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Abstract

Surface strain rate is best observed by fitting a strain-rate ellipsoid

to the measured movement of a stake network,or other collection of surface

features, using a least-squares procedure. Error of the resulting fit

varies as (LAt/7T)~ , where L is the stake separation, At is the time period

between initial and final stake survey, and n is the number of stakes in the

network. This relation suggests that if n is sufficiently high,

the traditional practice of re-visiting stake-network sites on successive

field seasons may be replaced by a less costly single-year operation. A

demonstration using Ross Ice Shelf data shows that reasonably accurate

measurements can be obtained from 12 stakes after only 4 days of deformation.

The least-squares procedure may also aid airborne photogrametric

surveys in that reducing the time interval between survey and re-survey

could permit better surface-feature recognition.



INTRODUCTION

Horizontal strain rate, vertical vorticity and horizontal velocity

observed at the surface of large ice sheets and ice shelves constitute

field data essential to the study of large-scale ice-flow dynamics and

mass balance. These data are traditionally acquired by implanting stake

networks and surveying their deformation over a known time interval [Nye,

1959; Zumberg and others, 1960; Thomas and others, in press; Drew and

Whillans, in press]. In practice, a one-year time interval is required

to allow relative stake displacements in excess of measurement resolution.

This one-year period necessitates the deployment of survey parties on two

successive field seasons. This paper presents a technique, based on

prior work by Nye [1957, 1959], that reduces the time interval between

initial and final survey and eliminates costly survey party re-deployment.

Typical stake networks used to measure the general flow of the Ross

Ice Shelf and its grounded margins, for example, consist of four individual

stakes arranged in either a rosette or a rectangular pattern [Thomas and

others, in press]. These networks provide a degree of

data redundancy because only three stakes are required to measure horizontal

strain rates and the vertical component of vorticity. In practice, no

significance is assigned to apparent deformation gradients within the

network, so this redundancy is generally treated by averaging the results

of the four triangular sub-arrays [Thomas and others, in press].

This study examines the consequence of expanded data redundancy within

compact stake networks to determine whether the time interval between

survey and re-survey can be shortened to less than one field season.

Figure (1) shows an example of such a stake network. The results

demonstrate that greater redundancy can shorten field operations and



suppress aliasing errors that may occur when small-scale strain-rate

fluctuations are superimposed on the average large-scale deformation.

The stake-network design features that achieve these advantages may

additionally be useful for certain remote sensing programs that employ

large numbers of natural surface features which can become obscured from

one year to the next.

Sources of i»asurement error:

The horizontal strain-rate tensor components £. . (i = 1, 2; j = 1 , 2) and vertical

vorticity component w are defined by the following expressions:

(1> 'V| hr + i? '-J • >•'ft O s\ • OA • I6 L J i J
and,

(2) : - te . !!il

where v = (Uj, u,>, u^) is the ice velocity and subscripts 1, 2, and 3 refer

to a orthogonal coordinate system (x, y, z) having unit vectors e , e and e
x y z

such that ez is perpendicular to the geoid and e and e define the horizontal

plane.

Measurement of stake displacements by conventional surveying equipment

establishes the velocity gradients required to solve Equations (1) and (2)

for e.. and to . Sufficient time must be allowed between initial and finali j z
survey so that the displacements will exceed measurement error and any

unnatural stake disturbances caused by wind or sunlight. If, for example,

At = 0.02 m is the stake position uncertainty, L = 1.5 x 10 m is the stake
• -10 -1 *"separation, and e = 1 x 10 sec 1s the strain rate scale (typical for



Ross Ice Shelf conditions), then a time Interval of

L t

is required between initial and final stake survey to achieve a displacement

measurement accuracy of 1%. This time span is generally too long to be fit

within a single field season; thus a second field season, incurring the

duplicate cost of field party re-deployment, is required.

An alternative to allowing one year between survey and re-survey is to

plant more stakes in each network. From elementary statistics, the

measurement error should reduce roughly as "7= where n is the number of

stakes (or where n is the number of independent measurements of a single

stake) [Mendenhall and Scheaffer, 1973]. It is thus conceivable that,

by choosing n sufficiently high, At can be reduced to several days or weeks.

