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The structure of the vorticity field in turbulent channel How 

Part 1. Analysis of instantaneous fields and statistical correlations 

PARVIZ MOIN AND JOHN KIM 

NASA Ames Research Center, Moffett Field, California 94035 

An investigation into the existence of hairpin vortices in turbulent channel flow is 

conducted using a database generated by the large-eddy simulation technique. It is 

shown that away from the wall the distribution of the inclination angle of vorticity 

vector attains its maximum at about 45° to the wall. Two-point correlations of ve

locity and vorticity fluctuations strongly support a flow model consisting of vortical 

structures inclined at 45° to the wall. The instantaneous vorticity vectors plotted 

in planes inclined at 45° show that the flow contains an appreciable number of hair

pins. Vortex lines are used to display the three-dimensional structure of hairpins, 

which are shown to be generated from deformation of transverse vortex filaments. 

1. Introduction 

In 1952 Theodorsen characterized turbulent boundary layers as being composed of 

large-scale horseshoe-shaped vortices which are responsible for turbulent transport. 

Since then a number of investigators have proposed physical models of turbulent 

boundary layers that contain as their dominant feature pairs of counter-rotating 

vortices with axis either parallel or inclined to the flow direction. Recently, Wallace 

(1982) has collected a number of experimental results consistent with the vortex

pair model of bc.undary layers. He proposes a hairpin-like vortex as the dominant 

flow structure, which is formed from the deformation, stretching, and lifting of the 

transverse vortex lines. 

Quantitative evidence in support of the existence of pairs of counter-rotating 

vortical structures inclined to the wall and streamwise direction was obtained from 



extensive space-time correlation measurements by Willmarth & Tu (1967). Is~cor

relation contours of the correlation between pressure fluctuations at a fixed point 

on the wall and the spanwise velocity component, w, in planes perpendicular to the 

wall and the mean-stream direction (y-z planes) show sign reversal, with the the line 

of zero correlation moving away from the wall in the downstream direction. This 

result is consistent with the presence of lifting streamwise vortices which produce 

reversal in w (and hence the correlation, pw) across the horizontal planes containing 

the vortex centers. The correlation between fluctuations of the streamwise velocity, 

u, at the edge of the sublayer and the streamwise vorticity, W~, at various points 

above and downstream of the velocity probe was also measured. These data were 

later analyzed by Willmarth & Lu (1972). The location of maximum correlation 

between u and Wz was along a line through the fixed velocity point inclined ~t an 

angle of about 10°. A quadrant analysis of the motions contributing to the UWz 

correlation showed that for large negative values of u, Wz was positive for z > 0 and 

negative for z < 0, where the u-probe was located at z = 0 and clockwise rotation 

was denoted as positive. Based on these measurements, Willmarth & Tu (1967) 

proposed a model for the wall-layer consisting of hairpin vortices with the axis of 

the primary vortex lines ( pointing in the spanwise direction when undisturbed) 

deformed, and inclined downstream and away from the wall. In their model, the 

vortex lines are deformed in a regular sinusoidal manner with regions of flow moving 

toward and away from the wall alternating in the span wise direction. This model, 

with a 10° vortex inclination angle, was proposed only for the wall region, and is 

in sharp contrast to Theodorsen's large-scale horseshoes inclined at 45° to the flow 

and extending across the entire boundary layer. 

Townsend (1970, 1976) shows that an eddy model consisting of a pair of roller 

eddies inclined at about 30° to the flow direction is generally consistent with two

point correlation functions calculated from the rapid-distortion theory. He suggests 

the double-roller eddies as the dominant structures in turbulent shears flows. 
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There is an extensive collection of experimental data pointing to the existence 

of organized structures or disturbance fronts inclined to the wall and the stream 

direction. Kovasnay, Kibens & Blackwelder (1970) constructed an isocorrelation 

contour plot of space-time streamwise velocity correlations using a probe fixed at 

y/o = 0.5 and another at different y-Iocations. The contour lines (in (y,t) planes) 

clearly show a downstream tilt. The same feature is also apparent in the correlation 

measurements of Blackwelder & Kovasnay (1972), where the location of the fixed 

probe was close to the wall ( y/o = 0.03 ). Tritton's (1967) two-point velocity cor

relations decay more slowly when the probe separation line is directed downstream 

away from the wall. This behavior is also evident in the correlations of Favre, Gav

iglio & Dumas (1957). Using space-time correlation between fluctuations of wall 

shear stress and streamwise velocity with optimum time delays, Kreplin & Eckel

man (1979) detected a disturbance "front" which had an inclination angle of about 

