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ABSTRACT

This dissertation presents a static analysis of the problem of an

elastic layer perfectly bonded, except for a frictionless interface

J

crack, to a dissimilar elastic half-plane. The free surface of the

layer is loaded by a finite pressure distribution directly over the

crack. The problem is formulated using the two dimensional linear

elasticity equations. Using Fourier transforms, the governing equations

are converted to a pair of coupled singular integral equations. The

integral equations are reduced to a set of simultaneous algebraic

equations by expanding the unknown functions in a series of Jacobi

polynomials and then evaluating the singular Cauchy-type integrals.

The resulting equations are found to be ill-conditioned and,

consequently, are solved in the least-squares sense.

Results from the analysis show that, under a normal pressure

distribution on the free surface of the layer and depending on the

combination of geometric and material parameters, the ends of the

crack can open. The resulting stresses at the crack-tips are singular,

implying that crack growth is possible. The extent of the opening and

the crack-tlp stress intensity factors depend on the width of the

pressure distribution zone, the layer thickness, and the relative

material properties of the layer and half-plane.

kV





CHAPTER I

INTRODUCTION

Because of their high specific modulus and strength, advanced

composite material systems have the potential to reduce the weight of

aircraft structures• However, as with any new materlal system, the

mechanical behavior of the material must be understood before it can be

used extensively in structures. Understanding the mechanical behavior

of composite materials is very challenging because of the complexity of

the interactions between fiber and matrix, and between individual plies

in a multilayered configuration. With composites have come not only the

opportunity for the designer to "tailor" the material to optimize the

structure, but also the challenge of a set of potential problems which

were largely unknown in metal structures• For example, most of the

composite systems are brittle, have low failing strains compared with

metals, are susceptible to foreign object impact damage, and can develop

delamlnations (separation between plies).

Some aspects of the delaminatlon problem are addressed in the pres-

ent work. Delamlnations can be caused by manufacturing deficiencies,

standard service loads, or extrinsic loads such as foreign object

impacts. The damage which develops from impacts is a complex network of

cracked plies, delamlnation between plies, and broken fibers; and it is

very difficult to detect even with ultrasonic or radiographic techniques.

A thorough understanding of impact damage is essential, as even small

amounts of damage can substantially reduce both the tensile and compres-

sive strength of a composite structure (see, for example, Rhodes [I]).
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Considering the delaminatlon problem from the viewpoint of struc-

tural llfe, it must be determined whether the delaminatlons are likely

to grow under subsequent loading and may therefore place limits on

either the loads or the llfe. The problem to be analyzed herein is

chosen because it represents a basic mode of failure and should provide

an indication of whether a delamlnation in layered composite materials

might grow under the influence of purely compressive loading normal to

the delamination. It is felt that a complete solution to the problem

using the two-dimenslonal linear elasticity equations can contribute to

a fundamental understanding of the mechanics of delamlnations in layered

media. Of course, seeking a complete solution necessitates restrictions

on the complexity of the geometry and the constitutive equations. In

contrast, more complex geometries and loadlngs can be analyzed using

approximate methods such as finite element analysis. However, the power

of the stress singularity at the ends of the delaminatlon, a quantlty

critical to the application of elastic fracture mechanics methods, and

other fundamental information on the behavior of the structure would be

difficult or impossible to extract from a finite element analysis. The

complete solution gives the form of the stress singularity directly from

the governing equations. The present solution involves both the con-

cepts of elastic contact problems and the analysis techniques associated

with the singular stresses at the ends of the delamlnation (the delami-

nation is modeled as a crack).

Elasticity solutions of many contact problems and fracture problems

involving flaws or cracks have been reported in the literature. For a

comprehensive review of contact problems, the reader is referred to

Gladwell's recent book [2]. Of particular importance to the present
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investigation are papers by Erdogan and his colleagues [3,4,5,6] and

Keer et al. [7], in which the frlctionless contact between elastic

layers and elastic or rigid foundations is studied. All of the above

solutions are for either two-dimensional or three-dimenslonal axisym-

metric problems. The layer is of finite thickness and the elastic

foundation is either a half-plane or a half-space. The layer is taken

to be weightless in all of these studies except in [4] and [5]. The

layer rests on the foundation and load is applied to the free surface of

the layer either as a compressive normal distributed load or through a

stamp. In all of these problems, near the loaded region there is con-

tact between the layer and the foundation. At some distance from the

loaded region (on the order of the width of the load or stamp) the layer

separates from the foundation and comes back into contact with the

foundation only when the weight of the layer is taken into account [5].

The contact stress is typically found to reach a maximum near the center

of the loading and to vanish at the ends of the contact zone. The peak

contact stress, the width of the contact zone, and the contact stress

distribution depend on the layer thickness and the material properties

of the layer and foundation. A somewhat different contact problem is

solved by Keer and Chantaramungkorn [8]. In this problem, an elastic

layer resting on an elastic half-space is loaded by a uniform normal

compressive stress over the entire length of the layer except for a

finite strip. The important conclusion of the study is that the layer

separates from the half-space under the unloaded part of the layer•

In all of these problems there is no bond between the layer and

foundation. Thus, the question arises, "How will bonding or partial

bonding change the stresses on the interface?" As a prelude to the
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present study, the axisymmetric problem solved by Keer et al. [7] was

re-examlned, using a solution technique similar to that used in [6], to

investigate the effect of a modified boundary condition. The physically

artificial boundary condition of no separation over a specified radius

with zero shear stress was imposed. The three-dimensional axisymmetrlc

solution was then found for a normally loaded elastic layer in contact

over a circular region of prescribed radius with an elastic half-space.

The results, which are consistent with those in [7], showed that for an

arbitrary radius the contact stress was, in general, singular at the

edge of the contact zone. However, for certain values of the contact

radius the stress was zero at the edge of the contact zone. For contact

radii which were about equal to the pressure distribution radius, the

contact stresses were compressive, and for greater contact radii, the

contact stresses near the end of the contact zone were tensile.

The presence of these regions of tensile stress in the modified

problem of [7] and of separation zones [8] under compressive loads

suggest that if a layer were subjected to a compressive normal load

directly over an interface delamination between the layer and founda-

tion, then the layer could separate from the foundation near the ends of

the delamlnation. Of course, crack opening might be expected only for

certain combinations of layer thickness, delamlnatlon length, load

distribution width, and material properties. It is known that for an

opened crack, the crack-tlp stresses are tensile and singular and hence

the possibility of crack growth, leading to further weakening of the

structure, exists. Typically, the magnitude of the stress intensity

factors is related to the likelihood of crack growth.
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In [9] and [i0], the behavior of layered elastic media with flaws,

which are idealized as cracks, is studied. A uniform normal compressive

stress is applied to both faces of the crack so that the crack is always

open. Erdogan [I0] finds the well known results that when the materials

in the layers are identical the stresses exhibit a square-root singu-

larity, and when the materials are different the stresses exhibit an

oscillating square-root singularity. Stress intensity factors are found

to depend on layer thickness and material property ratios. One should

note that the oscillating singularity, which changes sign an infinite

number of times within a small neighborhood of the ends of the crack, is

physically unrealistic; yet it is the singularity dictated by the mathe-

matics. The oscillating part of the singularity can be eliminated by

modifying the boundary conditions near the ends of the crack [Ii]. The

present problem, however, is formulated with the oscillating singu-

larity, as this does not strongly influence the results away from the

crack-tips. The feature of primary interest in the present contact

problem is the separation point. Typically, the separation point is

outside the region influenced by the oscillatory behavior.

