", y") coordinate frame equals 6, and the translation follows from

, (y')*(y'-9asin0)
x' = v '- + acosf l , . (17)

(27a sin 9)*

when y' and y" are indistinguishable, upon setting (y') equal to zero. (See References 13 and 14.)
the rotation transformation is given by:

x = x'cosfl + y'sihfl (18)

y = y'coaff - x'sihfl . (19)

Finally, to arrive at the coordinates of Figure 6, the correspondence,

xof(18)-a->z (20)

yof(19)-.x (21)

is made. It can be seen that the appropriate segment of arc on the Tschirnhausen cubic curve is
determined by the parent or offset paraboloid truncation. For the parent and offset reflectors of
Figure 6, the bounding tangents intercept the cubic curve in the essentially circular part of that
curve as shown previously by the envelope of the caustic (Figure 5). The cubic is extended here to
display its symmetric form, principal axis intercepts, etc.

Returning to the offset paraboloid and the microwave aberration problem, a set of caustic arcs is
now developed corresponding to plane-wave angles of incidence equal to 0°, -4°, -8°, -16°, and
-32°. Figure 7 shows the bounding and central tangent rays for each angle of incidence and the
associated arc along each cubic curve. The shaded zone illustrates the continuous and rapid increase
in the caustic arc length with increasing (absolute) angle of incidence. An aberration problem at-
tending the larger angles of wave arrival may therefore be represented by the phase departure from
an aperture plane (ray-trace program data), the equivalent expansion (equation 5), or a part of a
caustic surface. For simplicity, caustic arcs were illustrated here. A detailed development of the
caustic surface for the offset paraboloid will be deferred to another Technical Memorandum. An
appreciation of the complexity of the undertaking, which includes phase information on the caustic
surface, may be obtained from Reference 15.

FOCAL REGION MAPPING

In an attempt to determine the focus of the offset paraboloid for -8.7° plane-wave incidence sev-
eral methods, including complex-vector physical optics theory, were employed. The focal-region
electric field was first computed for axial plane-wave incidence to verify the inclination angles of



the focal axis and focal plane. Figure 8 shows agreement with previous ray-trace results. A com-
parison of the radius of the Airy disk for the offset paraboloid, surface integration sampling interval
equal to 2.0 X, is made with the approximation formula for parent paraboloids:

1.46X^0.31 .(theoretical) . (22)

RAD} * 1.75 X* 037 m (from Figure 8) . (23)

The physical optics formulation and the parameters used to compute the focal-region fields at 0.0°
and -8.7° plane-wave incidence are given in Appendix B of this document.

Figure 9 shows the result of the -8.7° plane-wave computation, surface integration sampling interval
equal to 1 .0 X, at 1 .414 GHz (X = 0.2 1 m). The maximum value of the electric field appears to be
at (xe , ye , ze) = (2.8 m, 0.0 m, -1 .3. m), and the isophotes or constant-intensity contours are rather
symmetrically disposed about that point out to 1 meter. Beyond 1 meter, the asymmetries of the
offset reflector/incident wave system can be seen. The radius of Airy disk for -8.7° plane-wave inci-
dence has been greatly affected:

RAD (-8.7°) > 7X or > 1.5m . (24)

Note that the caustic arc length at -8.0° incidence is 4.0 m (Figure 7).

ESTIMATES OP THE DISPLACED FOCUS

An estimate of the position of a displaced focus of an offset paraboloid for a given plane-wave inci-
dence angle may be obtained by various means. A comparison of results is now made for the geom-
etry of Figure 2 for an angle of plane-wave arrival equal to -8.7°. Figure 10 illustrates that the
reflector and feed position information (xe, ye, ze) is obtained by several means. Figure 1 1 is an
expanded-scale version of Figure 10.

e . e
A as F sin 0/K; 6 = 8.7°, F = 18.0 m, AFP (0°)
F/Do = 18.0/15.0 = 1.2, F/D = 18.0/36.0 = 0.5
K ^ 1.0, 0.9, 0.8 (Ref. 1 , p. 488)
Comment : valid for small B .

(xe,ye,ze) = (2.80,0.0,-1.8)m,LI = 2.0(X)
Focal Region Map (Physical Optics)
Comment: Generally reliable for larger 9, but integration interval is large. Based on
field symmetry.



(F3) (xe, ye, ze) = (parabolic arc information only)

-; AFA (0°) inclination

Parabolic arc with vertex at origin (0).
Attributed to P. Potter
Comment: Arc has negligible departure from AFP (0°).

<x. ' v. • ze > = <2-8> °-°. -1 -3) m, LI = 1 .0 (X)
Focal Region Map (Physical Optics)
Comment: Generally reliable for larger 6, two integration intervals used. Based on
maximum electric field (EmiMr ) value.max'

(F'$) (x,, y,, ze) = (2.25,0.0, -2.00) m
Intersection of two tangent rays R, HR3 (Figure 10)
Comment: Experience has shown that the R2 HRj approach gives good results for
small 0.

(F^) (x#,ye,ze) = (circular arc information only)
R = F about vertex (V) as center (offset paraboloid)
R = OC about midpoint (C) as center (parent paraboloid)
Attributed to Silver, adaptation by author.
Comment: Valid for small 0.

<F7> (X.,y.,z-)»(1.8,0.0,-2.5)m
Based on center of caustic arc bounded by Rt, R3

(Figure 7, -8.7° interpolated)
Comment: Large departure from other methods.

(F'8) (xe,ye,ze) = (not done)
Focal Region Map
Comment: Generally reliable for larger 6. Based on flatness of field (wavefront).