A second potential advantage gained by using stake arrays with large

numbers of stakes is the reduction of aliasing errors caused by small-scale

strain rate and vorticity fluctuations superimposed on the large-scale deformation.

Defining e. .a as the strain rate averaged over a suitably chosen large-
' J

scale distance and e..v as the fluctuation around this average, the total

strain rate e- . may be defined by
' J

v..

Uniaxial strain-rate data from the Ross Ice Shelf, shown in Figure (2),

demonstrates that E..V is not necessarily smaller than e*..a and can vary
' J ' J

over a length scale commensurate with the actual 1-2 km stake-separations

generally used on ice shelves [Thomas and others, in press].



Many field programs are designed to measure e^ rather than e^;

however, 1t may not be possible to select a stake placement that will

average out the effects of the unknown t^v. Aliasing errors will

consequently arise 1n the measured value of e^ . The reduction of

aliasing errors can be achieved through either Increasing the stake

separation or Increasing the number of stakes to allow, 1n effect,

averaging of Individual aliasing errors. Planting stakes with large

separations may be ruled out by equipment limitations, so Increasing the

number of stakes may again provide the best alternative.

Strain-rate estimation from an over-deterained data set

An n-leg generalization of the 3-leg rosette stake network used by

Thomas and others [1n press] on the Ross Ice Shelf will be examined to

determine the advantages of redundancy and demonstrate the data-analysis

technique. Each outlying stake of this rosette defines a position vector (x., y.)

i = l,n that will change by (Sx̂  6yi) i = l,n as a result of horizontal

ice-shelf strain in the time Ati, i * l,n between initial survey and re-survey.

For purposes of this analysis, (i) the net strain is infinitesimal and (ii)

the strain-rate variations over the length scale spanned by the stake

network are considered noise. Rosette design procedures other than those

described here should be adopted if either of these conditions are not met.

The set of n observed stake displacements are converted into the four
3u .

horizontal velocity component gradients —- i,j = 1,2 by solving the
3xj

following linear equation:

(5) A s = d - 2



Here s 1s the column vector I 7—, r—, -r-% r-* J representing the true
~ y dx oy pX oj I

local average of the horizontal velocity gradients, d Is the column vector

• 7t"̂ » 7F"» •••• 77̂ 1 tnat represents the measured stake

displacements resulting from the true Ice strain £, z Is the column vector

..... £t~l that represents the disturbance of the
n

"IT"* ItT"'

true stake displacements resulting from Inaccurate measurement and from

actual strain rate variation over the rosette, and A 1s the 2n x 4 stake-position

matrix given by

(6) A =

y o o

0 0 x,

The noise vector ^ is assumed to be a random variable characterized by the

following 2n x 2n covarience matrix <z_ z_ >:



8

< z z T >

(7)

In the above representation of < £ z_ >, the error in measuring one stake is

assumed, for simplicity, to be uncorrelated with those of other stakes. The

uncertainty of one stake's displacement, however, may be greater than another's.

In more complex situations, errors in measuring different stakes may be

correlated. In this circumstance, the data pre-weighting matrix W defined

in the following section should be chosen to diagonalize < z. z >.

The matrix A contains all the information regarding the number and

positioning of the rosette stakes. In general, A will have a greater number

of rows than columns because it maps a given element £ of the "velocity

gradient vector space" having a dimensionality of 4 into an element d of

the "data vector space" having a dimensionality equal to twice the number of

stakes. Note, however, that not all possible elements of the data space are

accessible through A from an element of the velocity gradient space. These

inaccessible data elements constitute the measurement of noise and provide

no Information useful for calculating ^. The objective of the data analysis

technique presented here 1s to select an inverse of A that discards all



Inaccessible data elements.

Pre-we1qht1ng and scaling

Before deriving the Inverse of A, Equation (5) 1s modified so that the

covariance matrix < z z. > has equal diagonal elements and the variables

are scaled dimensionless quantities of order one [Wunsch, 1978]. The

dimensionless weighting matrix W defined by

(8 ) W =

°i
?

where o
i 2

= ^- .2 o./At-2, 6ij B 0 1f i i< j, «"<* 6... = 1 if i = j, is used

to transform Equation (5) as follows:

9) H A S . W d -

1/9 , _ I/O T I/?' ?
where W ' .. = /ITT . Observe that now <W IC z 2 W1/£ > = o ]_. To avoidi j i j — — —

1/2unnecessary notational complication, however, the factors^ will be

henceforth dropped from Equation (11).