The problem analyzed herein is basically the same problem as that

studied in [i0] except for the external loading. The geometry is shown

in Figure (la). However, changing the loading complicates the solution

considerably. The problem is that of an elastic layer perfectly bonded,

except for a crack on the interface, to a dissimilar elastic half-

plane. Directly over the crack, uniform normal pressure is applied to

the free surface of the layer. The problem is formulated as a two-

dimensional elasticity problem; the solution is obtained using the

singular integral equation techniques of Erdogan [12]. The integral



a. Partlal-contact.

_-2c

h

r Vl-V2=O

b. Full-contact.

Figure i. Geometry of the contact problems.
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equations derived herein are of the same fundamental form as those in

[I0]; the difficulty caused by changing the loading shows up in the more

complicated boundary conditions in the contact region and in the fact

that the extent of the contact region is unknown. The effects of these

additional complications on obtaining a solution are discussed later.

The solution gives contact stresses and displacements on the crack

faces as well as crack-tlp stress intensity factors. The results are

presented as functions of material property ratios, the ratio of layer

thickness to crack length, and the ratio of pressure distribution width

to crack length.



CHAPTER II

FORMULATION

The problem described in the Introduction is formulated using the

two-dimensional linear elasticity equations. The solution is obtained

by the use of Fourier transforms and singular integral equation tech-

niques as described in [12]. The geometry of the problem is shown in

Figure (la). The layer of thickness h and the half-plane, both isotro-

pic, are assumed to be perfectly bonded along the interface except for a

crack of length 2a. The contact between the crack faces is assumed to

be frlctlonless. The load applied to the free surface of the layer is a

uniform normal compressive stress, Po' of width 2c located symmetrically

with respect to the crack. The region of primary interest in this

problem is the interface. The solution gives stresses and displacements

on the interface as well as crack-tlp stress intensity factors.

The governing equilibrium equations for the layer (i=l) and the

half plane (i=2) are

xxi xYi

_----_+ 3y - 0 , and (I)

8c 3o

xYl YYi

3_- + 3y - 0 (2)

where Cxxi and Oyyi are the normal stressesin the x and y directions,

respectively,and Oxyi is the shear stress. Using the plane strain

stress-displacementrelations



_ui _vi

Oxxl = (Ii + 2_i) -_-+ Ii _Y , (3)

_vi _ui

Oyyi = (Ii + 2_i) _ + Ii _ , and (4)

l_vi _ui)Oxyi = _ik_-+ _- , (5)

the equilibriumequationsbecome

_i_ul + (%i + Bi) -_ \-_--+ _-_- = 0 , and (6)

_i_"i+ (xl+ _i)_ \_-+ _ = 0 , (7)

where Xi and Bi are the Lame constants. Multiplying Equation (6) by

/2_ sin(_x) and Equation (7) hy _ cos(_x) and integrating both from

zero to infinity yields the transformed equilibrium equations

d2ui dvi

-(%i + 2_i)a2ul + _i 2 (Xi + Bi)= d_- = 0 , and (8)
dy

d2vi 2- dul
(li + 2_I) 2 _i= vi + (ll + _i)e _y = 0 (9)

dy

where u i and v.l are the Fourier transforms of ui and vi defined by

. _i(_,y) = ui(x,y) sin _x dx , and (IO)

Jf0-_i(c,,y) .. vi(x,y) cos _ dx. (11)
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Simultaneous solution of Equations (8) and (9) yields

_i = Aie-=Y + BiYe-aY + Cie=Y + DiYe=Y , and (12)

vl = Aie-=Y + Bi i _ + e-=Y - Cie_Y + DieeY - (13)

11 + 3Pl 5ll + 6_i
= = for plane

where Ki %i + _i for plane strain or wi 31i + 2_i

stress. The eight arbitraryconstants(Ai, Bi, Ci, and Di) are obtained

from the boundary conditionswhich for the present problemare:

CxYl(X,h) = 0 , .(14)

-Po,Ixl<c(x,h) = Po(X) = , (15)
CYYl O, Ix{> c

(x,O) = (16)
CxyI CxY2(X,O),

Cyyl(X,O) = Cyy2(X,0) , (17)

Ul(X,0) --u2(x,O),Ixl,al,
J (18)

Oxyz(X,O)=0, Ixl<a

Vl(X,O) = v2(x,O), Ixl < b and Ixl ) al,

J (19)

Cyyl(X,O) : O, b < Ixl < a

u2(x,-_) = 0 , and (20)

v2(x,--): 0 . (21)
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The contact distance b in Equation (19) is not known a priori but is

found as part of the solution to the integral equations. The mixed

hgundary conditions, Equations (18) and (19), are difficult to utilize

directly in developing a set of simultaneous equations for the eight

arbitrary constants. Instead, it is convenient to define two unknown

functions

[u l(x,O +) - u2(x,O-)] andfl (x) = _ , (22)

[Vl(X,0+) - v2(x,O-) ] (23)f2(x) =-_

where the + and - superscripts refer to the limiting values of the dis-

placements as y approaches zero from + and - sides, respectively. Using

these two definitions in place of the mixed conditions, along with the

remaining boundary conditions, Equations (14), (15), (16), (17), (20),

and (21), the eight constants in the solutions for ui and _i are

obtained. First, from Equations (20) and (21), which require that the

displacements vanish for y + -=,

A2 = B2 = 0 .

The remaining six constants are obtained from the following six

equations written in matrix form:

a 0 a 0 -a 0 BI fl I
[

I I t - I

ul,_ _ uL(< L + I) _i_ - _- Ul(,:I + l) -U2_ _- u..2(K2 "+ I) C I 0

>: ( o _' (24)1 1 1
-Ula - _-UI(KI.- i) ula - _- lJl(_l - l) -l+2a _- i+2(_2 - I) Dt

-ha a + _-(+cI + I) e-ha -ae l P0

-.o [. , ] [.' ]-ae - a + _-(zI - l) e-ha ae ha a - 0 I2+(_I - i) eha 0 0 ++.D2 _.' .)
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where

"f2(_) = f2(x) sin(ax)dx , and (26)

Po(a) = P0(x) cos(_x)dx • (27)

The solution to the six equations was obtained in closed form using

MACSYMA, an algebraic manipulative computer code [13]. One should note

that the mixed boundary conditions were not satisfied in obtaining the

arbitrary constants. Instead, the constants are functions of 51 and f2'

and the mixed boundary conditions are satisfied in formulating the

governing integral equations.

The solution to the problem is obtained by developing expressions

for the stresses on the interface and then enforcing the mixed boundary

conditions on those expressions. This yields two integral equations

valid over (-a,a), with unknowns fl, f2, the contact stress (Oyy(X,0),

Ixl < b), and b. To obtain the integral equations for the interface

stresses, only the solutions for C2 and D2 are required. They take

the form
j

I , -4ha1_ he
C2 = _ {[(Cllha + Cl2)e-mha + (Cl3h= + Cl4]e |roe

)e-2ha + c25 e-4ha+ [C21 + (c22h2_2 + c23ha + c24 If2

+ [c31 + (c32h2a 2 + c33ha + c34)e -2he + c35e-4he]_ I}, and (28)
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i
D2 - DCa) {[Cdllha + d12)e-2ha + (dl3he + dl4)e-4he]Poehe

-4he -
+ [d21 + (d22h2e2 + d23he + d24)e-2he+ d25e ]f2

" + [d31 . (d32h2e2 + d33ha + d34)e -2he + d35e-4he]fll (29)

.

where

)e-2he + . (30)D(e) = all + (al2h2e2 + al3he + a14 a15e-4he

v s wS vs
and the clj , dlj , and alj are defined in Appendix A. In terms

of ul and vi the transformed stresses are

_ =_foo dvi _

_YYl _JO _YYl cos(ex)dx : (li + 2_i) dy-- + liomi ' (31)