(F;) (xe,ye,ze) = (not done)
Focal Region Map
Comment: Generally very reliable for larger 6. Based on time-average Poynting vector.

ABERRATION CORRECTION (I)

On the premise that a given reflector antenna is able to concentrate the energy of an off-axis inci-
dent plane wave in a rational "focal region," it is necessary to move the primary feed to that region
(Ref. 5, p. 860). Subsequently, it may be possible to adapt to the received field distribution and in
some sense attain a "matching" feed that favors antenna gain, beamwidth, sidelobe levels, gain-beam-
width product, a polarization characteristic, etc. Situations arise in which the reflector should be
replaced with an adaptive array. It is assumed here that the reflector still focuses satisfactorily, but
that one or more aberrations should be reduced, if not altogether eliminated, by combination
methods if necessary.



Aberrations that are commonly encountered include transverse focus (Wt u I3), axial focus (WOJO

Ij ), coma (Wj 3 j I2 I3 ), and spherical (WQ40 I2
2 ). See Appendix A-2 for additional aberrations.

Transverse focus (Wt n I3 ) is essential to beam squinting, is induced by a nonzero value of (h)
representing lateral feed displacement, and is actually not an aberration affecting image quality. By
the shift theorem of Fourier transform theory, it is shown that this phase gradient displaces a beam
in space, but does not distort the beam. (See Ref. 16, p. 282, and subsequent discussion in this
document.) The symmetrical aberrations, axial and spherical, may be dealt with by feed displace-
ment. Nonvanishing lateral displacement (h) also introduces the asymmetrical comatic aberration
(W131 I2 I3), which manifests itself in radiation patterns as raised and lowered sidelobes in the cut
of the cubic phase gradient (Ref. 5, p. 859). It constitutes a significant limitation for radiometer
antennas.

In an initial attempt to minimize coma, the feed function

(25)

fan2 8cos2 * + sin29sin2» + cos2 01 *
L (1-e2) J(1-e2)

was developed and used to mathematically simulate five differentially phased, linearly polarized,
elliptical beams with common phase centers and 3-dB crossover levels. The angular beam separa-
tion was set at 9 degrees (A0) at 1.414 GHz, spatial rotation being obtained by means of Euler
angles (a = 90°, 0, f = 0°). The third primary beam (i = 3) was directed at the center (C) of the off-
set paraboloidal reflector (Figures 12 and 13) as the pseudofocus (F') moved away from the focus
(F) with increased plane-wave angle of arrival (main-beam scan angle).

Since the electric field at theta (0) equal to 0° is unity, using equation 25,

1 f ,
+ lOlog sin2

cose 10 L
I , . sin2 0 sin2 v •

sin2 0 cos2 * + • - - , + cos2 0 | (26)
10

for all values of directivity parameters (N) and (e). It may be verified that:

N = 22.8, e = 0.995827 (27)

for an elliptical beam with -3 dB beamwidths of 19.88° and 9.0°. After Euler-angle rotation
(a * 90°), the semimajor axis of the elliptical beams is parallel to vector ly, as shown in Figure 14.
The parameter N = 22.8 results in a -15.0 dB feed edge-taper in the y-sense for the central beam
(i = 3) with 0 - 31°. The edge-taper in the x-sense was subsequently varied by controlling the exci-
tation (S,) for the individual beams; this is identified for the individual radiation patterns presented
in this document by means of a graphic symbol for both amplitude (Ss) and phase (>//.) of the
beams (i = 1, 2,..., 5).



Returning to Figure 13, it can be seen that the 9° beam width is associated with a corresponding
feed dimension:

D_ = —- » »8X = 1.7m (28)
* BW° (-3 dB) 9

to the nearest integer multiple of half-wavelength. Defining far field for the feed in terms of

R » D2, A = 64X = 13 J m (29)c

it is concluded that the five prime-feed radiation patterns are everywhere Fraunhofer patterns, as
seen from the surface of the offset paraboloid (7). It is noted that the radius of the Airy disk for
-8° plane-wave incidence, obtained by physical optics theory using a one-wavelength integration
sampling interval and an annular disposition of samples over the reflector (7), is approximately
1.5m. The inference is that the displaced Airy disk diameter (D^D * 3.0 m) is able to accommo-
date the feed length (D'y * 1.7 m).

Before the coma-correction simulation described above was implemented, several reference patterns
were computed. The offset paraboloid was first illuminated by a single pencil beam (i = 1), with
-15 dB feed edge-taper, directed at the center of the reflector (C) (Figure 2). Feed directivity was
controlled by parameters (N, e) = (22.84,0.0) and beam-pointing by Euler angles (a, 0, 7) = (90.0°,
31.0°, 0.0°). The feed intensity was arbitrarily set at unity (Sj = 1.0), and the initial phase at zero
($, = 0.0°). A linear polarization moment (P(I) = 1.0) in the (1 x ) direction was effectively con-
verted to P(J) = 1.0 in the (ly ) direction under the assumed (a = 90.0°) Euler-angle rotation of the
prime feed in this simulation. The feed displacement was taken to be zero (J5g = 0.0).

