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ABSTRACT

A computational model of the deterministic and stochastic processes involved
in multispectral remote sensing has been developed to evaluate the .performance of
sensor systems and data processing algorithms for spectral feature classification.
Accuracy in distinguishing between categories of surfaces or betweeﬁ specific
surface types is used as arcriterion for comparing sensor systems and data pro-
cessing algorithms. The model allows studies to ﬁe made of the effects of vari-

ability of the atmosphere and of surface reflectance, as well as the effects of

channel selection and sensor noise. Examples of these effects are shown.
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I. INTRODUCTION

The amount of data generated byva multispectral remote sensor system which
is used for global resource monitoring and land use (such as the Landsat Multi-
spectral Scanner or Thematic Mapper) is enormous. One approach to drastically
reducing the data transmission and processing load is to design multispectral
sensors which are '"smart' enough to identify and transmit only the data of in-
terest. Such a smart sensor might be designed to distinguish vegetation from
water or bare land and to determine the presence of clouds which obscure the
view of the surface. At a higher level of classification, the smart sensor
could differentiate between different types of vegetation or soil, e.g., oats
and wheat or clay and sand. To accomplish such tasks it is understood that
spectral discrimination would have to be augmented by other information in a
complete smart sensor system, however, classification of signals aqcording to
their spectral differences (or similarities) is fundamental to the smart sensor
approach.

This report describes a computational model of the multispectral remote
sensing process which was developed to be used as a tool in the study of smart
sensor design concepts and data processing algorithms. |

The modeling effort was divided into two major tasksﬁ 1) to simulate the
radiance at the satellite and its conversion by the sensor info a "signal' and
(2) to process these signals so that they may be classified and the accuracy
of their classification may be measured. A major objective in this effort was
to include a realistic model of the variability of the elements in the remote
sensing process. This explicit accounting for the stochastic properties of
atmospheric radiative transfer and of surface reflectance and modeling of sen-

sor sensitivity is what makes this model different from most other remote sensing




- models (Refs. i- 7). This report will describe the model and give a few exam-

ples of how the model may be used. First the signal generation is described,
followed by a discussion of the signal processing algorithms which have been
implemented, including classification algorithms. This is followed by a few

results to show the applicability of the model.




II. REMOTE SENSING MODEL

The computational model to simulate the acquisition and classification
of multispectral data encountered in remote sensing of the earth's surface is
described here. The data acquisition process must account for the solar irra-
“diance, the transfer of radiation th?ough the atmosphere, surface reflection
and the sensor's spectrai response. Each of these elements may bg described
by a model which has both deterministic and stéchastig components. Variability
in the atmospheric attenuation, uncerﬁainty about thé phySical state of the
surface and sensor noise all contribute to the stochastic nature of the signal
produced by a remote sensor system and they all affeétlthe performance‘of a
data classification process.

Figure 1 shows schematically the processes included in modeling the gen-
eration of signals by the remote sensor and Figure~'2 shows the options avail—
able for processing the signals. Tﬁe model actually comprises fivé programs:
STIMULA for stochastic simulation of the signal generation procedures, SCATPLT,
HISTPLT, and ELLIP for displaying the signals generated; and BNDARY RPLPROG

and CLASIFY for processing the signals. These will be discussed below.

A. Signal Generation

Referring to Figure 1 it éan‘be seen that thé radiance at the sensor at
satellite altitude is the result of a number of procésses. Energy from the
sun is incident at the top of the'atmosphere. In transit to the surface, it
may be scattered or absorbed by atmospheric constituents or it may be trans-
mitted unaltered. At the surface, the energy is reflected or absorbed accord-
ing to some reflection law (which, in geﬁeral is quite complex) and begins its

return trip through the atmosphere, after which it is detected by the sensor and



is converted into a signal.
The signal in the j-th channel of a J-channel multispectral system is

given by
s; = [, LOY 5,00 @ - | )

where L(X) is the spectral radiance incident upon the sensor and Sj(l) is the
spectral response of the j-th channel. Caiéulation of the spectral radiance
L(A\) and the evaluation of the above integral for a large number of surfaces
and atmospheric conditions is the purpose of program STIMULA.

The spectral radiance incident on the sensor can be modeled as (Refs. 2 - 4)

L=%(E0Touo+Ld) pT + L > (2)
where

E0=EO(A) ' - solar irradiance at top of atmosphere

T0=TO(A,T,UO) - atmospheric transmittance along the incidence
path

T=T(A,T,H) - _ - atmospheric transmittance along the exitance
path

Ld=Ld(E°,A,T,u0,D,O’) - total downwelling sky radiance

Lp=Lp(Eo,l,T,uo,u,¢,p,p') - path radiance along the path from surface to
sensor

p=p(A) - spectral réflectance of target

p =p"(A) - spectral reflectance of background

U, =cos 60 | - where 90 is solar zenith angle

yeeos £ - yhere § Js viewing zenith angle

The other parameters are wavelength A, optical thickness T=T1()X) of the atmosphere,

£




and azimuth angle ¢ between the plane of incidence and exitance. The component
of the total radiance L which.is reflected from the surface into the'viewing
direction is referred to as the beam radiance Lb=Lb(E°,A,T,uo,u,¢,p,p') and is
given by Lb=L—Lp. These processes and their implementation in the model are
discussed here.