-_/0"axyl = axy i sin(_x)dx = _i<_i _i)" (32)

To obtain the expressions for the stresses on the interface, first

m

evaluate _YY2 and _xy 2 as y +0 . Then, substituting u2 and _2 from

Equations (12) and (13) into Equations (31) and (32), using Equa-

tions (28) and (29), and inverting _YY2' _xY2' Po' 71' and 72 gives

[/0/04_ Po (t) kll(Y'e) eye cos(cux)cos(et) de dt

/0" /0+ f2(t) kl2(Y,a) eye cos( _x)sln( at) de dt
(33)

!o/o+ fl(t) kl3(Y,e ) eye cos(ex)cos(et) de d _ ,
y--O
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and

[/o/o_axY2 y=0- Po(t) k21(Y,a) eya sln(mx)cos(at) da dt
4_2

I fo+ f2 (t) _2(y,a) eya sin( ax)sin( at) da dt

JoJo+ fl(t) k23(Y,a) eya sin( _x)cos( at) da d (34)
y=O-

where

ha

_ e Bl2)e-2ha . -4hakll(Y'a) D(a) {(BIIha + + (Bl3ha + _14 )e

- Y[dl2ae-2ha + (d13h_2 + dl4a)e-4ha]} , (35)

_ I ]e-2ha _kl2(Y'a). D(a) {B21 + [B22h2a2 + B23ha + B24 + B25e 4ha

- Y[d21a + 1d22h22 + d23ha2 + d24a)e-2ha + d25ae-4ha]l ,
(36)

_ I a2 )e-2ha -4hakl3(Y'=) D(a) {B31 + (832h2 + B33ha + B34 + _35 e

a)e -2ha- Y[d31a + (d32h2a3 + d33ha2 + d34 + d35ae-4ha]} ,
(37)

ah
_ e . -2ha . -4ha

k21(Y'a) D(a) {(B41ha + B42)e + (B43ha + B44)e

+ Y[di2ae-2ha + Idl3h_2 + dl4a)e-4ha]} , (38) "
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i _e-2ha + -4ha
k22(Y'_) = D(a) {851 + (852h22 + 853h_ + 854 _ 855 e

(39)

+ Y[d21_ + (d22h2_3 + d23h_ 2 + d24a)e -2h_ + d25ae-4h_]} ,

and

I )e-2h_ +" k23(Y'a) = D(a) {861 + (862h2a2 + 863h_ + 864 865 e-4h_

a)e-2ha ae-4ha ]+ Y[d31a + (d32h2a 3 + d33h_ 2 + d34 + d35 } •

(40)

The 8ij's , which are functions of material properties only, are defined

in Appendix A.

The fundamental form of the integral equations, Equations (33) and

(34), depends on the nature of the integrands of the integrals with

respec t to a. Recognizing that some of the infinite integrals are not

uniformly convergent for y = O, the non-uniformly convergent parts of

the integrands are separated from the convergent parts by writing

821 d21

kl2(Y,a) - y_ - k_2(y,a) , (41)
all all

831 d31
kl3(Y ,a) = ya - k_3(y ,_) , (42)

all all

851 d21
k22(Y,a) = _+ _ y_ - k_2(y,=) , and (43)

all all

861 d31
k23(Y,a) - + ye - k_3(y, _) (44)

all all
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where the non-uniformly convergent parts are the constant and linear

terms in a and the uniformly convergent parts are the primed functions

given by

k_2(Y'a) = D(a) 21 all _ + 21 all

(8 al---_4-824)] + e-4h_(82 al--5- 825)+ 21 all I all

k_3(Y'_) =_ 31 all _ + 31 all

I8 a14-834)I + e-4h_I83 a15_ 835)+ 31 all I all

+ (e-2 h_ I(d a121h2 a2 (d a13\yc_ 32 - d31 a-=_l) + 33 - d31 a_l)h_

34 d31 a-_l)j e d31 "_ll/J ' (46)
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85 + _- 85 ha
k_2(Y'a) 51 all 5 all

(8 a14-854)] + e-4ha(8 a15- 855)+ 51 all 51 all

-2h= a12 d2 21 all+ Y= 21 all .

+ I al4all- d2 + e-4h_ 21 alSal1 d2 , and (47)

' I le-2h=I(8 a12 2) (8 a13- 863)h_k23(Y'=) ffiD(a) 61 all 86 h22 + 61 all

(8 a14-864)] + e-4ha/86 al--._5- 865)• + 61 all I all .

_e I/d---2)h2_2 + /d al_3 - d33/h=• -2hu a12 d3 31 all+ Y_ 31 all

+ 31 alI 31 all

Thekernels kll and k21 do not contain terms which are constant or lin-

ear in _. The non-unlformly convergent parts of the integrand, which

can be evaluated in closed form, will provide the basis for determining

the fundamental form of fl and f2" Reference [14] evaluates infinite

integrals such as those in Equations (33) and (34) with terms which are

constant or linear in _. The results are reproduced in Appendix B.

Using those results and Equations (41), (42), (43), and (44), the inte-

gral equations, Equations (33) and (34), become
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(/o/oYY24_2_=0_-_= Po(t ) kll(Y'_) eya cos( _x)cos( at) d_ dt

x+ t x- t

f2 (t) _2 2 - 2all + (x + t)2 y + (x- t)

___y2 _ x+ t x- t

all y2 + (x + t)2] 2 [y2 + (x - t)2]

- _ _2(Y,_) ey_ cos( c_x)sln(at) dt

j0 y2 y.

fl(t) 2all + (t - x) 2 y + (t + x)

d31 [y2 _ (t - x) 2 2 x)2+2-_11Y ]2+ y (t+
[y2 + (t x)2 [y2 + (t + x)212j

_3(Y,_) eya cos( ax)cos( =t) da d ,
y=O- (49)

and

_a

/oxY2 y=O--= PO (t) k21(Y,a) eya sin( o_x)cos(at) de dt4_ 2

+ f2(t ) B51 i i--'Y 2 - - 2
2all + (t - x)2 y + (t + x)

d21 YV----- (t- x)2 _ y2 _ (t + x)2

- 2al--_ Y L[y2 ]2 22J .+ (t x)2 [y + (t + x)2]

fo- _2(Y,_) eya sln(ax)sln(at) d d
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+ fl (t) 12all 2 + (t + x) 2 y2 + (t - x) 2'

+ d31 y21 t + x _ ,-- x . ]" all [y2 + (t + x)212 [y2 + (t x)2] 2

o}0- _3(y,e) eyu sin(ex)cos(ut)d d ly=O-_ (50)

The integrands of the infinite integrals with respect to u are of nega-

tive exponential order for y < 0 and the limits exist. The limits of

the remaining terms in Equations (49) and (50) are obtained from results

in [14] (see Appendix B). Thus, the integral equations become

/0/0YY2 y=0- = Po(t ) _l(U) cos( _x)cos( at) d_ dt4_12

f_

821 f2(t ) i i dt
+ 2al----_ x + t x - t

/0_ /0_- f2(t) _12(u) cos(ux)sin(ut)de dt

/0_ /0_+ _= al1831 fl(x) - fl(t) Kl3(a) cos(ex)cos(ut)de dt ,

and (51)
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41.12 " .Po(t) _21(a). sfn(ax)cos(at)da dt

/o/o-+ _ all .f2(x)- f2(t) _2(_) sln(ax)sin(at)dadt

+ 2all fl (t) t + x t - x

/o/o- fl(t) _23(a) sln(=x)cos(at)da dr (52) ':

where "

eha [e-2ha(811h_ e-4he(813h_ 1roll(_) : D(a---'_ + 812) + + 814) , (53)