A half-planar cut (0=180°) of the resulting far-field physical optics radiation pattern is shown in
Figure 15. Beamwidth (degrees) is shown for -3.0, -10.0, and -20.0 dB relative to the beam maxi-
mum. The first sidelobe was computed at -29.3 dB, and is due to the combination of feed taper,
space divergence of the prime-feed fields, and the law of current induction on the surface of the off-
set paraboloid:

K = 2 n X H, . (30)

This secondary beam is not squinted (09 =0°) and exhibits no aberrations since the feed phase cen-
ter was taken to be at the focus (F) of the offset reflector under p = 0.0.e

In order to verify the simulation when using five (i = 5) elliptical prime-feed beams, a simple con-
figuration was selected. The individual beam intensities were set to unity (S. = 1.0) and the initial
phases to zero (i//, = 0.0°). Beam ellipticity was obtained as indicated by equation 27, (N, e) =
(22.84,0.995827). The central beam (i = 3) was directed at point C from the focus (F) by setting
(pe = 0.0) and Euler angles («3,03, j3) = (90.0°, 31.0°, O.O8). Effective polarization was again
P(J) = 1.0. The incremental angle (A/3) was set at a constant value (9.0°).



A half-planar cut (< />=! 80°) of the resulting far-field physical optics radiation pattern is shown in
Figure 16. Beamwidths are given at three power levels as before. Note that the half-power beam-
width is slightly smaller than in Figure IS, which is to be expected since the individual beam inten-
sities were equal. The first sidelobe level was -18.0 dB. This result agrees with the fact that uni-
form illumination for a circular aperture is associated with a -17.6 dB first sidelobe level. The value
e = 0.995827 has introduced a slight taper in the vicinity of the reflector edges (0 = 9°, 53°). It was
concluded that this mathematical simulation for five beams was correct and could be used to
explore coma correction techniques.

The prime feeds used to compute the radiation patterns of Figures IS and 16 were next translated
to a point in the approximate focal plane of the offset paraboloid: pe = (1.2720, 0.0, -0.7949)
meters. The angle 0 was updated from 31.0° to 34.0° so that the single pencil beam under (i = 1)
and the central beam under (i = S) would again be directed to point (c) on the paraboloid. Figures
17 and 18 show the far-field or Fraunhofer radiation patterns, and beamwidths are identified as
before. The coma lobes for these simulations are at -20.0 and -12.8 dB, 0g = 4.3°, and should be
compared to -29.3 and -18.0 dB, 0g = 0.0°.

Prior to attempting coma correction, by introducing discrete phase differentials among the five
elliptical beams, a conservative discrete amplitude taper was selected for these prime-feed beams:
S, = S5 = 0.316, S3 = 1.0, S2 = S4 = 0.562. this program input had the effect of producing a pro-
gressive taper of -5 and -10 dB to either side of the central beam. The result is given by the radia-
tion pattern of Figure 19, which shows a -19.0 dB coma lobe.

The objective of reducing coma by compensating the cubic phase gradient with five primary beams
having a common phase center (pe, = constant, i = 1, 2,..., 5) was approached by attempting to
optimize the phase of the beams corresponding to i = 3,4, 5 while holding the amplitude taper
S, = S5, S3 = 1, S2 = S4 indicated above. In addition, phase variations that were arbitrary and
departed from the theory were explored to further verify program behavior. A few of the results
are presented here..

The phase parameter (i//5) was varied over wide latitudes for the selected amplitude taper among the
five beams, and it was concluded that a value (4>s =-135.0°) was very close to optimum. An angular
increment of A0 = 9.0° was retained, and the central beam angle of 03 - 36° was eventually used.
Coma reduction was found to be rather insensitive to the set of angles (0.) since the latter affect
illumination intensity, spillover, etc. for beams with a common phase center. A coma lobe of-22
dB level was obtained by varying (i^s) alone. (See Figure 20.)

Similarly, the phases of (<// s) and (</>4) were varied simultaneously, in accordance with and contrary
to a cubic law across the aperture in a vertical (1 x) sense. It was concluded that values i//5 =
-130.0°, i^4 = -30.0° were close to optimum for coma-lobe reduction. A coma lobe of-28.3 dB
level was obtained by varying i^s and \j/4 simultaneously. (See Figure 21.) It is noted that this
beam exhibits approximately -30 dB first minima and sidelobe levels and beamwidth similar to
those obtained in Figure 15, an unscanned case obtained with symmetric -15.0 dB feed taper.

10



The phases of (\1> s , if>4 , #3 ) were vailed simultaneously, and although some beam characteristics
changed, no significant improvement over the result given as Figure 21 was obtained. At this stage
of the exploration, a decision was made to calculate the orthogonal radiation pattern cut. Since the
beam of Figure 21 is squinted (0, = 4.5°) an in-situ orthogonal cut through the beam maximum
would imply both 0 and 0 variation with attendant plotting difficulties. Alternatively, a proper
rotation of the entire discrete current distribution of the physical optics calculation by ds = 4.5°
would place the beam maximum on the (+1 z) axis again. Consequently, any radiation pattern cut
through the beam maximum can be made by setting 0 = constant and treating 6 as the single inde-
pendent variable.

The rotation of sheet current values (K) to obtain a new set (K'), as described above, was made
simply by means of a quaternion transformation. A set of position vectors (jo) of (K) on the offset
paraboloid was converted into a new set (p') of (K') by the identical transformation. These opera-
tions made possible the integration of sheet current, weighted by incremental reflector area, under
the physical optics algorithm with minimal reprogramming effort. Vectors (K) and (p), above, may
be regarded as "free" and "bound" vectors, respectively, in the present context. The same holds
true for their counterparts (K') and (p').

A protracted discussion of quaternions is inappropriate here. It may be worth noting that a rota-
tion in the amount 9Q in physical 3-space (E, ) appears as a half-angle or 0_ /2 operator in a trans-
formation that resembles the similarity transformation of classical physics. The general rotation
is executed about a preferred axis whose direction cosines are (oc_ , 0Q , 7Q ), not to be confused
with Euler angles (a, 0, 7) used previously. In conclusion, the quaternion (Q2 ) simplifies to a vector
(W3)ofE3,and

W*a = Q^Qj-1 " QiWjQ/1 (31)

take

and

9Q °Q
Q;1 = cos — - (i aQ + J0Q + k 7Q) sin — . (32b)

See References 17, 18, and 19 for background material. Note that (ij) equals (k), (k2 ) equals
(-1), (kj) equals (-i), etc.