14° to the wall at y+ = 50.1 However, the front that can be deduced from corre

lating spanwise fluctuations (w, ~w I ) does not extend beyond y+ = 30. Brown 
Y y=O 

& Thomas (1977), using space-time correlation of the streamwise velocity and wall 

shear stress, also detected an inclined disturbance front. However, in contrast to 

Kreplin & Eckelmann's measurements, which were limited to the wall region, they 

measured the inclination angle of the front to be 18° across the entire boundary 

layer. They also propose a model in which the organized structure appears as a 

horseshoe vortex. In contrast to Willmarth & Tu (1967) and Wallace (1982), who 

describe the origin of the horseshoe vortices as due to the deformation of the pri

mary vortex lines by random velocity and vorticity fluctuations, Brown & Thomas 

attribute their origin to streamline curvature and the resulting Taylor-Gortler vor

tices. Coles (1978) also attributes the origin of sublayer vortices to Taylor-Gortler 

instability. Finally, Chen & Blackwelder(1978), in a boundary layer over a slightly

heated wall, observed a well-defined temperature "front" across the entire boundary 

IThe superscript + denotes nondimensionalizahon with the wall friction velocity, Ur = (r/p)1/2, 
and kmematlc viscosity, v. 
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layer with an inclination angle of about 48°. 

There is also evidence for the existence of inclined vortical structures from flow

visualization experiments. In their hydrogen-bubble flow visualizations, Clark & 

Markland (1971) observed strong streamwise vortex motions close to the wall with 

axis inclined to the wall at about 5° - 7°. They point out that "these vortices 

seem to travel downstream in counter-rotating pairs." They also observed transverse 

vortices and suggest that the observed vortical structures are part of a horseshoe 

vortex. However, these vortical structures were confined to the wall region (y+ < 

120). Experiments of Head & Bandyopadhyay (1981) have provided very strong 

support for the hairpin vortices as the dominant structures in turbulent boundary 

layers. In a smoke-filled boundary layer, planes inclined at 45° and 135° to the flow 

direction were illuminated by an intense light source. The inclined planes in the 

downstream direction (45°) clearly show elongated features, whereas those inclined 

upstream (135°) exhibit rounded features that in many cases occur in adjacent 

pairs. The structure of the flow in the vicinity of the wall is not discernible from the 

above visualizations, and hence the link between the wall layer and the structures 

appearing in the inclined planes could not be established. Using illuminated planes 

perpendicular to the wall and the flow directions, some vortex pairs were observed, 

but many solitary vortices were also observed. This finding is consistent with the 

dual-view, hydrogen-bubble, flow-visualization experiments of Smith and Schwartz 

(1983), who observed at least as many solitary vortices as vortex pairs in a transverse 

(y,z )-plane. In order to establish the relationship between the visual patterns and 

hairpin vortices, Acarlar & Smith (1984) generated synthetic hairpins by placing 

a hemisphere on the wall in a laminar boundary layer. The hydrogen-bubble flow 

patterns were very similar to those observed in turbulent boundary layers. They 

also showed that the visual pattern observed is very much dependent upon the 

location and orientation of the bubble-wire. 

As was mentioned earlier, a number of investigators have proposed an eddy struc-
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ture for the inner region of boundary layers that consists of a pair of counter-rotating 

vortices that are highly elongated in the streamwise direction and are parallel to the 

wall( Blackwelder 1978; Blackwelder & Eckelman 1979; Lee, Eckelman & Hanratty 

1974; Bakewell & Lumley 1967). The streaks of low-speed fluid (Kline et al., 1967) 

are postulated to be lying between the counter-rotating vortices. To be consistent 

with this proposed wall-layer structure and with the observation that the streaks are 

very persistent, the topology of some hairpin vortex models include trailing vortex 

legs extending upstream and parallel to the walls. For instance, Smith & Metzler 

(1982) and Smith (1984) propose an eddy model for the wall region based on a 

series of nested, stretched hairpin vortices with their legs surrounding a low-speed 

streak. It should be pointed out that the elongated vortex model is not a necessary 

condition for the existence of streaks. A single or a pair of vortical structures with 

relatively short streamwise extent can lead to formation of an elongated low-speed 

streak. In fact, in calculations of Kim & Moin (1979), contours of constant stream

wise vorticity in a horizontal plane near the wall do not show elongated patterns, 

whereas the contours of streamwisevelocity in the same plane do show the elongated 

streaky structures. It appears that an inner-region flow model consisting of vortical 

structures with small inclination angles is more in accordance with the calculations 

or experimental data ( Willmarth & Tu 1967) than is the longitudinal vortex pair 

model. 