I -2ha a12 82 21 all ,__12(_) D(e) 21 all

a14 82 + e 82 ,
+ 21 all . 21 all

2)i -2ha a12- 83 h2a2 + 3 allKI3(U) = D_u) 31 all

'....

al___4_83 + e 31 all+ 31 all.

ah

e [e-2ha(841ha_21(a) D(_) + 842)+ e-4h_( + )] , (56)- 843ha 844 -
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= __ )h22a1311 2ha a12 B5 + _- B5 ha
_22 (a) D(a) 51 all 51 all

a14 B5 + e B5 , (57)
+ 51 all 51 all

= h2_ 2 + a13- B6 ha
• i -2h_ a12 B6 61 all_3 (_) D(_) 61 all

" ai--_4-B6 + e m- 86 . (58)
+ 61 all 61 all

Noting from the boundary conditions that fl(x) and f2(x) are zero for

x.> a, that Po(X) is zero for x > c and that fl(x) = fl(-X),

f2(x) = -f2(-x), and Po(X) = Po(-X), the integral equations can be

written as

"21 0/: /0" /_= Po(t) _I(_) cos(_x)cos(_t)da dt + _i a f2(t)
2B2 c all a t----_ dt

__a _0= s31fl(x)- a fl(t) _12(a) cos(ax)sin(at)da dt + _ all

!a /0=- f2(t) _3(_) cos(_x)cos(=t)d_ dt, and (59)
a

I/_%= /_aYY2 y=0-- = Po(t ) _i(_) sln(_x)cos(at)d_ dt B61 a fl(t)
o " 2_2 c all a F _ x dt

__a f0= B5--_I" - a f2(t) _23(_) sin(cLx)cos(at)d_ dt + _ all f2(x)

!_a /o=- fl (t) _2(=) sln(_x)sin(_t)da dt . (60)
a
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- and ly=O- are valid for any x on y=0 andThe equations for Oyy21y=0 Oxy2

the solution for fl(x) and f2(x) is obtained by restricting x to the

interval (-a,a), i.e., the unbonded portion of the interface.

In addition to the singular integral equations, the continuity

conditions

ul(x,O ) = u2(x,O), Ixl > a , and (61)

Vl(X,O ) = v2(x,O), [x[ • a (62)

from the mixed Boundary conditions, Equations (18) and (19), require

that, in addition to fl(x) = f2(x) = 0 for Ixl > a,

• !a
fl(x) dx = 0 , and (63) :

a

fa f2 (x) dx = 0 (64)
,_-a

to prevent a rigid body displacement between the layer and the half-

plane. Similarly, to prevent a relative rigid body displacement between

the contact region Ixl ( b and the bonded region Ixl • a,

_-b f2 (x) dx = O. (65)a

Finally, the part of the mixed boundary condition, Equation (19),

which requires continuity of normal displacement over the interior

contact region, i.e.,

Vl(X,O) = v2(x,O) , Ix] < b, (66)
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was not satisfied in formulating the integral equations and must be

satisfied as an additional constraint on the solution to the integral

equations.

Equations (59) and (60), taken over (-a,a), and Equations (63),

(64), (65), and (66) provide a complete set of equations to solve for

the unknowns fl(x), f2(x), and Oyy2!y=0. The remaining unknown, b, is

obtained by an iteratlve process which is based on the requirement that

I vanish at x = ±b. The iteratlve process isthe contact stress Cyy2 y=0

described in Chapter III.

Several fundamentally different problems can be solved using this

set of equations. Two of these problems are described below.

Full Contact in the Region (-a_a):

For this problem, f2 = 0 for all x and b = a, which places no

restrictions on the sign of the contact stress. The integral equations

reduce to a singular integral equation for fl and a simple equation for

I . Equations (64) and (65) become trivial. The resulting equa-°YY2 y=0

tions and the solution are presented in Appendix C.

No Contact in the Resion (-a_a):

Two examples which involve no contact in the region (-a,a) arise

(I) when the loading Po(X) is prescribed as tensile, and (2) when the

only prescribed loading is normal pressure on the crack faces, i.e.,

I I is zero. For these problems the°YY2 y=0 is negative and Oxy2 y=0

fundamental form of the integral equations does not change, but

Equations (65) and (66) are no longer valid boundary conditions. The
Q

= I = I iS compressive)second problem (Po(X) 0, Oxy2 y=0 0, and Oyy2 y=0

has been solved by Erdogan and Gupta [I0].



CHAPTER III

SOLUTIONOF THE GOVERNING EQUATIONS

Mixed boundary value problems such as the present one can usually be

reduced to a system of singular integral equations with Cauehy-type

kernels (such as Equations (59) and (60)). Erdogan et al. [12] give a

detailed discussionof techniquesfor solvingequationswith

Cauchy-typekernels. The presentproblem is solved using these

techniques.

Equations(59) and (60) are singularintegral equationsof the

second kind as defined in [12]. By combiningthe equationsinto one

complex integralequation,the singularbehavior of fl and f2 can be

determinedfrom the dominantpart of the integralequation. Then,

expandingfl and f2 in a series of complexorthogonalpolynomials,the

•singular terms in the integralequationcan be removedand the integral

equation can be reducedto a systemof linear algebraicequations. The

presentproblem has not only the unknowns fl and f2' which appear in the

singularintegrals,but also %yly=O and b. Further, the conditionon

normal displacementin the contactregion,Equation (66), adds an addi-

tional constrainton fl and f2" The additionalunknowns and the con-

straintequation add considerablecomplexityto the solutionof the

problem. The detailsare discussedas the solution to the problem is

developed.

t x
Defining r = --, s = --, anda a

gl(s) = -fl(as)= -fl(x) , g2(s) = f2(as) = f2(x)
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and requiring JxJ < a, the integral equations become

all Lc _0 _ L I g2(r)=B21 e P°(t) _Ii(=) cos(ase)cos(ta)d= dt =-_i I r - s dr

831 gl(s) + a allf_l /0 _.... gl(r) _13(=) cos(ase)cos(ar=)da dr" 821 _ 821 i

a all L I _0 _821 i g2(r) _2(_) cos(asa)sin(ara)d_ dr

allaYy2(as)] y=0 JsJ < i and (67)
2_2B21

Po(t) K21(_) sln(as_)cos(t=)d_ dt = -- _ _ _ dr
_B61 -c _ i

+ 851 a allLl /0 _861 g2(s) +--_ gl(r) _3(=) sln(asa)cos(ar_)d= dr861 i

L I g2(r) _2(_) sln(asa)sln(ar_)d_ dr, [sJ < I . (68)

alla

B61 I O

With the definition

_(s) = g2(s) + i gl(s) (69)

the integral equations combine to give

L(t,S)Po(t) dt - i _(r)dr + _l_(S)
J-c _i I r - s

+ allLlI_ [_(r,s)_(r) + K2(r,s ) _(r)] dr

+ i 82o(s) J , JsJ < 1 (70)Iy=O
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where

_0 _ "
L(t,s) =" [_l(O) sln(aso)cos(to) - i <ii(=) cosCaso)cos(ta)] do ,

(71)

i F-/ 5 _') sin(as e)sln(ara) + cos(as=)cos(ar=

m

\/<t2(_l_2t ' ))]
+ !f-_----- cos(asa)sin(aro) K23 sin(as_)cos(ar= Ha, (72)

%1

= sin

Kz(r's) -2 B_I cosCasolcos(ar=) <22(_1B61

I<12(a) <23(o) '_]
+ i. k-_21 cos(aso)sln(aro) + B61 sin(aso)cos(ar=./] do (73)'