The orthogonal pattern cut required here is made by setting 0Q = 0s, «Q = 0, 0Q = 1.0, 7Q = 0.0,
0 = 90°, 270°. Here, 9 is the independent variable as with unscanned beams.

Using the same program parameters as those for Figure 21, the 6 = 90°, 270° cut effectively co-
alesces the aperture distribution to a line parallel to the (1 ) axis. A radiation pattern whose -10
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and -20 dB beam widths are somewhat too broad was obtained by physical optics and is given as
Figure 22. It shows a vestigial sidelobe of -22.0 dB level, about 6 dB worse than the corrected
coma-lobe level and 3 dB better than the unconnected coma-lobe level (Figures 19 and 20, respec-
tively). The necessity of verifying final radiation patterns by means of principal plane and diag-
onal plane cuts, at least, is apparent.

ABERRATION CORRECTION (II)

Attempts to minimize coma for increased plane-wave angle of arrival (9 «»-8°) at a frequency of
1.414 GHz for the assumed geometry proved difficult. Since the effective aperture was diminished
significantly, beamwidths increased. Estimation of 7>e for feed positioning by various means was
tedious. (See Figures 10 and 11.) Previously, F' was taken to lie in the aperture plane (6 * 4°)
and ~pt was determined accordingly. This approach was now unsuccessful. A review of the assump-
tions and an alternate approach were sought. The issue of apodization (taper) was set aside, and
the phase aberration analysis was reviewed.

The large wave-angle (6 « -8°) indicated a radical departure from Gaussian optics, and the assump-
tion of an offset paraboloid violated Hamilton's condition that the instrument be symmetrical. It
was noted that the aberration expansion of equation 5 provided for lateral feed displacement (h)
relative to the system or focal axis (z), but exhibited no comparable axial feed displacement term
(g). Also, the focal axis of the parent paraboloid and offset paraboloids did not coincide. Could
(h') be assumed a lateral displacement with respect to z', the approximate focal axis of the offset
paraboloid? Further, if the expansion 5 contained only particular orders of terms, was it capable
of representing the phase aberrations in the aperture plane of the offset paraboloid for large wave
angles (6 * -8°)?

A ray-optics program was used to obtain the aberrations in the aperture plane of the antenna. The
line cut (y - 0) in the ±x direction was selected from the aberration surface, corresponding to 0 =
0°, 180°, and a restricted expansion in powers of aperture radius (p) was made. It was tacitly
assumed that terms up to and including the fourth power of p might suffice. Good closure verified
this assumption. In effect, the classical aberrations were rewritten:

(Wmh)p (33)

0*020) P* <34)

(W131h)p3 (35)

W04oA>4 - OW P4 . (36)

Preservation of the original concept of (h) orthogonal to z, or (h') orthogonal to z' in the present
case, was no longer required. The objective was simply to map coefficients, such as the associated
terms (W131 h), in the focal region. This was done for both a parent and an offset paraboloid,
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F/Dp = 18 ra/36 m = 0.5 (37)

F/D = 18m/15m = 1.2 , (38)o

by selecting values of pe on a Cartesian grid in the (xz) plane.

Figures 23 through 26 illustrate the coefficients associated with lateral focus, axial focus, coma,
and spherical aberration of a symmetric parent paraboloid. It can be seen from Figure 23 that
the classical aberration for lateral focus is observed along the system axis (z) for which (h) equals
zero. For small nonzero values of (h), the lines

G2 = (Wm h)p » constant (39)

are nearly parallel to z. As the departure from Gaussian optics increases, (G2) is seen to be con-
stant along curved lines. Because the (cos 0) term has been suppressed, the coefficients assume
positive or negative values.

The axial focus coefficients are independent of lateral image displacement in the classical dis-
cussions where axial image displacement (g) is not introduced. In the xz plane,

lpe l =»(g2+ha)* . (40)

The lines

Gi " ^020) *2 " constant (41)

are shown in Figure 24. They assume positive or negative values also and are essentially circular
arcs.

The coma coefficients are displayed in Figure 25. It can be seen that the classical aberration is
observed along the system axis (z) for which (h) equals zero, as was the case for lateral focus. For
small nonzero values of (h), the lines

S4 • (W13, h)p3 = constant (42)

are nearly parallel to z, but become curves as the assumption of Gaussian optics is increasingly
violated.

Finally, Figure 26 displays the spherical coefficients, also independent of (h) in the classical or
receive sense. The lines for which

Si = 0*040) P4 = constant (43)
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appear to be parabolic arcs with positive or negative values. It may be verified that the contribu-
tion of this aberration term, on an absolute basis,

0 < p < 1 (44)

is rather negligible in the present discussion.

Figures 27 through 30 illustrate the same coefficients as Figures 23 through 26, but apply to the off-
set paraboloid. Figure 27 suggests that the inclined focal axis (z') may replace z, and (h') may be
taken orthogonal to z' in analogy with parent paraboloids, and this is also borne out by computed
radiation pattern squint angles. Figure 28 shows essentially circular arcs and should be compared to
Figure 24, but the center of those arcs is not along z'. Figure 29 shows curved lines somewhat
similar to those in Figure 25, but symmetry about z' is lacking. Figure 30 departs drastically from
the parabolic arcs of Figure 26, although some vestiges remain. Symmetry about z' is lacking.