1. Solar Irradiance

The solar irradiance at the top of the Earth's atmosphere is relatively
well known (compared to some of the other processes in this model) énd although
it does vary, it is assumed-that its variability is small compared to the
others in this system and so is ignored. The data shown in Figure 3 comes
from Labs and Neckels (Ref. 8) . and is stored in a table in‘STIMULA.~ Linear
interpolation is used to find the value of irradiance between wavelength grid
points. | |

2. Atmospheric Transmittance

The transmittance of the atmosphere to solar radiation in the visible and
near infrared wavelength regions (.2 - 2 um) is reduced primarily by Rayleigh
scattering, aerosol extinction and absorption by water vapor, carbdn‘dioxide

and ozone. The atmospheric transmittance over the incidence path is given by

- e-T/Uo

and over the exitance path by

T = e—T/u

where T is the optical thickness and W, uo are the cosines of the solar and

viewing zenith angles respectively. The optical thickness T is given by

n .
™) = ) o ) xg (3)
i=1




with ai(k) Eeing the spectral attenuation coefficient..of the i-th atmospheric
constituent and_xi the associated attenuator amount. The constituents referred
to here are those mentioned above: total molecular content, water vapor, car-
bon diqxide and ozone. The spectral coefficients for these absorbers were taken
from the AFGL LOWTRAN 5 model (Ref. 9).

To simulate the effects of atmospheric variability, it is assumed that
the attenuator amounts in:Eq. (3) are random variables with a known mean ;i
and standard deviation ci. Although it is not necessary for the simulation,
it is convenient to assume that each of the attenuator amounts has a Gaussian
"distribution, thereby enabling use of an on-line random number generator to
simulate random variations in the absorber amounts. The random number gener—
ator produces pseudo—ranaom numbers having a normal (Gaussian)bdistribution
with zero mean and unit variance. To simulate a particular value of the

attenuator amount, the random variable X, is computed by

where q is the random number. The mean values Ei and standard deviations oi
are inputs to the program and are given in Table 1.

3. Multiple Scattering

To include the effects of mulfiple scattering by the atmosphere it was
decided tc use the prégravaADMOD, which was developed by Turner, et. al., (Refs.
2 - 4) and which was obtained from the Environmental Research Institute of Mich-
igan. The program and its auxiliary program VISTAU (used to calculate the
required optical depth properties)'were adapted to fit the needs of this simu-
lation. RADMOD forms the basis for the radiative transfer calculations. It

provides the capability to compute the diffuse radiance and the path radiance




(Ld and Lp in Eq. (2), respectively) which result from multiple scattering pro-
cess,

The single scattering albedo (which determines the relative amount of atten-
uation due to scattering alone) is related to the relative humidity and visual
range. Variability in the multiple scattering simulation therefore was accom-
plished by fixing the visual range and then varying the relative humidity in
the same manner as described above for the atmospheric absorbers.

The scattering phase function used hére is.one of several suppiied with
the RADMOD program by ERIM. All of the éimulations run thus far have employed
a phase function with properties typical of a weakly Absorbing continental
aerosol. Data is available to simulate both continental and marine»aerésois
with a range of absorbing properties from no absorption to "strong" absorption.

Table 1 summarizes the parameters used in the simulation.

-4, Surface Reflectance

Since targets on the surfacé are to be identified and classified according:
to their spectral reflectance characteristics, it is clearly importént for the
simulated spectral reflectances and their variabilities to be realistic. The
reflectance properties of natﬁral surfaces are not only a .function of wave-
length but also of many other factors suéh as the direction of both the iﬁcident
and reflected rays, the moisture content for soils and the stage of growth for
vegetation. These factors plus the difficulties involved in making measure-
ments of natural surfaces make it very difficult to assemble a representative
collection of spectral reflectance data. ‘It is particularly difficult to find
information about the typical variability of spectrél reflectancesi(except for
some veggtation) and about their spatial distribution or probability of occur-

rence. Furthermore, it is awkward to deal with spectral reflectance data that



often cover only part of the wavelength region of interest.
The spectral reflectance data implemented thus far is limited to two sets:
(a) one for vegetation, bare land, water, snow and clouds in the 0.4 to 2.0 um
region, and (b) an expanded set for vegetation and bare land for the more limited
0.4 to 1.0 ym region. It is also assumed that all reflectances are Lambertian.
To simulate the effects of surface reflectance variab}lity, the reflec-

tance of a particular target surface is modeled by
PO = p (1) ¥R )

where po(k) and BO(A) are deterministic functions which are characteristic of
the surface, and X, is the standard normal random variable with mean = 0. and
variance = 1, For each surface the parameters po(l) and BO(A),are estimated

from empirical reflectance data using the relationships (Ref. 10).