_i B51 all
61 .... , 62 = and (74)

B21 B61 2_2B21

Using Equation (69) the continuity Equations (63), (64), and (65),

become

1 _(r) dr = 0 , and (76)I

l-blare Re(_(r)) dr : 0 , (77)
J-i

and the constraint equation, Equation (66), becomes
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is Re(_(r)) dr = 0, < s

b b

b/a - a a " (78)

Because KI, K2, and L are sums of bounded functions, they are
8

bounded as well. So, the singular behavior of _ is determined from the

dominant part of the integral equation, i.e., the first two terms onthe

rlght-hand side of Equation (70). From [12], this singular behavior has

the form

w(s) = (i - s)e(l + s)_ , (s) = (I - s)-=(l + s)-a (79)

where

= -_-- i _, _ = -_+ lid, and _ = _-_ £n_ _IJ_ " (80)

Noting that w(s) is the weight of the Jacobl polynomials [12], it is

natural to express the solution of the integral equation as

.(_,_).._(s)--w(s) Cn _n tsj • (81)
n=O

From the continuity condition, Equation (76), and the orthogonality

relations [15]

O, n # m

a+_+l
2

il a)(t) 2n + e + _ + I
w(t) P(Ct'_t)(t) p(Ot, dx = (82)

l n m r(n + a+ I) r(n + _+ i)X

n! r(n + _ + _ + I) '

n = m ,

it is found that CO = O.
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Substituting Equatlon (81) into Equation (70) and using the

relation

,j_, j,2-- w(r) P(a'_)(r) dr + 61wCs) p(a,_)Cs) = - 61 P(-='-a)(s) -
_i i n r- s n 2i n-I

(83)
from [12], the integral equation reduces to

-allle L(t,s) Po(t) dt ffi - 81 p(-='-_)fs l
J-e n=l n 2i n-i _ J

+ all /_I [K (_'_)(r)-_-- i l(r,S)Cn w(r) Pn

. + K2(r,s) Cn w(r) Pn (a'_)(r)_ dr_

+ i _2a(s),Isl< i (s4)

where the singularity of the integral equation has been removed.

Recognizing that for partial contact the normal stress on the crack

must vanish at the ends of the contact region (s = ±b/a) the stress is

represented as

o Isl >b

a

. (85)
_(s) L F_as b

Ao +_ A£cos[2--_-(2£-I)_, Isl <--a "
£=i

and the proper value of,b/a is obtained by requiring that Ao = 0.
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The unknown Cn's , A£'s, and b can be obtained numerically by

reducing Equations (84), (77), and (78) to a set of linear algebraic

• equations. (The square set of equations generated initially from the

governing equations was found to be lll-condltloned. Hence, to obtain a

stable set of equations, the constraint equation was overspeelfled and

the equations were solved in the least-squares sense.)

The integral equation, Equation (84), can be reduced to a set of

linear equations by expanding both sides of the equation as a series of

Jacobi polynomials and then solving for the constant coefficients using

the orthogonality relations, Equation (82). The resulting set of

equations is

2
- _i 0f_a__,, M L

2i m Cm+ I +_ [BnmC + D C ] + i _ S = Rn nm n £m m '
n=l £=0

m = 0,I,2,3,...,M (86)

where

0(-u,-_) = 2-_-_+I F(m - _+ I) F(m - _ + I)
m 2m - u - _ + i m! F(m - = - _ + I) ' (87)

a all__l I w*(s)P(-e'-_)(s)Bnm = _ m

I p(_,_)" x I w(r) n (r) _(r,s) dr ds , (88)
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a all /I
= w*(s) eC-a'-_) (s)

Dnm _ I m

x _(r) P(='_) (r)i n _(r,s) dr ds , (89)

£ W*(s) P(-a'-_)(s) COSL2--_- (2£- I dsm

£ = 1,2,...,L , and

all l I p(-e,-_)., r c

= _ "I-i _,_(s) m ks)J_ c Po(t) L(t,s) dt ds . (91)

The continuity equation, Equation (77) after substitution of

Equation (81), can be integrated in closed form using the definition

of the Jacobl polynomials [15]. The result is

_-___M 2T(-l)n( b)_+l (i b) crblp(_rl ,crbl)(b)n_l • (92)O - Re i. Cn I - +

n=l

The constraint equation, Equation (78), also Can be integrated in

closed form and then both sides of the resulting equation can be

expanded as series of Chebyshev polynomials [15] with constant coef-

ficients. The coefficients are evaluated using the orthogonality

relations for Chebyshev polynomials [15]. The resulting set of

equations is

M _'b/a J1 /ar_2 /b )U a0 = Re _ CnJ_b/a In(r ) - _b / q r dr, q = 0,1,2,...,Q
n=l (93)
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where
:°

In(r)- _n I(-l)n+l( I - b)_+I (i + b) _+I P(n_ll'°_l)(b)

"" )I

- (i - r) e+l (I + r)_I P(_+l'_+l)(r (94)n-i

<a)and.Uq _ r is the Chebyshev polynomial of the second kind.

The Equatlons (86), (92), and (93) yield M + Q + i linear algebraic

equations for determlnation of M Cn'S , and L + I A£'s. The Cn'S and

A£'s are sufficient to determine the stresses and displacements along

the entire interface, y = 0. Recognizing that the stresses on the

interface are singular at s = ±I, the complex stress intensity factor

is defined to be [I0]

= - ( I +i_J%. (95)
kI + i k2 llmx+l+ (x I)-e (x + I)-_ \JJJaYY2y=O xY2 y=O

Following [I0], the stress intensity factors are computed from

-_i_[_i(i + _2) + _(I + _I)] f 2 M

kI + i k2 = (_i + _2_I)(_2 + _i_2) _ - 61 _ Cn P(_'_)n(I) .
n=l

(96)

The set of simultaneous Equations (86), (92), and (93) must be

solved numerically to obtain the Cn'S and An's. As mentioned previ-

ously, these equations were found to be lll-condltloned when L = Q [16].

Thus, a solution was sought by making Q > L and satisfying the equations

in a least-squares sense [16]. Reasonable answers were then obtained.

The condition of the set of equations was found to be further improved

by setting M >> L. This is consistent with the nature of the boundary

conditions on the crack surface. The series on g2 has M terms to
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represent both t_e zero displacement difference in the region (-b/a,b/a)

and the non-zero displacement difference in the regions (-l,-b/a) and

(b/a,l); however, the stress, o(s) which has L terms, can be represented

by only a few terms because it is smooth and symmetric.

To obtain a valid solution to the problem, the value of b was

incremented until IAol < _ where a satisfactory value of _ depended on

h. The solution was assumed to have converged when solutions with

different values for M and L gave b's which differed by less than

•one percent.

The integrals in Equations (88), (89), (90), (91), and (93) were

evaluated using quadrature formulas. Integrals with (i - x2) ±I/2

behavior near the end points were integrated using the Gauss-Chebyshev

integration formulas [17]. The infinite integrals (Kl(r,s) and K2(r,s))

were integrated using the Gauss-Legendre integration formula [17].



CHAPTER IV

RESULTS AND DISCUSSION

No Contact in the Region (-a,a)

• In this problem a crack of length 2a on the interface between the

layer and the half-plane is opened by a unit normal pressure applied to

both faces. The governing integral equations are glvenby Equa-

l = -i. This problem,tions (59) and (60) with Po(X) = 0 and Oyy2 y=O

which was first solved in [I0], was re-solved herein to check the

formulation and programming of the partlal-contact problem.