In conclusion, it is difficult to obtain a close analogy between the parent and offset paraboloid be-
havior. The asymmetric offset paraboloid has distinct features. Introduction of (h') and z' sets
the lateral focus analysis on a one-to-one basis between the parent and offset paraboloids. The ad-
vantage gained by mapping the modified aberration coefficients of Figures 27 through 30 is that a
strategy for selecting (pe) can be developed and trade-offs between various aberration terms can be
determined quantitatively. It is noted that the present approach was restricted to the line (±x, y = 0)
in the aperture plane. The implication is that the aberration coefficients should, properly, be
mapped for other lines (y =£ 0) in the aperture plane.

An immediate simplification, predicted in Figure 27, is that the beam angle (0s) can be held con-
stant while coma-lobe reduction is being carried out. It can also be seen that minimization of the
term associated with coma, by intersecting the arc

(W131 h) = 0 (45)

along a line

(Wm h) = constant . (46)

Figure 29 results in an enormous increase in the axial aberration. The departure from the arc

(W020) = 0 (47)

of Figure 28 is excessive. It may be instructive to locate the phase center of a multibeam array
situated at

pe = (1.68,0.0, -2.0) meters . (48)
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in Figures 27 through 30 and compute the aberration values introduced. Once (pe) has been
selected, the task of determining the relative phases (#,), between these beams with common phase
center, may be undertaken to reduce coma.

Figure 31 shows the result after optimizing the set of phase values (i/r) for the feed position (pe) of
equation 48. A coma lobe of-26 dB was obtained, 1 dB lower than the first local maximum at
9 = 9.8° on the opposite side of the main beam. Beamwidths are given at four power levels.

FOURIER TRANSFORMS

As the present study of the correction of aberrations computed in the aperture plane of the offset
paraboloid antenna progressed, the Fourier transform became ubiquitous. In anticipation of a more
fully automated computer program in which the criteria of aberration correction are established in
the aperture plane, rather than in the far-field region, the role of the Fourier transform becomes
increasingly important. Although two-dimensional transforms are required throughout, and even
three-dimensional transforms could be used to advantage when dealing with the paraboloid, the sub-
sequent discussion is restricted to one-dimension for convenience.

Beginning with the relationship between the paraboloid antenna aperture distribution (AP ) and
the far-field radiation pattern E (6, 0), the definition of the Fourier transform and its inverse are
applicable as indicated previously (Ref. 16, p. 275 and Ref. 20, pp. 11 and 13):

H(0= / h(t)e"JdV* (49)

and

I.

f H(f)ej'"dffth(t)= / H(f)e df . (50)

Alternatively,

3F[h(t)]=H(f) (51)

and

£-' [H(f)J = h(t) . (52)

Next, as a direct consequence of these definitions, the Fourier transform isolates the Gaussian
aberration,

G2 = Wm I3 (53)
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from other aberrations that affect image quality. Since the introduction of a linear phase gradient
(e*2"'01) results in

J2irfot /* I -J2jr(f-fo)t
e ]= / ,f( t)edt =H(f-fo) , (54)

•/« '

the shift theorem that ensures distortionless beam-swinging is established (Ref. 16, p. 282, and
Ref. 21, p. 84). Equation 54 is sometimes referred to as the frequency-shifting property of the
Fourier transform.

Following this, the concept of a transform of a transform appears in several contexts. Given a
prime-feed distribution (APy) at focus (F) whose spatial Fourier transform leads to the paraboloidal
antenna aperture distribution (AP? ), to within a space divergence factor (r1 ) and a minor perturba-
tion due to the law of current induction (equation 30), it follows that:

#[i(AP,)] = ? (AP7) = E (0, 0) . (55)

Consecutive transforms may also occur with circuits and will be discussed in greater detail in con-
nection with the Butler beam-forming matrix (Ref. 22 and Ref. 23, p. 258). Since the circuits may
lead to the prime-feed distribution, cascaded transforms arise. A specialization of the concept is
sometimes referred to as the symmetry property of the Fourier transform and follows from re-
writing equation 50 as:

(56)h(-t) = I H(f)e"J2df

and interchanging parameters t and f, so that

«

H(t)e"J2dtft= h(-0 . (57)

There is no truncation of H(t) in equation 57, which differs from equation 55. The concept of a
transform of a transform is therefore also useful for extending Fourier transform tables without cal-
culating new transforms (Ref. 21, p. 85, Ref. 20, p. 32, and Ref. 24, p. 196).

Of particular interest in the reduction of aperture aberrations are the Fourier transforms of uniform
continuous and discrete distributions. The former is an idealization of the latter regarding prime
feeds, but may also be used to generate a reference for paraboloids:

' .J2wft sin(27rTof)
H(f) = / Ae dt = 2ATQ ^ Q . (58)
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Here, aperture width equals 2T0, and A equals a real constant (Ref. 20, p. 24, and Ref. 21, p. 78).
The above, particularly relevant for the prime-feed array associated with the Butler matrix, is modi-
fied by the shift theorem, and

oc

(«(t-t0)] = f
-J27ft -jjirft

5(t-t0)e dt = e lt=t
O

Reference 21 , page 10, together with the linearity (superposition) property of Fourier transforms
(Ref. 21, p. 82):

i 3F [ajh, (t) + a,h3 (t)] = a^ (0 + a,H2 (0 . (60)

Here

f [h, (t)] = Ht (f) (61)

and

SF [h, (t)l = H2 (0 . (62)

In the case of a uniform array of (n() discrete sources a distance (t0) apart, with one source on the
coordinate origin,

<63)

Then

-J2irf(n -1-• -o; (64)
and

(65)
\ /

so that

(
_ \ - -

1-e"12* n '°) - (66)
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From this result,

" ' l

prior to the application of the shift theorem, which introduces a linear phase gradient. This result
for the linear array of discrete sources should be compared to equation 58, a continuous linear dis-
tribution. If, in a physical application, each element width of the uniform array equals to ,

(2 T0) = (ns t0) = feed width . (68)

Equation 6 may be generalized (Ref. 25, p. 45 1 ) for a cubic lattice array that is directly applicable
in mathematical simulations of Butler array matrix feeds.