: <o)>
p (A) =
o o2 (0) 5 (5)
N R
<p(A)>2
and
B (A) [ %™ ] ’
Q| —2—— +1 (6)
° <p()\)>2 :
where

2 = < [p) - o] %>

The model given by Eq. (5) has been shown to be approximately representative of
the reflectance variability of vegetation canopies (Ref. 11) and does indeed

produce a random family of reflectances which agrees qualitatively with selected




data sets. This model is also used for the reflectance variability of other
targets simply because there are insufficient data in the literature to suggest
another model. Table 2 summarizes the categoriés and substances used in this
work as well as the (assumed) standard deviation Op of their reflectance vari-
bility. Figure 4 illustrates the (expected) mean values <p(A)> of the spectral
signatures and Figure 5 shows the simulated variability of two of these signa-
tures.

The mean spectral reflectances used for végetation represent in situ
measurements. The curves for crops were obtained mostly from Leemap, et. al.,
(Ref. 12) and Suits and Safir, (Ref. 13) and the curves for forests from Vlcek,
(Ref. 14). The associated variables fall roughly within the range of vari-
abilities reported by Collins, (Ref. 15) and Duggin, (Ref. 16). Rao, et. al.,
(Ref. 17) who report on the reflectance variability of crops, incorporate an
unspecified correction for atmospheric effects, so that their results are not
well suited for simulation studies; and Vlcek, (Ref. 14) who reports on the
reflectance variability of forests, gives an averagé;variability of reflectance
that is only 5 percent of the mean reflectance, which is much lower than the
variability reported by Collins, (Ref. 15) and Duggin, (Ref. 16). “

The sﬁectral reflectance curves for bare land were obtained mostly from

Condit, (Ref. 18) and the Infrared Handbook, (Ref. 19). The mean spéctral re-

flectance curves shown in Figure érare the averages of the wet and dfy reflec~
tance curves given by Condit, and the variables of the spectral reflectances
were obtained by using the wet and dry reflectance curves as the mean reflec-
tance plus or minus 1 standard déviation..

The variability for water was obtained from the water reflectance vari-

ations for varying amounts of chlorophyll, as given in the Infrared Handbook,




(Ref. 10). The spectral reflectance for snow was obtained from data reported
by O'Brien and Munis, (ref. 20) with data for the 0.4 to 0.6 um spectral region
added from Reference 19. The variability represents the range of reflectances
obtained from samples withvdifferent thermal histories. The spectral reflectance
curves for ice clouds with different atmospﬁeric thicknesses were obtained from
the analytical results of Novosel'tsev, (Ref. 21) and the experimental results
of Zander, (Ref. 22). A standard deviation in reflectivity of 0.1 was chosen
for clouds based on data presented in Kondratyev, (Ref. 23).

All of this reflectance data is stored and maintained in a data base which
employs random access files. This feature provides quick access to any partic-
ular subset of the data. The data base programs allow several options which
include the ability to add new data, to list the titles of all the data cur-
Vrently stored, and toupdate particular data sets.

5. Signal Computation

The sbectral radiance at the top of the atmosphere as produced by the above
model is shown in Eigure 6. Three visual ranges and.two solar zenith angles are
shown with oats as target and bare moist soil as background. The variability of
this radiance field is shown in Figure 7. In Figure 7(a) target and backgfound
reflectaﬁce values are kept constant, and only the atmospheric absorber amounts
are varied; in Figure 7(b) both surface an& atmosphere are permitted to vary.

Thz sensor converts the radiance L into the signal vector s with components
sj. To faéilitate comparison of signals obtained with different spectral re-
sponse shapes, it is convenient to normalize this conversion by the integrated

spectral response of the sensor and model the signal component sj as

s; = [, LY s dA/[ 8, () dX + ny, ¢))

10



where S(A) is the spectral response, n is the normalized electronic noise, and
the subscript j denoteé the jth channel. The electronic noise n is characterized
as a normal random variable with mean = 0 and Qariance Oi.