1/2The purpose of the weighting matrix W is to render each component of each

observed stake displacement rate in a form having the same uncertainty. In practice,
6x . 6y .

the displacement rate vectors ( - • - ) i = l,...,n are measured in polar
j i 1

coordinates ("7t~ ' 7T~) i = l,...,n where the uncertainty of 66. is considerably
6R, 1- i

higher than -5 — . This disparity results from the practical limitations of
Ri

conventional theodolite and electronic distance measuring devices. Typically,
_2

accuracies of ± 0.5 x 10 m and ± 10" are attainable for 6R. and 66., respectively.

Unless the outlying stakes are placed closer than -100m from the central stake,

these disparate measurement uncertainties will render the uncertainty of the

tangential component of (ex^ , 6yi ) greater than that of the radial component.
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1/2The advantage of using the weighting matrix W is that it allows the data

elements of d_ representing radial displacements to weigh more heavily than

those representing tangential displacements.

Nondimensionalization of variables is accomplished by defining the

length and strain-rate scales L, * = [^ *•( JE-J j] » and by transforming the

variables as follows:

^ — (L) Ai,
3U.

(10) rrl 9X .
J

and,

3U.
where A. .,-r— , 6xn, 6y. and zn are now of order one. Equation (5) may be

I J oX • x £ x

J / O \
expressed in terms of the non-dimensional uncertainty parameter [ ] :

\ * L At/

(ii) A s = d - l-r5—} i
^ L A t /

Scaling Equation (9) in this way will simplify the forthcoming discussion

on how to best select At and L from prior estimates of e and o.

Singular value decomposition

The estimate S^ that minimizes the error || A S - d || defined by:
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1/2

1s obtained by the singular value decomposition method [Lawson and

Hanson, 1974; Wunch, 1978]. According to this method, A 1s decomposed

into the product of three associated matrices that are more readily

Invertable:

(13)
A = r RT

The 4x4 matrix £ is diagonal and is composed of the eigenvalues A., 1=1,4

associated with the following linear equations

(14) AT A r = Xc
2
 r I = 1,4

— — —" x — 0

and

(15)
~ f

I £ = 5,...,2n

The nomalized eigenvectors of A £ and A A, 5 and _r , respectively, comprise

the columns of g and the rows of jr respectively. The inverse matrices R

and Q~ are easily obtained by taking the transposes of R and (£. This

simplicity results from the orthonormality of the eigenvectors £ and r .
A/ X*

The inverse of A is

(16)

The complex algebraic manipulations required to perform singular value
decomposition of A are easily done by computer programs now available on most
university computer systems [Dongarra and others, 1979].
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where r 1s the 4x4 diagonal matrix composed of diagonal elements

-1 ~~r,. B 1/A^ 1 « 1,4. Equation (9) is

solved by applying A to the observed data d_:

(17) e c = - s I -

The expectation value of the error variance, <(se-sj(se-sj >.. 1=1,4, is

given by:

<(Se-S)(Se-S)T>H • < £ £
l £T z zT fi g l RT>1 .

(18)

[ (cL.t)2

Equation (18) states that the error of each component of Se depends on the

eigenvalues of £ and the eigenvectors r . , i=l,4.

Optimal rosette design

The task of designing the best rosette amounts to choosing the adjustable

parameters At, L and (x.,y.) i=l,n that satisfy a design criterion given by

Equation (18) restated as follows:

Max nk 2i k (e L At)

2
where E is the desired accuracy level (expressed in units scaled by e ).