The above studies, particularly those of Head & Bandyopadhyay (1981) and Will

marth & Tu (1967), provide strong evidence for the existence of hairpin vortices as 

one of the dominant structures in wall-bounded turbulent flows, and they certainly 

provide the foundation and a great deal of insight for the present investigation. 

However, there are some deficiencies in the data presented. The most important 

is that a hairpin vortex has never actually been observed in a turbulent boundary 

layer; rather, the response of the visual indicators to the velocity field is observed. 

For example, in the visualizations of Head & Bandyopadhyay (1981), it is not clear 
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that the elongated features seen in the planes inclined at 450 to the flow direction are 

necessarily vortex tubes. This is particularly true since the still photographs from 

illuminated planes inclined at 1350 to the flow were not obtained simultaneously 

with those in planes inclined at 45 0
, raising the possibility of the presence of two dif

ferent structures. Flow visualization with smoke (or dye) depicts the history of the 

flow rather than its local behavior (see Smith 1984). In addition, visualization fields 

are limited to two dimensions, and one needs to extrapolate the three-dimensional 

structures ( Smith 1984 provides some examples illustrating the difficulty and un

certainties involved in this process.). The probe data are limited by the number 

of spatial points at which correlations are obtained and by the small number of 

different quantities that have been measured. To date, only one component of vor

ticity (streamwise) has been measured. Clearly, all three components are needed to 

describe a hairpin vortex. A hairpin vortex is defined as an agglomeration of vortex 

lines in a compact region that have a hairpin or horseshoe shape and therefore can 

best be represented and visualized by vortex lines drawn in three-dimensional space. 

In addition, in order to establish the spatial extent of the eddies and whether they 

extend throughout the boundary layer, velocity (or vorticity) correlations should 

be provided at several spatial locations. 

The objective of the present study is to search for, identify, and analyze hair

pin vortices in turbulent channel flow. We will use a database generated by the 

large-eddy simulation (LES) technique (Moin & Kim 1982), which consists of in

stantaneous three-dimensional velocity and pressure fields collected at widely sepa

rated flow times. The calculations were performed at Reynolds number Re =13800 

based on centerline velocity and channel half-width, o. The physical realism of the 

data has been verified by detailed comparison of statistical correlations and both 

instantaneous and conditionally averaged flow patterns with available experimental 

data (Moin & Kim 1982; Kim 1983) and recent direct numerical simulations (Moser 

& Moin 1984). In § 2, we examine the distribution of the inclination angle of the 
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vorticity vector at several distances from the wall. In § 3, velocity and vorticity 

two-point correlations with directions of separations along different inclined planes 

are presented. These correlations indicate the presence of strong vortical structures 

inclined at about 45° to the flow direction. In § 4, we display the structure of the 

vorticity field using vorticity vectors projected onto planes inclined to the wall and 

vortex lines in three dimensional space. 

In part 2, the contribution of the hairpin vortices to turbulence transport is 

investigated. Using various conditional sampling criteria, we show that the bursting 

process is indeed associated with hairpin vortices surrounding the region where low

speed fluid is ejected from the wall region. 

2. Distribution of the inclination angle of the vorticity vector field 

The experiments of Head & Bandyopadhyay (1981) and Chen & Blackwelder 

(1978) as well as Theodorsen's (1952) analysis suggest that the dominant flow 

structures are inclined to the wall at about 45°. As was indicated in § 1, other 

experimental results show significantly lower inclination angles. However, with the 

exception of the work of Brown & Thomas (1967) these experiments were limited 

to the wall region. None of these studies included measurement of the inclination 

angle of the vorticity vector, which is the relevant quantity for determination of 

the orientation of hairpin vortices. In this section, the statistical distribution of the 

inclination angle of the projection of vorticity vectors in (x,y) and (y,z)-planes (see 

figure 1) will be presented. 