Three sets of sensor channels are used in this simulation. They include
the U.S. Landsat Thematic Mapper (TM), (Ref. 24), the French System Probatoirg
d'Observation de la Terre (SPOT), (Ref. 25) and those proposed by the Russian
scientists Kondratyev, Vasilyev and Ivanyan (KON), (Ref. 26). Their spectral
responses are shown in Figure 8. The TM and SPOT res;onses are based on sen-
sor response measurements, whereas the shapes of the KON responses are somewhat
arbitrarily selected for the intervals recommended by Kondratyev. In addition
to these channels, the TM has two other channels (centered at 2.24 and 11.5 um)
and the SPOT has one other channel (panchromatic, 0.5 to 0.7 um).

Table 3 lists sensitivity characteristics of the TM. The TM signal-to-
noise ratios (SNR) are given by Salomonson, (Ref. 24) for specified.éurface re-
flectances p and solar incidence angles 90; however, the atmospheric:state was
not specified, and thus had to be chosen arbitrarily for our simulation.

" 6. Program Structure for STIMULA

The basic structure of program STIMULA is shown in Figure 9.  The progfam
consists of a driver program, MAIN, which invokes the subroutinés which ini-
tialize parameters, assemble data and perform the calculations. The principal
subroutine SIMULA drives the actual simulation.

Subroutines CALPHA (which assembles the atmospheric attenuation coeffi-
cients), SOLARI (which sets up the solar irradiance) and SREFL (which reads
the surface reflectance data) all handle data which are stored in tables as
functions of wavelength. : To access data values at spectral grid points required

by the simulation, it was decided to use average values of the spectral functions

- 11



over the appropriate sﬁectral bins. To do so required an integration which
was performed in subroutine INTGRT using a Simpson's rule integration method.

Subroutine PFINPT reads in the single scattering phase function data
supplied with the RADMOD software.

Subroutine SETRAN is used to initialize the random number generator GETRAN.

Subroutine NCVRCND is used td read the input data to set up a particular
simulation. ’AEROSOL assigns a value of the aerosol amount based upon visual
range read in NCVRCND.

Once all the arrays are assembled, subroutine SIMULA is called. First ZERSTS
is called to zero out the necessary arrays. Then the target reflectance and the
reflectance variability parameters are read using SREFL and RFLPRM respectively.
Subroutine.PERTRB is used to generate all of the random variables described above.
Subroutine CTAU is used to calculate the atmospheric optical thichness given by
Eq. (3). Subroutine RFLRND is used to evaluate tﬁe reflectance according to Eq.
(4). Subroutine GENCND is used to calculate the single scattering albedo and sun-
surface-viewing geometry factors. RADMOD is then called to calculate the radiance
at the sensor which is then passed to CSIGNL which calculates the signal in each
channel of the sensor system to provide the signal vectors. These signal vectors
are then stored and used as input to the signal processing programs which are

described below.

B.. Signal Processing

Once the simulated signal vectors have been computed, a number of options
are available (see Figure 2). The J-dimensional signal vectors, whose elements
are the values of the signals in each channel of the system, are generated a
large number of times (100), thus, allowing the parameters to vary sufficiently
so that the stochastic nature of the simulation may be studied. Among the op-

tions which have been implemented are programs to display two-dimensional scatter

12




plots of the signals in the signal space (SCATPLT), cllipse plots to character-
ize the variation and covariance between channels (ELLIP) and histograms to show
the distribution of signal values about the mean (HISTPLT). These all provide
means by which the signal statistics (mean values, standard deviétiohs and covari-
ances between channels) can be studied as viewing conditions change.' Examples

of these plots are shown in Figures 10 - 12.

The ellipse plots drawn by program ELLIP are two-~dimensional projections of
J-dimensional, one-sigma covariance ellipsoids onto the plane shown.‘ These ellip-
ses depict the relative size and orientation of the signal scatter, but they do
not actually indicate the number of measurements contained within their areas.

1. Analysis of Stochastic Processes

The spectral radiance L(A) that reaches the sensor is modeled as a stochas-
tic process whose value at each wavelength A depends upon a number of random
variables associated with both the atmosphere and surface. Letting the oper-
ation E{e} denote the expectation (average) taken over the ensemble of all
possible radiances associated with a particular surface, the mean <L(A)> and

autocovariance C(A,A”) of the radiance can be expressed as

<L(V)> = E{L(V)) | | ®
and

CL(A,A‘) = E{[LA) - <L(A)>] o [LQ’) - <L(A)>]} . : 9)

Likewise, the signal vector s resulting from measuring the radiance may be
treated as a multivariate random variable whose mean r and covariance C have

components denoted by

r, = E{s.} and
J J
13



053" = El(sy —x sy’ - xyD)

where both j and j' take on the value 1, 2, ..., J, and J is the total number
of channels. The signal conversion process is assumed to be linear, and the
radiance field and electronic gain and noise are assumed to be independent of
each other. The réference patterns can then be computed as

®

ry = J;)<L(}\)> 5 (A) dA (10)

and

o' = LL e 5,00 s,

- - 2 '
(A7) dx dx~ + o ij' (11)
where <L(A)> and CL(X,A').are the mean and autocovariance of the radiance as
given by Eq. (3).