In [I0] stress intensity factors (for various values of h/2a) are

presented for an epoxy layer and an aluminum half-plane (see Figure (6)

in [i0]). Corresponding results from the present formulation were found

to be in excellent agreement with those results.

A second check can be obtained by specifying identical elastic

properties for the layer and the half-plane. For this problem the

infinite integrals in Equations (59) and (60) can be evaluated in closed

form. The resulting expressions are identical to those given by

Equation (7.93) of [12], except for the sign of k21(x,t). It was

verified in correspondence with Professor Erdogan that the minus sign

had been omitted in [12].

The solutions of these two problems provide a check on the entire

formulation of the partlal-contact problem except for the terms

involving Po(X). They also validate the reduction of the integral

equations to simultaneous algebraic equations as well as the programming

of the solution.
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Full Contact in the Region (-a,a)

This problem contains the physically unrealistic boundary condition

of frictionless adherence of the layer and the half-plane (see

Figure (ib)). The resulting integral equations are considerably

simplified, and they are readily solved numerically. Details of the

formulation and solution of this problem are in Appendix C. This

auxiliary problem was solved to obtain an initial estimate of the separ-

ation point in the partlal-contact problem. In fact, in all cases the

point where the contact stress changed sign in the full-contact problem

was an upper bound for the separation point in the partial-contact

problem.

Interestingly, the integral equations for the two problems differ

considerably. The full-contact problem is governed by a single integral

equation of the first kind, while the partlal-contact problem is

governed by a pair of integral equations of the second kind. In the

full-contact problem, the stresses are singular at the crack-tlp. The

normal stress, _yyly=O, is singular as the crack-tlp is approached from

within the crack and non-slngular as the crack-tip is approached from

the bonded side. On the other hand, the shear stress, _xyly=0, which

is of course zero along the crack, is singular as the crack-tlp is

approached from the bonded side. This behavior of the stresses near a

closed crack-tip has been discussed by Comninou [Ii]. In the partial-

contact problem, the stresses have an oscillating square root singu-

larity at the crack-tlp. Both ayy(X,O)and _xy(X,O) are singular as the

crack-tlp is approached from the bonded side and, as the boundary

conditions require, they are zero on the crack faces near the crack-tip.
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The contact stresses on the crack are shown in Figure (2) for the

case of a steel layer and an aluminum half-plane and in Figure (3) for

the case of an aluminum layer and a steel half-plane. Both figures show

normalized contact stresses versus position on the crack for several

h
values of --. As is typical for contact between layers, the magnitude ofa

the stress is largest for thin layers and it is concentrated under the

applied pressure. For thicker layers the stress is distributed over a

larger area. For the case of a steel layer and an aluminum half-plane

(Figure (2)), the contact stress for the given geometries is compressive

over the entire crack and at the crack-tlp the stress is singular in

compression. This behavior is typical for cases where E1 > E2 and

> 0.3. When _ and --hare small the stress distribution can have a
a a a

region of tensile stress near the ends of the crack. However, the

singular contact stress at the crack-tips is always compressive. For

the case of an aluminum layer and a steel half-plane (Figure (3)), the

contact stress is compressive over most of the crack and tensile near

the crack-tip; the stress at the crack-tip is singular in tension.

The point where the contact stress changes sign moves toward the crack-

tip as the layer thickness increases.

Figures (2) and (3) show that, if the modulus of the layer is

greater than that of the half-plane, the singular stress is compressive,

but that if this relationship is reversed, the singular stress is

tensile. If the material properties are identical, the contact stress

at the crack-tlp is non-singular. This can be seen by examining the

free term in Equation (C.I), which determines the contact-stress

singularity. The material property coefficient, 831, of the free term

is zero when the material properties are identical.
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an aluminum layer and steel half-plane.
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Figure (4) shows the effect of the wldth c of the loaded region

(relative to the crack length) on the contact stress; the contact stress

is plotted versus position on the crack for several values of !. All
a

the results are for an aluminum layer and a steel half-plane. The

magnitude of the contact stress increases as the width of the loaded

region increases, but the singular stress remains tensile, even for a

value greater than one.
a

Figures (2), (3), and (4) establish several important trends in the

behavior of the full-contact problem which can be carried forward to the

discussion of the singular stresses at the crack-tips and later to the

partlal-contact problem: (I) the sign of the singular stress at the

crack-tip depends on the relative stiffness of the layer and the half-

plane; (2) changing the layer thickness to crack length ratio changes

the contact stress distribution but not the sign of the singularity; and

(3) changing the load width to crack length ratio changes the contact

stress distribution but not the sign of the singularity.

Using Equation (95), stress intensity factors for the material

combinations of Figures (2) and (3) are plotted in Figures (5) and (6)

as a function of dimensionless load width. One should note that kI is

not the classical mode I stress intensity factor but is the coefficient

of the singular component of the contact stress on the unbonded side

rather than the stress on the bonded side. The figure shows that for

h
both material combinations and various values of _, the stress intensity

factors increase to a maximum near ! = 1.0 and then decay asymptoticallya

to zero. Further, for both material combinations k2 is much greater in

magnitude than kI.
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a. Coefficient of the singular contact stress.

b. Mode II stress intensity factor.

Figure 5. Variation of the coefficients of the singular stress with

for full contact of a steel layer and aluminum half-plane_



a. Coefficient of the singular contact stress.

" b. Mode II stress intensity factor.

Figure 6. Variation of the coefficients of the singular stress with

for full contact of an aluminum layer and steel half-plane_
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The sign of kI reflects the sign of the singular stress at the

crack-tips. For the aluminum layer and steel half-plane the singular

stress is tensile and kI is positive; for the steel layer and aluminum

half-plane the stress is compressive and kI is negative. This indicates

that for a relatively "soft" (aluminum) layer the no-separatlon con-

stralnt actually does prevent the layer from separating from the half-

plane. For a relatively stiff layer the stresses at the crack-tlps are

compressive, but for small _and _ there can be a region of tensilea a

stress, which suggests the possibility of crack opening in the partial-

contact problem. Interestingly, k2 is negative for both material

combinations, Which indicates that the shear stress along the bond llne

constrains the layer from moving away from the origin relative to the

half-plane, no matter which material is stiffer.

.max .max
With _I and k2 defined as the maximum kI and k2 for a given ha

.max .max

(note that k_ x and _2 are functions of _), Figure (7) shows _I

k_ x plotted versus _ for both material combinations. The peak
and

a

Values occur at "h _ 0.4 for the steel layer, aluminum half-planea

combination and at _ _ 0.7 for the aluminum layer, steel half-planea

h .max 2 xcombination. For large _, K1 and k become very small because of

load diffusion effects.

Figure (8) shows k_ x and k_ x plotted against the stiffness ratio,

_ umax
EI/E 2 for several values of h.a For EI/E 2 > i, -I is negative, and

for EI/E 2 < i, k_ x is positive (Figure (Sa)). This indicates that at

the crack-tlp the layer is attempting to pull away from the half-plane

only when EI/E 2 < I. The magnitude of k_ x is largest when the stiff-

nesses are different, I.e., EI/E 2 = 7 or EI/E 2 = 0.I. The mode II

stress intensity factor, k_ x, is negative for all values of EI/E 2•
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,25--
c_is notconstanta

,20--

kzmox ,15--

Po_r_- ,10 -- /Z_alumlnu m layer, steel half-p10_-'--,05 -- steel layer, aluminum half-plane

I I I I I I I I I I
0 ,2 ,4 ,6 ,8 1,0 1,2 1,4 1,6 1,8 2,0

h
a

b. Mode II stress intensity factor.