Using the aforementioned LES database, the vorticity field was calculated from 

each stored velocity field. To increase the available statistical sample, the simula

tions reported in Moin (1984) were extended in time to 11.53 8/ur ( compared to 

2.65 8/ur in Moin 1984). Here, U r is the wall shear velocity, which is about 5% of 

the mean centerline velocity. 
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At each grid point, the inclination angle of the vorticity vector to the wall 

is calculated, where Wx and Wy are the components of the vorticity vector in the 

directions streamwise, x, and normal to the walls, y, respectively. The sign con

vention for the angle () and the coordinate system are shown in figure 1. In what 

follows we focus on the lower half of the channel. In figure 2, histograms describing 

the distribution of this angle are shown at several distances, 11/0 , from the wall. 

The histogram at each y-position is generated using the vorticity vector at all the 

grid points in the appropriate (x,z)-plane and at all the available time levels. The 

contribution of each grid point is weighted with the (normalized) magnitude of the 

projected vorticity vector 
(wi + w2

) w - Y 
xy - < w~ +w~ > 

where <> indicates average over the corresponding horizontal, (x,z)-plane. As a 

result of no-slip boundary conditions, Wy is zero at the wall. Hence, in the imme

diate vicinity of the wall, the distributions are highly concentrated around 0° (and 

the complement angles, -180° and +180° ). It is interesting that in this region 

distributions peak at slightly negative angles. As one moves away from the wall, 

the peaks of the distributions shift from the second and fourth quadrants ( figure 

1 ) to the first and third quadrants, approaching 0° near the centerline. From 11/0 

of about 0.2 to 0.8, the histograms indeed attain their maxima at about 45° (and 

the complement angle, -135°), but indicate a rather broad distribution over other 

inclination angles. In fact, the ratio of the peak values of the distributions to their 

minimum values is generally in the range 2.5-3.5. Note that, for further improve

ment of the statistical sample, appropriate averaging of the histograms from both 

sides of the channel centerline was performed. As can be seen from a comparison of 

figure 3 (where the un averaged distribution at 11/0 = 0.193 is plotted) with figure 

2(d), this averaging does not affect the general features of the distributions. The 
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180° period of the histograms in figure 2 is simply a consequence of statistical in

variance with respect to reflection of the z-axis. Its presence indicates the adequacy 

of the statistical sample. 

Figure 4 shows the histogram at y/6 =0.193 that is constructed without weighting 

by the vorticity magnitude; i.e., only the vorticity inclination angles are considered. 

The maximum still occurs at 45°. However, the maximum to minimum ratio is 

appreciably lower than that in figure 2d (2.1 vs. 3.5). Thus, vorticity vectors of 

higher strength have a greater tendency to be found in planes inclined at 45° to the 

wall. Also note that the weighted distributions in figure 2 are skewed toward angles 

of less than 45°, but the unweighted distribution in figure 4 is generally symmetrical 

about its maximum. 

For the channel flow considered here, the principal axes of the mean strain rate 

tensor, 8'3' are inclined at 45° to the walls. The production (stretching) of vorticity 

due to mean strain is highest along the lines inclined at 45° (or -135°) to the 

mean flow direction, x. On the other hand, vorticity oriented at a 135° (or -45°) 

angle from the mean flow direction is destroyed most rapidly. If turbulent vorticity 

were generated only by the stretching of vorticity fluctuations by the mean strain, 

and noting that vorticity dissipation lags its production, then at any instant the 

probability of finding vortex lines inclined at 45° (135°) to the x-axis would be higher 

than at other angles. Thus, in a large portion of the flow (0.2 < y/6 < 0.85), the 

shape of the distributions in figures 2d-g, and the observation that the "peakiness" 

of the histogram in figure 2d is more than that in figure 4, imply that vortex 

stretching by the mean strain is a dominant flow mechanism. In addition, it can be 

shown (Deissler 1969) that the direction of maximum r.m.s turbulent vorticity in 

a shear flow is at 45° to the flow direction only if wi and w~ are equal. If vortex 

stretching is the dominant flow mechanism, one would expect that the directions of 

maximum stretching and r.m.s vorticity would be the same. This condition can only 

be true if wi = w~, an unexpected result in a highly anisotropic flow. However, it 
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turns out that in the regions away from the wall this condition is indeed satisfied, as 

demonstrated in LES calculations of Moin & Kim (1982) and recent direct numerical 

simulations of curved channel flow (Moser & Moin 1984). Thus, the fact that the 

directions of maximum vorticity and stretching are the same is further evidence of 

the dominance of the vortex stretching by the mean strain. 