It is often advantageous to ratio the signal vector to reduce effects of
radiance variations that tend to result more from changes in atmospheric con-
ditions and lighting and viewing geometry than from changes in the spectral
reflectance properties that are relied upon to discriminate betweeﬁ various
targets. One of the more common approaches for ratioing the signal vector s

is to divide each component of s by the sum of the components; that is, the

normalized vector components Sj’ are computed as

(12)

This ratioing process is a coordinate transformation which maps the J-dimen-
sional feature space into a (J-1)-dimensional feature space; that is, ratioing

reduces the dimensionality of the multispectral signal by one.

14




2. Decision Rules

The function of decision rules in pattern recognition tasks is to assign
the signal vector s to selected classes. These classes may be groups of similar
targets (i.e., categories), or they may be very restrictive sets of individual

targets. The distinction is denoted here by the terminology: categorization

referring to an assignment to a group of similar targets (i.e., soil, vegetation,

cloud, etc.) and identification referring to assignment to a particular target

type (e.g., wheat, oats, clay, etc.).
The usual objective in classifying data is to maximize the conditional
~ probability P(c?/s) that the selected target c? is the true identification,
given that measurements of this target generate signal vectors with certain
characteristics denoted by the feature vector 5;- This objective is realized
by the simple Bayes decision rule which assigns the signal vector s to a target

¢y if and only if

P(cii/s) > P(e;/s) (13)

where M is the total number of categories, and Im the total number of target
types in category m.

a. Boundary Approximation Method

Targets belonging to a particular category often have some common spectral
reflectance properties which tend to distinguish them from targets belonging to

other categories. For example, all vegetations have a sharp increase in reflec-

tance at around 0.7 um, beyond tﬁéméifaﬁé—ébéﬁfbtibn‘bandS"of'chlorophyll.quhismNmet

feature is what characterizes vegetation from other surface types.

If sensor channels are selected appropriately, these features may produce

15




a distribution of original vectors s which will tend to cluster in the.J—dimen-
sional feature space so that they can (hopefully) be categorized simply by their
location in the feature épace. This is the approach taken in develéping the
boundary approximation method (BAM). 1In this decision rule the regions of the
J-dimensional feature space where signal vectors for specific targets tend to
fall are delineated by boundaries. The determination of favorable boundaries
for categorizing signal vectors as either bare land, vegatation, water, snow
or clouds and to analyze the sensitivity of these boundaries to changes in
"imaging conditions is one application of this model.

b. Mean Square Distance and Maximum Likelihood Classification

The conditional probability P(c?[g) used by the Bayes decision rule in
Eq. (13) and the conditional probabilitybP(g/c?) of the signal vector distri-

bution for target c? are related by
P(ci/s) P(s) = P(s/c]) P(c]) (14)

where P(s) is the probability of occurrence of signal vector s, and P(c?) is
the probability of occurrence of data having the true identification c?. Ac-

cording to Eq. (13), the Bayes decision rule assigns the signal vector s to

. ' 7 \J
target c?, whenever the conditional probability P(c?[ﬁ) is greater for 52, and

m' m m

c ., than for all other r, and c,, m=1, 2, ..., M, andi=1, 2, ..., I.
i =i =i m

The probabilities P(s) and P(c?) are generally not known a priori. Thus,

classification of remotely sensed multispectral data usually reduces in prac-

'

tice to the maximum likelihood (MLH) decision rule which assigns the target c?,

to any signal vector s if and only if

PG/l > P(s/eD)

m=1,2, ..o, M, i=1,2, .., I,
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The MLH and simple Bayes decision rule are related by the probability of
occurrence of data having true identification c?, denoted here by P(c?), as

follows:
] ] ]
P(cti/s) > P(ci/s) IF AND ONLY IF P(s/cyy) e 2 P(s/c}) P(c])

m=1, 2, ..., M, i=1, 2, ..., Im.

The relative occurrences of targets of interest in typical remote sensing tasks
are usually unequal and, unfortunately, also unknown. Because of this lack of
information, we assume that the a priori probabilities of OCCurrence‘of the
targets are equal, in which case the MLH and simple Bayes decision rules are
identical. This assumption obviously imposes constraints on the conclusions
that can be drawn from predictiéns of classification accuracy.