Here, a2 is a parameter combining information about the surveying equipment

and natural strain-rate variation, and e is estimated or determined from

prior data. In practice, it is best to choose L as long as possible (-2 km);

therefore only n and At will be considered adjustable in the following discussion.
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To derive the design criterion, the n-leg rosette will be

Idealized as a system of n outlying stakes placed regularly on a circle at

angular Intervals of ae * £. In practice, however, allowances must be

made for deviations from this Ideal configuration. Assuming that 6R and Ue

are the Intrinsic radial and tangential uncertainties of observed stake

displacements, the non-dimensional and pre-weighted version of the matrix A

1s given by:

(19)

cos 1A6 j«=l and Un
sin 1A6 j«2 and Kn

0 j*3,4 and l£n

0 j*l,2 and 1>n
cos 1A6 j*3 and 1>n
sin IAS jc4 and 1>n

2 1 "where a = «- I2n ._. (6RZsin2iA6+L26e2cos2iA6)

The value of Max [l R2 /A2][o /(cLAt)2] expressed as a percentage of t 1s
I k 1k k

presented as a function of n and At in Figure (3) for parameter values 1=2 km

and e=10"10 sec"1. Observe that this -error value varies as (At/rT)" • As shown

in Figure (3), a choice of n-13 would yield 3% accuracy within a time span of

4 weeks.

Demonstration

A stake network planted upstream of the Crary Ice Rise on the Ross Ice

Shelf demonstrates the data-analysis procedure associated with the n-leg

rosette. Figure (4) shows the disposition of four 3-leg rosettes (O.E.F.G)
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planted in 1983 as part of a field project by Robert Bindschadler and

others (in preparation) to measure strain rates upstream of an ice rise.

The position of a much older 3-leg rosette planted in 1973 (Gg) falls

within the area enclosed by the four new rosettes. This older rosette

was re-surveyed in 1974 as part of the Ross Ice Shelf Geophysical and

Glaciological Survey (RIGGS) [Thomas and others, in press]; and yielded

an accurate strain-rate determination (±9%) with which data from the new

rosettes may be compared.

The four rosettes planted in 1983 were each surveyed and re-surveyed

within a time interval spanning 4.2 days. This re-survey was conducted

primarily to check survey equipment and to scan for possible zones of

ultra-high deformation. Here, however, the re-survey data will be used to

test the ability of a 12-leg rosette to yield an accurate measurement in

a short time interval. The imaginary 12-leg rosette is synthesized from

the four smaller rosettes by treating each of their central stakes as one.

Actual strain-rate gradients expected within the field area will degrade

the accuracy of the synthesized 12-leg rosettes because the smaller 3-leg

rosettes are separated from each other by up to 15 km. Nevertheless, the

synthesization provides an otherwise unavailable opportunity to demonstrate

a 12-leg rosette measurement.

Figure (5) shows the stake disposition for the synthesized 12-leg

rosette, and indicates the observed stake velocities relative to the

combined central stakes.

^Except for two stakes corresponding to rosette "0",

tangential displacements were not measured. Angular displacements required
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to observe the tangential components would have been below the accuracy

level (±10") of the theodolites used in this project, so any unknown

tangential displacements were arbitrarily assumed to be zero.

The results of the 12-leg rosette analysis are compared with the known

strain rates in Figure (5) and in Table (1). The two principle strain-rate

components (denoted *n and 122] given by the 12-leg rosette differ from the known

values by 9% and 14%, respectively; and their orientations are displaced by 6°. The

unsatisfactory results produced by the 3-leg rosette (E) closest to Gfi,

using the data analysis procedure outlined by Thomas and others [in press],

are also shown in Figure (5) and Table (1) as a contrast to the results

of the 12-leg rosette.

Practical considerations

It would be a mistake to adopt rosettes with large n without first

considering the limitations imposed by logistic support, survey technology

and the various benefits of a multi-year field program not emphasized in

this study. It is, of course, always desirable to plant rosettes with

large n. This desire conflicts, however, with the need to minimize the

field-party workload, especially when aircraft-support limits the time a

field party can spend at each field site. If field programs encompass a

large number of field sites, the 3 or 4 leg rosette may be best because

field operations would likely span several years regardless of whether

individual sites were revisited in the same, or in a succeeding, field

season. For field programs covering a small area, such as that conducted

upstream of the Crary Ice Rise, rosettes with greater numbers of stakes

may be preferable so that the entire field project can be accomplished in

several weeks.
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In view of the need to reduce the field-party workload, several design

modifications to the n-leg rosette may prove useful. Figure (1) shows,

for example, how planting k central stakes and m outlying stakes will

achieve a high data redundancy while reducing the total number of stakes and

the surveying workload. Surveying the m outlying stakes from k independent

central locations yields k«m=n independent measurements of stake displacement.