Other effects such as rotation of vortex filaments due to mean vorticity and vortex

induced velocity, and stretching by velocity perturbations, should also be consid

ered. For example, production of turbulent vorticity by self-induced stretching is a 

significant term in the mean-square, turbulent-vorticity budget equation. In fact, 

scaling arguments suggest that this term dominates (at least for high Reynolds 

number flows) stretching due to mean motion (Tennekes & Lumley, 1972). One 

physical explanation for the dominance of the mean-stretching term may be the 

special characteristics of the flow structure. For example, in a flow consisting of 

isolated, noninteracting hairpin vortices in the presence of mean shear, there is lit

tle self-induced stretching ( except near the tips ), and the stretching due to mean 

motion is dominant. 

The inclination angles of the projection of vorticity vectors in (y,z)-planes 

were also calculated. Note that W z includes the mean vorticity. The sign convention 

for the angle <p is also included in figure 1. The weighted distribution of <p is shown 

in figure 5. In the vicinity of the wall, because of no-slip boundary conditions 

and strong mean-spanwise vorticity, the distributions are narrow and peak at 1800 

(or -180°). From the wall to about y/6 = 0.1 the distributions become broader 

with their peak still at 1800 and maximum to minimum ratio of about 8. Beyond 

y/6 = 0.1, the maxima consistently occur at about 1100 to 1200 (or -1100 to -1200
). 

However, the concentration of vorticity vectors pointing in the spanwise direction 

(the direction of the mean vortex lines) remains apprecbble even at large distances 

from the walls. The symmetry of the distributions with respect to the Wy axis in 
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figure 1 is a consequence of the statistical invariance of the flow with respect to 

reflection in the z-direction. 

The above study clearly shows the preferential alignment of the vorticity vectors 

in planes inclined at 45° to the flow direction. In addition, there is a strong in

dication that vortex-stretching by the mean strain is a dominant flow mechanism. 

However, the information about the structure of the flow that can be extracted 

from this study is limited. In particular, the connection between vorticity vectors 

and hairpin vortices cannot be established solely from the above histograms. For 

example, even though, in a large portion of the flow, the distributions attain their 

maxima at 45°, one cannot conclude that this behavior is due to the existence of 

a given large vortical structure with axis of circulation inclined at 45° to the flow 

and extending through all the locations where the distributions peak at 45°. This 

issue leads us to the examination of two-point velocity and vorticity correlations. 

3. Two-point correlations of velocity and vorticity 

There are two methods of using two-point correlation functions to extract infor

mation on the the spatial structure of the flow . One method, used by Townsend 

(1976), Grant (1958), and others, is to examine two-point correlation profiles for 

their consistency with a proposed model. This is the method used here. Another 

method, primarily owing to Lumley (1967), is based on orthogonal decomposition of 

the two-point correlation tensor, and is used to extract the deterministic structures 

contributing to all of the components of the correlation tensor. A two-dimensional 

variant of this method was recently applied to the LES database used in this work 

(Moin 1984). 

If the flow truly contains a dominant structure, distributed stochastically in space, 

its presence should clearly be marked in two-point correlation functions. However, 

as will be illustrated below, the degree of clarity is highly dependent on the choice of 
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the directions of ("probe") separations. It is much more instructive to obtain two

point correlation functions with directions of separations aligned with the primary 

axes of the proposed eddy than alligned with the cartesian coordinate axes. 

In §2, it was shown that, in a large portion of the flow, vorticity exhibits a 

preferred inclination of about 45° to the flow direction. Correlations of the three 

components of velocity at two points along lines inclined at 45° and 135° (see figure 