It is common in MLH decision processes to characterize the statistical
distribution of the reference (or training) data by an analytical ﬁrobability
density function (PDF) witﬁ only a few parameters in order to reduce storage
requirements. The most frequently used function is the J-dimensional multi-

variate normal or Gaussian PDF which is given by the expression

1
J/2

my _ _1 _omt o m-1 _.m
'P(f_i/ci) = 2m) \gt: L eXP[ 2 (s _r_i) (El) (s _x_._i).,] 15)

m m . . .
where I, and_gi, respectively, are the mean vector and covariance matrix for

m
target c, and are given by

J
i = [ s PGs/CD) T ds, | (16)
and
c“‘—f<—“’>(-‘“>tp(/c‘“)}][d a7
=i S E.] S E‘J _S__i j=1 Sj -0
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To avoid the computational expense of evaluating the exponent in Eq. (15),
an equivalent classification procedure can be used which minimizes - 1n P(g/c?).
This procedure is realized by the so-called MLH (or Gaussian) classifier which

assigns s to c? if and only if

-t o e

ml ]
;1) + log, ]gﬁ.l (18)

' mt m-1 m m
< G-t DT -2 + 10, |c]

S m=1,2, ..., M, i=1, 2, ..., L.

The number of computations and storage required for the MLH classifier is
further reduced by disregarding the statistical distribution of the signal so
that the covariance matrix C reduces to the identity matrix. The resulting

mean-square distance (MSD) classifier assigns s to c? if and only if

-0 -1 < - s -1, (19)

m=11, 2, ..., M ;i=1, 2, ..., Im.

The improvement in classificatioﬁ accuracy that can be attained by the MLH
classifier over the MSD classifier depends on two factors: the extent to which
the statistical distribution ofithe reference data is representafive of all
acquired data for ;he selected targets; and the fit of the assumed (Gaussian)
statistical distribﬁtion of the signal for each target (Ref.lZZ). It is also
conceivable that the added expense of performing MLH classification may out-
weigh the increase in accuracy over the simpler MSD classification. This model
has been designed to examine these types of questions.

3. TImplementation of Decision Rules

STIMULA simulates an orbiting multispectral sensor system which generates
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pseudo-random observations (i.e., signal vectors) from a nadir-looking sensor

at the top of the atmosphere. These observations are either assembled as train-
ing sets for the reference library or classified using the BAM, MSD, and MLH
decision algorithms. The assembly of training sets and the assessment of clas-
sification accuracy are both based upon a total of 100 observations per target.
Computations with larger numbers of observations (e.g., 400) per target did not
significantly change the results (typically only by about 1 pércent). The pro-
grams BNDARY, RPLPROG and CLASIFY which implement these tasks are described
below.

a. BNDARY

Program BNDARY is used to perform feature categorization of signals output
from STIMULA by the boundary approximation method (BAM). The boundaries between
regions of planes in the signal space’are straight lines, and so the parameters
specifying the boundaries are the slopes and interceptscﬂfthe lines. These para-
meters are variables in BNDARY and can be adjusted to achieve the maximum accu-
racy.

The boundaries shown by dashed lines in Figurebli were selected to divide
the signals into their five categories (i.e., vegetation, bare land, water, snow
and clouds) with approximately equal consideration for the two most extreme imag-
ing conditions considered in this computational experiment. A tradeoff implicit
in this compromise between imaging conditions is illustrated in Figure 13; which
shows the variation in discrimination accuracy with changes in the threshold
boundary which divides vegetation, land and water from snow and clouds. This
type of analysis can be accomplished routinely using BNDARY.

b. RPLPROG |

As discussed above, classification by the MSD or MLH schemes requires the
computation of discriminant functions which govern the classification process.
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To compute the discriminant functions requires repeated use of the mean signal
vectors r and the covariance matrices C. These quantities are stored in what
is called the "reference pattern library". It seems reasonable to assume that
in practice, the reference.pattern library would be generated under clear sky_
conditions and so in simulations done to date, the reference patters were cal-
culated using signals simulated under the clearest conditions, namely V=55 km.
RPLPROG uses 100 signals for each of the surfaces in the library to generate
and store reference patterns comprising the following: the mean signal vectors
I the covariance matrices, their inverses and their determinants, gi, g;l, and
Igil respectively. These can then be accessed by the classification program
CLASIFY for use in the MSD and MLH algorithms.

c. CLASTIFY

Program CLASIFY is used to perform feature identification of multispectral
lsignals by both the MSD and MLH algorithms. Inputs to the program are the sig-
nal vectors generated by STIMULA and 'the reference pattern libraries generated
by RPLPROG. Classification accuracy, the fraction of all classifications done
correctly, is the output. Since the "true" identification of the signal is
known before classification takes place, the calculation of the accuracy is
trivial.

Classificétion by MSD amounts to calculating the "distance" in signal space
between the point specified by the signal being classified and each of the meaﬁ
signals in the reference library and assigning the '"unknown" signal to the class
for which the distance is a minimuﬁ.

Classification by MLH requires the computation of a probability density
function for each of the surfaces in the reference library and makes the clas-

sification based on the surface which yields the largest probability density.