Following Reference 25, let

Yj = kat sin 0 cos <p + at (69)

7j = ka2 sin 0 sin <t> + <*2 (70)

Tr3 = ka3cos0 + a3 , (71)

where the a, are phase gradients and k is the wave number. The feed pattern for the cubic-lattice
array is then:

E^tf-F^fjf, (72)

where

sinn>78/2 ' -
^e I s

and Fo is the source element pattern. Equation 73 may be compared to equation 67, which was
obtained by Fourier transform theory. The cubic-lattice notation permits imaging in a ground plane
(«3 = ir), but this capability is ordinarily defaulted (?3 = 0) when the source elements are electro-
magnetic horns. A rectangular feed aperture of discrete sources becomes available by this analysis.

Equation 72 may be regarded as a statement of the pattern multiplication principle or the result of
time-domain convolution of a source distribution with an array factor distribution:

F) . (74)
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The advantage of using equation 67 or its generalization (equation 73) instead of equation 25 is that
there exists an inherent risk that the elliptical beams postulated by certain parameters (Nr e., 0.) of
equation 25 may not be realizable in the physical world. There is a reduced risk when using equa-
tion 67, but unrealistic specifications are still possible. For example, t0 may be selected so small that
the phase centers of the discrete sources could never be brought adequately close together even with
radical dielectric loading. For Butler array-matrix simulations, the element spacing is usually set at
one-half wavelength. The size of the array and its distance from the surface being illuminated must
still be regarded to justify use of the preceding far-field radiation pattern equations for the prime
feed in the simulation.

BEAM-FORMING MATRICES

The assumption of multiple beams having a common phase center has a basis in the physical world.
Numerous beam-forming matrices exist (Ref. 23, Chapter 3, p. 217). The Butler array matrix is one
that forms (na) orthogonal beams with a 4-dB crossover level, predicted on the array factor with
half-wave separation between source elements. In systems simulation, it is convenient to express
the properties of such a beam-forming device or circuit as a mathematical matrix. Scattering matrix
notation may be adapted to transfer matrix notation, which admits chain matrix multiplication
(Ref. 26, pp. 506-539). Computer processing for the circuit becomes a straightforward operation.

A four-port 90° (square) hybrid junction is the basic building block of the Butler matrix, together
with certain fixed phase shifters. Transfer matrix notation and the noncommutative order of multi-
plication may be illustrated by a simple example for a lossless "weighting" circuit (Figure 32) whose
output depends on a single phase shifter (^,). The example is given in more general terms, in-
cluding a second phase shifter (i//2 ) and making provision for a transmission coefficient. This is
done since cascaded Butler matrices have been proposed with variable phase shifters interposed
(Ref. 27). Also, an attempt is made to explore the proposition that the Butler array matrix is a
Fourier transform device.

Figure 32 shows the ' Veighting" circuit with inputs h} and h3, and outputs gj and g3. The even-
index quantities are absent because only the "transmit" submatrix of a portioned matrix is being
considered here. Two null matrices and a "receive" matrix have been suppressed. The order of the
matrices affecting the input signal is: .

T1V-Tn-.Tn (75)

so that the transfer matrix chain multiplication is carried out as:

g = [Tn] [!„.,]... ITJh . (76)

For the "weighting" circuit,
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83

J2̂

-j//2 -1//2

-1//2 -j//2

*' -j//2 -1//2

-1//2 -J//2

(77)

Defaulting the result, set Ft equal to F2 equal to unity, and 4>l equal to i//2 equal to zero. Then,

81
83

(78)

It can be seen that the magnitudes of outputs (g} and g, are the inputs h3 and hl, respectively).
This is a symmetry argument. Since a single square hybrid is an elementary Butler matrix, cascading
two such hybrids might constitute "transform of a transform" in the Fourier sense.

The proposition that a Butler matrix is a Fourier transform device is difficult to support formally
for the two-port example shown here, or for the ng-port matrix, even though additional properties
associated with a Fourier transform emerge. Suppose only a single hybrid is considered, so that:

«i

83

-1 j 1

1 j
(79)

Suppose further that h} is identically zero, initially. Then it is possible to write

(80)

and

(81)

Now the single input (h t) equal to unity may be regarded as a delta-function and (fto) may be taken
to equal minus one-fourth for gt and zero for g3, so that:

(82)

reproduces the exponentials of equations 80 and 81 above. This has the appearance of annexing the
frequency-shifting property of Fourier transform theory to the symmetry property. It is noted,
however, that the Butler matrix of ns output ports accepts a single input, 5 (t - to ) and produces a
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discrete set of output values e * °,
-J2wf n , whereas equation 82 indicates a

continuous output. The discrete set of values may well be bounded by equation 82, but the prop-
osition regarding the Butler array matrix as a Fourier transform device appears to be restricted.