1) are shown in figures 6 and 7, respectively. Correlation between two quantities 

p,q at spatial points x and x' is defined as 

Rpll(x, x') = p(x)q(xt) 
(p(X)2)1/2 (q(xt)2)1/2 

Using the flow homogeneity in x- and z-diredions, Rpq is only a function of (y,r), 

where y is the vertical location of the fixed point and r is the separation vector, 

x' - x. In the present work, r = r. indicates separation along a line in the (x,y)

plane inclined at 45° to the flow; r = rn , along a line inclined at 135°; r = r)" along 

the y-direction; and r = r. indicates separation in the span wise, z, direction. The 

striking difference between the correlations presented in flgures 6 and 7 is in the 

behavior of Rww , the correlation between spanwise velocity components separated 

along r. and rn. In figure 6, except when the fixed point is located in the vicinity of 

the wall (V+ < 50), Rww(Y, Ts) does not become negative. The two-point correlation 

profiles show a relatively large distance over which the eddies are correlated. On 

the other hand, Rww (V, Tn) profiles rapidly turn negative with very sharp minima 

and a gradual return to zero. As illustrated in figure 8, this is precisely what one 

would expect if the flow consists of dominant vortical structures with the axis of 

circulation inclined at 45° to the flow direction. Note that near the walls(y+ < 50) 

the eddies are not inclined at 45°, and Rww(y, Ts) is expected to have a negative 

region. In figure 9, velocity two-point correlations with direction of separation along 

the y-axis are shown. As in figure 7, Rww(Y, Ty) profiles turn negative, but with 

smaller absolute values. 
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'fwo-point correlations of the component of vorticity in the r. direction, W IJ , are 

shown in figures 10 and 11. Away from the wall the Rw.w.(Y, r lJ ) profiles (figure 

10) do not have a negative region for r, > O. They also show the great distance 

along r. where vorticity fluctuations are correlated. On the other hand, the pro

files of Rw.w. (y, rn) (figure 11) show a very rapid decay having virtually a triangular 

shape. Thus, both vorticity and velocity two-point correlation functions are in vivid 

agreement with the flow model consisting of dominant vortical structures that (in 

the regions away from the wall) are inclined at 45°. Using Campbell's Theorem 

(Rice 1944, Lumley 1970), we can show that the two-point correlation function cor

responding to a square pulse (of vorticity) sprinkled randomly in space is a triangle 

with a base equal to twice the width of the pulse. The corresponding thickness 

(diameter) of the vortical structures deduced from the triangular correlation pro

files range from 0.18(64v jur ) in the vicinity of the walls (y+ < 100) to 0.28 in the 

outer regions.1 The increase in the eddy diameter as one moves away from the 

wall is consistent with the vortex-stretching mechanism. The vortex filaments are 

stretched more severely near the wall. In addition, the tips of the hairpins are not 

stretched, whereas the "legs" are continuously stretched. 

It may appear that the Ru,w (y, rn) correlations in figure 7 are not quantitatively 

in agreement with the Rw.w,(y, rn) correlations in figure 11. In particular, one may 

expect that in each of the profiles in figure 7 the distance between the peak and 

negative minimum be equal to the estimated diameter of the vortical structures (i.e., 

equal to half the base of the corresponding triangle in figure 11). This need not be 

the case. If we assume, as in figure 8, that the randomly located, inclined vortical 

structures have cores of constant vorticity, the location of the negative minimum 

in the profile of Ru,w (y, rn) is highly dependent on the decay rate of w outside the 

lExtraction of quantitative information from the present database should be done with some 
caution. In the calculations of Moin & Kim{1982} the computational grid resolution in the spanwise 
direction was not fine enough to capture the streaks at their proper scale. The calculations did 
reproduce the hlgh- and low- speed streaks alternating in the spanwise direction, but with the 
mean spacing of about twice that observed in laboratory visualizations. 
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vortex core. This decay rate is determined by the other vortical structures in the 

proximity. The object lesson here is that one should be cautious in deducing the 

scale of vortical structures from velocity correlations. 

To examine the structure of the flow in the spanwise direction, correlation func

tions for points separated in the spanwise direction were calculated. In figure 12, 

the profiles of ilw.w.(Y, rz ) do cross the abscissa, indicating the presence of pairs of 

counter-rotating vortical structures. However, the negative correlations generally 

have small values, extend over a wide range of rz , and- -especially away from the 

wall- -do not show a definitive sharp minimum. This behavior may be attributed 

to significant variation in the spanwise dimension and in the relative location of 

the counter-rotating vortical structures. This finding does not preclude the above 

vortical structure being part of a hairpin vortex. It simply implies that the varia

tion in the dimensions and the location of the other leg of the proposed hairpin is 

broader in the z-direction than in x-y plane. In fact, it is quite plausible that, in 

general, the legs of hairpins would be located in different (z,r .. )-planes. Note that 

stretching by the mean strain takes place only in (x,y)-planes and, therefore, it is 

expected that the cross-section of each hairpin leg is elliptical with the major axis 

in the z-direction. 