Figure 7. Varlatlon of the maxlm_m coeff£clents of the s£ngular stress
with layer thickness, _, for the full-contact problem.
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Figure 8. Variation of the maximum coefficients of the singular stress

with material stiffness ratio for the full-contact problem.
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For EI/E 2 + 0, k_ x appears to approach a single value for all values of

a' but that has not been established here. For EI/E 2 + % k_ x tends

toward zero because the layer is rigid relative to the half-space. For

an ideally rigid layer k_ x and bmax-2 are zero because a finite load on

an infinite rigid layer will produce zero displacement at the interface.

Partial Contact in the Region (-a_a)

In this problem the layer is allowed to separate from the half-

plane at the ends of the crack (see Figure (la)); the formulation and

solution are in Chapters II and III. As discussed in Chapter II, the

• governing simultaneous equations are lll-condltloned and, consequently,

solutions are obtalnedby satisfying the equations in the least-squares

sense. The condition of the system of equatlons is found to depend on

the combination of geometric parameters as well as the material

properties of the layer and half-plane. As a result, satisfactory

solutions are obtained for a relatively limited range of parameters,

compared with the full-contact problem. To obtain solutions for a wider

range of parameters would require more terms in the series expansion for

(Equation (81)). However, the number of terms used to obtain the

results presented herein required the maximum amount of storage

available on the computer employed.

Figure (9) shows the contact stress and normal displacement

difference distributions for an aluminum layer• and steel half-plane.

The contact stress vanishes at about k = 0.61. The normal displacementa

difference is essentially zero in the contact region, as required and

the layer separates from the half-plane in the region of zero contact

stress. The contact stress distribution is very similar to the

compressive part of the distribution for the full-contact problem
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partial contact between an aluminum layer and steel half-plane.
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(see Figure (3)). In the full-contact problem, the stress changes sign

at about x = 0.79, which is beyond the end of the contact zone in the

partial-contact problem. The contact zone in the partial-contact

problem should be smaller than the zone of compressive stress in the

full-c0ntact problem because, without the restraint imposed by the
.

tensile stress of the full-contact problem, the crack will tend to open

over an even greater area. Similar results were found for other

combinations of geometric and material parameters.

b

The dimensionless half-width of the contact zone, _, as well as the

magnitude of the contact stress and the crack opening, depend on the •

material and geometric parameters. Figure (i0) shows the effect on _ of
a

pressure distribution width, layer thickness, and material stiffness

ratios. The size of the contact region increases with both layer

thickness and pressure distribution width, but is insensitive to

relative material stiffness for EI/E 2 < I. As the ends of the contact

zone near the crack-tips, substantial error develops in the displacement

differences on the interface. For example, a negative normal displace-

ment difference is predicted at the ends of the contact zone for an

almost closed crack. Because the crack faces cannot overlap, this is

physically impossible. The error develops for large contact regions

because the large region of zero displacement difference prevents the

series expansion for _ from accurately modeling the small region of

crack opening. For this reason, results are presented for relatively

small b and c
a a

The most important conclusion from the results for the partial-

contact problem is that there is indeed crack opening near the ends of

the crack under purely compressive external loading normal to the crack.
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With crack opening comes the possibility of crack growth, and the

likelihood of crack growth increases with the magnitude of the stress

intensity factors. Figure (ll) gives k2 as a function of h for several
.L

values of _, and as a function of E1/E2. Figure (lla) shows that k2 in-
a

creases with both layer thickness and the width of the region of applied.

pressure. These results are consistent with those of the full-contact

problem over the same range of parameters. Figure (llb) shows that k2

increases with the material stiffness ratio E1/E2. Again, these re-

sults are consistent with results from the full-contact problem. Results

for kI are not presented because they appear to be of questionable

accuracy. Computed values of kI are typically an order of magnitude

smaller than the values of k2, and thus are very sensitive to small

errors in the series expansion of the displacement differences (which

are used to compute kI and k2). The apparent inaccuracy in kI does not

change the important result that the crack does open which is consistent

with a positive k1. Because the normal displacement difference is

closely related to kI and it is constrained in the contact zone, k1

should be much smaller in magnitude than k2. This is in fact the case,

although the values of kI are suspect for the reasons mentioned above.



Figure ii. Variation of partial-contact k2 with geometric and material parameters.
o
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CHAPTER V

CONCLUSIONS

The problem of an elastic layer bonded, except for a frictlonless
°

crack, to a dissimilar elastic half-plane is considered in this study to

investigate the behavior of the dlsbond under compressive loading.

Using Fourier transforms, the two-dlmensional elasticity equations are

converted to a pair of coupled singular integral equations with Cauchy-

type kernels. The equations are reduced to a set of simultaneous

algebraic equations which are lll-condltloned; as a result, the equa-

tions are solved in the least-squares sense. From the analysis, the

following general conclusions about interface cracks in layered media

are reached.

I. Under a normal pressure distribution on the free surface of the

layer the tips of the crack can open. The resulting stresses

at the crack-tlps are singular, implying that crack growth is

possible even under compressive loading.

2. The width of the crack-face contact zone depends on the layer

thickness, the pressure distribution width, and the relative

material properties of the layer and half-plane.

3. Crack-tlp stress intensity factors depend on the geometric
and material parameters.

4. Because the final set of simultaneous algebraic equations is
lll-condltioned, accurate answers cannot be obtained for some

values of the geometric and material parameters. To obtain

accurate answers for a wider range of parameters, the program
would have to be modified to allow for even more terms in the

series expansion of the dlsplacement-dlfference function.
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Appendix A

Material Property Terms

The expressions for the material property terms in Equations (28),

(29), and (30) are

al I ffi -(plr.2 + _2)(tl 1 + _2 r.1) ,

a12 = 4(Ply. 2 + p2)(1J 1 - tj2) ,

a13=O ,

a14 = 2_i_2 _i_2(_I

a15 ffi(_2_ - _z_)(_l - _2) '

1
= _ -z(_l_ + B2)CK1- + 1)cll J

i - I)c12 : -_- .2(I + _I)(_I_2

1
" _- -_zc_- _z)_(_1_z_ + I)cI.3 m

1
c14:" T _(_i + i)(_I - _2) '

I

e22 = -2_I_(K 2 + I) ,



I
c24 = _- tll_(_ I - l)(_c 2 + i) ,

I
c2s: _-,i_(_2- _i).

.z. { . _.j"
2 r-

_ c31 =" IJl_2+ _2 + I (I -

c32= 4"z T "2(_2 - z) - __ ,

c33 = tJlP2CKl + i)(_c 2 + I) ,

i
c34= -2,_ -_ _I_(KI- i)(_2 - z) .