Only m+k<n stakes are required by this non-ideal n-leg rosette; and if

appropriate measures are taken (e.g., assigning a separate corner-reflector

prism to each outlying stake) the surveying can be accomplished within a

reasonable time frame.

Conclusion

The stake-network designs that best measure surface strain rates and

vorticity encompass a large degree of redundancy. The more stakes included

in each network, the less individual stake displacement errors will effect

the overall measurement. The advantage gained at the expense of the

redundancy is the reduced time interval between survey and re-survey.

Redundancy may also be a key element in the design of future field

programs based on remote sensing techniques such as airborne photogrammetry.

Brecher [1982], for example, has used photographs of natural features to

identify the motion of the Byrd Glacier. These natural features are

available in virtually unlimited number; so provide, in principle, a

natural equivalent of a large-n rosette. A shortened time interval between

initial and final aerial photography missions may reduce the camouflaging

of natural features by drifting snow; and may, therefore, ultimately

achieve greater accuracy by virtue of higher data redundancy.
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FIGURE CAPTIONS

Figure 1. The idealized n-leg rosette considered in this study for the

purpose of error analysis consists of n outlying stakes surrounding a

central stake (0) at equal angular intervals and with equal radial

separation. Typical rosettes used on the Ross Ice Shelf had n=3 [Thomas

and others, in press]. Also shown above is a modified n-leg rosette that

uses m+k<n stakes. This rosette design achieves n-legs by having k = ̂  central

stakes, and may be more practical under actual field conditions.

Figure 2. Uniaxial strain rate measured on the Ross Ice Shelf at station

C-16 (81°11>38"S, 189°30'09"W) is plotted as a function of distance along

a line bearing 312°T. The relative ice-shelf surface elevation along the

line is also plotted. Open circles denote stake positions. The error

-4level of the observed strain rate is approximately 1.0 x 10 /yr.

Figure 3. The maximum error of the velocity gradients, expressed as

percent of *, is plotted as a function of n and At. Scale factors used in

the calculation of these graphs are * = 10" /sec and L = 2.0 x 10 m.

Notice that 3% accuracy can be achieved by a 13-leg rosette in 28 days

or by a 3-leg rosette in 84 days. Under some circumstances, it may be

preferable to deploy rosettes having nH5 so that all measurements can be

accomplished within one field season. This diagram, and other similar

ones, can be used by field glaciologists to design their field program to

maximize the data return for a given logistic effort.
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Figure 4. Four 3-leg rosettes (0, E, F, G) planted upstream of Crary

Ice Rise on the Ross Ice Shelf were re-surveyed after an average time

period of 4.3 days. A fifth rosette (Gg) planted during RIGGS provides

an accurate measurement of the actual strain rate to be used as a reference.

In this study, the four 3-leg rosettes are combined into one 12-leg rosette

to see how the subsequent strain rate measurement provided by the 4.2 day

period compares with the actual strain rate.

Figure 5. Stake positions of the 12-leg rosette are mapped along with the

relative stake velocities. The principal axes of the strain rate measured

using the 12-leg rosette are compared with those measured during RIGGS (Gg)

[Thomas and others, in press]. Also shown are the principle axes resulting

from the 3-leg rosette E using a 3.9 day interval between survey and re-

survey. Uncertainty of the observed velocities is variable. The shaded

ellipse represents, for example, the velocity uncertainty for the three most

outlying stakes. The ellipse should be oriented perpendicular to the

position vector.



Table 1. Principal strain-rates (cj j Snd £22^ measured by various rosettes

Year of t Bearing
Survey Rosette At e e of el 1

1973 Gg 1 year 1.72±0.15x10 sec~ - 1.57±0.03x10~ sec" 50'

198^ 12-leg M.2 days 1.87 . -1.79 MM0 1.77x10~'°sec

1984 E 3.9 days 2.67 -2.7M M2°
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