TRANSFER MATRICES

Admitting the possibility of a restriction regarding the Butler array matrix as a Fourier transformer,
the requisite signal processing may still be carried out conveniently using the preceding transfer
matrix notation. In view of certain publications, including Reference 27, and the experience gained
in the present effort, a transfer function consisting of three matrices would be useful in the develop-
ment of future computer programs. The cascading of Butler matrices or power dividers of different
dimension is anticipated. A single transfer function that accommodates these options may be
written. Matrix conformability problems regarding Butler matrix dimensionality are circumvented
by an artifice. The higher dimension is carried throughout, certain parameters are defaulted, and
the matrix of smaller dimension is thereby imbedded in the formulation.

The circuit of Figure 33 cascades Butler matrices of dimension equal to eight and four. Notation is
the same for the square hybrid example, previously given, as is the order of multiplication. An
equivalent matrix for the entire transfer function may be obtained by multiplication:

[T3] [T2] [T,] (83)

where [Tj ] is associated with a four-beam array matrix or power divider, [T2 ] designates a bank of
"weighted" phase shifters, and [T3 ] is associated with an eight-beam array matrix. Prior to de-
faulting any of the parameters,
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(T3) (T2) (T,) (h )

Assume that

h, = h3 = hi3 = hls = 0 (85)

for the coma correction circuit. For the remaining inputs, assume that only hs is nonzero initially.
It can be seen that product [Tj ] fH] results in a column vector (or matrix). The elements T33,
T43, TJ3, and T63 of [Tj ] are exponential terms of the stepwise linear phase gradient that is ordi-
narily associated with an "antenna beam" from this Butter matrix.
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Multiplying column vector [T, ] [h] against matrix [T2 ], in the order indicated, introduces ele-
ments T33, T44, TS5, and T66 of [T2 ]. The elements are weighted exponentials whose arguments
are such that they remove the linear gradient due to [Tj ] and the comatic aberration as well. The
weighting factors provide the amplitude taper of the elliptical beams of the previous discussion.
Symmetric taper of the feed function alone is obtained with [T33 ] equal to [T66 ] and [T44 ] =
[T5S ] in matrix [T2 ] in the present discussion. Product [T2 ] [Tt ] [h] results in another column
vector that, when multiplied against matrix [T3 ], leads to four antenna beams. Each beam is asso-
ciated with a column of matrix [T3 ] as indicated in equation 84.

CONCLUSION

This document developed analytical/numerical approaches to identifying and correcting the aberra-
tions introduced by a general displacement of the feed from the focal point of a single offset para-
boloid antenna used in radiometer systems. The transmit point of view led to an optical path
difference in the aperture plane. Classical aberration theory was then applied in an attempt to
determine the mathematical composition of the optical path difference or total aberration. It was
noted that the classical theory was useful, but large feed displacements and the inclusion of an
asymmetrical antenna surface caused the investigation to depart from Gaussian optics and violate
Hamilton's assumption of a symmetrical instrument. No attempt was made to include the effects of
apodization or amplitude taper in the geometric analysis here.

Ray optics was also applied with the receive point of view, leading to the development of wave fronts
and caustics, under the assumption of zero wavelength. This approach was augmented with the
physical optics mapping of the focal-region fields at a wavelength of 0.212 meter to determine suit-
able feed positions for a given plane-wave angle of arrival.

Finally, physical optics was used for the transmit case to compute far-field radiation patterns and
to test various hypotheses. A common phase center was assumed for a prime feed that radiated five
elliptical beams. Both phase and amplitude taper were used in a mathematical simulation that is
also physically realizable. The prime feed was associated with the Butler array matrix and its con-
straints. It was found that the quality of coma correction was set by feed size (number of discrete
sectors on the reflector), and adverse effects orthogonal to the comatic phase gradient. Beam-scan
angle (projected aperture) determined minimum beamwidth.

This document illustrates some of the methods that may be applied in future radiometric antenna
design effort and points out limitations of those methods. The actual coma correction achieved in
the various examples is considered incidental to the value of the methods discussed. Mapping of the
aberration coefficients for parent and offset paraboloids has not been found in the open literature,
and appears to provide useful insight for the coma-correction problem and other antenna studies. A
modified aperture-plane analysis for complex distributions, combined with a Fast Fourier Trans-
form (FFT) capability, could replace the physical-optics approach used in the present effort. The
inclusion of transfer matrices is not imperative, but constitutes a useful alternative in an automated
approach to coma correction. Finally, it appears that coma correction remains an art, rather than
a science, since the computational path is very long. There are many variables and constraints;
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cause and effect cannot be expressed in any simple manner. An iterative approach appears to be
necessary.
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COORDINATES ON PARENT PARABOLOID:

ffP2

F/Dp - 0.5

F/Do - 1.2

X,p = -10.5m
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z1p - -F » -18.0 m
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Figure 2. Geometry of the offset paraboloid.
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Figure 3. Three-ray trace for -8° plane-wave incidence (offset paraboloid).
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fl,-8°. F- 18.0m, K- 1.0

PWJ-80)

Figure 4. Envelope of caustic arc for -8° plane-wave incidence (offset paraboloid).
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Figure 5. Envelope of caustic arc for -8 plane-wave incidence (parent and offset paraboloid).
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[ca/caustl;/c curve for _8<>8
an«< offset



(-32°) (-16°)

SILVER'S ARC

\

Figure 7. Truncated analytical caustic curve (Tschirnhausen's cubic) for -4°, -8°, -16°, and -32°
plane-wave incidence (offset paraboloid).
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- - *"•*,. •
X - 0.21 m

1 m

-Sm

Figure 9. Focal-region map of offset paraboloid for -8.7° plane-wave incidence.
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AFA(-8.7e)

v •

Figure 10. Estimates of the displaced and diffuse focus (F') for -8.7° plane-wave incidence.