2 i

dll:O ,

I
d12 :"- _- (tlI+ _2rl)(_:I + I) ,

d13: (_ - .i)(_I + Z) ,

I
d14 ,, _-- (iJ I - t_2)(_ I + i) ,

d21 -_l(IJI + _2_:I) ,

d22 = 4_i(_I - _2) '

d23 :'2_iP2(_I + I) ,
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1 -I)] ,d24 = 2BI[ _ +_ B2(_I

d2s= _I(_2- _i),

d32 : 41Jl(iJ2 - ljl),

d33 = 21J1]J2(_:l+ I) ,

d34 ffi-2_ - _i_(_i - I) , and

d35 = _I(BI - ij2)•

The definitions of the material property terms in the integral

equations are

BII = -ell ,

1
Sl2 = _- (I + _2) d12 - c12 ,

i
BI3 = _.(I + _2) d13 - c13 ,

1
BI4 = _-(I + _2) d14 - c14 ,

i
(I + =_:")d21 - c21 ,B21

I (I + - ,B22 = _[ _2) d22 c22
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1
B23 = _- (1 + _:2) d23 - c23 ,

1
1324 = _- (1 + _:2) d24 - c24 ,

1
B25 =,_-(I + _:2) d25 - c25 ,

i
B31 = _- (i + _2) d31 - c31 ,

i(I+ - ,B32 = _ K2) d32 c32

1333 =0 ,

1
B34 = _ (1 + _2) d34 - c34 ,

1
B35 =_-(i + _:2)d35 - c35 ,

1 - I) ,$41 = Cll - 2 (_:2 dll

1
B42 ffiCl2 - _.(g2 - i) d12 ,

i
B43 = c13 - _ (_:2 - 1) d13 ,

(_2 I) ,B44 = c14 - _- - d14

i
851 = c21 - 2- (_2 - I) d21 ,

i
B52 ffi c22 - _ (_:2 - 1) d22 ,

,. ..
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i - I) ,B53 = c23 - _-(K2 d23

i (K2_ z) ,B54 = c24 - _- d24

i
B55 : c25 - _ (_c2 - 1) d25 ,

I
1361= c31 - 2"(_:2- i) d31 ,

I
B62 ,.c32 - _. (K2 - I) d32 ,

1
B63 = c33 - _" (_:2 - 1) d33 ,

1
B64 : c34 - 2" (_:2- I) d34 , and

i
B65 = c35 - 2" (K2 - I) d35 .
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Appendix B

Relevant Integral and Limit Evaluations

The following integral formulas, all for y < O, are taken from [14]:

I -Y 2 '
ey_ sin(x_)sin(t_)d_ = _ 2 . (t - x)2 y + (t + x)

_0 ey_x_ sin(x_)sin(t_)d_= - y -[2 (t- x)2)2 - _7 - (t+ x)2 y + (t x)2 (y2+ (t+ x)z)z"'

_0 _ l[y t+X __ t-X f],
+ = 2 + (t - x)ey_ sin(x_)cos(t_)d_ _ 2 + (t + x)2 Y

ey_ x_ sin(x_)eos(t_)d_ = y2 t + x t x i
y2 + (t + x)2 _ - (y2 + (t - x)2 '

[ ++_7+o,,I Y "+ 2 '
ey_ cos(x_)cos(t_)d_ 2 y2 + (t - x)2 y + (t + x)

_0 ey_ x_ cos(x_)cos(t_)d_ = -Z -_2 (t - x)2 + y - (t + x)22 (y + (t - x)2)2 (y2 + (t + x)2 "

The following evaluations of limits of certain integrals are taken

from [14]:

Ey y ,+],,t_.__++,Y ' _: 2
lira_ _(t) 2+ (t x)2 y + (t+ x)x+O
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_0= I )'3-Y(t- x)2 y3 - y(t+ x)2 1

llm ¢(t)

x+O- [y2 + (t - x) 212 [y2 + (t + x) 212 dt " 0 , and

JoI tifm _(t) y2(t + x) _ y2(t - x)

o _0- [2 +_ +_)2j2 [2¥ it __)212dt=0.

4t _,
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Appendix C
J

S01utlon of the Full Contact Problem

?

For the full contact problem described in Chapter II, Equa-

tions (59) and (60) reduce to

I /oIraYY2 7=0-
- Po(t) _l(u) cos(at)cos(ax)du at

,:" 2u2 c

+ _-- fl(x) - fl(t) _3(a) cos(_t)cos(,ax)dadr ,
all a

' (C.I)

and

2U2 = Po(t) _l(a) cos(at)sin(ax)da dt 861 r a fl(t)c all_-a _ --x dr

/_a /0- fl(t) _3(a) cos(=t)sin(ax)da dt • (C.2)
a

The only continuity condition is Equation (63),

_a fl(x) dx TM 0 • (C.3)a

The only independent unknown in the problem is fl; _YY21__.y=O is now

a function of fl" Thus, the solution for fl is obtained from Equa-l

tions(C.2)and (C.3).

Restrictingx to the interval(-a,a)and defining

t X
r = -- s - -- _ anda * a
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gl(s) ..-fl(ao) ,.-el(x ) ,

Equations (C.2) and (C.3) become

" foPo(t) K21(a) cos(at)sin(asa)da dt = I gl(r)
861 c -_ 1 _ _ _ dr

+ a all f_l fo _--=--861I gl(r) _3(a) cos(ara)sin(asa)da dr , Isl < i ,

(c.4)
and

l gl(s) ds = 0 . (C.5)
I

Equation (C.4) is a singular integral equation of the first kind

(as defined in [12]), and the dominant part,

86___1 fl gl(r)
all_-I _ _ _ dr

determines the fundamental functional form of gl which is

Gz(s)
gl(s)ffi (C.6)

_I - s2

where G1 is a bounded continuous function.

The numerical technique developed in [18] is used to solve Equa-

tions (C.4) and (C.5). Following [18] the bounded function GI is

approximated as

K

Gl(S) --_ Ck Tk(S) (C.7)
k-0
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where Tk is the Chebyshev polynomial of the first kind. Then substi-

tuting Equation (C.6) into Equation (C.4) with use being made of

Equation (C.5), the integral equation reduces to the set of simultaneous

equations,

1 _ Gl(rn) IrIN - s + k(sm,rnl = R(Sm), m = I, ...,N- I (C.8)n=I n m

where use has been made of the appropriate relations from [18] and where

all fo_
k(rm,Sn) - a-- _3(_) cos(arn_Sln(asm_d= , (C.9)

861

R(Sm) lall__ c /0 _
= Po(t) K21(_) cos(_t)sin(aSma)d_ dt ,

861 c
(C.lO)

rn = cos _-_(2n - I) , and (C.II)

Equation (C.8) gives N - I equations for N unknowns; using the Gauss-

Chebyshev integration formula [17], Equation (C.3) gives the Nth

equation as

N

Gl(rn) = 0 . (C.13)
n=l

After determining Gl(rn) by solving Equation (C.8) and C.13), the

stresses on the entire interface are computed using Equations (C.l) and

(C.2). The stress intensity factors are computed from Equation (95)

with a = -1/2.
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LIST OF SYMBOLS

a half crack length

alj,cij,dlj functions of material properties as defined in Appendix A

b half width of the contact zone

c half width of the applied pressure region

EI,E 2 Young's moduli of layer and half-plane, respectively

fl,f2 dlsplacement-dlfference functions on u and v, respectively

gl,g2 dimensionless dlsplacement-dlfference functions for fl and f2,
respectively

GI bounded continuous function defined in Equation (C.6)

h layer thickness

i iri

kl,k 2 coefficients of the singular stresses

Po(X) pressure distribution on the free surface of the layer

Po magnitude of the uniform applied pressure

p(C,c) nth order Jacobi polynomialn

Tk,U k kth Chebyshev polynomial of the first and second kind,
respectively

vl,ui displacementsin the ith material in the y and x directions,
respectively

w(x) weight functionof the Jacobl polynomials

_,_ superscriptsin the Jacobl polynomials

81j material propertyterms definedin AppendixA

F gamma function

" _1,62 material propertycoefficientsas defined by Equations (74)
and (75)

_i material propertyconstantfor the ith material
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%i,Bi_ Lame constantsfor the ith material

a(s) normal stress in the contactregion

_xxi,Oyyi,Oxyi- stressesin the Ithmaterial
normal stress-inthe y-directlonin the half-planeat y TM 0

YY21y=O-
o shear stress in the half-planeat y = 0
2lwo-
@ complexfunctionof gl and g2 definedby Equation (69)

material propertyterm definedby Equation (80)

Laplace differentialoperator

Subscripts

x,y Cartesiancoordinates

1,2 layer and half-plane,respectively
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