The velocity and vorticity correlation functions, particularly those with separa

tions in the (x,y)-plane, indicate that the flow contains dominant, inclined vortical 

structures. Moreover, it is shown that the "diameter" of these vortices increases as 

one moves away from the wall. However, the two-point correlations with probe sep

aration in the spanwise direction are not as conclusive as those in the (x,y)-plane. 

It is difficult, therefore, to get definitive information about both legs and their re

lation to each other, particularly since we have not obtained any data on the link 

between the two legs; Le., the tip of the hairpin. Next section, we will study the 

instantaneous three-dimensional structure of the vorticity field. 
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4. Structure of the instantaneous vorticity field 

In this section, we examine the structure of the vorticity field at one instant in 

time, selected randomly from the aforementioned database. 

Figure 13 shows the projection of vorticity vectors in three (z, r~)- planes (inclined 

at 45°). The lower boundary of each plot is at y/o = O.193(y+ = 123), and its 

upper boundary is at the channel centerline. The vorticity vectors near the wall are 

not shown because the majority of them are not inclined at 45° and due to large 

vorticity magnitudes near the walls, their inclusion would have excessively shortened 

the relative length of the vectors away from the walls. In figure 13, some of the 

structures resembling hairpin vortices are shaded. These structures are identified 

as those having two regions (legs) with opposite W~ signs connected at the top by a 

region with W~ = 0 and finite W z • It appears that the flow contains an appreciable 

number of structures with this general form. However, each structure has its own 

distinct configuration, and individual height extended above the wall. It should 

be pointed out that our view is limited to a two-dimensional plane, and we are 

identifying only those hairpins with legs in approximately the same (z, r~)-plane. 

Except for one or two exceptions, the hairpin-like structures appearing in these 

planes are such that the leg with positive w~ is to the right of the one with negative 

w~. This finding is consistent with the notion that these vortices are formed as a 

result of deformation of the primary (transverse) vortex filaments with the resulting 

induced normal velocity away from the wall. The same feature can also be seen in 

plots of constant w~ contours (Moin 1984). 

In conformation to its definition, a hairpin vortex is best displayed by vortex 

lines drawn in three-dimensional space. The location of a vortex line in space, x, is 

defined by 
dx w 
ds = jWj (4.1) 

where s is the distance along the vortex line. Starting from an initial location, 

xo, in the three-dimensional vorticity field, w(x), this equation can be integrated 
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for x(s). For this purpose the second-order Runge-Kutta method was used for 

the numerical integration, and second-order Lagrange interpolation was used to 

compute the vorticity, w(x) , from the grid values. It turns out that the choice of 

Xo is very important. Infinitely many vortex lines can be drawn in the flow. H we 

choose Xo arbitrarily, the resulting vortex line is likely to wander over the whole flow 

field like a badly tangled fishing line, and it would be very difficult to identify the 

organized structures (if any) through which the line may have passed. This difficulty 

is partly due to the rapid variation of vorticity fluctuations in the domain, and the 

resulting sensitivity of x to small perturbations in w. H Xo is within an organized 

vortical structure, then the coherence of the structure would have a selfcorrecting 

effect in realigning the vortex line in the direction of the circulation axis of the 

structure. In this case, the vortex line will probably be confined to the core of the 

structure for large values of s. In order to study the three-dimensional structure of 

the hairpin vortices, we use vorticity vector plots such as those in figure 13 to guide 

the selection of Xo. After selecting one of the shaded structures in figure 13, Xo is 

chosen as a point in the shaded area. Starting from Xo, equation 4.1 is integrated 

in both directions until the line intersects one bf the side boundaries. This process 

results in a vortex line that starts from one side boundary, passes through Xo, and 

ends in another side boundary. 