36



SIN 0, * KA/F (K-1.0, 0.9,0.8)
PHYSICAL OPTICS (SYMMETRY)
POTTER'S PARABOLIC ARC (+)
PHYSICAL OPTICS (EMAX)
EDGE OF CAUSTIC (T2nT3)
SILVER'S CIRCULAR ARC (-)
CENTER OF CAUSTIC ARC

(K-0.8)
04

1 (K-0.9)

(K-1.0)

— I
~

1m
SCALE

Figure 11. Coordinates [pg «• (xe, ye, ze)] of displaced focus (F') for -8.7 plane-wave incidence.
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—J 5m L—
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Figure 12. Offset paraboloid illumination of 0 and -8 plane-wave incidence showing displaced Airy discs.
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RAO »1.22— -0.31 m (AXIAL PLANE-WAVE)

Re - D*A - 64X - 13.5 m

Df - P(X/2) - 8X - 1.7m

f • 1.414 GHz

\ - 0.212m

Figure 13. Offset paraboloid illumination of -8° plane-wave incidence
showing feed (D?) and far-field radius (Rc).
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z (SIDE VIEW)
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Figure 14. Illumination of offset paraboloid with five beams (i = 5).
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Figure 15. Reference pattern.
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Figure 16. Secondary radiation pattern obtained with five-beam primary feed.
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i - 1, N - 22.84, e - 0.0. & - 34°, 9, - 43"

170

Figure 17. Reference pattern.
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Figure 18. Secondary radiation pattern obtained with five-beam primary feed.
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Figure 19. Secondary radiation pattern obtained with amplitude-tapered five-beam primary feed.
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Figure 20. Secondary radiation pattern obtained with phase/amplitude-tapered
five-beam primary feed.
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i - 5, S, - S, - 0.316, S, • 1.0. Sj - S4 - 0.562, *, =

N, • 22.84, e, » 0.995827,0, - 36", £# = 9°, fl, - 4.5°

150

Figure 21. Secondary radiation pattern obtained with phase/amplitude-tapered
five-beam primary feed.
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Figure 22. Secondary radiation pattern obtained with phase/amplitude-tapered
five-beam primary feed.
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hpcos*-(W,llh)pco»«-WII| l'3

Figure 23. Lateral focus coefficient (Wn1 h) for parent paraboloid.
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Figure 24. Axial focus coefficient (W) for parent paraboloid.
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Figure 25. Coma coefficient (W 31 h) for parent paraboloid).
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-OL2B4 -0.178 -0.107 -O04» 0.0006 0.041 OJOTI 10.103 0.127 0.1

Figure 26. Spherical coefficient for parent paraboloid.
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Figure 27. Lateral focus coefficient (Wni h) for offset paraboloid.
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Figure 28. Axial focus coefficient (W Q) for offset paraboloid
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Figure 29. Coma coefficient (W h) for offset paraboloid.
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Figure 30. Spherical coefficient (W-..) for offset paraboloid040'
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Figure 31. Secondary radiation pattern obtained with phase/amplitude-tapered.
five-beam primary feed.
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Figure 32. Weighting circuit.
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Figure 33. Circuit for coma correction.
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APPENDIX A

ABERRATIONS

The optical invariants are:

I, = h2, I, = p2, I3 = hpcos0 (A-l)

and the optical path difference is:

OPD = 6i= V W,IiB ,m+ h2I+np2m*llcosn0 (A-2)

• Ijn.n

Let the Cartesian aperture coordinates be

x = p cos </>, y a p sin 0 . (A-3)

Then the classical "aberrations" of Gauss, Seidel, and Schwarzschild of mixed degree (2), (4), (6)
are easily generated in terms of the optical invariants as follows. The aberration name is sometimes
redundant in the literature.*

* W. l_ Wolfe, "The Infrared Handbook," Environmental Research Institute of Michigan, Library of Congress Cat. Card No. 77-
90786,1978; and E. H. Linfoot, Recent Advances in Optics, Oxford, 1955.
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APPENDIX B

PHYSICAL OPTICS SIMULATION (RECEPTION)

f C i /* C
E(x,y,z)= — I / [ ( n X H . ) • ?I 7^ds-jo;M— / l ( n X H ) i / / d s (B-l)

jwe 4ir / / L 1 -I 4jr / /
* •vl*' -vi

- -^ / /(n X Ht) X 7 * ds (B-2)

(B-3)

(B-4)

Parameters:

Frequency: f= 1.414 GHz
Diameter of reflector: D0 = 15.0 m ^ ataBx = 7.5 m
Central blockage: ato = 0.0 m
Reflector displacement: (x,p, y l p > z tp) = (-10.5 m, 0.0 m, -18.0 m)
Focal length: F= 18.0m
Source function amplitude, phase, polarization: (St, \}f l , Pt (I)) = (1.0,0.0°, 1.0)
Source directivity factors: (N, e) = (0.0,0.0)
Source displacement: Q5e) = (xe, yt, ze) = (-22.689 X 103 m, 0.0 m, 148.274 X 103 m)

(Range = 150,000 meters)
Source inclination (Euler angles): (a, ft, 7) = (90.0°, 0.0°, 351.3°)
Integration sampling interval: (LI) - 1.0 (X), (Fig. 9)

Source function:

x _ COSN 9

Ein2 9cos2 $ + sJn295in2<fr + cos2 0T*

. o -•'). J

i - u - 1-0 (B-5)

under N = e = 0.0 for plane-wave simulation (remote spherical source).
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