III. SAMPLE APPLICATIONS

The model described in this report was deisgned to be used in studying
smart sensor design concepts. This section of the report gives a few examples
of the types of studies which may be performed with this model. A measure of
the perfor@ance of a smart sensor would be the accuracy with which it classi-
fies specific targets or types of targets. Therefore, the examples shown here
display either categorization or classification accuracy as a function of the
variable of interest for a number of different conditions. All of the simula-
tions are for a downward looking sensor at the top of the atmosphere. Reference
patterns were calculated under the clearest of conditions simulated, i.e., vis-
ual range of 55 km and solar zenith angle of 30°. |

Figure 14 shows the feature categorization accuracies attained with the
BAM using three TM channels centered at 0.67, 0.84, and 1.68 um respectively.
The boundaries employed are those shown in:iFigure 11.

Figures 15 to 17 present classification results using the MSD and MLH
classification schemes. Figure 15 compares the three sets of channels, TM,
SPOT, and KON and classification schemes themselves; Figure 16 shows the effects
of an additional channel; and Figure 17 shows the effects of simulated noise.
For further discussion of all these results see Huck, et. al.,,(Ref; 28); These
are typical examples of the type of studies which are possible by émploying

this model.
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IV. CONCLUDING REMARKS

The computational model described in the report has been designed to be
used as a tool in evaluating the performance of potential remote sensor concepts.
Such evaluations are useful in developing smart sensors to reduce data processing
requirements. The program allows for studies of the variability of atmospheric
attenuation processes and surface reflectance and the effects of these variabil-
ities in the performéncé of multispectral remote sensor systems. Data processing
algorithms.and their performance in classifying simulatéd signals may also be
examined systemafically as a function of the variable elements of the model.

The model is limited by a lack of representative models of the spatial
distribution‘or probability of occurrence of surface and cloud targets and the
spectral, angular and temporal variability of their reflectance. Nevertheless,
the'computational model presented here provides a useful tool for assessing

the performance of potential remote sensor concepts.
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TABLE 1. SUMMARY OF PARAMETERS USED IN SIMULATION

PARAMETER SYMBOL VALUES VARIABILITY
GEOMETRY
SOLAR ZENITH ANGLE 8o 30°, 40° ——
NADIR VIEWING ANGLE 6 0° -—
RELATIVE AZIMUTH ) 100° -—
SURFACE PROPERTIES
TARGET REFLECTANCE Pt see Fig. 4 see Table 2
BACKGROUND REFLECTANCE oy see Fig. 4 and Fig. 5
ATMOSPHERIC PROPERTIES .
MOLECULAR OXYGEN BURDEN X0, 1.71 km STP 0.13 km STP
WATER VAPOR BURDEN XH20 | 1.14 cm~1l 0.36 cm~1
CARBON DIOXIDE BURDEN Xco2 | 8.01 atm cm 0.24 atm cm
OZONE X03 0.34 atm cm 0.12 atm cm
RELATIVE HUMIDITY RH 0.40 0.20
SURFACE PRESSURE P, 1013 mb _—
VISUAL RANGE \
"CLEAR" 55 km -
"INTERMEDIATE" 33 km -_—
"HAZY" 14 km -
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TABLE 2. TARGETS AND THE ASSUMED STANDARD DEVIATION OF THEIR REFLECTANCE

(a) WAVELENGTH REGION: 0.4 - 2.0 um

STANDARD DEVIATION
CATEGORY SUBSTANCE CODE | ° 0 R EFLECTANCE °p
I. . VEGETATION | COTTON \'Al 0.1
TOBACCO V2 0.1
BEAN V3 0.1
OATS V4 0.1
PINE ') 0.1
II. BARE LAND | BARE MOIST SOIL L1 0.13
S DRY SAND L2 0.1
. LOAM, 1% WATER L3 0.11
GNEISS L4 0.1
III. WATER SEA WATER "W 0.06
IV. SNOW SNOW, 14 HOURS S1 0.08
SNOW, 44 HOURS S2 0.08
SNOW, 70 HOURS S3 ' 0.08
) %
V. - CLOUD ICE CLOUD, T = 128 cl 0.1
‘ ICE CLOUD, T = 16 c2 0.1
ICS CLOUD, T = 8 c3 0.1
ICE CLOUD, T = & C4 0.1

"1 is optical thickness



TABLE 2. TARGETS

AND THE ASSUMED STANDARD DEVIATION OF THEIR REFLECTANCE

(CONCLUDED)

(b) WAVELENGTH REGION: 0.4 - 1.0 Um

CATEGORY

SUBSTANCE

STANDARD DEVIATION
OF REFLECTANCE Op

I. VEGETATION

II. BARE LAND

WHEAT

BEAN
BARLEY
OATS

CORN

RED SPRUCE
BALSAM FIR
COTTONWOOD
ASPEN PINE
WHITE PINE

BARE SOIL

PEDOCAL, OHIO

PEDOCAL, NEBRASKA

PEDOCAL, OKLAHOMA

CLAY, MISSOURI

QUARTZ SAND, OREGON

CHERNOZEM, NEBRASKA

PEDALFER SILT, ARKANSAS :
RED QUARTZ AND CALCITE SAND, UTAH
LOAM 20% WATER

e o .