Figure 14 shows two three-dimensional views of one of the structures in figure 13 

(labeled 1). The hairpin-like structure is quite apparent. Figure 15 shows the close

up of the hairpin vortex in figure 14. In figure 16, a vortex filament composed of 

several vortex lines in the neighborhood of the line in figure 15 is shown. Note that, 

in the vicinity of the hairpin, all of the lines remain adjacent to each other, but may 

diverge farther away from it. This is the result of coherence of the flow within the 

structure in contrast to the background turbulence. Figure 17 shows another set of 

vortex lines corresponding to the structure labeled 2 in figure 13. Again, a hairpin 

vortex is clearly discernible. Figure 18 shows the vortex lines obtained using the 
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same starting points as in figure 17, but with step sizes, ~s, two and five times larger 

than in figure 17. As discussed above, because of the coherence and smoothness 

of the vorticity field within the hairpin, the vortex lines in figures 17 and 18 are 

nearly identical in its vicinity; whereas, away from it, they tend to be different. 

The hairpin vortices are clearly formed from the deformation of transverse vortex 

lines, and generally do not have legs elongated in the x-direction pointing upstream. 

Moreover, each vortex line is not necessarily confined to a plane. In agreement with 

Hama's (1962) analysis (see also Hinze (1975) ), due to self induction effects the 

tips of the hairpins shown in figures 16 and 17 have a bottle neck ( {} ) shape. 

5. Summary and conclusions 

In this study, using an LES data base, we searched for, identified, and analyzed 

hairpin vortices in turbulent channel flow. The study was conducted in three parts. 

It was shown that in a large portion of the flow the distribution of the inclination 

angle of vorticity vector attains its maximum at 45° (and -135°) to the wall. Two

point correlations of velocity and vorticity fluctuations were calculated. A novel 

feature of some of these correlation functions was that the direction of ("probe") 

separation was inclined at 45° and 135° to the flow direction. The correlations 

provide definitive support for a flow model consisting of dominant vortical structures 

inclined at 45° to the wall. The "diameter" of these structures increases with 

distance from the walls. 

Instantaneous vorticity vectors projected onto planes inclined at 45° to the flow 

direction indicate the presence of an appreciable number of hairpin vortices. These 

two-dimensional vector plots were also used to find starting points from which vortex 

lines in three-dimensional space were traced out. These vortex lines clearly display 

the three-dimensional structure of the hairpins. It is shown that the hairpins are 

formed from the deformation of transverse vortex filaments, and are not necessarily 
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confined to a two-dimensional plane. In constructing a mathematical model of 

turbulent boundary layers, one should consider the relative locations of the legs of 

the hairpin vortices as a random variable. 

The previous studies cited in § 1 provided evidence for the existence of hairpin vor

tices in turbulent boundary layers, whereas, in this investigation, they are found in 

turbulent channel flow. The two flows have significantly different outer-layer struc

tures, but are very similar in the inner layer. This finding suggests that the hairpin 

vortices are the characteristic structures of all wall-bounded flows, irrespective of 

their outer boundary conditions. 

We are indebted to Drs. Robert Rogallo and Anthony Leonard for helpful dis

cussions during the course of this study. 
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Figure 8. Sketch of the vortical structures inclined at 45° to the wall. 
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b) I \0 
FLOW 

Figure 14. Two three-dimensional views of a vortex line displaying a hairpin 
like structure. (a) end-view, the spanwise extent of the figure is 'lrO 
and its streamwise extent is 2'1ro. The tic marks on the vertical line 
correspond to 0.50; (b) elevated view. The mean flow is in the x
direction. 
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b) 

Figure 15. Close-up of the hairpin-like structure in figure 14. (a) 2-D end-view 
,the spanwise, z, extent of the figure is 1.Ic( 700v/Ur )i (b) 2-D side 
view ( (x,y)-plane ), the streamwise, x, extent of the figure is 2.I58( 
I380v/ur ). 
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Figure 16. A set of vortex lines ( vortex filament) in the neighborhood of the line 
in figure 15. (a) 3-D view; (b) end-view; (c) side-view. Fordimensions 
see caption of figure 15. 
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Figure 17. A set of vortex lines ( vortex filament ) displaying a hairpin-like 
structure. (a) 3-D view,the streamwise extent of the figure is 
1.966( 1257v/ur ) and its spanwise extent is O.746( 471v/ur )j (b) end
view ( (y,z)-plane )j (c) side-view ( (x,y)-plane ). 
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a) b) 

Figure 18. Same as figure 17a, except that the step size, f:j,s, used for numerical 
integration of Eqn. (4.1) is: (a) two (b) five times, that used to 
generate figure 17. 
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