.

oo oNoNoloReoRoRoNa)
. . . .
T el

. . .
o W

OO0 O0OO0O0OO
P e = O O

HRRWsR
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TABLE 3.

" SENSITIVITY CHARACTERISTICS OF THEMATIC MAPPER

cHANNEL | SEECTRAL | SNR FOR LOW Iggﬁ?@;ﬁgﬁDsggﬁLkgggﬁb NORMALIZED rms
WIDTH | LEVEL INPUT® SR St ] NOISE, o
(W m 4 sr™t um™1) n
1 0.45-0.52 32 1.58 .049
2 0.52-0.60 35 1.00 .029
3 0.63-0.69 26 .60 .023
4 0.76-0.90 32 .28 .009
5 1.55-1.75 13 .16 .012

aSpecifie_d in Ref. 24 as p = 0.01 and 8, = 70° for bands 1 to 4, and-

p = 0.02 and 6, = 10° for band 5.

bMean value for visual range V = 55 km.
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SIGNAL
VECTORS

J .

REFERENCE
PATTERN
LIBRARY

(RPLPROG)

DISPLAY
CATEGORIZE
, OR
\L CLASSIFY
CATT
SPQOTgR H1sToGRAM| | ELLIPSES
(SCATPLT) (HISTPLT) (ELLIP) [\
BOUNDARY MEAN
APPROXTMATION SQUARE MAX THMUM
METHOD DISTANCE /| LIKELIHOOD
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ACCURACY

CATEGORIZATION/CLASSIFICATION

FIGURE 2. SCHEMATIC OF SIGNAL PROCESSING. OPTIONS
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SOLAR IRRADIANCE

FIGURE 3. SOLAR IRRADIANCE AT TOP OF ATMOSPHERE
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AS BACKGROUND
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THE SUBSTANCES LISTED IN TABLE 2(a) AS TARGETS AND BARE
MOIST SOIL AS BACKGROUND. THE BOUNDARIES (DASHED LINES)
ARE USED TO DISTINGUISH BETWEEN THE CATEGORIES VEGETATION,

BARE LAND, WATER, SNOW AND CLOUD.




FREQUENCY OF OCCURRENCE (X)
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FIGURE 12. TM SIGNAL HISTOGRAM (SOLID) AND "EQUIVALENT"

GAUSSIAN DISTRIBUTION (DASHED) WITH EQUAL MEAN

AND VARIANCE, USING OATS .AS TARGET AND BARE

MOIST SOIL AS BACKGROUND. THE CORRESPONDING

RADIANCE VARIABILITY IS ILLUSTRATED IN FIG. 7(b).
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FREQUENCY OF OCCURRENCE (%)

FIGURE 12.
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TM SIGNAL HISTOGRAM (SOLID) AND "EQUIVALENT"
GAUSSIAN DISTRIBUTION (DASHED) WITH EQUAL MEAN
AND VARIANCE, USING OATS AS TARGET AND BARE
MOIST SOIL AS BACKGROUND. THE CORRESPONDING
RADIANCE VARIABILITY IS ILLUSTRATED IN FIG. 7(b)

(CONCLUDED).
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FIGURE 13.
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Discrimination between vegetation/land/water
and snow/cloud for unratioed signals.

DISCRIMINATION ACCURACY VERSUS THRESHOLD BOUNDARY
BETWEEN GROUPS OF CATEGORIES, USING THE TM CHANNEL

LOCATED AT 0.67 um
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FIGURE 1l4.
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FEATURE  CATEGORIZATION ACCURACY FOR SEVERAL IMAGING
CONDITIONS USING THE TM CHANNELS LOCATED AT 0.67,

0.84, AND 1.68 um
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FIGURE 15. FEATURE IDENTIFICATION ACCURACY FOR SEVERAL IMAGING CONDITIONS,
USING THE THREE TM, SPOT, AND KON RESPONSES LOCATED AT NEARLY
THE SAME WAVELENGTHS WITH EITHER MLH OR MSD CLASSIFICATION OF

UNRATIOED SIGNALS.
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- FIGURE 16.
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MLH and MSD classification of signals.

FEATURE IDENTIFICATION ACCURACY FOR SEVERAL IMAGING .
CONDITIONS USING EITHER THREE OR FOUR TM CHANNELS WITH

EITHER MLH OR MSD CLASSIFICATION OF SIGNALS




FIGURE 17.

CLASSIFICATION ACCURACY
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